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Abstract

Background: Digital networks, mobile devices, and the possibility of mining the ever-increasing amount of digital traces
that we leave behind in our daily activities are changing the way we can approach the study of human and social
interactions. Large-scale datasets, however, are mostly available for collective and statistical behaviors, at coarse
granularities, while high-resolution data on person-to-person interactions are generally limited to relatively small groups of
individuals. Here we present a scalable experimental framework for gathering real-time data resolving face-to-face social
interactions with tunable spatial and temporal granularities.

Methods and Findings: We use active Radio Frequency Identification (RFID) devices that assess mutual proximity in a
distributed fashion by exchanging low-power radio packets. We analyze the dynamics of person-to-person interaction
networks obtained in three high-resolution experiments carried out at different orders of magnitude in community size. The
data sets exhibit common statistical properties and lack of a characteristic time scale from 20 seconds to several hours. The
association between the number of connections and their duration shows an interesting super-linear behavior, which
indicates the possibility of defining super-connectors both in the number and intensity of connections.

Conclusions: Taking advantage of scalability and resolution, this experimental framework allows the monitoring of social
interactions, uncovering similarities in the way individuals interact in different contexts, and identifying patterns of super-
connector behavior in the community. These results could impact our understanding of all phenomena driven by face-to-
face interactions, such as the spreading of transmissible infectious diseases and information.
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Introduction

Social sciences are being transformed by the possibility of

collecting and analyzing the massive amount of digital information

we leave behind in our daily activities [1,2,3,4,5]. This new

opportunity, sometimes referred to as ‘‘reality mining’’ [6],

provides insights into patterns of human life such as population

flows inside cities, daily mobility patterns, or the geographical

proximity of our social relations [7,8]. Along with these new

empirical datasets, computational social science is emerging as a

new way to study and predict social behavior [8]. One of the main

issues in this context is the trade-off between the granularity of the

data and the amount of information on each single interaction. In

founding more sophisticated computational frameworks, it is of

key importance to bridge the gap between scales and achieve a

multi-scale view of social interactions. Experimentally, this calls for

a scalable framework where the spatio-temporal resolution can be

tuned and used to simultaneously probe different interaction

scales, from co-presence in a room, to loose spatial proximity,

down to face-to-face proximity of individuals. The aim is to

reconcile the fine spatiotemporal evolution of the social network

with the coarse-grained structure used at the large-scale popula-

tion level.

At present, several techniques and methods are segmented in

spatial and/or temporal resolution. Bluetooth and Wi-Fi networks

allow the collection of data on specific structural and temporal

aspects of social interaction patterns [9,10,11,12]. However, the

spatial resolution achieved by these techniques is at best of the

order of a few meters and, in general, spatial proximity or co-

location of wearable devices are not necessarily a good proxy for a

social interaction between the individuals carrying them. Moni-

toring human mobility and social relationships using mobile phone

traces [7,13,14,15,16,17] scales up to millions of individuals but

provides no direct information on face-to-face interactions unless
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custom software is deployed. On the other side of the spectrum,

the MIT Reality Mining project [10,11,18] collected rich multi-

channel data on face-to-face interactions at the expense of

deploying sophisticated ‘‘sociometric badges’’. Finally, systems

based on image and video processing [19] provide the richest

dataset but are computationally complex, require line-of-sight

access to the monitored spaces, and can hardly cope with the

unsupervised detection of face-to-face interactions and with large

scales.

Here we report on a framework for monitoring social

interactions that reconciles scalability and resolution using a

sensing tier that consists of inexpensive and unobtrusive active

RFID devices. The devices are capable of sensing face-to-face

interactions of individuals as well as spatial proximity over

different length scales down to one meter or less. The data

collection and processing tiers allow tuning of the scale over which

the interaction mapping works. The approach is highly scalable:

We provide data from deployments at social gatherings involving

from 25 to 575 individuals. Analysis of the results shows a

remarkable self-similarity in the statistical signature characterizing

personal interactions, despite the different social contexts and

scales of the deployments. We also identify the general presence of

super-connecting behaviour of highly interacting individuals,

whose general interaction time increases non-linearly with the

number of interactions. These features may play a crucial role in

the study of dynamical processes over time-dependent networks of

human contact, such as computational models of social and

biological contagion, and the development of algorithms for

mobile applications and wearable devices.

