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Abstract 15 

The mechanical response of an elastoplastic polycrystalline aggregate is estimated by means 16 

of Taylor and Hill's incremental self-consistent models in conjunction with two 17 

rate-independent crystal plasticity laws: standard and regularized Schmid laws. With the 18 

Taylor model, both constitutive laws lead to the same result whereas for the self-consistent 19 

model, the standard Schmid law predicts softer effective response than the regularized Schmid 20 

law and higher strain heterogeneity within the polycrystal. It is found that these features are 21 

related to the decrease of the shear tangent moduli during deformation when the standard 22 

Schmid law is considered. The presented results with the regularized Schmid law are in 23 

agreement with previous findings for power law viscoplastic polycrystals. It is demonstrated 24 

that the description of the crystal plasticity law significantly affects the estimate delivered by 25 

the Hill's incremental self-consistent model for elastoplastic polycrystals. 26 

 27 

Keywords 28 

Self-consistent model, rate-independent elastoplasticity, polycrystal, nonlinear 29 

homogenization 30 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

 - 2 - 

1. Introduction 31 

Homogenization methods are efficient approaches to estimate the mechanical properties of 32 

heterogeneous materials. In the case of polycrystalline media, theoretical results have shown 33 

that the linear elastic self-consistent model (Hershey, 1954; Kröner, 1958) is well appropriated 34 

to describe their effective properties (Kröner, 1978). This has been assessed by comparing the 35 

effective behavior and the local fields with results delivered by full-field computations on 36 

various polycrystalline microstructures (see, for instance, Lebensohn et al., 2004; Castelnau et 37 

al., 2006; Brenner et al., submitted). 38 

 39 

The extension of the self-consistent model to rate-independent elastoplastic behavior has first 40 

been proposed by Budiansky et al. (1960) and Kröner (1961) who investigated the early stage 41 

of plasticity by considering plastic grains interacting with an elastic matrix. To describe 42 

entirely the elastoplastic response of polycrystals, a seminal work was further introduced by 43 

Hill (1965) and Hutchinson (1970) who proposed an incremental approach based on the linear 44 

rate-form of local constitutive equations which rely on the Schmid law. More recently, an 45 

affine approach has been proposed by Masson et al. (2000) who showed, for a non-hardening 46 

f.c.c. polycrystal, that it leads to a lower steady-state effective yield stress than the 47 

incremental model. 48 

 49 

In the related context of power-law viscoplastic f.c.c. polycrystals, various extensions of the 50 

self-consistent model, including the incremental (Hutchinson, 1976) and affine (Masson et al, 51 

2000) approaches, have been compared to rigorous nonlinear bounds obtained with the 52 

variational procedure of Ponte Castañeda (1991). Nebozhyn et al. (2001) have shown that the 53 

incremental model violates the variational self-consistent estimate on the effective yield stress, 54 

which is an upper bound for all self-consistnet estimates, and tends to the Taylor bound in the 55 

rate-independent limit. By contrast, the affine model respects the available bounds, for this 56 

specific class of polycrystals. In view of these results, Hill's incremental model (1965) could 57 

be expected to present similar shortcomings in the context of rate-independent elastoplasticity. 58 

However, a few works (Hutchinson, 1970 and Takahashi, 1988) show that the incremental 59 

model estimates softer response than the Taylor bound for elastoplasticity, which contradicts 60 
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the above expectation. The link between the rate-independent limit of viscoplasticity and 61 

rate-independent elastoplasticity remains an open question. 62 

 63 

In the present work, we analyze the influence of the local elastoplastic behavior on the 64 

incremental self-consistent estimate of the polycrystal response. For that goal, two 65 

rate-independent crystal plasticity models have been chosen. On one hand, use is made of the 66 

Standard Schmid Law (SSL) in which plastic slip is considered to occur on a slip system 67 

when the resolved shear stress reaches a critical value. This constitutive law leads multi-yield 68 

functions and the determination of the slip rates is an inverse problem of the constraint 69 

conditions. The constraints can be linearly dependent and result in the non-uniqueness of the 70 

set of active slip systems when the hardening matrix is not positive definite (Hill, 1966). This 71 

has led to various proposals for the hardening description (see, for instance, Franciosi and 72 

Zaoui, 1991; Bassani, 1994) and for the technique to identify the set of slip systems (Anand 73 

and Kothari, 1996; Miehe and Schröder, 2001; Busso and Cailletaud, 2005). A simple and 74 

often used method to circumvent this difficulty is to forsake the rate-independent formulation 75 

and adopt a power-law type rate-dependent viscoplastic formulation (see, for instance, Asaro 76 

and Needleman, 1985). On the other hand, Regularized Schmid Law (RSL) has been 77 

proposed to overcome this problem within the framework of the rate-independent plasticity 78 

(see, Gambin, 1992; Darrieulat and Piot, 1996; Franz et al. 2009). The advantage of the 79 

regularization is that it does not involve the problem of linear dependence. It has been used in 80 

the homogenization context with the Taylor model (Darrieulat and Piot, 1996, Kowalczyk and 81 

Gambin, 2004), the Transformation Field Analysis (Franciosi and Berbenni, 2007) and, 82 

recently, the self-consistent model (Franz et al. 2009). In section 2, two crystal-plasticity 83 

models (SSL and RSL) are presented and the corresponding tangent moduli in the rate-form 84 

constitutive relations are compared for single and double slip cases in the single crystal 85 

context. These crystal plasticity laws are then introduced in the Taylor and incremental 86 

self-consistent models and the mechanical responses of two different non-hardening f.c.c. 87 

polycrystals are estimated (Sections 3 and 4). The significance of the description of 88 

constitutive law, especially the instantaneous tangent moduli, on the self-consistent estimates 89 

is discussed in details in section 5. 90 
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 91 

