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In the component-based software development process, the formalisation of
architectural choices makes possible to explicit quality attributes. When dealing
with the deployment of such component-based software in dynamic networks,
in which disconnections or machine failures can occur, preserving architectural
choices becomes difficult to ensure, as current architecture-centric languages and
their support mainly focus on steps prior to the deployment one. We present in
this paper a family of languages that formalise not only architectural choices but
deployment aspects as well, both as constraints. Then, we show how all of these
constraints are reified in order to manage the deployment of a component-based
software in this context of dynamic hosting platforms. The proposed solution
defines an automatic deployment that ensures permanently, at run time, the
preservation of architecture and deployment choices, and thus their correspond-
ing quality attributes.

1 Introduction

Architectural choices should be preserved throughout the software lifecycle so
that their associated quality attributes persist. For example, if we choose, at
design-time, a particular architectural style like the pipe and filter [15], we should
be able, at runtime, to enforce it so that maintainability and performance quality
requirements can be ensured permanently.

In an MDE (Model-Driven Engineering) approach, we can define at architec-
ture design-time an architecture description of a system with a given ADL, like
Acme [4]. We can then transform this description into a component implementa-
tion in CORBA components (CCM) [10], for example. For a smooth transition,
we can transit by a component diagram in UML 2 (or one of its profile, like CCM
one), at component design-time. We showed in [16], how to formalize architec-
tural choices at the different stages above using a family of constraint languages
called ACL profiles: Acme ACL profile at architecture design stage, UML 2 ACL
profile at component design stage and CCM ACL profile at component imple-
mentation stage. We also presented how these architectural choices (constraints)
are preserved from one stage to another.



In this paper, we present how these choices can be preserved after the devel-
opment has finished. We show how this can be achieved after the deployment of
the component implementation in a distributed execution environment. Indeed,
one of the characteristics of emerging distributed platforms is their dynamism.
Such dynamic platforms are not only composed of powerful and fixed work-
stations but also of mobile and resource-constrained devices (laptops, PDAs,
smart-phones, sensors, etc.). Due to the mobility and the volatility of the hosts,
connectivity cannot be ensured between all hosts, e.g. a PDA with a wireless con-
nection may become inaccessible because of its range limit. As a consequence,
in a dynamic network, partitions may occur, resulting in the fragmentation of
the network into islands. Machines within the same island can communicate
whereas, no communication is possible between two machines that are in two
different islands. Moreover, as some devices are characterized by their mobility,
the topology of islands may evolve.

Dynamism in the kind of networks we target is not only due to the nature
of the devices but also to their heterogeneity making difficult to base a de-
ployment on resource’s availability. When deploying component-based software
in dynamic distributed infrastructures it is required that the deployed system
complies permanently with its corresponding architecture choices. By taking ad-
vantages of changes in the environment (e.g. availability of a required resource),
the initial deployment can evolve but any reconfiguration must respect initial
architectural choices. This makes the running system benefit from the targeted
quality attributes, and more particularly those which are dynamically observed,
like performance or reliability.

In addition, we introduce in this paper the enrichment of architectural choices,
during deployment-time, with constraints on resources and location. We show
how we can use the same language to formalize this kind of constraints, and how
we can check them at runtime. The proposed approach makes use of a transfor-
mation technique to evaluate ACL constraints. All architectural choices together
with resource and location constraints are transformed into reified runtime con-
straints to be evaluated.

In the next section we present briefly how we can formalize architecture
choices using a constraint language, and we illustrate this formalization by a
short example of a client/server architectural style. In addition we show how
to use this same language to describe resource and location requirements at
component deployment stage. We present in section 3, the deployment process
and the resolution mechanisms of these constrained component-based software
in dynamic infrastructures. In section 4 implementation details and experiment
results are given. Before concluding and highlighting the perspectives, we present
some related work in section 5.