Results and Discussion

Our strategy hinges on keeping the interaction resolution as the

focal point of our experimental framework. We trade the

possibility of acquiring extra information on person-to-person

interactions (such as audio information) with the possibility of

deploying a sensor network of unobtrusive devices that can scale

up to thousands of people. To this aim, we have developed a

sensing tier made of active RFID tags that can be embedded in a

conference badge. These tags feature a bi-directional radio

interface and transmit packets carrying a unique identifier and a

data payload. Radio packets can be received by a system of readers

installed in the environment, as well as by other tags located

nearby. The exchange of low-power radio packets between tags

can be used to measure tag proximity and to detect face-to-face

interactions between individuals. We operate the system of RFID

tags as a single distributed sensing network. Tags do not act as

simple isolated beacons, broadcasting packet to a central

infrastructure. Rather, they exchange low-power packets in a

peer-to-peer fashion, to sense their spatial neighbourhood and

assess proximity with other tags (Figure 1A). The proximity

information collected locally is then uploaded to the reading

infrastructure and relayed to a data collection system. Some

important properties of this infrastructure need to be emphasized.

First, proximity-sensing packets are emitted at several discrete

power levels. Range is controlled both at the transmitting and

receiving end, and can be tuned to detect tag proximity within 1–2

meters. The weakest power levels are used to assess face-to-face

proximity as packets can only be detected when persons are facing

one another (no shielding of the RFID tags) within about 1 m.

Moreover, RFID tags report about neighbouring devices using

high power levels, thus few readers suffice to cover large indoor

spaces. Finally, we operate the entire data collection pipeline in

real time, enabling interactive applications and reflexive individual

or social usage of the information we gather [20]. More details on

the experimental setup and on the visualization are provided in the

Materials and Methods section.

We deployed our contact-sensing platform in a number of

different environments, presented in Figure 1. The deployments

involved a number of participants ranging from 25 to 575

individuals. In our measurements the mechanisms of proximity

detection are intrinsically statistical (see the setup description in the

Materials and Methods section). We coarse-grain time in intervals

of 20 seconds, over which we can assess proximity – or lack thereof

– with high confidence, while maintaining a temporal resolution

which is more than adequate to describe the fastest social

interactions in a social gathering. The (tunable) spatial resolution

is determined by the range over which tags can exchange low-

power packets. For the ISI and SFHH deployments the devices

were configured for a shortest spatial range of about 1 meter (for

packets emitted at the lowest power), which affords the detection of

face-to-face proximity. For the 25C3 deployment, the proximity

detection range extended to 4–5 meters and packet exchange

between devices was not necessarily linked to face-to-face

presence, but rather reflected group structures in space that mix

face-to-face interactions with looser casual proximity. This leads to

a larger proportion of detected groups of three or four individuals,

with respect to the number of pairs, in this specific deployment, as

shown in Figure S1 through the comparison with the SFHH case.

The dynamical properties of these interaction patterns can be

inferred by measuring the duration of contacts and the duration of

the intervals between consecutive contacts [9,11,14,21]. We define

the duration of a person-to-person contact consistently with the

temporal coarse-graining described above: we consider two

persons to be ‘‘in contact’’ during an interval of 20 s if and only

if their RFID devices have exchanged at least one packet at the

lowest power level during that interval. After a contact has been

established, it is considered ongoing as long as the devices continue

to exchange at least one such packet for every subsequent 20 s

interval. Conversely, a contact is considered broken if a 20 s

interval elapses with no low-power packets exchanged. Figure 2A

reports, for every deployment, the probability distribution of the

durations of person-to-person contacts. The distribution displays

large fluctuations, indicating that there are comparatively few

long-lasting contacts and a multitude of brief contacts. Qualita-

tively, this behavior is not unexpected, and a similar result has

indeed been reported for the duration of contacts between

Bluetooth devices [10,14,21]. A striking feature exposed here is

the similarity of the probability distributions for face-to-face

interactions at close distance (ISI and SFHH) to the distribution

observed for larger detection range (25C3). The spatial scale of the

interactions is not a discriminating signature of the observed

dynamical behavior (see also Figure S2).