2. Rate-independent crystal plasticity models 92 

2.1. Framework of crystal plasticity model 93 

In this study, we confine attention to small strain conditions. The strain rate is given by the 94 

symmetry part of /∂ ∂v x , where v  and x  are velocity and position, respectively. We 95 

consider additive decomposition of strain rate into elastic and plastic parts. 96 

e p= +ε ε ε& & & . (1) 97 

Elastic relation is given by Hooke’s law. 98 

e e e p: : ( )= = −σ C ε C ε ε& & & & , (2) 99 

where eC  is the forth-order elastic moduli tensor.  100 

 101 

Crystallographic slips are considered to be the source for the plastic deformation, and the 102 

plastic strain rate takes the form 103 

p ( )α α

α

γ ( )= ∑ε p&& , (3) 104 

( ) ( ) ( ) ( ) ( )1: ( )
2

α α α α α= ⊗ + ⊗p s m m s , (4) 105 

where ( )αγ& , ( )αs  and ( )αm  are the slip rate, the slip direction and the slip plane normal for 106 

the α th slip system, respectively. The resolved shear stress for the α th slip system, ( )ατ , is 107 

written as  108 

( ) ( ) ( ) ( ):α α α ατ = ⋅ ⋅ =s σ m σ p , (5) 109 

where σ  is true stress. From Equations (3) and (5), a resolved shear stress rate is given as 110 

( ) ( ) e ( ) e ( ): : : :α α β α β

β

τ γ ( )= −∑p C ε p C p&& & , (6) 111 

where ( )αs  and ( )αm  are assumed to be constant. Slip resistance for the α th slip system is 112 

denoted by ( )g α , and its evolution is governed by 113 
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( ) | |g hα αβ β

β

γ ( )= ∑ && , (7) 114 

where hαβ  denotes hardening moduli.  115 

  116 

2.2. Standard Schmid law 117 

For a crystal plasticity model based on the standard Schmid law, the local yield function, f , 118 

is written as  119 

s

( )

1, ,
sup 0

N
f f α

α= ⋅⋅⋅
= = , (8) 120 

with 121 

( ) ( ) ( )| | 0f gα α ατ= − = , (9) 122 

where sN  is the number of slip systems and ( )f α  is a yield function for each slip system. 123 

The plastic strain rate is given by 124 

p ( ) ( )sgn( )α α α

α

τ γ ( )= ∑ε p&& , (10) 125 

where slip rates, αγ ( )& , are assumed to be positive. It is worth noting that the above equation 126 

can be derived from the normality rule if the yield function for each slip system is considered 127 

as a potential:   
p ( )( / )fα α

α

γ ( )= ∂ ∂∑ε σ&& . 128 

 129 

Based on sN  independent yield functions (Equation (9)) potentially active and inactive slip 130 

systems are classified as 131 

0αγ ( ) ≥& ,  for ( ) 0f α =  and ( ) 0f α =& , (11a) 132 

0αγ ( ) =& ,  for ( ) 0f α < , or ( ) 0f α =  and ( ) 0f α <& . (11b) 133 

From the consistency condition of the yield functions, the slip rates, αγ ( )& , on the active slip 134 

systems are determined as 135 

( ) ( ) 0f R Xα α αβ β

β

γ= − =∑& & , (12) 136 
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( )Y Rα αβ β

β

γ ( ) = ∑& , (13) 137 

where 138 

( ) ( ) e: sgn( ) : :R α α ατ ( )= p C ε& , (14a) 139 

( ) e ( ): sgn( )sgn( ) : :X hαβ αβ α β α βτ τ( ) ( )= + p C p , (14b) 140 

1[ ] : [ ]Y Xαβ αβ −= , (14c) 141 

where 1( )−•  denotes the inverse. Under a particular hardening rule, hαβ , X αβ  may become 142 

singular, and this results in a possible non-uniquess of the set of the active slip systems for a 143 

given deformation mode. But for perfect plasticity, 0hαβ = , it is always possible to choose at 144 

least one set of linearly independent slip systems from the potentially active slip systems such 145 

that X αβ  is non-singular and Equations (11) are satisfied (Hutchinson, 1970). If there are 146 

greater than five linearly independent systems, five slip systems are selected in the 147 

computations1. 148 

 149 

Using equations (2), (10) and (13), we finally obtain the rate-form of the constitutive 150 

equation, :=σ L ε& & , in term of the elastoplastic tangent moduli, 151 

( ) ( )e ( ) e ( ) ( ) ( ) e: sgn( ) : sgn( ) :Yα α β αβ β

α β

τ τ
⎧ ⎫

= − ⊗⎨ ⎬
⎩ ⎭

∑ ∑L C C p p C . (15) 152 

 153 

2.3. Regularized Schmid law 154 

In order to avoid the possible singularity of X αβ  in the Schmid law, a regularized Schmid 155 

law for rate-independent crystal plasticity was proposed (Gambin, 1992). The following 156 

                                                 
1 For comparison purpose we use the same approach as Hutchinson’s (1970). In a preliminary 

study, different criteria have been used for the selection of the five active slip systems, and it 

has been confirmed that the choice of the criterion does not have any influence on the 

estimation. 
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regularized yield function is introduced. 157 

1
2 2( )