2 Formalizing Architectural Choices during Development

In order to make explicit architectural choices, like the use of a particular archi-
tecture style or the enforcement of general architecture invariants, we proposed



Fig. 1. Client/Server architecture of a Web mapping system

in [16] a constraint language named ACL (Architecture Constraint Language).
Architectural choices are thus formalized as architecture predicates which have
as a context an architectural element (component, connector, etc) that belongs
to an architecture metamodel.

ACL is a language with two levels of expression. The first level encapsulates
concepts used for basic predicate-level expression, like quantifiers, collection op-
erations, etc. It is represented by a slightly modified version of UML’s OCL [11],
called CCL (Core Constraint Language). The second level embeds architectural
abstractions that can be constrained by the first level. It is represented by a set
of MOF architecture metamodels. Architectural constraints are first-order pred-
icates that navigate in a given metamodel and which have as a scope a specific
element in the architecture description. Each couple composed of CCL and a
given metamodel is called an ACL profile. We defined many profiles, like the
ACL profile for xAcme3, for UML 2, for OMG’s CORBA Components (CCM)
or the profile for ObjectWeb’s Fractal [1].

To illustrate our work, we briefly describe the development process of a
component-based software we developed, from the architecture design stage to
the deployment stage. We chose xAcme to illustrate the architecture design stage
and the Fractal component model for the implementation stage.

2.1 Architectural Choices at Architecture Design Stage

As an answer to a request from a local community in Brittany (France), we
developed a component-based software, called AlkaGeo. This software gener-
ates geographic information flow which is used by a Web Mapping Application
(WMA). When using this application, our customer can access Web GIS data
and maps, like land maps, through their browsers. This WMA is deployed in
application servers of our provider (Internal Authority, in Figure 1).

3 xAcme is an XML extension of Acme ADL.



The overall architecture of AlkaGeo is organized according to the clien-
t/server style. In this system we have two instances of this style. The first occur-
rence of this style can be seen in Figure 1 between the components (Input Flow)
asking for maps and data, in two different formats SVG and SWF, from server
components (Serv SVG and Serv SWF). The second instance of the style is de-
fined between clients (Input Flow) requesting maps and data in the GML format
from server components (Serv WMS and Serv WFS)4. AlkaGeo is deployed on
different server providers (External Authorities), which have different resources
and configuration, to which we do not have access. For the sake of brevity, we
illustrate in this work just the GML flows service implemented by the Serv WMS

and Serv WFS components.
The client/server style is characterized by the following constraints:

– There is no direct communication between Input Flow components,
– Serv WFS and Serv WMS can accept requests from at most 40 different In-

put Flow components,
– Input Flow components can use at most one Serv WFS component or one

Serv WMS component.

These three constraints can be described using ACL profile for xAcme as
follows:

1. context C l i en tSe rve r : ComponentInstance inv :
C l i en tSe rve r . subArchi tecture . archInstance . l i nk In s tance−>s e l e c t ( l |
l . endPoint−>f o rA l l (p1 , p2 | p1 . anchorOnInter face . componentInstance
. id = ’ Input Flow ’ and p2 . anchorOnInter face . componentInstance
. id <> ’ Input Flow ’ ) )

This constraint states that for all link instances between architecture in-
stances, there should be no link which binds two components which are
identified by Input Flow.

2. context C l i en tSe rve r : ComponentInstance inv :
C l i en tSe rve r . subArchi tecture . archInstance . componentInstance
−>f o rA l l ( c | ( ( c . id = ’Serv WFS ’ ) or ( c . id = ’Serv WMS ’ ) ) and
( c . l i nk In s tance−>s e l e c t ( l | l . componentInstance
. id = ’ Input Flow ’))−> s i z e () <= 40)

The constraint above stipulates that component instances with the identi-
fier Serv WFS and Serv WMS should have at most 40 links with component
instances with the identifier Input Flow.