Along with the duration of face-to-face contacts it is possible to

track the dynamics of richer structures that bear relevance to the

dynamical processes that can occur on the network of contacts: for

example triadic interactions. A triangle involving individuals A, B

and C is recorded when, within the same 20-second interval,

packets are exchanged separately between each of the pairs A-B,

A-C and B-C. A triangle breaks whenever any of the involved

contacts break, hence we define the duration interval of a triangle

in the same way as we did for pair-wise contacts. Panel B of

Figure 2 reports the probability distribution for the duration of

triangles. All measurements yield broad distributions, with the

25C3 case showing the longest tail, as triangles are more likely to

be detected because of the longer detection range. It is also

especially insightful to measure the duration of the interval

between two consecutive contacts of a given individual with two

Dynamics of Interactions
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distinct persons. In other words, if A starts a contact with B at time

tAB, and then starts a different contact with C at tAC, the inter-

contact interval is defined as tAC - tAB. Measuring this quantity is

relevant for the study of causal processes (concurrency) that can

occur on the dynamical contact network, such as for example

information diffusion or epidemic spreading. The inter-contact

intervals determine the timescale after which an individual

receiving some information or disease is able to propagate it to

another individual. Thus, the interplay between this timescale and

the typical timescales of the spreading processes is crucial to

diffusion processes. The probability distributions of inter-contact

events show a broad tail across the three deployments, signaling

the absence of a characteristic timescale (see panel C of Figure 2).

Strikingly, and in contrast with the distributions of pair-wise

contact durations, these distributions expose differences between

deployments. In particular, the distribution of inter-contact

intervals turns out to be broader when short detection ranges

are considered (ISI and SFHH). In the context of spreading

processes this would imply that various ranges of possible

contamination would correspond to different distributions of times

between successive spreading events.

The combination of high resolution and scalability we achieved

allows us to address the crucial problem of the robustness of the

observed distributions. In Figures 3A, S2, S3, we show that the

same distributions are obtained not only across deployments, but

also within a single deployment, across different intervals of time

(from a few hours, to one full day, to the event as a whole).

Figure 3A also displays distributions of contact durations of

individual tags, showing that the observed heterogeneity of contact

durations in the population is present also at the individual level.

Moreover, in experiments involving the tracking of individuals’

behavior, technical difficulties and human factors can both act as

sources of data incompleteness. Participation is voluntary and not

all individuals agree to have their contacts tracked. People who

Figure 1. RFID sensor system and system deployments. A) Schematic illustration of the RFID sensor system. RFID tags are worn as badges by
the individuals participating to the deployments. A face-to-face contact is detected when two persons are close and facing each other. The
interaction signal is then sent to the antenna. B)C)D) Activity pattern measured in terms of the number of tagged individuals as a function of time in
the three deployments: B) ISI refers to the deployment in the offices of the ISI foundation in Turin, Italy, with 25 participants; C) 25C3 to the 25th Chaos
Communication Congress in Berlin, Germany, with 575 participants, and D) SFHH to the congress of the Société Française d’Hygiène Hospitalière,
Nice, France, with 405 participants. Dashed vertical lines indicate the beginning and end of each day. Typical daily rhythms are observed in the office
and conference settings. The ISI deployment allows us to recover the weekly pattern signaled by the absence of activity on the day of Sunday (the
number of persons larger than zero at night indicates the tags left in the offices, easily recognizable from the flat behavior).
doi:10.1371/journal.pone.0011596.g001
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agree to participate can still lose their badge, forget to wear it,

wear it improperly, or tamper with the RFID tag by damaging it,

shielding its antenna or removing its power source. Proximity

relations can be detected only when they involve properly tagged

individuals. Furthermore, data loss can occur because of technical

failures in the data collection pathway, from the readers to the

networking and computing infrastructure (see for example in

Figure 1 the drop in the 25C3 timeline at the midnight of the 29th).