( ) 1 0
N N

f
g

α

α
α

τ⎧ ⎫⎛ ⎞⎪ ⎪= − =⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∑ , (16) 158 

where N  is an integer parameter so that the exponent always becomes an even number. The 159 

plastic strain rate is assumed to be given by 160 

p ( ) ( )α α

α

γ=∑ε p&& , (17) 161 

and follows, on the other hand, from the normality rule associated with the yield function 162 

(16), 163 

p f∂
= Λ

∂
ε

σ
&& . (18) 164 

From these two expressions of the plastic strain rate, the slip rate on a given slip system reads 165 

2 1( )
( )

( ) ( )

N

g g

α
α

α α

λ τγ
−

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

&
&   with  

1 12 2( )

( )

N N

g

α

α
α

τλ

−
⎧ ⎫⎛ ⎞⎪ ⎪= Λ⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
∑& & , (19) 166 

where λ&  is a positive plastic multiplier. By contrast to the SSL, slip rates for all the slip 167 

systems derived from a unique plastic multiplier. Therefore, there is no need to classify active 168 

and inactive slip systems among the set of slip systems. Equation (19) is similar to the one 169 

describing vicsoplastic crystal (e.g. Asaro and Needleman, 1985) in which a reference slip 170 

rate is introduced instead of a plastic multiplier. 171 

 172 

Loading-unloading conditions are written as 173 

0λ ≥& ,  for 0f =  and 0f =& , (20a) 174 

0λ =& ,  for 0f < , or 0f =  and 0f <& . (20b) 175 

From the consistency condition of the yield function, the plastic multiplier, λ& , is determined. 176 

e e: : ( : : ) 0f Hλ= − + =G C ε G C G& && , (21) 177 
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e

e

: :
: : H

λ =
+

G C ε
G C G

&& , (22) 178 

where 179 
2 1( ) ( )

( ) ( ):
N

g g

α α

α α
α

τ
−⎧ ⎫⎛ ⎞⎪ ⎪= ⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
∑ pG , (23a) 180 

2 2 1( ) ( )

( ) ( ) ( ) ( )

1 | |:
N Nh

H
g g g g

α β
αβ

α α β β
α β

τ τ
−⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥= ⎨ ⎬⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭⎣ ⎦
∑ ∑ . (23b) 181 

In the derivation of λ& , any inverse of a matrix is not required. Namely, the difficulty related 182 

to the linearly dependence in the Schmid law is avoided. 183 

 184 

We finally obtain the rate-form constitutive equation for a single crystal, :=σ L ε& & , in terms of 185 

the elastoplastic tangent moduli, 186 

e e
e

e

( : ) ( : ):
: : H

⊗
= −

+
C G G CL C

G C G . (24) 187 

 188 

2.3. Comparison of Schmid and regularized Schmid laws 189 

In this subsection, the standard Schmid and regularized Schmid laws are compared in terms of 190 

yield locus, active slip systems and tangent moduli. The SSL gives multi-plane yield locus 191 

which possesses corners, while the RSL gives a smooth yield locus with rounded corners. The 192 

curvature of the rounded corner for the RSL increases with the exponent N , and when N  is 193 

large enough, the smooth yield locus is in good agreement with the multi-plane SSL’s one 194 

(Darrieulat and Piot, 1996; Gambin and Barlat, 1997). Besides, although all the slip systems 195 

are active if the yield condition is satisfied, finite slips take place only on the slip systems 196 

where ( ) ( )gα ατ ≈  when the exponent N  is large, while slip rates for the other slip systems, 197 

where ( ) ( )gα ατ < , are close to zero (Equation (19)). This is similar to the Schmid law, for 198 

which slip system activates when ( ) ( )gα ατ = . Therefore, the yield locus and active slip 199 

systems corresponding to the Schmid law are correctly described by the regularized Schmid 200 

law when N →+∞ . On the contrary, the tangent moduli given in Equation (15) and (24) are 201 

not identical a priori. To be more specific, the tangent moduli given by the two laws are 202 

compared for some special cases.  203 
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 204 

(i) Single slip case 205 

Let us consider a crystal that possesses a single slip system. The exponent in the regularized 206 

Schmid law is taken to N = +∞ . In this case, the yield function (16) reduces to Equation (9). 207 

It is assumed that (1) (1)gτ =  and (1) (1)gτ =& &  for the slip system. This situation results in the 208 

activation of the slip system for both SSL and RSL. Then the tangent moduli is written as  209 

e (1) (1) e
e

(1) e (1) 11

( : ) ( : )
: : h

⊗
= −

+
C p p CL C
p C p . (25) 210 

The tangent moduli (15) and (24) are reduced to the same equation.  211 

 212 

(ii) Double slip case 213 

Next, let us consider a crystal that possesses two slip systems. It is assumed that (1) (1)gτ = , 214 
(2) (2)gτ =  and (1) (1)gτ =& & , (2) (2)gτ =& & . For both the Schmid and regularized Schmid laws, the 215 

yield criteria are satisfied and slips occur for both the first and second slip systems. These 216 

situations are similar to that for the single slip case. In this case, the tangent moduli obtained 217 

with the Schmid law (Equation(15)) reduces to  218 

e e (1) 11 (1) 12 (2) (2) 21 (1) 22 (2) e:{ ( ) ( )}:Y Y Y Y= − ⊗ + + ⊗ +L C C p p p p p p C , (26) 219 

where 220 
111 12 11 (1) e (1) 12 (1) e (2)

21 22 21 (2) e (1) 22 (2) e (2)

: : : :
: : : :

