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On the lack of structure of Defay-Prigogine 2p-continua

F. DELL’ISOLA (ROMA)

IN THIS PAPER it is proved that the bidimensional continua modelling the interfaces between fluid

hases have to be endowed with a shell-like structure. Indeed (generalizing the result due to TOLMAN
1]) the Gibbs-Tolman formula is proved to be universally valid for the class of fluid interfaces
introduced by DEFAY and PRIGOGINE in [3]. The starting assumption is that (following DELL'IsOLA and
RomaNo [2]) the interfaces between different phases can be modelled by nonmaterial bidimensional
(2D-)continua, whose independent constitutive variables are the temperature and the interfacial mass
density. Moreover, for this class of 2D-continua gtheir introduction is suggested in [3]) we prove the
Gibbs phase rule, Kelvin relation between interfacial curvature and vapour pressure, and propose
a formula which could allow for experimental evaluation of the surface mass density for plane and
curved interfaces. Unfortunately, as discussed in ADAMSON [4], the dependence of surface tension on
the curvature which is experimentally measured is inconsistent with the Tolman formula. Our result
im{)lies that, in order to supply theoretical forecasting consistent with experimental data, it is useless
to look for new constitutive equations for interfacial free energy: therefore, the conjecture formulated
by DeraY and PRIGOGINE in [3] seems to be not true. Instead, to account experimental evidence,
it is necessary to construct 2)-continua endowed with a more complex structure. The minimal set
of independent constitutive variables which seem to be necessary to this aim is determined in the
epilogue.

1. Introduction

IN HIS FUNDAMENTAL series of paper [1, 5, 6] TOLMAN, developing the ideas of
GIBBs [7], could obtain a formula (then generalized by KOENIG [8] to the case of mix-
tures) which relates the equilibrium surface tension acting on a liquid drop surrounded
by its vapour to its radius. The fundamental assumptions accepted by Tolman are:

T1. The vapour is a Van der Waals gas.

T2. The liquid phase incompressible.

T3. The interface is a mixture between liquid and vapour: all properties of this mixture
are postulated on a heuristic ground.(})

The utility of this formula, which in the literature is sometimes called also Gibbs—Tol-,
man formula, has been tested in many experimental conditions. ADAMSON [4], while
underlining its conceptual importance, quotes many papers, for example LAMER and
POUND [13], in which is shown that the dependence of the surface tension on curvature,
as predicted from Tolman’s results, is in poor agreement with experimental data. The
first attempt to point out the theoretical reasons of the quoted failure is due to DEFAY
and PRIGOGINE [3]; they conjecture that Tolman’s results have to be improved by taking
into account the dependence of the equilibrium surface mass density at the interface
upon the curvature. We remark explicitly here that if one decides to model the interface
by a bidimensional (2D-)nonmaterial continuum, this conjecture clearly implies that the

(1) In our opinion it is possible to deduce the quoted properties in the framework of the theories of the
second gradient (see for instance SEPPECHER [9] or the series of papers CASAL-GOUIN [10, 11, 12]). Indeed, these
theories provide a unique constitutive description for all the three phases (including the interface) coexisting in
the systems considered.
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constitutive assumption

(1.1) 7 =),
where v is the surface tension and ¥ the interfacial temperature, which seems to be
generally accepted in the literature, has to be generalized as follows:

(1.2) 7 =7(,p0),
where p, is the interfacial surface mass density.

We will call the 2.D-continua for which Eq. (1.2) is accepted Defay-Prigogine continua.
The results experimentally found by KAYSER [14], once Eq. (1.2) is assumed, should be
reinterpreted: he actually measured the values of the following function

(1.3) vp(0) = 7(d, p5 (V)

where pp(9) is the equilibrium surface mass density for plane interfaces. The aim of
this paper is to prove, by modelling the interface between different phases of the same
material as proposed in [2], that:

RO. The function p p() is determined when the functions vp(¥) and E;p(F) (the
equilibrium surface tension and the surface inner energy per unit area for plane interface)
are known.

R1. (1.1) is not consistent with the Gibbs phase rule.