In running the experiments, we deal with the above issues using a

set of data quality flags and heuristics that allow us to spot

problems and react promptly. Data incompleteness, nevertheless,

is inherently unavoidable. In order to test the robustness of the

data with respect to sampling and failure issues, we have simulated

heavy data incompleteness by removing from the dataset the

contacts involving a specified fraction of RFID tags, chosen at

random. On the resulting decimated data set we have recomputed

the distributions of the durations of contacts and triangles.

Figures 3B and S4 show that these probability distributions are

extremely robust with respect to the above sampling procedure:

the shape is unchanged, and only the cutoff of the distribution

moves to smaller values. These tests demonstrate that the behavior

of the statistical distributions we measured is not altered by

unbiased sampling of individuals, or by random data losses that

may occur during the measurements. On the other hand, we

cannot completely rule out that a systematic bias is introduced by

the selection of volunteers, if volunteers and non-volunteers have

different behavioral patterns. Accurately checking this point would

require monitoring an independent data source for face-to-face

contacts, and because of scalability issues this would be feasible

only for small control groups.

Other biases may arise from our choice of deployment

scenarios, as both of the large-scale deployment were confer-

ence-like gatherings. We recently collected data in radically

different settings, namely a hospital, a school and a museum.

The corresponding data analysis, which will allow to unveil

similarities and differences across different scenarios, is currently

work in progress.

The collected data afford the definition and characterization of

aggregated contact networks [16,21,22] between individuals over

arbitrary timescales, ranging from the finest time resolution of 20

seconds up to the entire duration of the event. Similarly to other

studies on dynamic communication networks [16,22], this analysis

Figure 2. Probability distribution of human interactions. A) Probability distribution of duration of contacts between any two given persons.
Strikingly, the distributions show a similar long-tail behavior independently of the setting or context where the experiment took place or the
detection range considered. The data correspond to respectively 8700, 17000 and 600000 contact events registered at the ISI, SFHH and 25C3
deployments. B) Probability distribution of the duration of a triangle. The number of triangles registered are 89, 1700 and 600000 for the ISI, SFHH and
25C3 deployments. C) Probability distribution of the time intervals between the beginning of consecutive contacts AB and AC. Some distributions
show spikes (i.e., characteristic timescales) in addition to the broad tail; for instance, the 1 h spike in the 25C3 data may be related to a time structure
to fix appointments for discussions.
doi:10.1371/journal.pone.0011596.g002
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is particularly insightful because it allows the acquisition of a

system perspective where the statistical properties of individuals

with similar interaction patterns can be identified. The aggregated

network is defined as follows: nodes represent individuals, and an

edge between two nodes represents an interaction that occurred

between those nodes during the aggregation time interval. Each

edge is weighted either by the total number of packets exchanged

by the pair of tags, or by the total time during which the

individuals have been in contact. We have verified that both

definitions give the same results.

Figure 4 gives the main characteristics of the aggregated

network for a time window of 12 hours during the 25C3

deployment, with the total number of exchanged packets used to

define the intensity of the link (see Figures S5 and S6 for other

examples). The distribution of weights is broad, showing that the

heterogeneity in the duration of individual contacts (Figure 2)

persists when contact durations are cumulated over a long time

interval. The strength of a node is given by the sum of the weights

of its links [23] and therefore represents, for each individual, the

total time of interaction with other individuals. The corresponding

distributions, reported in Figures S5 and S6, are also broad and

display a large heterogeneity of behavior in the interaction

patterns of individuals. Strikingly, the node strength grows super-

linearly with the degree, i.e., the cumulated time of interaction of a

given individual grows super-linearly with the number of distinct

persons that this individual has had contacts with. This is a rather

consistent observation across our experiments. In other words, the

more distinct interactions one individual has and the larger is the

average time dedicated to those interactions. This is in contrast

with the sub-linear behavior that has been reported for mobile

phone activity [16]. The super-linear association between the

number of contacts and their average duration is the statistical

signature of super-connectors that not only develop a large

number of distinct interactions, but also dedicate an increasingly

larger amount of time to such interactions. These highly social

individuals are the crucial actors in defining the pattern of

spreading phenomena [24,25,26]. The role of super-spreaders has

been emphasized in the epidemiological and physics literature

since a long time. However, the results emerging from our study

indicate that super-spreaders may have a much larger spreading

ability than what could be expected from just harnessing the

number of their distinct contacts. The dynamical dimension

provided by the high temporal resolution of the presented

experiments might be the key to gather new data on the interplay

between the concurrency/duration of contacts and their number

[27]. We stress that the non-linear statistical association highlight-

ed by our results is not a natural feature of most network models.