Y Y h h
Y Y h h

−
⎡ ⎤ ⎡ ⎤+ +

=⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

p C p p C p
p C p p C p

, (27) 221 

and (1) (2)g g=  is assumed for simplicity.  222 

 223 

With the regularized Schmid law, the tangent moduli (Equation(24)) gives  224 

e (1) (2) (1) (2) e
e

(1) (2) e (1) (2)
11 12 21 22

: ( ) ( ) :
( ) : : ( ) h h h h

+ ⊗ +
= −

+ + + + + +
C p p p p CL C

p p C p p .  (28) 225 

For the double slip case, the two crystal plasticity laws do not give the identical expression of 226 

tangent moduli. For the Schmid law, interaction of ( )αp  for each slip system appears with 227 

different coefficient, Yαβ , while interaction of the summation of ( )αp  emerges for the 228 

regularized Schmid law. 229 
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 230 

The tangent moduli given by the two laws are calculated for a special case shown in Figure 1 231 

(a). Two slip systems are arranged symmetrically about the 1x  axis and slip directions and 232 

slip plane normals are in the 1 2x x−  plane, that is, 233 
(1) (cos ,sin ,0)φ φ=s (1) (sin , cos ,0)φ φ= −m , (2) (cos , sin ,0)φ φ= −s  and 234 

(2) (sin ,cos ,0)φ φ=m . For simplicity, isotropic elasticity and non-hardening is assumed. 235 

Then, analytical expression of tangent moduli are written as  236 

1111 2222 1122L L L λ μ= = = + , (29a) 237 

e
1212

1212 e
1212

0 for theSchmid law

for the regularizedSchmid law

C
L

C

μ

μ

⎧ − =⎪= ⎨
=⎪⎩

 (29b) 238 

e
ijkl ijklL C=  for others components (29c) 239 

where λ  and μ  are Lamé constants. The difference of tangent modulus is appeared for 240 

1212L  component.  241 

 242 

In the derivation of the analytical expression of the tangent moduli N = +∞  is assumed, 243 

however, a finite value of N  is required in actual computation. In order to check the 244 

sensitivity of N , the same problem is solved numerically with 500N = . Parameters are set 245 

to 15°φ = , 0/ 1000E τ = , 1/ 3ν =  and 0hαβ = , where 0, andE ν τ  are the Young’s 246 

modulus, Poisson’s ratio and critical resolved shear stress, respectively. Uniaxial tension in 247 

the 1x  direction is applied. Figure 1(b) shows the tangent moduli normalized by E  as a 248 

function of the tensile strain. Tangent moduli given by the two crystal plasticity laws coincide 249 

except for the 1212L  component, and 1212L  for the Schmid law decrease to zero when the 250 

yield condition is satisfied, whereas that for the regularized Schmid law remains constant. The 251 

tangent moduli computed with 500N =  coincide with those obtained analytically with 252 

N = +∞ . Figure 1(c) shows the good agreement between SSL and RSL tensile flow stresses. 253 

Thus, the yield stress and active slip systems are the same for both crystal plasticity laws 254 

whereas the shear tangent moduli are different. 255 

 256 

Following these comparisons at the single crystal level, the question which arises is the 257 
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influence, if any, of the different instantaneous local tangent moduli on the polycrystal 258 

response. To tackle this problem, use will be made of the Taylor and self-consistent models 259 

which are briefly described in the next section. 260 

 261 

3. Homogenization estimates 262 

3.1. Self-consistent model 263 

In this study, we mainly focus on the role of the crystal plasticity law on the local and 264 

effective response for the elastoplastic polycrystalline aggregate. Consequently, the Hill’s 265 

(1965) incremental self-consistent model, which is up to now the most widely used model for 266 

elastoplastic polycrystal, is adopted. Polycrystal is considered to consist of ellipsoidal phases 267 

which compose grains orientating at the same direction. In the self-consistent model, an 268 

ellipsoidal phase is assumed to be embedded in an infinite linear comparison homogenous 269 

medium which has a unique tangent moduli corresponding to the effective tangent ones. The 270 

phase average stress and strain rates can be related to the macroscopic ones through the 271 

localization tensors, rA  and rB , 272 

:r r< > =ε A ε&& , :r r< > =σ B σ&& , (30) 273 

where the superscript r  refers to the quantity for the r th phase, a bar indicates a 274 

macroscopic value and < • >  stands for a volume average. The rate-form constitutive 275 

equation is used to represent linear relationship between the stress and strain rates. The 276 

constitutive equations of a phase and effective medium are respectively denoted as  277 

:r r r< > = < >σ L ε& & ,  (31) 278 

:=σ L ε%& & , (32) 279 

with 280 

: :r r=< >L L A% . (33) 281 

where rL  and L%  are the tangent moduli of a phase and effective medium, respectively. rL  282 

is assumed to be homogeneous within a phase and can be calculated by Equation (15) or (24) 283 

replacing the local quantities with the phase average ones, for instance, a resolved shear stress 284 
( ) ( ) :r rα ατ< > = < >p σ  is used instead of ( ) ( ) :α ατ = p σ . The strain localization tensor is given 285 
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by 286 

1{ : ( )}r r −= + −A I P L L% . (34) 287 

where I  is fourth-order identity tensor and P  is so called Hill’s tensor described as  288 

dV
Ω

= ∫P Γ , (35) 289 

where 290 

1 1 1 11: ( )
4ijkl ik j l jk i l il j k jl i kK K K Kξ ξ ξ ξ ξ ξ ξ ξ− − − −Γ = + + + , (36a) 291 

