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ON PHASE TRANSITION IN CLASSICAL FLUID
MIXTURES WITH SURFACE ADSORPTION

F. DELL'ISOLA and D. IANNECE

Dipartimento di Matematica e sue Applicazioni, Universita di Napoli, Via Mezzocannone 8,
1-80134 Napoli, Italy

(Communicated by E. S. SUHUBI)

Abstract—We propose continuous systems with an interface as a model in order to describe phase
transition and surface adsorption phenomena in classical mixtures. This model allows us to relate the
derivative of equilibrium surface tension with respect to the concentration of a constituent in the
volume to the adsorption on S.

1. INTRODUCTION

Many mixture theories have been developed in order to supply a rational basis to classical
thermochemistry (see [1-5]). However none of them has ever been extended to multiphase
systems, which are typical of thermochemistry, to describe phase changes and related
phenomena of adsorption on the interface.t To this aim we consider a system of two binary
classical three-dimensional mixtures separated by a two-dimensional one made up with the
same constituents. In this way we obtain a theory which not only includes classical results about
phase equilibrium and surface adsorption but also permits the description of these phenomena
in the more general situation of non-homogeneous fields and non-planar interfaces.

In particular the Gibbs’ phase rule and the Gibbs’ relative adsorption equation are proved
with meaningful conceptual simplifications.

More precisely local balance laws of mass, linear and angular momentum, energy and
entropy in the volume and on the interface S are derived (Section 2) using a general balance
law proposed in [7].

In Section 3 the well-known restrictions on constitutive equations for three-dimensional
mixtures are recalled. Moreover they are extended to the constitutive equations of the binary
mixture constituting S.

A reduced dissipation inequality on S leads (Section 4) to meaningful equilibrium conditions
whose analysis yields the Gibbs’ rule as a consequence.

- Another consequence of those equilibrium conditions is represented by an equation which
relates the derivative of surface tension with respect to the concentration of a constituent in the
volume to the adsorption on S (Section 5). A comparison of this equation with the classical one
concludes this last section.

2. THERMOMECHANICAL BALANCE EQUATIONS

Let C be a continuous system with two bulk phases C. and Cy which are binary,
non-reacting, fluid mixtures. The interface S separating C, and C, is the surface of the
discontinuities of three-dimensional fields and moreover is a mathematical model of the real
interfacial layer between C, and C,.

This means that S is a bidimensional continuum carrying thermomechanical quantities and
interacting with both C, and C,. In particular it is a binary mixture whose components are the
same as those constituting bulk phases.

T One of the authors faced with this problem in [6] but the model there considered does not take into account the
adsorption and assumes more restrictive balance laws than those proposed here.

1069

,“
«
~
1
|
~




1070 F. DELL’ISOLA and D. IANNECE

Our aim is to develop a thermodynamical theory of surface adsorption in binary mixtures
which implies, when involved fields are homogeneous and the interface is plane, well-known
laws dealt with by classical thermodynamical chemistry. )

In order to do this we begin with adopting the theory of classical mixtures, since this theory,
developed in [2] and [3] when dealing with three-dimensional continua, is the simplest
generalization of thermodynamics of homogeneous processes. In other words we will postulate
for the system (C., Cy, §) balance laws for linear and angular momentum, energy and entropy
regarding the mixture as a whole, while the presence of two different components of the
mixture will be described assuming the mass balance laws separately valid for each of them.
This approach to mixture theory has some limitations, as it has been underlined for
three-dimensional mixtures in [3], but we show it is general enough to allow the deduction of
the main results in capillarity theory.

More precisely, we accept the following general integral balance law for the whole volume
C=C,UCy:

E(ffdv+jfoda>= & -Ndo+ Qo-vdl+fRdv+jRodo, (2.1)
dr \Je s Ele c s

as

where f, R, @ are regular functions in C-S$ having first kind discontinuities together with their
derivatives on S; f,, R,, ®, regular functions on S, N the unit exterior normal to 8C and v the
unit exterior normal to 3S which is tangent to S.