Along with the possibility of considering generative models that

reproduce this feature, it is worth considering the obtained

datasets – and those that will be collected in future experiments –

as test-beds for the investigation of diverse dynamical phenomena

that take place on dynamical networks of human contact, such as

social contagion and the propagation of airborne infections. The

ability to resolve the least known scale of face-to-face presence for

communities of several hundred persons is a critical enabler for

these studies. Finally, our results may open the path to additional

studies about the fundamental mechanisms of human interaction

that underlie unexpected scaling behaviors observed at different

levels of social aggregation [28,29,30].

In conclusion, this paper presents an experimental platform for

gathering data on the social interactions of individuals that

reconciles scale and detail through the use of low cost active RFID

devices designed to operate as a distributed proximity sensing

network. We present the results of three studies where the RFID

platform was deployed in different contexts. Novel aspects of

human dynamics and social interactions are found that highlight

the emergence of structural and temporal features as a result of the

inclusion of the dynamics in defining the structure of the network.

At the micro-level, this experimental framework provides a new

approach for the unsupervised collection of social interaction data,

opening the path to the understanding and characterization of

interaction mechanisms that represent the basic ingredients of

realistic agent-based models for diseases and information spread-

ing phenomena. In addition, the devices brings about the potential

for attaining a multi-scale view of social interactions, while paving

the way for a range of developments and applications.

Materials and Methods

The experiments we perform consist of a distributed sensing

component, comprising wearable active RFID (Radio Frequency

Identification) devices, and of a data collection and processing

component comprising RFID readers installed in the environment, a

local area network (LAN) and a central computer system that collects

and stores the data. In the following we outline the recruitment

process, the architecture and function of these components.

Figure 3. Robustness. A) Distribution of contact durations (in seconds)
at the 25C3 deployment, for various time intervals and for the entire
dataset. The filled symbols correspond to the distribution of contact
durations of several individual tags. B) Distribution of contact durations (in
seconds) for sampled datasets in which 60% of the tags are ignored,
compared with the distributions obtained from the whole datasets.
doi:10.1371/journal.pone.0011596.g003
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Ethics Statement
The recruitment and data collection were organized locally at

each event. Attendees in the SFHH deployment and lab members

in the ISI deployment were invited to participate by signing a

written informed consent in conformity with the privacy

regulations of the country laws where the experiment took place.

The data have been collected in such a manner that subjects

cannot be identified, directly or through identifiers linked to the

subjects. Data collection, encryption, usage, and analysis were

conducted in conformity with the EU regulations on privacy

matters for scientific purposes, as detailed in the document for

the informed consent. No data of ethical concern (personal

information, medical records, etc.) have ever been collected. The

25C3 data collection has been organized by the OpenBeacon

project and the raw data are publicly available (http://people.

openbeacon.org/meri/openbeacon/sputnik/data/25c3).

Distributed proximity sensing
We use the exchange of low-power radio packets between

wearable devices as a proxy for the spatial proximity of the

individuals wearing such devices. The wearable device we use,

shown in Figure S7, is an active RFID (Radio Frequency

Identification) tag based on a design developed by the OpenBeacon

project (http://www.openbeacon.org). The standard behavior of an

active RFID tag is that of a radio beacon, i.e., at regular intervals of

time the device emits a radio packet that carries a unique identificator

associated with the device. The devices we use operate in the

2.4 GHz ISM band of the RF spectrum, and are based on the Nordic

Semiconductor nRF24L01+ Single Chip Transceiver.