:= ⋅ ⋅K ξ L ξ% , (36b) 292 

where Ω  is the domain within a phase and ξ  is a position vector on the surface of 293 

inclusion (see, for instance, Mura, 1982). This set of relations defines a nonlinear systems for 294 

the average strain rates per phase, r< >ε& , which can be solved using a fixed-point iterative 295 

algorithm. 296 

 297 

3.2. Taylor model 298 

In the Taylor model, r =A I  is assumed, that is, the local strain field is taken to be identical 299 

to the macroscopic one,  300 

r=< > =ε ε ε&& & . (37) 301 

Then, the effective tangent moduli in the rate-form of constitutive equation, :=σ L ε%& & , are 302 

given by  303 

=< >L L% . (38) 304 

Since the local strain field is known a priori, iterative computation is not needed for the Taylor 305 

model.   306 

 307 

In the next section, the Taylor and incremental self-consistent models described above are 308 

used in conjunction with SSL and RSL for estimating the mechanical behavior of f.c.c. 309 

polycrystals at both local and overall scales. 310 

 311 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

 - 13 - 

4. Results 312 

4.1. Uniaxial tension for non-hardening f.c.c. polycrystalline aggregate 313 

Macroscopically isotropic polycrystal is considered. Its microstructure is represented by 216 314 

crystalline phases with same volume fractions. Besides, a spherical shape is assumed for the 315 

each phase. A non-hardening ( 0hαβ = ) f.c.c. crystal with 12 slip systems, {111} 110< > , is 316 

assumed for each phase, and slip resistances are set as 
( )

0g α τ= , where 0τ  is a critical 317 

resolved shear stress. For simplicity isotropic elasticity with 0/ 1000E τ =  and 1/ 3ν =  is 318 

considered. The exponent in the regularized Schmid laws is N = 500. (The effect of the 319 

exponent, N , on homogenization estimates is discussed in Appendix.) Mechanical response 320 

of the polycrystal subjected to the uniaxial tension in the 1x  direction is simulated with the 321 

Taylor and self-consistent models in conjunction with the Schmid and regularized Schmid 322 

laws. 323 

 324 

Figure 2 shows the macroscopic uniaxial stress-strain curve, where the flow stress is 325 

normalized by critical resolved shear stress, 0τ . For the Taylor model, the flow stresses 326 

predicted by both the Schmid and regularized Schmid laws are in good agreement. Since 327 

500N =  is large enough, the regularized Schmid law approaches Schmid one as is 328 

mentioned in section 2. The flow stresses, eventually, saturate to the value of 3.06, which is 329 

the same as the well-known Taylor factor for rigid-plastic f.c.c. polycryatal.  330 

 331 

For the self-consistent model, plastic yielding occur earlier than for the Taylor model and the 332 

estimation of flow stress significantly depend on the crystal plasticity laws used in the 333 

analysis. When the Schmid law is used, softer response is obtained. Indeed, the normalized 334 

flow stress saturate to the value of 2.82. On the contrary, when the regularized Schmid law is 335 

used, stiffer response is predicted and the stress state asymptotically approaches the one 336 

predicted by the Taylor model. When the regularized Schmid law is used, the Taylor and 337 

self-consistent models estimate almost the same behavior for the large strain range.    338 

 339 

By definition, local strain states are the same as macroscopic one for the Taylor model and 340 

vary for the self-consistent model. Figure 3 shows the evolution of local strain component 341 
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normalized by the macroscopic tensile strain for the self-consistent model. The normalized 342 

strain components for 216 phases are depicted. During the whole tensile straining process, the 343 

Schmid law based self-consistent model predicts about ± 15% of constant variation of local 344 

strain field. On the other hand, for the regularized Schmid law, similar variation is predicted 345 

just after plastic yielding, but then the variation shrinks. At 11ε = 0.05, the variation is less 346 

than ± 2%. Thus, the self-consistent model with the regularized Schmid law is closer to the 347 

Taylor model in terms of local field fluctuation. This small strain heterogeneity is consistent 348 

with the macroscopic stress-strain curve that approaches the one of the Taylor model. 349 

 350 

The local strain rate is specified by localization tensor in Equation (34), which includes the 351 

local and effective tangent moduli and Hill’s P  tensor. The P  tensor reflects the difference 352 

of the local and effective tangent moduli to the localization tensor. The higher the components 353 

of P  are, the more enhanced the strain heterogeneity is. Components of P  are shown in 354 

Figure 4. For the Schmid model, the absolute value of the P  components increase with 355 

tensile straining. On the other hand, for the RSL, the P  components are almost constant and 356 

small. Therefore, the localization tensor is close to unit tensor and the fluctuation of local 357 

strain field is small. The evolution of P  tensor is in agreement with the local strain variation 358 

in Figure 3. 359 

 360 

As is shown in the equations (35) and (36), the P  tensor depends on the effective tangent 361 

moduli. Figure 5 shows the estimated effective tangent moduli in the rate-form of the 362 

constitutive equations. The tangent moduli, ijklL% , are normalized by the elastic moduli, 
e
ijklC . 363 

For the uniaxial tensile loading, the macroscopic tangent moduli display transverse isotropy 364 

with respect to the 1x  direction, that is, 2222 3333L L=% % , 1122 1133L L=% %  and 1212 1313L L=% % . The 365 

tangent moduli predicted by the two crystal plasticity laws do not agree except for 1111 and 366 