3. context C l i en tSe rve r : ComponentInstance inv :
C l i en tSe rve r . subArchi tecture . archInstance . l i n k I n s t an c e
−>f o rA l l ( l | l . endPoint−>s e l e c t ( l | l . endPoint−>f o rA l l (p1 , p2 |
( p1 . anchorOnInter face . componentInstance . id = ’ Input Flow ’ )
and ( ( p2 . . anchorOnInterface . componentInstance . id = ’Serv WFS ’ )
or ( p2 . . anchorOnInter face . componentInstance . id = ’Serv WMS ’ ) ) )

The last constraint enforces the existence of at most one link between the
component instance with the identifier Input Flow and one of the two com-
ponent instances identified by Serv WFS and Serv WMS.

4 WMS and WFS are two standards of the Open Geospatial Consortium:
http://www.opengeospatial.org/



ACL profile for xAcme is composed of CCL and a MOF metamodel of xArch.
An xArch architecture instance is composed of a set of component instances,
connector instances, link instances and logical groups of the previous archi-
tectural elements. Component or connector instances define a set of interface
instances and optionally a sub-architecture for a hierarchical description. The
sub-architecture defines a set of architecture instances and a list of mappings
between inner and outer interface instances. Link instances bind two end points,
each one references an interface instance. As we can see, the constraints above
navigate in this xArch metamodel.

2.2 Architectural Choices at Component Design Stage

Before implementing our software, we decided to establish an intermediate UML
model for a smooth transition. Indeed, recent experiments [13] showed also that
some ADLs and the UML can be used in a complementary fashion, in order
to make better analysis of software architectures. The constraints formalizing
the client/server style can be described, at this stage, using the ACL profile for
UML 2. The first constraint is expressed as follows:

context C l i en tSe rve r : Component inv :
C l i en tSe rve r . connector . end . r o l e−>f o rA l l ( r1 , r2 | ( r1−>oclAsType ( Port )
. enc apsu l a t edC l a s s i f i e r −>oclAsType ( Class)−>oclAsType (Component )
. name = ’ Input Flow ’ ) and ( r2−>oclAsType ( Port ) . e nc a ps u l a t edC l a s s i f i e r
−>oclAsType ( Class)−>oclAsType (Component ) . name <> ’ Input Flow ’ ) )

This constraint navigates in the UML 2 component metamodel. At the dif-
ferences of the previous constraint, it manipulates connectors, roles, components
and ports. The constraint above and the first constraint expressed in the previ-
ous subsection have the same semantics in the context where they are applied
(on an xAcme architecture description and on a UML 2 component model).

In order to evaluate constraints, we use an intermediate ACL profile to which
all architectural constraints specified in the different profiles are transformed.
At a given stage of the development process, architecture choice preservation is
achieved by the transformation of constraints specified in all upstream stages in
this intermediate ACL profile to be evaluated.

2.3 Architectural Choices at Component Implementation Stage

Suppose that the system modeled above has been implemented in a component
technology, like Fractal. The three constraints of the previous client/server style
can be described at this development stage using ACL profile for Fractal. In the
listing below, we illustrate the first constraint expressed in this profile:

context C l i en tSe rve r : CompositeComponent inv :
C l i en tSe rve r . binding−>f o rA l l (b | b . c l i e n t . component . name= ” Input Flow ”
and b . s e rve r . component . name <> ”Input Flow ”)

This constraint navigates in the MOF metamodel of Fractal component
model which is presented in Figure 2. This metamodel abstracts components,
which can be composite or primitive. Components can have interfaces of several
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Fig. 2. The MOF metamodel of Fractal component model

types. Server interfaces are interfaces that specify provided functionalities. Client
interfaces define required operations. Controller interfaces embed non-functional
specifications, such as predefined operations which manage the lifecycle or the
contents of a given component. A composite component specifies a set of bindings
which are simple method invocation connectors. These bindings are attachments
between client and server interfaces. Bindings can represent either hierarchical
or assembly connectors (with analogy to UML’s delegation and assembly con-
nectors).