It can be proved (see [7]) that (2.1) is equivalent to the following local equations:

E
5{+div(fix—<b)—R=r in €, U&,

fo+fo0a—2H(c, ~v,)f, —div®, +[f(x—¢)~®]-n+ R, = r, onsS, (2.2)

where v is the velocity of the centre of mass of the particle laying on § whose normal
component is v,; H and ¢, are the mean curvature and the geometrical normal speed at any
point of S, whose unit normal is n; r and r, are so called localization residuals; [ ] represents
the jump of bracketed function on § and finally:

6n
f;agfo-kvsfa-v,; oe=vf,—2Huv,. (2.3)

where 6,/6t is the Thomas derivative operator and v, the projection of v on S. From now on
we will neglect non-local interactions and therefore we will assume that r =r, = 0.

In the regular points of the volume fields (i.e. in C, U Cy), we are led to the following
well-known local equations:

%+divp,~:k=0(i=1, 2); pk=divT+pb; T=T"

pé=T:gradx — div(h +1) + pR; (2.4)

where p p; are volume mass densities of the mixture and of the constituent i; X, X; are the
velocity fields in tridimensional continuum C of the centre of mass of the whole mixture and of
the constituent i respectively; v, v; are the velocity fields of the centre of mass of the particle of
the mixture and of the constituent 7 instantaneously lying on the surface; T is the Cauchy stress
tensor in C, pb is the given volume force density, ¢ is the specific internal energy in C; and Cy,,
h is volume heat flux, R is the specific energy supply in C;, C, and finally volume diffusive
extraflux of energy is denoted by 1. Of course, the usual relations: p = p, + p,, pX = p,X; + pX,
between mass densities and velocities of the whole mixture and its constituents are accepted.
Similarly we assume that the equality p,v =¥ p,v, holds. If we use the notation:

O/ =Vi,— 2Hv;,
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it is easy to verify the relation:
,OOO'Z = Z potgicfr + z (V,- - V) : Vpoi~

The application of (2.2), leads to the following local equations on §:
Pot Po0G—2H(c, —v,)ps +p(X—¢)]-n=0
Paoi+ PoiOie+ (Vi = V) - Vspo1 — 2H(Co ~ Vi) Poi + [0i(X; = )] +n =0
PV = VsTo = [T]-n+[(x—v)p(x—¢)]-n=0

1 .
Po€y—Ty: Vv +divsh, + divgl, + ﬂp{i (x — v)?
(E Ea)}(X c) (X—V)' l +h+l:|:|.n+po'Ra—0 (25)

in which we denoted by g, the surface field corresponding to the volume field y. Moreover we
assume T =0 and T*? = T** Using (2.4), (2.5), for the quantities ¢; = p;/p; o = Poil P WE
have: 0 0
pc¢; +div(p{x; —x)) =0 in C,UCy
PoCai+ divs(poi(¥i =)o) = ciolp(X =€) + pi(k; — )] -n=0 on . (2.6)
If n and 7, denote the volume and surface specific entropy respectively, the second principle
of thermodynamics implies:

p7 = —div(h/8) + pR/6 in C UCy
pPaNe—lp(n—no)(Xx—¢)+h/6]-n=0 onS. (2.7

Finally, the volume and surface dissipation inequalities can be written in terms of specific
free energies:

wss_en; ltUaEga——Gano"
Making use of (2.7), (2.4)4, (2.5), we obtain

h-Véo
=0 in%LU%v

p(y +n8)—T:Vx+divl+

’ ' ho'vea o
= Do+ 168) + Ty sy = 2 Lo — )y, = )
1
—ip(_i(—-v)z(X—c)+l+h+T:(i{—v)ﬂ ‘n+divgl, =0 on §, (2.8)

where we suppose that [6] =0 on S.

3. THERMOMECHANICAL RESTRICTIONS ON CONSTITUTIVE EQUATIONS

For three-dimensional mixtures the forms of constitutive equations allowed by entropy
principles are carefully studied in the literature. For this reason we limit ourselves to quote
here the results obtained by Gurtin and Vargas in [3] when applied to the particular case of
binary and non-reacting mixture.