1122 components. Both tangent moduli depicted in Figure 5 correspond to uniaxial tension 367 

state although they are not identical. The most significant difference is the shear tangent 368 

moduli: those obtained with the Schmid law rapidly decrease after plastic yielding and 369 

eventually reach to zero, whereas those for the regularized Schmid law are almost constant 370 

during deformation. This trend is the same as that for the simple double slip case depicted in 371 
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Figure 1(b). General relationships between P  and L%  are given in Equations (35) and (36) 372 

and analytical expressions can be found by Hutchinson (1970) for transverse isotropic 373 

symmetry. P  tensor increases when L%  decreases, thus the lower L%  components 374 

pronounce a deviation of the localization tensor from the identity tensor.  375 

 376 

For the Taylor model, SSL and RSL give the identical behavior so long as the exponent is 377 

high enough. However, for the self-consistent model, the description of the tangent moduli 378 

affects the local strain heterogeneity as well as effective response. 379 

 380 

4.2. Polycrystalline aggregate with an elastic phase 381 

In this subsection, the polycrystal aggregate is assumed to consist of 216 elastoplastic phases 382 

and an elastic phase. The elastic phase is considered in order to increase the contrast of the 383 

mechanical properties among phases. The volume fraction of the elastic phase is 0.3 and that 384 

of the other 216 phases are 0.00324. The material properties of the 216 elastoplastic phases 385 

are the same as ones in 4.1, and the same elastic properties are assigned to an elastic phase. 386 

All phases have spherical shape. Uniaxial tension in the 1x -direction is analyzed by means of 387 

the self-consistent model. Taylor model is not used here because the uniform strain field 388 

assumption is far from the reality for this problem. 389 

 390 

Figure 6 shows the normalized flow stress as a function of the macroscopic tensile strain. The 391 

Schmid law based model predicts softer response than that for the regularized Schmid law. 392 

The qualitative tendency is the same as in Figure 2, and the existence of an elastic phase 393 

enhances the difference of effective response. Figure 7 shows the local strain distribution of 394 

the 216 elastoplastic and the elastic phases. The strain variation among the elastoplastic 395 

phases is larger for the Schmid law than the regularized Schmid law. For the Schmid law, the 396 

strain evolution in an elastic phase decreases with tensile strain, and the strain is much smaller 397 

than that for the elastoplastic phases. On the other hand, for the regularized Schmid law the 398 

strain develops linearly and its amount is about half of the elastoplastic phases. The Schmid 399 

law allows lager strain heterogeneity among elastoplastic phases as well as between 400 

elastoplastic and elastic phases. Figure 8 shows the effective shear tangent moduli normalized 401 
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by the same way as in 4.1. Again, the shear moduli decrease rapidly after yielding for the 402 

Schmid law, whereas those for the regularized Schmid law are almost constant. The influence 403 

of the tangent moduli emerges again for this problem and the strong contrast of the phases 404 

enhances this effect on the local and effective response.  405 

 406 

5. Discussion 407 

The description of standard Schmid law and regularized Schmid law has been examined for a 408 

uniaxial tensile loading (Section 2). It has become clear that both laws predict the same 409 

mechanical behavior of single grain under given boundary conditions, provided that the 410 

exponent in the regularized Schmid law is high enough. But, it has to be recalled that the 411 

tangent moduli given by the two laws are different, although the same response is predicted. 412 

For the non-hardening polycrystalline aggregate, the two laws with the Taylor model lead to 413 

the same mechanical response under uniaxial tension. This can be explained by the fact that, 414 

by definition, each phase undergoes the same strain field with the Taylor assumption. Since 415 

the SSL and RSL predict the same response for a phase under the same boundary conditions, 416 

the same mechanical response is predicted for each phase and consequently, the same local 417 

and effective responses are obtained for the polycrystal.2 On the other hand, the two crystal 418 

plasticity laws lead to different estimates with the incremental self-consistent model. The 419 

shear tangent moduli for the SSL are lower than those for the RSL and are used to obtain 420 

strain localization tensors which specify the average strain field within a phase. Therefore, 421 

with the self-consistent model, the average strain field of a given phase varies between the 422 

SSL and RSL. Furthermore, the lower the tangent moduli are, the more the strain 423 

heterogeneity is enhanced. As a consequence, the self-consistent model with the SSL leads to 424 

the larger strain heterogeneity and softer overall response. On the other hand, the 425 

self-consistent model with the RSL predicts a smaller strain heterogeneity and a flow stress 426 

approaching to the upper bound. From this point of view, it can be concluded that the 427 

self-consistent model based on the SSL gives a better estimation. 428 

                                                 
2 Uniaxial tensile behavior is also computed for the static model, which assumes a uniform 
stress field within the polycrystal. SSL and RSL with N = 500 estimate the same behavior 
and the macroscopic stress is stationary at 11 0/σ τ = 2. 
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 429 

There are some similarities in the constitutive equations for the RSL and a power law 430 

viscoplasticity model: (i) the slip law in equation (19) and the one for viscoplascity both obey 431 

a power law, (ii) the regularized Schmid law possesses a smooth yield locus and the 432 

viscoplastic model presents a smooth equal potential locus in stress space. The power law 433 

viscoplastic model can thus also be considered as a regularization of the Schmid law. 434 