In the context of our experiments, we re-designed the RFID

tags so that, in addition to their standard behavior, they also

engage in bi-directional communication among themselves, in a

peer-to-peer fashion. The devices perform a scan of their

neighborhood by alternating transmit and receive cycles. During

the transmit phase, low-power packets are sent out on a specific

radio channel, hereby called the contact channel. During the receive

phase, the devices listen on the same channel for packets sent by

nearby devices. By including the transmit signal strength in the

payload, the receiving device can estimate the degree of proximity

of the transmitting device, and this operation can be carried out in

a decentralized fashion throughout the sensing network. The

lowest power level we use in our experiments is chosen so that

packet exchange at that power level is only possible between

devices situated within 1–1.5 m of one another. Tags in close

proximity exchange with one another a maximum of about 1 low-

power packet per second.

In our experiments, active RFID tags are either secured to the

lanyards that hold conference badges, clipped to the clothing of

participants at the chest level, or inserted in the conference badge

holders. In all cases, the antenna of the RFID tag is laying close to

the skin of the participant, in the upper and frontal region of the

body. The radio frequency emitted by the RFID tag is absorbed

by body water. Because of this, the low-power packets we use for

proximity sensing can only propagate towards the front of the

individual wearing the device. At a fixed distance, this introduces

an extremely strong anisotropy in the packet exchange rate that

depends on the face-to-face orientation of the persons wearing the

devices. Exchange of these low-power packets thus becomes a

proxy for face-to-face proximity of individuals. The line of sight

between two devices that can exchange radio packets lies in a solid

angle that is narrow enough to generate very few false positives in

crowded situations. This was verified for example by monitoring

the contacts recorded in a crowded room during a conference

session [31], a situation where a high density of individuals

wearing the tags practically does not lead to the detection of

contact pairs. The audience is indeed facing towards the speaker

Figure 4. Network properties. Properties of the aggregated network of contacts corresponding to the third 12-hour period of the 25C3
deployment. The total number of packets exchanged by a tag during a contact (strength s) is shown as a function of the number of distinct contacts
(degree k). A superlinear (powerlaw) behavior is observed, with a slope of 1.73 [95%CI: 1.65–1.81] obtained from the fitting procedure with a
correlation coefficient of 0.93. Inset: distribution of links’ weights, defined as the total number of packets exchanged between two interacting tags.
The same qualitative properties are obtained for other time intervals and for all the other experiments we deployed.
doi:10.1371/journal.pone.0011596.g004
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Figure 5. From RFID communications to contact networks. Top: Temporal aggregation of proximity relations reported by different tags over a
sliding window. The information collected by each tag is aggregated and translated into a dynamical adjacency matrix to reconstruct the dynamical
network of face-to-face interactions. Bottom: Real-time visualization. A snapshot of the visualization, displaying approximate position information as
well as the instantaneous network of face-to-face proximity. Individuals wearing an RFID tag are represented as discs labeled with the numeric

Dynamics of Interactions
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and face-to-face interactions are absent, except for situations in

which neighbors may shortly interact for exchanges of comments.

The situation readily changes when the session breaks and

participants start to interact and contact pairs are detected.

The rate at which low-power packets are emitted and the

fraction of time the devices spend listening on the contact channel

are tuned so that the face-to-face proximity of two individuals

wearing the RFID tags can be assessed with a probability in excess

of 99% over an interval of 20 seconds. This sets the natural time

scale over which we perform the temporal aggregation of data

collected from different devices.

Figure 1A summarizes the proximity detection strategy: if two

individuals are not within 1–1.5 m of each other, no packet

exchange is possible at the lowest power level used in the contact

channel. The same is true is the individuals are nearby but are not

facing each other. When two individuals are nearby and facing

each other, low-power packet exchange occurs in either direction

(1), is detected and reported to the data collection infrastructure (2)

on a different radio channel, hereby called the infrastructure channel.