2.4 Resource and Location Requirements at Deployment Stage

In addition to these architecture constraints, the deployment of each component
is governed by some resource and location requirements. Indeed, before deploy-
ment, we are unlikely to know what are the machines that are involved in the
deployment and thus where to deploy each component. However, one can define
for each component what are its requirements in terms of resources, that is, the
characteristics of the machines that will host the component. For example, a
Serv SVG must be hosted by a machine that has at least 512MB of free memory,
a CPU scale greater than 1GHz and is connected to the network by an interface
with a bandwidth of at least 512 Kb/s. With regard to Input Flows, each instance
must be hosted by a machine that belongs to the Internal Authority provider.

Resource constraints can be defined using an ACL profile (i.e. a CCL and
a metamodel), called R-ACL (Resources-ACL). R-ACL integrates in its meta-
models concepts related to system resources and their properties. The resource
constraints introduced above are described in R-ACL as follows:

1. Free memory >= 512 MB:

context Serv SVG : Component inv :
Serv SVG . resource−>oclAsType (Memory ) . f r e e >= 512



2. CPU scale > 1 GHz (1000MHz):

context Serv SVG : Component inv :
Serv SVG . resource−>oclAsType (CPU) . p roce s s o r s
−>s e l e c t ( cpu : CPU Model | cpu . speed>1000)−> s i z e ()>=1

3. Network interface bandwidth >= 512 Kb/s:

context Serv SVG : Component inv :
Serv SVG . resource−>oclAsType ( NetworkInter face ) . tx >= 512

4. Each instance of the component Input Flow must be hosted by an internal
authority machine:

context Input Flow : Component inv :
Input Flow . l o ca t i on−>f o rA l l (h : Host | h
. group = ’ I n t e r n a l Authority ’ )

As discussed above these constraints navigate in the resources metamodel,
but have as a scope only one specific architectural element, which is the com-
ponent Server SVG or Input Flow. This element is of type Component which is
a sub-meta-class of the meta-class ArchitecturalElement. This meta-class is the
ancestor of all meta-classes in the Fractal metamodel5.

Besides resource constraints, it is sometimes required to control the place-
ment of the components, especially when several machine can host the same
component. For example in the Client/Server system we designed, we would re-
quire that for reliability reasons (redundancy at the server side), all Serv SVGs
have to be located on distinct hosts. The following listing illustrates this con-
straint expressed in R-ACL.

context C l i en tSe rve r : CompositeComponent inv :
C l i en tSe rve r . subComponent−>s e l e c t ( c1 , c2 : Component | c1 . name=’Serv SVG ’
and c2 . name=’Serv SVG ’ and c1 . l o ca t i o n . id <> c2 . l o ca t i o n . id )

The different categories of constraints are saved in XML documents. There
is a style descriptor which contains the constraints formalizing an architecture
style (the first category of constraints) and a deployment descriptor which em-
beds resource and location constraints (the second and the third category of
constraints). These descriptors are used while deploying the system, as described
in the next section.

3 Preserving Architectural Choices at Runtime

When the choice of the placement of every component has to be made, the initial
configuration of the target platform may not fulfil all resources’ requirements of
the application and some needed machines may not be connected. We are thus
interested in a deployment that allows the instantiation of the components as
soon as resources become available or new machines become connected. We qual-
ify this deployment as propagative. We propose a general framework to guarantee
the designed architecture and its instances for each deployment evolution. We
present first the requirements of a deployment driven by architecture choices

5 This is omitted from Figure 2 for the purpose of clarity.



and resource specifications. Then, for the purpose of clarity, we detail first the
deployment process in a non-partitioned network—this will allow us to focus on
the dynamic resolution of constraints—then we take into account fragmentation
within the environment.

3.1 From Architectural Constraints to Runtime Constraints

At design time, we are unlikely to know what are the machines that are involved
in the deployment and thus what are their characteristics. Hence, a valid config-
uration of the client/server style presented in section 2, can only be computed at
runtime. A valid configuration is a set of component instances, interconnected
and for which, a target host has been chosen for every instance. Every architec-
tural constraint (e.g. on bindings or number of instances) has to be verified and
the selected hosts must not contradict the resource and location constraints.