Numerous investigations have been performed on the self-consistent model in the viscoplastic 435 

context (see, among others, Hutchinson, 1976; Masson et al., 2000; Nebozhyn et al., 2001) 436 

and it has been shown that the effective yield stress predicted by the Hill's incremental model 437 

in the rate-independent limit is very close to the Taylor bound. By noting that this effective 438 

yield stress corresponds to the saturated flow stress of a non-hardening elastoplastic 439 

polycrystal, it is pointed out that our self-consistent estimates with a RSL are fully consistent 440 

with the results obtained in the viscoplastic context. Following these remarks, it is likely that 441 

any regularization (i.e. single yield function with associated flow rule) would lead to 442 

incremental self-consistent estimates with the same shortcomings than the one reported in the 443 

present study.  444 

 445 

The physical interpretation of the reduced shear tangent moduli is considered here. First, a 446 

situation is assumed such that the double slip single grain shown in Figure 1(a) is 447 

continuously subjected to the uniaxial tension, and instantly shear strain rate, 12ε& , is applied 448 

additionally. Schematic illustration of yield surfaces for the RSL and SSL in 11 12σ σ−  space 449 

are shown in Figure 9. In these circumstances, the stress state is uniaxial tension, i.e. 0ijσ =  450 

except for 11σ , and non-zero strain rate components are 11ε& , 22ε&  and 12ε& . For the RSL, the 451 

direction of the plastic strain rate is normal to the yield surface at the current stress state and 452 
p
12ε&  is not produced, hence 12ε&  is accomplished by elastic strain rate, e

12ε& . Thus, the tangent 453 

modulus of 1212L  is identical to the elastic shear modulus. On the other hand, for the RSL, 454 

the direction of plastic strain rate lies between the normal directions of the facets. Therefore, 455 

when 12ε&  is applied, p
12ε&  is produced and the tangent modulus is consequently reduced. The 456 

introduction of the regularization, which avoids the difficulty of the selection of active slip 457 

systems, loses the vertex effect on the tangent moduli. 458 
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 459 

It is interesting to note an analogy between the standard and regularized Schmid laws and the 460 

phenomenological 2J  flow and 2J  deformation theories. Reduced tangent moduli were 461 

observed by Hutchinson (1970) who compared tangent moduli for the 2J  flow and 462 

deformation theories. The flow theory assumes a smooth yield locus and associated flow rule 463 

and the deformation theory reflects the point vertex effect on the yield surface. The flow and 464 

deformation theories predict respectively constant and decreasing shear tangent moduli during 465 

plastic deformation. The flow and deformation theories are similar to the RSL and SSL, 466 

respectively. In fact, there is a vertex on the yield locus for the SSL and a single smooth yield 467 

locus and associated flow rule are assumed in the RSL (Equations (16) and (18)). 468 

 469 

In the crystalline context, our results highlight the fact that the flow stress estimate obtained 470 

with a regularized crystal plasticity law can be different from the one that is obtained with the 471 

non-smooth multi-criteria yield function corresponding to the SSL. In particular, the 472 

incremental self-consistent model is significantly affected by the mathematical description of 473 

the constitutive model and does not always lead to a stiff overall response with respect to the 474 

Taylor model. Indeed, with the incremental self-consistent model, the Schmid law gives a 475 

saturated flow stress of 2.82, which is lower than the estimation derived from the viscoplastic 476 

power law in the rate-independent limit (≈3.06). Interestingly, it is noted that the saturated 477 

flow stress obtained with the SSL does not violate the variational self-consistent estimate of 478 

Ponte Castañeda for viscoplastic behavior which is equal to 2.948 in the rate-independent 479 

limit (Nebozhyn et al. 2001). To give an insight on the pertinence of Hill's incremental model 480 

in the framework of the standard Schmid law, it would be necessary to compare the 481 

self-consistent estimate of the saturated flow stress with more rigorous bounds: the one 482 

derived for polycrystalline materials exhibiting a rigid-plastic behavior with a multi-criteria 483 

local yield function (see, for instance, Nesi et al., 2000) or the recent improvement of the 484 

variational approach of Ponte Castañeda (Idiart and Ponte Castañeda 2007a,b) which was 485 

shown to improve on earlier bounds in the case of a two-phase porous crystalline material. 486 

 487 

Concerning the RSL, it is interesting to note that different studies on particulate composites 488 
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(matrix-inclusion microstructure) (Gonzales and LLorca, 2000; Doghri and Ouaar, 2003; 489 

Chaboche et al., 2005) with an elastoplastic matrix obeying the 2J  flow theory have shown 490 

that the incremental model deliver a too stiff overall stress-strain response by comparison with 491 

finite element computations. This is qualitatively in agreement with our results obtained by 492 

RSL for non-hardening polycrystal with an elastic phase. To obtain better self-consistent 493 

estimates, it would be necessary to incorporate the field heterogeneity in the nonlinear 494 

homogenization procedure for elastoplasticity. 495 

 496 

6. Concluding remarks  497 

The mechanical response of polycrystals has been investigated using the Hill's incremental 498 

self-consistent model in conjunction with different rate-independent crystal plasticity laws. 499 

The investigation of standard and regularized Schmid laws has revealed that they deliver the 500 

same plastic deformation behavior but different tangent moduli. The use of these two 501 

constitutive laws to describe the elastoplastic behavior of a non-hardening f.c.c. polycrystal 502 

has shown that the standard Schmid law predicts a wider heterogeneity of the local strain field 503 

and a softer overall response. We found that the reduced shear tangent moduli are responsible 504 

for this behavior. The incorporation of an elastic phase in the elastoplastic polycrystal allowed 505 

us to point out that an increase of the mechanical contrast implies a more pronounced 506 

influence of the tangent moduli on the self-consistent description. The shear tangent moduli 507 

decrease with the deformation for the SSL and remain constant for the RSL. With the 508 

incremental self-consistent model, the Schmid law gives a saturated flow stress which is 509 

lower than the estimation derived from the viscoplastic power law in the rate-independent 510 

limit. The saturated flow stress obtained with the SSL (Hutchinson, 1970) does not violate the 511 

variational self-consistent estimate of Ponte Castañeda for viscoplastic behavior in the 512 

rate-independent limit. Comparisons with more restrictive bounds are thus required.  513 