R2. (1.2) implies Gibbs phase rule and enables, once a constitutive choice of interfacial
free energy is made, a theoretical evaluation, in terms of the function p, p(¥), of the
function p% (9, H), i.e. the equilibrium interfacial surface mass density corresponding to
curvature H and fixed temperature 9 (obviously p} p(#) = p5(9,0)).

R3. The Gibbs-Tolman formula is universally valid for the interfaces modelled in [2].

We explicitly remark here that we supply a proof of Gibbs-Tolman which:

H1 — is independent of the assumptions T1 and T2: the only hypothesis we need is
that both liquid and vapour are perfect fluids;

H2 — is independent also of the “physically grounded” assumption T3: we only accept
that the interface between phases is a perfect (Defay-Prigogine) 2.D-continuum;

H3 — is almost independent of the classical one supplied by Tolman: since the model
used carefully ignores the concepts of Gibbs surface excess and Gibbs dividing surface,
our proof is simpler.

The results quoted in statement RO and R2 seems to supply an experimental method
for evaluating the interfacial mass density. Statement R3 implies that the models proposed
in [2] need to be improved in order to produce a theoretical approach to the problem of
curvature depending on surface tension which is consistent with experimental evidence.
Indeed, in this paper we prove that a perfect Defay-Prigogine 2 D-continuum is not en-
dowed with sufficient structure to see, in equilibrium conditions, the difference between
nonmaterial and material interfaces. In the epilogue some hints of future developments are
sketched: following the ideas stemming from the work of CAPRIZ and PoDI0O-GUIDUGLI
[15] (generalized to 2D-nonmaterial continua), the introduction of further independent
constitutive variables to describe the state of the interface seems unavoidable. It has to
be cleared up how many of these variables should be introduced: indeed, there are many
possible choices. We list here the two which are subject to our investigations: i) one could
generalize the model proposed by DICARLO, GURTIN and PODIO-GUIDUGLI [16], intro-
ducing the curvature itself as a further independent variable (this approach implies the
introduction of interfacial couple stresses) or ii) if the ideas exposed by CHOI et al. [17] or
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by FISHER and ISRAELACHVILI [18, 19] in their comments to their experimental data are
founded) one could, using the results found in DELL’ISOLA and KOSINSKI [20}, introduce
a surface scalar field modelling the thickness of the interface.

2. Constitutive equations for Defay—Prigogine 2D-continua. Gibbs’ phase rule

Following [2] we assume that the independent constitutive variable characterizing the
state of the interface are ¥ and p,, i.e. the temperature and the surface mass density.

Therefore the interfacial free energy per unit mass ¥, has to be determined as a
function of (19, p, ). Once this function is known, the entropy principle implies that all the
other constitutive laws are determined. Indeed, in [2] the following relations are proved:

_ 9% - __ 29
(2.1) Mo = =Gy €o =V +¢PNs, V= Po 5,

where 7, and ¢, denote the interfacial entropy and inner energy per unit mass. If we
define the interface Gibbs’ potential per unit mass as follows

= — L
(2.2) 90 = Yo Py

and if we assume that

HYPOTHESIS 1. Once 1 is fixed, Eq. (2.1)3 determines a one-to-one correspondence be-
tween vy and pg;

then the Eq. (2.1) trivially implies that (if instead of p, we choose v as independent

variable) 9
1
(2.3) % _ _ 2,
oy Po
On the other hand, if we assume that the interface is incompressible, i.e. if we assume

that

IC1) p, is independent of the tension 7y and is given as a function of the variable o
alone; . ‘
IC2) all the other thermomechanical quantities are functions of the variables v and ¥;

then the Eq. (2.3), with reasoning completely analogous to those one can find in [2], can
be proved to start from the entropy principle.

DEFINITION 1. We will call Defay-Prigogine continua those bidimensional nonmaterial
continua whose free energy satisfies Hypothesis 1 and whose entropy, inner energy and surface
tension satisfy Eq. (2.1).

We will prove that Gibbs’ Phase Rule holds for Defay-Prigogine continua in all the
cases of planar or spherical interfaces.