Our approach consists in manipulating all the architectural and resource
constraints at runtime in order to reflect the state of the deployed system with
respect to these constraints. As it is detailed below, these runtime constraints are
suited when considering reaction mechanisms to changes that can occur in the
environment. The reified constraints are generated from the R-ACL constraints
and correspond to a Constraint Satisfaction Problem (CSP). In a CSP, one only
states the properties of the solution to be found by defining variables with finite
domains and a set of constraints restricting the values that the variables can
simultaneously take. The use of solvers such as Prolog IV [12] can then be used
to find one or several solutions. On the one hand the use of dynamic constraints
makes it possible to preserve architectural choices at runtime, on the other hand
reified constraints allow detecting and reacting to changes that can occur with
the environment. By identifying these different changes we will explicit the con-
straints that have to be reified and that will guarantee the preservation of the
architecture’s consistency all along its execution.

In the kind of network we qualify as dynamic, crashes (e.g. failure of ma-
chines, components) may happen and partitions may exist. In both cases, some
components that were in use regarding other components can become unavail-
able. When dealing with a crash, if some repair mechanisms have been defined,
these components can or must be redeployed. However because of the existence
of islands, it is crucial to control the instantiation mechanism (and thus the
number of instances). Indeed, the strategy consisting in redeploying a compo-
nent each time this latter fails is not suited as the number of instances will not
be consistent even if it is the case in each island. In order to overcome the in-
stantiation of components in a dynamic network, we introduce a first type of
constraints, named C1:

C1 These constraints specify the number of instances allowed for each com-
ponent. By fixing the minimum and the maximum of instances allowed of a
component it is possible to control its instantiation which can be initiated due
to the dynamism of the network. When a new resource, required by a compo-
nent, becomes available, its instantiation is conceivable. In the same way, when a



component becomes faulty or becomes out of reach, one may consider its substi-
tution by a new instance. Due to partitions within the network, it is mandatory
not only to have such a constraint but to maintain its consistency as well: the
information about the current number of instances is a global one, and thus must
be the same within each island.

In a dynamic network resources on machines may change in such a way that a
required resource that was unavailable when the deployment was triggered, may
become available later. Moreover, because of the mobility of the devices that
compose the network we target, some machines that were out of reach until now
may become accessible, inducing the availability of new (required) resources6.
In order to take into account changes of resources and hosts, we introduced
constraints C2 and C3:

C2 It is possible with R-ACL to define components’ needs in terms of soft-
ware and hardware resources. In order to react on resources’changes, resource
constraints are reified and form constraints C2;

C3 In the same way, location constraints have to be reifed to take into account
hosts mobility. When dealing with a constraint such specifying that components
Serv SVG1 and Serv SVG2 must reside on two distinct hosts, a deployment may
initially not be possible due to the absence of one or several hosts. A solution
can however be found as soon as the number of connected (and reachable) hosts
is sufficient. Constraints C3 correspond to the reification of location constraints.

The constraints presented above allow to react on changes of the environ-
ment, that is, the fluctuation of resources and the mobility and volatility of
hosts, while controlling the number of instances of the components. When a
component instance is created or withdrawn, the architecture of the applica-
tion, i.e. the assembly of the components, has to be reconfigured : indeed, when
a component is created, some bindings have to be added towards this compo-
nent, and if the latter requires others, bindings to these components have also
to be made. When dealing with the removal of a component, bindings towards
and from this component have to be suppressed. The addition and suppression
of bindings on any architecture must be done regarding the architectural con-
straints defined at design-time. For example, the client / server style of AlkaGeo
specifies that at most 40 component Input Flow can be bound to component
Serv WFS. Thus, we introduce three more constraints that are reified and that
preserve the architectural constraints during bindings reconfiguration.

C4 When a component is instantiated in consequence of the availability of
new resources or when a remote component becomes accessible, it is mandatory
to add it into the architecture (i.e. to set up bindings) if the style descriptor spec-
ifies the interconnection of this component with others. Constraints of type C4
are the reification of information specifying a binding between two components
or two types of components.