 514 
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 602 

Appendix 603 

A1. Influence of exponent, N, in regularized Schmid law 604 

The exponent, N , in the regularized Schmid law has been taken to 500 for the all 605 

computations in Section 4. In this section, N  is taken to 5 and 50 in order to examine its 606 

influence on the microscopic and macroscopic mechanical responses, and the problems in 607 
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Section 4.1 and 4.2 are simulated. Figure A1(a) shows the macroscopic uniaxial stress-strain 608 

curve for the isotropic non-hardening crystalline aggregate. The saturated flow stresses 609 

predicted with the Taylor and self-consistent models coincide with each other for the same 610 

N  and decrease with N . When N = 5, the flow stresses predicted by the Taylor and 611 

self-consistent models are softer than the one predicted by the self-consistent model with the 612 

Schmid law (Figure 2), since the yield stress of a single crystal becomes lower with 613 

decreasing the exponent. Thus, this prediction does not imply that the regularized Schmid law 614 

with N = 5 is capable of predicting the softer effective response with large strain 615 

heterogeneity. The development of the phase average strain for N = 5 is shown in Figure 616 

A1(b). The phase average strains once have a variation in the range of -20% to +10% just 617 

after the plastic yielding and then, the variation shrinks. The amount of strain heterogeneity is 618 

the same magnitude as the one for N = 500 in Figure 3(b). The strain heterogeneity for 619 

N = 50, which is not shown in the present paper, is almost the same as that for N = 500. 620 

Therefore, it is concluded that the exponent, N , has little influence on the estimation of 621 

mechanical response.  622 

 623 

The microscopic and macroscopic deformation of polycrystals reinforced by an elastic 624 

inclusion, which is the problem in Section 4.2, is also simulated for N = 5 and 50, and the 625 

results are shown in Figure A2. Softer behavior is predicted for the case of N = 5, since lower 626 

exponent gives softer flow stress for a single crystal. Figure A2(b) shows the strain 627 

distribution in the polycrystalline and elastic phases. The predicted strain heterogeneity is 628 

almost the same as the one for N = 500 shown in Figure 7(b). We again conclude that the 629 

exponent, N , in the regularized Schmid law has almost no influence on the estimation of the 630 

mechanical behavior. 631 

 632 
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Figure 1.  Tangent moduli for a double slip crystal under uniaxial tension. (a) Geometry of 4 

slip systems, (b) tangent moduli normalized by the Young’s modulus and (c) tensile stress 5 

normalized by a critical resolved shear stress as a function of tensile strain.  6 

φφ

1x

2x

(1)s
(1)m (2)m

(2)s



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

0.00 0.01 0.02 0.03 0.04 0.05
2.2

2.4

2.6

2.8

3.0

3.2

Schmid law
 Taylor
 Self-consistent

Regularized Schmid law
 Taylor
 Self-consistent

σ 
11

 / 
τ  0

ε 11  7 

Figure 2.  Macroscopic uniaxial stress-strain curve for isotropic non-hardening f.c.c. 8 

crystalline aggregate. Taylor and incremental self-consistent models are used in conjunction 9 

with Schmid and regularized Schmid laws. 10 
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Figure 3.  Evolution of local strain component, 11
rε< > , in 216 phases under uniaxial 17 

tension. Incremental self-consistent model is used in conjunction with (a) Schmid law and (b) 18 

regularized Schmid law. 19 
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(b) 25 

Figure 4.  Evolution of P  tensor for uniaxial tension as a function of macroscopic tensile 26 

strain. 27 
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(b) 33 

Figure 5.  Evolution of tangent moduli under uniaxial tension. Effective tangent moduli, 34 

ijklL% , are normalized by corresponding elastic moduli, e
ijklC .35 
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Figure 6.  Stress-strain curve for aggregate consisting of elastoplastic phases and an elastic 37 

phase. Incremental self-consistent model is used in conjunction with Schmid and regularized 38 

Schmid laws. 39 
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(b) 45 

Figure 7.  Evolution of local strain component, 11
rε< > , in 216 elastoplastic phases and an 46 

elastic phase under uniaxial tension. Incremental self-consistent model is used in conjunction 47 

with (a) Schmid law and (b) Regularized Schmid law. 48 
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Figure 8.  Evolution of tangent moduli for aggregate consisting of 216 elastoplastic phases 50 

and an elastic phase under uniaxial tension. Effective tangent moduli, ijklL% , are normalized by 51 

elastic moduli, e
ijklC , for each component.  52 
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Figure 9.  Schematic illustration of yield surface in 11 12σ σ−  space based on (a) regularized 55 

and (b) standard Schmid laws for a double slip crystal shown in Figure 1.  56 
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Figure A1.  Influence of exponent in regularized Schmid law for isotropic non-hardening 62 

f.c.c. polycrystal. (a) Macroscopic flow stress and (b) strain heterogeneity. 63 
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(b) 
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Figure A2.  Influence of exponent in regularized Schmid law for isotropic non-hardening 68 

f.c.c. polycrystal reinforced by an elastic inclusion. (a) Macroscopic flow stress and (b) strain 69 

heterogeneity. 70 
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