We start from the equilibrium condition deduced in [2] from the reduced entropy
inequality, specified to the case of plane and spherical interfaces:

(2.4) 2HY=pi—pv, Gv=01, 9v = Yo,

where H is the curvature of the interface, p; and g;, p, and g,, are, respectively, the
pressure and Gibbs’ potential in the liquid and in the vapour phases: in what follows g,
and g, are assumed to be, respectively, function of ¥ and of p; and p,.
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The set S of the parametres which describe the equilibrium of a liquid and its vapour,
when capillarity phenomena can’t be neglected and the interface is plane or spherical, is

(2.5) S = {19,Haplsplvpvapv7paa7}'

We explicitly remark that, in view of H1 and H2, the constitutive relations for the vapour,
liquid and interfacial phases reduce to the five independent variables appearing in S.

Gibbs phase rule

If H = 0, ie. if the interface is plane, the four independent quantities appearing in
(2.5) are constrained by the three equations (2.4). If these equations are independent,
then there is a one-to-one correspondence between one parameter chosen in S and the
equilibrium states of the system. In what follows this parameter will always be the tem-
perature ¥: all the other quantities in S will become function of 19, these functions we
will denote by the same letter with the superscript * and the subscript p.

On the other hand, if H is not vanishing then there are two degrees of freedom of
the system. This is exactly what was forecast by the suitably generalized form of Gibbs’
Rule (for more details cf. ADAMSON [4], LEVINE [21] or GIBBS [7]).

We prove now the following

PROPOSITION 1. The assumption v independent of p, is
i) a consequence of the relation (which is often accepted in the literature)

(2.6) v = poto;
ii) not consistent with the Gibbs’ Phase Rule.

To prove ii) we remark that the hypothesis ¥ = (¥J) implies (because of (2.1)3) the
following relation

@.7) b, = 1)

—— + Po(9),
a
where ;b,, (9) is a function of the variable ¥ alone which does not depend on 7.

Equation (2.7) implies, together the definition (2.2), that

2.8) 9o(%, po) = Vo ().

The consequences of (2.8) are remarkably inconsistent with the Gibbs’ Phase Rule: indeed,
even if one could always believe that p, is very small or vanishing or negligible, so that he
is not interested in determining its value at the equilibrium states, he could never ignore
(2.4); (which was established by Gibbs himself) which, together with (2.8), states that

a) in the case of planar interfaces there exists an unique equilibrium state characterized
by a fixed couple of values for temperature and pressure;

b) in the case of spherical interfaces there exists for every temperature a unique
equilibrium radius.

Both the statements a) and b) are in obvious disagreement with the experimental
evidence which supports Gibbs’ Phase Rule.

To prove i) it is sufficient to remark that Eq. (2.6) together with Eq. (2.1); leads to
the following implications

_ 0o < _ k@ ) ‘
(1/)0 = —Ps 8[)0) > | Yo = y = v depends only on 9.
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We remark explicitly that the relation (2.6) implies that

(2.9) 90(9,p5) = 0.
The last equation is equivalent, because of (2.1); and (2.2), to
Iy
—Pollc = 99’

which is Eq. III-5 in ADAMSON [4]. The validity of the last equation and of Eq. (2.6) is
therefore really doubtful.

3. Proof of Gibbs-Tolman formula

In this section we assume that
H1) both vapour and the liquid phase are perfect fluids, therefore the following equal-
ities hold:

6.1 O .1 In_1,
6?11 P apl pi

H2) the set of equilibrium equations (2.4) is independent: therefore once the tempe-
rature 9 is fixed, the choice of the variable p,, determines the equilibrium state of the
system and therefore all the equilibrium values of the other quantities in S — {}; we will
denote H™, v*, p, pJ, p; and p, the functions which map (p,,, ) onto the corresponding
equilibrium values.

In what follows we do not indicate the functional dependence on 9.

According to our notation, Egs. (2.3), (2.4); and (3.1), we have the following chain of

implications:(*)
09, dy* 3gu) (dv* Ps )

3.2 a*v=vv:>(_ = = =-=2).