The previous constraints make it possible to detect that a binding between
two components can be made once the style descriptor specifies such a binding

6 Besides, a resource used by a component may become unavailable (e.g. the amount
of free memory).



and that the two components are reachable from each other. Even if a binding can
be made, some other aspects can prevent this creation. For example, the AlkaGeo
application defines a client / server style which limits component Input Flow to
use at most one component Serv WFS, and that every component Serv WFS

can only be used by at most 40 components Input Flow. It is thus necessary,
before creating a binding between a component Input Flow and a component
Serv WFS to check that the number of connections respects the architectural
choices. Constraints C5 and C6 reify these constraints:

C5 the number of “outgoing” bindings allowed on a client interface
C6 the number of “incoming” bindings allowed on a server interface
Each Ci corresponds to a set of constraints. These sets are sufficient to gen-

erate a valid configuration regarding to an architectural style. The deployment
process that is presented in the next section relies on these constraints in order
to build a mapping between the component instances and the hosts of the target
platform.

3.2 Deployment Process: A Centralized Evolution

We will consider first a network in which no fragmentation into islands is possible
(this assumption will not be considered in the next subsection). Further, we make
the following assumptions: there is a dedicated machine, called DeployManager

on which we can rely in order to maintain up-to-date the ids of the machines
that are connected. When the deployment is triggered, some machines may not
be connected. Besides, a machine that enters the network is detected by the
DeployManager.

When the deployment is launched, style and deployment descriptors are sent
to the DeployManager, which in turn broadcasts the descriptors to all the ma-
chines that are connected in the network. Each machine that receives these
descriptors, creates the constraints described in the listing above depending on
the deployment and style descriptors. Then a process is launched on each host.
Locally, each machine maintains its own set of constraints (C1 to C6) and tries
to make the deployment evolve until a (or multiple) solution(s) exist(s) for con-
straints C1, that is, some components can still be instantiated. The main steps
of this process for a component C that can be deployed in a machine mi are the
followings:

– For each resource constraint associated with C, a dedicated probe is launched
(e.g. a probe to get the amount of memory required by component C) in
order to check if locally, all the required resources are available (C2). The
observation of the resources is made periodically.

– If this is the case, that is, the component can be hosted locally, mi sends its
candidatures to the DeployManager. This candidature indicates that mi can
host component C.

– The latter may receive several candidatures from other machines for the
instantiation of C. The DeployManager has to resolve a placement solution
regarding to constraints C3. Depending on location constraints, a placement
solution may require a sufficient number of candidatures.



– Once a solution has been found, the DeployManager updates the deployment
descriptor with the new information of placement and broadcasts it to all
the nodes that are currently connected.

– When a new descriptor is received, mi updates the set C1 and C3 in order
to take into account the placement decision made by the DeployManager.

– mi can then resolve some bindings towards newly instantiated (remote) com-
ponents (C4) by sending a request to the machines hosting them. This is
possible only if constraints C5 are still verified.

– When mi receives a request of bindings, according to C6, it can accept or
refuse this request and inform the sender of its answer.

– Depending on the answer, the definition domain that corresponds to the
binding constraint (C4) is updated (removed from the constraint set if the
binding is not possible or set to the remote host otherwise).

This process defines a propagative deployment driven by architectural and
resources requirements. Since the observation of resources is made periodically,
when a resource becomes available on a specific machine, this may yield the
deployment to evolve. Similarly, when a machine enters the network, the De-

ployManager sends the current version of the style and deployment descriptors
to this machine, making possible this newly connected machine to participate in
the deployment evolution.

3.3 Deployment Evolution in a Partitioned Network

The deployment described above relies on a dedicated machine—the Deploy-

Manager—that orchestrates the evolution of the deployment regarding to the
resolution of the location constraints. In front of islands, that is, the fragmen-
tation of the network, the uniqueness of such a manager raises the problem of
the propagative deployment in islands where no manager exists. We have ad-
dressed this aspect by considering the management of several managers. The
main difficulties here are twofolds: first, how can we guarantee the architecture
consistency if several managers make decisions independently to each other (e.g.
we have to avoid the instantiation of the same component in two distinct is-
lands) ? Secondly, the management of multiple managers have to be faced with
when two islands merge.