Data collection infrastructure
The spatial proximity relations are relayed from RFID tags to

radio receivers, called RFID readers, installed in the experimental

area. The radio receivers are connected to a central computer

system by means of a Local Area Network. The readers listen on

the infrastructure radio channel for incoming packets, and

whenever they receive a packet they encapsulate it in a UDP

(User Datagram Protocol) packet and relay it to a central server,

where it is timestamped and stored.

The received packets are also fed to a real-time system that

aggregates them and maintains a real-time graph representation of

the proximity relations among experiment participants. This

representation is used for analysis, for visualization (see below) as

well as to run user-oriented applications.

The top panel of Figure 5 illustrates how the global contact graph

among individuals is built, at a given time, by aggregating the

proximity information reported by single devices over a sliding

window of Dt = 20 seconds. This instantaneous contact graph is

represented as a time-dependent adjacency matrix At
ij, such that

At
ij = 1 if the RFID tags i and j exchanged at least one packet at the

lowest radio power during the time inteval [t-Dt, t], and At
ij = 0

otherwise. This network representation of the face-to-face proximity

relations, computed as a function of time for an entire experiment, is

the basic piece of information that we use for the analysis.

More details about the distributed proximity-sensing system we

developed are available on the web site of the SocioPatterns

project, http://www.sociopatterns.org.

Visualization
The deployments we conduct are accompanied with publicly

displayed dynamic visualizations of the proximity relations between

individuals. Two types of visualizations are displayed. The first is a

dynamic representation of the instantaneous network of proximity. The

second represents the cumulative network of contacts, which

summarizes the amount of time each pair of individuals spent

together, as measured from the beginning of the experiment.

A snapshot of the real-time visualization is shown in the

bottom panel of Figure 5. A force-directed graph layout

algorithm is used to display the current state of the network.

The proximity graph is computed in real-time by the data

collection system, and the visualization is updated continuously

[32].

Supporting Information

Figure S1 Activity timeline for the first day of the SFHH

deployment (left) and for the second day of the 25C3 deployment

(right). The figures show the number of tags (black), the number of

pairs (red), triangles (blue), and 4-cliques (green) in the contact

network aggregated over a sliding window of 20 seconds, as a

function of time.

Found at: doi:10.1371/journal.pone.0011596.s001 (0.39 MB TIF)

Figure S2 Distribution of contact durations (in seconds) for all

experiments performed and for the two different available

detection ranges.

Found at: doi:10.1371/journal.pone.0011596.s002 (0.24 MB TIF)

Figure S3 Distribution of triangle durations (in seconds) at the

25C3 deployment, for several time intervals.

Found at: doi:10.1371/journal.pone.0011596.s003 (0.25 MB TIF)

Figure S4 Distribution of triangle durations (in seconds) for

sampled datasets in which 30 to 60% of the tags are ignored,

compared with the distributions obtained from the whole datasets.

Found at: doi:10.1371/journal.pone.0011596.s004 (0.20 MB TIF)

Figure S5 Some characteristics of the aggregated network of

contacts corresponding to the whole 25C3 deployment. From top

to bottom: distribution of the edge weights, of node strengths, and

node strength as a function of node degree. Red dots display the

raw data, and black circles are log-binned data. The red line shows

a linear behavior s ,k.

Found at: doi:10.1371/journal.pone.0011596.s005 (0.22 MB TIF)

Figure S6 Same as Fig. S5 for the network of contacts

aggregated of the SFHH deployment.

Found at: doi:10.1371/journal.pone.0011596.s006 (0.20 MB TIF)

Figure S7 Active RFID tag used in the experiments. The RFID

tag is based on an open design by the OpenBeacon project and

features a microcontroller, a radio transceiver operating in the

2.4 GHz ISM band, an antenna embedded in the printed circuit

board, and a lithium battery.

Found at: doi:10.1371/journal.pone.0011596.s007 (0.57 MB TIF)
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identifier of their tag. Edges between individuals represent ongoing face-to-face proximity relations, and their thickness reflects the strength of the
proximity relations. The other labels refer to names of rooms in the venue and denote the location of RFID readers. The graph is laid out so that
individuals are shown near the readers that report their presence, and the sizes of the readers symbols depend on the number of users from which
they receive information.
doi:10.1371/journal.pone.0011596.g005
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