(G2) (9 (7"(P)) = gu(pv)) 9y dpy . Op, dp. P

Moreover, starting from Eqgs. (2.3);; we establish the hypothesis of the following im-
plication, its thesis being obtained by making use of Eq. (3.1) and the last equality in
(3.2)

dgv _ 941 dpj
Op, Opidp, N (dH* _r-p)+ 2H*P$) .
ar” dp, 2v*p;

33 { 4.
Dy d
L =1 42-—~* +2H*
dp, dp, | dp,

Finally, the Gibbs’-Tolman formula is obtained by evaluating the ratio of the last equalities
appearing in (3.2) and (3.3), after having observed that the nonvanishing expression we
have obtained for the derivative d H*/dp,, allows us to chose, instead of p,, the variable
H in order to characterize the equilibrium states:

dy _ 256

dH =~ 1+2H§’

where 6(H) := 5, /(¥ — ») and where the upper tilde indicates the generic composite
function f(H) := f*(py(H)).

3.4)

(%) This relation seems to represent a reasonable reformulation of Eq. (I1I-22) on p. 56 in ADAMSON [4].
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Trivial integration by parts allows us to obtain the following equivalent expression,
which can be more easily compared with those found in literature, and in particular in
TOLMAN [1]:

AH)

3.5) v = 7"ﬁm )

where

AH):= [+ 2H6(H))“(2H;—I‘;> dH .

4. Interfacial free energy and the dependence of interfacial mass density on temperature
and curvature

Once Eq. (3.5) is obtained, the problem of determining the function 6(H) arises. It
is easy to forecast, simply by observing Eq. (24), that §(H), which is the ratio of the
functions p, and p; — P, has not many chances to be independent of the constitutive law
assigning the interfacial free energy .

We remark explicitly here that the classical treatment due to Tolman hides this circum-
stance behind some Gibbsian reasoning which seems to be neither logically nor physically
well grounded. However, it is our belief that these “Gibbsianism” could be made under-
standable (and the dependence of §(H) on the constitutive law for 9, explicit) once that
the theory of the second gradient or interstitial working (see for instance SEPPECHER [9]
or CASAL-GOUIN [10, 11] or DUNN-SERRIN [22]) is introduced to describe the behaviour
of the interfacial phase.

4.1 Determination of surface mass density for plane interfaces. The case of compressible Defay-Prigogine
2D-continua

In this subsection we aim to determine a relation between equilibrium surface mass den-
sity, surface tension and surface inner energy per unit area, which is valid in the case of
plane interfaces and which we could not find in the literature. In our opinion it could be
very useful in determining experimentally the magnitude of interface mass density involved
in capillarity phenomena.

We start with the remark that, because of our definition, Eqgs. (2.1) and Eq. (2.4); we
obtain (recall that the subscript P refers to the circumstance that all equilibrium functions
which we consider are related to plane interfaces, and that all the functions considered
have a unique variable, the temperature %)

* * * * * * a o *
(4'1) EaP = Poplop = paP"/JaP - paP19< 61[;9 ) 9
P
0.\ "
42 b= -0y 2( ") ;
4.2) TP (pop) Bpy ) p
0Ys\"
4. * * = * = pn* -
(4.3) Yop + p"P(apo)p 9up = 9ip>

here we used the notations ‘
(4.3)2 gip() = gu(Psp(9),9);  gip(¥) := gi(pip(¥), V)
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and the relations (resulting from (2.4), )

(4.3)3 pyp(9) = pip(9) = gu(pyp(9), ) = gi(pip(P), 9).

On the other hand, using the chain rule for the derivation of composed functions, we
obtain

Yo \* _ dygzp (0%)* dpzp
(44) (619 )p T dY dpo)p di

Then, from Egs. (4.2) and (4.3), using simple algebra we obtain

(4.5) VYip =gup +1p(Pep) ",
_ 0. \"*

46 —yn(pip) 2 = (—) .

(46) e = (5,7)

Finally one has to

i) substitute the LHS of Eq. (4.6) in the RHS of Eq. (4.4),
ii) substitute the derivative of RHS of Eq. (4.5) again in the RHS of Eq. (4.4),
1ii) substitute the RHS of the so transformed Eq. (4.4) in the RHS of Eq. (4.1),

iv) substitute the RHS of Eq. (4.5) again in RHS of Eq. (4.1), in order to obtain the
following relation

dv

In order to compare Eq. (4.7) with the experimental data available in the literature, it
is necessary to evaluate the second factor on LHS. We start by calculating the derivative
appearing in (4.7),

dg dvr
(4.7) pop (QZP -7 gvp> = —1p + 9L + Elp.