We have decided to use the results obtained in [6] in which we have defined
a consensus algorithm to elect such a manager in networks where partitions can
occur. This algorithm is based on a common view of the different machines to
make a decision about the identity of an approved manager. Thus, the resolu-
tion of location constraints can be made in islands composed of a majority of
machines. The consensus algorithm ensures that no contradictory decisions can
be made in two different islands and that the latest version of the style and
deployment descriptor exists in every island.

Unlike the centralized version of the propagative deployment, the deployment
presented in partitioned network requires that the ids (thus the number) of the
machines that will be involved in the deployment, be known. Indeed the used
algorithm depends on a majority of connected machines, in order to terminate.



4 Implementation status and results

In order to validate our proposals, we enhanced and reused some existing pro-
totype tools. The first tool is ACE (Architecture Constraint Evaluator). ACE is
composed of an editor for ACL constraints. This editor assists developers to write
their constraints by proposing the different navigation alternatives in the used
metamodel (resources and location metamodel or architecture metamodel). Af-
ter specifying these constraints, ACE makes some well-formedness checking and
compiles them in order to generate the corresponding runtime constraints. This
transformation process is performed starting from a Java implementation of the
abstract syntax tree of the different constraints.

The constraints that are solved dynamically have been implemented with
Cream7. Cream is a Java library for writing and solving constraint satisfaction
problems or optimisation problems on integers. Every constraint generated from
an R-ACL’s one defines a relation on a variable taking its value in a finite domain.
For the location constraints, the definition domain of each variable is not known
before the deployment but is increased each time a candidature is received.

The deployment that has been presented in this paper relies on the dis-
covery of the resources required by the components. For that, we used Draje

(Distributed Resource-Aware Java Environment) [7], an extensible Java-based
middleware developed in our team. Thus, hardware resources (e.g. processor,
memory, network interface...) or software resources (e. g. process, socket, thread,
directory...), can be modelled and observed in a homogeneous way. For every re-
source constraint of the deployment descriptor, a resource in Draje is created
and a periodic observation is launched.

The performance of the deployment process depends on changes imposed by
the execution environment such as resources availability and host connectivity.
But, the propagative deployment requires the DeployManager to solve first a
solution placement before the instantiation can go along. Hence, we have mea-
sured the impact of this computation. The preliminary results of this experiment
showed that the time to obtain a placement solution (when all conditions are
met) remains acceptable (less than 10 mili-seconds to deploy 50 Serv SVG com-
ponents) and corresponds to the complexity of the AllDiff constraint (i.e. each
Serv SVG must be hosted on a distinct machine) which is O(n2).

5 Related Work

Many ADLs provide capabilities to describe architecture choices. Medvidovic
and Taylor in [8] make an overview of some existing ADLs offering capabilities
to describe architectural styles and constraints in general. The description of
architecture styles with these ADLs makes possible some reasoning about the
modeled system, analysing its structure and evaluating its quality. The difference
between the work presented here and such ADLs is twofolds:

7 http://kurt.scitec.kobe-u.ac.jp/∼shuji/cream/



– First, design-level and deployment-level constraints are described in a ho-
mogeneous way in our approach. Indeed, the same language (ACL) is used
throughout the software life-cycle to describe them. The majority of ADLs
deals only with one kind of these constraints. Some ADLs focus on archi-
tectural style description, like Aesop [3]. Others, deal with deployment re-
quirements specification, like in [6]. Even if an ADL deals with the two
kinds of constraints at the same time, there is no means to describe them
at different stages of the development process. In these ADLs, architecture
design and deployment requirements should be addressed together and lan-
guage constructs that are used to specify them are mixed. The approach we
propose here targets the separation of concerns by providing a single con-
straint language, with many profiles; each profile can be used to deal with a
particular concern (design choice formalization or deployment requirement
description).