dg':P - * * —1( Q_g_i ?gg)*

The last expression is easily obtained by differentiating both expressions appearing in
(4.3); and recalling Eq. (3.1) and (2.4);. In order to make the final step of our derivation
clear it is useful to recall that the partial derivatives appearing in Eq. (4.8) are evaluated
at fixed variables p; and p,. Indeed, as a consequence of Eq. (3.1), if £; and €, denote
the inner energy per unit mass in the liquid and vapour phase, we have

dg1 _ 39y _
(4.9) gz—ﬂw =&+ m/pi, gu—ﬂaﬂ =€y + Pu/py

and therefore (using (4.8) and again recalling (2.4);) we obtain

* dg* * * * * * * -
(4.10) (.%P -7 d;p) = (pipeip — Pupeip)Pip — Pyp) ™
and (here the enthalpy per unit mass b is introduced in both phases)

(4.11) PIPEIP — PupEup = Piphip — Puphip.
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In conclusion Eq. (4.7) becomes

* * * * * * d’y* * * *
(4.12) pyp(piphip — pyphup = ( —vp ﬂ_d—ﬁﬂ + -Eap) (pip — Pyp) s

which is the relation announced at the beginning of the section.

We underline that some tables of measures for all equilibrium quantities which appear
in this equation, except the interfacial mass density, are available in the literature: there-
fore it is possible to use it to determine indirectly the interfacial mass density. Before
discussing shortly the numerical information which could be drawn from Eq. (4.12), it is
necessary to compare it with the theoretical results found in the literature in order to
warn the reader about a danger which one should avoid. Indeed in the literature (see
for example ADAMSON [4]) sometimes a little approximation (cf. 50, the lines between
Eq. (111-6) and Eq. (11I-7) in {4]) is made: “as a good approximation surface enthalpy per
unit area and surface inner energy per unit area are not distinguished”. The reasons for this
statement, its explanation being left to those readers which are familiar with Gibbsian
thermodynamics, most likely can be found in the papers of GIBBS himself [7]. We limit
ourselves to remark that, as a consequence of this statement, we obtain (Eq. (I1I-8) at
p- 50 in [4])

. . _ gDp
(413) EaP =7p— 0%‘3
which trivially implies that, because of Eq. (4.12),
(4.14) pop =0.

We can conclude that the approximation quoted by Adamson consists in neglecting the
interfacial mass density. Two problems now arise:

1. It is not clear to us if Tolman in his papers accepts or not the quoted approximation,
but it is certain that he needs to evaluate equilibrium surface mass density as it appears
in the definition of the function é(H ).

2. When the tables of measurements are to be used, one should check if the interfacial
inner energy has been measured directly or indirectly by means of (4.13) (as it seems to
be the case, for instance, in case of the measures listed in WOLF [23]).

If we make use of tables of measurements which apparently do not use (4.13) (for in-
stance see [24]), we can obtain some interesting results, when organizing the data following
Eq. (4.12). Indeed,

i) we can observe that the second factor on its RHS is negative (what is physically
obvious in view of the meaning of enthalpy);

ii) its LHS is also always negative (we believe that this circumstance is related to the
nonlinearities in the dependence of the equilibrium  on the temperature, measured by
KAYSER [14]);

jii) the numerical value obtained for water at 20°C are of the order of magnitude of
10~# — 10~7 g/em?, which is the order of magnitude generally accepted as the most likely
in the literature (for a detailed discussion of this point see the series of papers of ALTS
and HUTTER [25]).

However, we do not believe it would be wise to rely much on Eq. (4.12) since we are
aware of simplicity of the model which allowed for its deduction; together with the Tolman
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formula it should be generalized to a more reliable one, once a more sophisticated model
for the interface will be available.

4.2 Spherical interfaces. The Kelvin formula for vapour pressure and the influence of surface free energy on
surface mass density

In order to simplify the comparison between the theoretical results and experimental
data, in the literature instead of the vapour pressure p, all equilibrinm quantities are
often expressed as functions of the variable H. While this choice is legitimate (at least in
the framework of the model we use in this paper, see considerations following Eq. (3.3))
it leads, even when the simplest constitutive assumptions are made, to some technical
problems in the explicit calculation of the quoted equilibrium function. A typical example
of this situation is represented by the relationship between the curvature H and the vapour
pressure, which in the literature is named after Kelvin.

‘Differentiating Eqs. (2.4); , with respect to the variable H and using Eqs. (3.1), we
obtain

14 dﬁv _ _i ~
(4.15) (1 pv)dH =~ QHH).

If we assume that

Cl. The liquid phase is incompressible.
C2. The vapour is a perfect gas so that the following relation holds:

(4.16) Py = Rydp,,

then from (4.15) we obtain

(4.17) S PRANG,) + By + 2H7) = 0

which becomes (as p, (0, ¥) = p}p(9))

(4.18) piR,9 In (pzi“ ) = —(pip — Py) + 2H7.
vP

Equation (4.18) is exactly the Kelvin formula: it is seen that already under the particular
constitutive assumption C1-C2 the function mapping H into p, is transcendental. More-
over, in (4.18) the unknown function § appears, since ¥ depends on it.

When more general constitutive equations are to be introduced, we can regard (4.15)
as an equation which generalizes the Kelvin formula.

Let us now briefly consider the system of equations which governs the equilibrium of
drops separated from their vapour by compressible Defay-Prigogine 2D-continua (we do
not indicate the dependence on the temperature ¥ which is assumed to be fixed),

P = pyt+2Hy,
(4.19) 91(1) = gu(py),

95(po) = 9v(Pv),
to which we must add the constitutive relation

0
(4.20) =00/ 5- >0,
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which is invertible, so that we can regard the Gibbs potential also as a function of .

Now we recall that ROMANO in [26], using the consequences of the second principle
of thermodynamics together with some well-grounded physical assumptions on the Gibbs
potential, could prove the existence and the uniqueness of the solutions of the system
(4.19) ;. Therefore, to complete the proof of the validity of Gibbs phase rule we started
in Sec. 2, we only need to prove the existence and uniqueness of the surface density pg
which is a solution of (4.19); when p, = pj.

To this aim we assume (as done in the second part of the hypothesis iii) on p. 261 in
[26]) that

(4.21) lim go(p,) =00, lim g,(ps) = —00.
Pog—0 po—0

Moreover, we remark that we do not need to introduce any hypothesis similar to that for-
mulated in [26] (cf. Eq. (3.7) there): indeed, starting from the thermodynamical relations
(2.1) we can easily prove that for every 9 €]94,0c[ (V. — temperature of the triple point,
¥, — critical temperature) there exists a unique solution pZ p for (4.19)3 once the value
p}p is substituted on its RHS. When (4.21) is accepted, the proof parallels step-by-step
that presented in [26] to which we refer. In principle, therefore, once all constitutive
assumptions for liquid, vapour and interfacial phases are made and, in particular, when
the interfacial free energy is chosen in such a way that the hypotheses (4.20)—(4.21) are
respected, the equilibrium functions 5(py), Y* (Do), P(pv) and pj(py) can be determined.
Using the thesis in (3.3) and the definition of 6, the function §(H) can also be found. In
order to obtain some suggestions concerning the dependence of surface mass density on
vapour pressure and an interesting expression for d6/dH we assume Cl, C2, and

C3. The interface is a linearly compressible bidimensional fluid, and its Gibbs potential
is given by

«.22) 00(9,0) = 0u(pp @), 9) + () in (225,

paP(ﬂ)
The function (), to our knowledge, was never introduced in the literature, neither
we could find any experimental data which could, suitably reinterpreted, allow for its
determination. However, (4.22) is clearly related, via the thermodynamical relationships
(2.1), to Eotvos relation (I11-10) in ADAMSON [4]. Because of C2 we have

(4.23) go(9,pv) = gu(Pyp(9), 9) + RudIn ( p*ﬁﬂ)) ’

so that Eq. (2.4); implies that:

(4.24) (5%9‘)) = (pi;i(ﬂ)) '

Finally we add the following assumption (cf. the experimental data listed by FISHER-
-ISRAELACHVILI in [18, 19]) that in the range of considered measures

C4. The vapour mass density is negligible with respect the liquid mass density (i.e.
pv < p1); therefore because of the definition of § and the constitutive equation (4.16),
we have

a5 1((dBe\ - o o db
(4.25) dH ~ 'ﬁz((d}[) + Po(Bu?) dH)'
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Owing to (4.15), (2.4); and (4.22), this becomes

dé 1 dy

. — = —(a + py(R,) " H—=%
which, taking account of (3.5), (4.16) and (4.18) (in which the first term on RHS can be
neglected in the range of measurements performed by Fisher-Israelachvili), represents an

equation which determines §. Indeed,

ﬁO’P
4.27 6(0) = ———.
(#.27) © Pip — pvpP

S. Epilogue. Comments and program for further investigations

In this paper some classical results of chemical physics are generalized making use of
the simple model for the interface between different phases of a single material proposed
in [2].