– Second, the approach proposed here is implementation technology-independent.
An easy migration can be performed from one implementation technology
to another, as demonstrated in [17]. However in existing works, constraint
languages are tightly coupled with ADLs, and constraints are parts of archi-
tecture or component descriptions. This makes difficult migration between
technologies, because whole architecture descriptions should be translated.

We share similarities with researches on self-healing and self-organizing sys-
tems. Indeed, in the approaches presented in [5, 14], a system architecture to de-
ploy is not described in terms of component instances and their interconnections
but rather by a set of constraints that define how components can be assembled.
In both cases the running system is modelled by a graph. The main difference
with our work is that reconfigurations of the systems are explicitly defined in a
programmatic way while this is achieved automatically by the resolution of the
constraints (C1 to C6) in our approach.

In [9], the authors present an approach to deploy software components in
resource constrained environments. The deployment process is initiated by the
Continuous Analysis component which maintains up-to-date the current topol-
ogy of the running application. This component is responsible of initiating the
necessary operations to deploy a part of the architecture if there is a difference
between the current and desired configuration. The deployment of a given com-
ponent is performed starting from an architecture description specified with an
ADL called PitM ADL, which is interpreted by the Prism architecture middle-
ware. Besides this centralized version, the authors specified a distributed owner-
ship of the deployment process in which several Continuous Analysis components
are responsible of the deployment of a local subsystem. This distributed process
differs from ours as it relies on the division of the system into subsystems which
cannot be done a priori in a network with evolving topology; such dynamic
networks are not considered by the authors.

The work presented in [2] shares the same motivation to define high level
deployment description with regard to constraints on the application assembly
and on the resources the hosts of the target platform should meet. The authors



present the Deladas language that allows the definition of a deployment goal in
terms of architectural and location constraints. A constraint solver is used to
generate a valid configuration of the placements of components and reconfigura-
tion of the placement is possible when a constraint becomes inconsistent. This
centralized approach requires, contrary to ours, a full knowledge of the identity
of the different hosts that may participate in the deployment. Moreover, the
current version of Deladas does not consider resource requirements.

6 Conclusion & Future Work

Preserving architectural choices throughout the development process of a soft-
ware is an important aspect. Indeed, in order to implement a software that
complies with the initial requirements, architectural choices should be formal-
ized at all stages. In addition, at a given stage, architectural choices defined in
upstream stages should be preserved. This makes possible a traceability of qual-
ity attributes implemented by these choices. After the implementation of this
system comes its deployment. Another aspect is important in the life-cycle of
the developed software. It is related to the preservation of architectural choices
after its deployment (during its execution). Indeed, this makes the system benefit
from the quality attributes, associated to these choices, which can be dynam-
ically observed, like performance or reliability. In the example introduced in
section 2, the client/server style is formalized and enforced dynamically, in order
to benefit from the dynamic quality attributes guaranteed by this style (like,
scalability and interoperability).

In this paper, we presented an approach to formalize, as constraints, ar-
chitecture choices made throughout a component-based software life-cycle. We
illustrated how we can use the same formalization language (ACL) to describe
resource and location requirements that appear at deployment stage. We showed
how these constraints are checked while deploying the implemented system in
a dynamic infrastructure. Indeed, in this kind of platforms the availability of
resources and hosts cannot be predicted. Faced with the environment evolution
(disconnection and reconnection of nodes), we presented a deployment process
that checks permanently the constraints to enforce architecture choices with re-
spect to deployment requirements. The constraints that are checked dynamically
are obtained after transforming ACL static constraints into runtime (CSP) ones.

We are working now on defining architecture patterns as libraries which are
automatically transformed into their equivalents at runtime. This will, as we
think best, make easier architecture description, more specifically architectural
style formalization, and will simplify considerably the deployment of its imple-
mentation according to the proposed approach.

Even if not considered in this article, the management of network failures8

is one of our current work. The main difficult aspect resides in the automation
of the re-deployment regarding the constraints resolution mechanism.

8 In the case of a partitioned network, one can notice that the distinction between the
failure of a machine and its inaccessibility is a hard problem.
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