In our opinion, the relative simplicity of our deduction compared with those proposed
by TOLMAN [1] or ADAMSON [4] is due to our use of the methods of Rational Thermo-
dynamics exposed by TRUESDELL in his classical work [27].

Therefore we expect that a further improvement in the modellization of the interfacial
structure leading to the introduction of directed bidimensional nonmaterial continua could
allow for the theoretical deduction of a relation between the equilibrium surface tension,
surface mass and curvature, consistent with available experimental data. Moreover, we
urge (cf. our discussion in subsec. 4.1) for the development of a more precise theoretical
framework for the study of capillarity phenomena, as, in our opinion, the actual state of the
art is pretty confuse. Too many theoretical prejudices make the appropriate interpretation
of experimental evidence very defficult.

We can indicate here two improvements of the model proposed in [2] which could
modify our understanding of the quoted phenomena, at least for what concerns the influ-
ence of capillarity on curvature.

1. Following the ideas developed by DICARLO-PODIO-GUIDUGLI-GURTIN [16], one
could introduce nonmaterial constrained bidimensional continua, similar to those material
bidimensional continua introduced in the theory of shells. Together with surface stress ten-
sor, a couple-stress tensor and a suitable complex family of directors (spins, etc.) describe
the state of the interface. One of these directors could model the direction of the flux
of mass through the interface: the first formulation of the model could assume that this
vector always coincides with the direction normal to the interface, thus introducing some
unknown reaction terms of both surface stress and couple-stress tensor. In this model
(contrary to the model we used in this paper), the dependence of interfacial free energy
on curvature is allowed by the second principle of thermodynamics: therefore it seems
possible to obtain, by a suitable selection of a constitutive equation for it, a generalized
Tolman formula more consistent with the experimental evidence. This approach seems
more reasonably founded for describing the interfaces, for instance, between solid and
melted crystals.

ii. In the literature (see for instance [13, 17, 18, 19]) it is often stated that an influence
of the thickness of the interface on equilibrium surface tension is possible. For this reason
CHOI et al. [17] develop a theoretical method (using statistical mechanics) to define a
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dividing thickness between different phases of some carbon compound, and an experi-
mental method to determine the thickness so defined. However these results, when used
together with Tolman’s data, lead to some results inconsistent with the experimental data.
In [20] a heuristic method is proposed to add a more detailed structure to bidimensional
nonmaterial continua used to describe capillarity phenomena. In this approach a concept
of thickness is also introduced, which plays a relevant role in determining the behaviour
of continua considered. However, we think that its physical nature is different from that
introduced by CHOI et al. Indeed, the spatial region in which in [20] the interface is lo-
calized can be identified with the region in which the material in consideration shows a
behaviour of the Korteweg type (see [22]) or of the second grade type (see [9, 10, 11, 12}).

The interfacial region so identified is more likely macroscopic than those introduced
by means of the methods of statistical mechanics, and it could be defined as that region
in which the constitutive equations for the Stokes-Navier simple materials cannot be
considered to be valid.

To make the set of equations proposed in [20] complete from a physical point of view,
it is necessary to specify the properties of the interfacial layer. This is done by

a) introducing one further surface scalar field modelling the thickness of the thin but
macroscopic capillarity region (such a region is studied for instance by SEPPECHER in [9]),
and

b) postulating (or deducing in the sense of [20]) the evolution equation for such a
field.

The interfacial free energy for bidimensional continua endowed with this structure
will depend also on the thickness, and this circumstance could lead to a solution of the
proposed problem.

This approach seems more suitable for the description of the behaviour of the inter-
faces between fluid phases.
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