More precisely denoting by A the generic member of the set

{w; 7], T’ l, h}
and assuming constitutive equations of the form:
A=A(p, c,, 6, Vp, Ve, VO, (3.1)

tIn a binary mixture we have ¢, + ¢, =1, so that the specified set of independent variables actually specifies the state
of the bulk phases.
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in [3] the following relations are proved:

T=-pl
w = W(p: 8, Cl)
3
P =p(p7 8; C]) = _pZS__w
D
- _ov
o6
. ] o)
I=piu,(%, — %) where /‘1="‘1/11'
oc,
— (X =%;)Vu, +h-VE=0. (3.2)

In a completely analogous way we will deal with the corresponding problem for surface
constitutive equations. Let a generic member of these equations given in the form:

AUEAO(pO’ Cl,,) 6: VSpo’ Vscla, VSBy a)i (33)

Moreover let us assume that the interface S may be described as an “‘isotropic” membrane.
This is equivalent to assume that the surface Cauchy stress tensor is given by:

Ta = Yla: (34)

where y is the surface tension and I, is the identity operator on S. We underline that this
hypothesis is coherent with the results obtained for classical three-dimensional mixtures in [3].
In order to obtain the residual entropy inequality and some of the searched restrictions on
constitutive equations, let us substitute (3.3) and (3.4) in (2.8),. When we make use of (3.2);5
we obtain:

aWO ' aWG ’ aWo awa awa
- Po + s 6 + '+ v
P (aclo "3, P 50 da * " B(Vyer) S
Yo Yo
+ Vs + Vspo+ U’)— a—h,-
V.6 s a(Vspa) sP N,0 Yo h,-V6/6

+|o{we -3 6- -] -n+aiva,

+[x=v)p + wipi(X, = X)) - n=0.

If, for simplicity, we introduce the quantities:

ho =1, + poitig(vy — v),.

and use (2.5), , together with the relation:
a'=2a(ol+2H(v, —c,))

in the previous inequality, we obtain:

oy, ,
~po< a?/; +no>9'+[[pl(x1-C)(uan—ul)llm

Y,
Ve,

Yo oY,
—— Voo +
Ve, P a6

+ poi(vi— V), “Vsttgr = po< VSCL, + VSG,>

1 In literature u, is calied reduced chemical potential (see [3]).

t+If a,g denotes the surface metric tensor we put a = det a,4. In {8] its introduction as an independent variable is fully
justified.
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+ oZ(ﬂ% 21;}: — 2ap, a;ﬁ" + Y) G cn){ZHpi 2’;’: - 2ap, a(;;: - le]I}
—[[p(i(—c){wa —y-plp +pa%i::_:_cla”1(, +Cx#1“%(i“"’)z}]] ‘n
—E‘-’—.G—Vsq+ j:;: - Vspg +jT):- Vs, +%6‘—’ - Vs + ait;a;vs(vspa)

+ 832‘210: Vs(Vscy,) + ;%%:VS(VSO) + %Vsa =0,

Since the inequality is linear in the following quantities which can be arbitrarily chosen:
B={6', 03, (Vsciu)', (Vsp5)", (Vs8)', Vs(Vsps), Vs(Vscy,), Vs(Vs0), Vsa}
we obtain the set of relationst:

3 2 Y, Y,
- w", 7=—p;—w—+2apa L ,
3p, 3p, 3a
Yo = Yo(po, €1, 6, @), A, =0 or equivalently I, = —(v; = v),p,144,1, (3.5)
which are similar to their three-dimensional counterparts (3.2), and moreover the residual
inequality:

No =

. h, V.0
po'(vl - v)‘t ' VSM(I1 + IIpl(xl - c)(“d‘ - .ul)ﬂ n- {ZHY - ﬂpﬂ}(vn - Cn) -
. 1. 2
+[&= 0= o i+ erpn =3 =) -n=0, (3.6)
where we introduced the specific chemical potentials:

_ ooy, _9Po¥s

U= o ="T""-

op 9pq

4. RELATIONS CHARACTERIZING EQUILIBRIUM STATES

In this section we will use the residual entropy inequalities (3.2)s and (3.6) to derive
remarkable conditions at equilibrium. These last ones, together with (2.4) (2.5), in the static
situation, supply a set of equations we will at least prove to characterize phase equilibrium
when the forces derive from a potential U(x) and the interface § is plane, i.e. H=0. Let us
regard first member of inequality (3.6) as a function o of the following variables:

Xa' = {(x - C)+, (X - C)—, VSBr (xl - C)+, (Xl - C)_, (vl - V), (vn - Cn)}’

A state for which all X, vanish will be called an equilibrium state (see [1]). In this case o
reaches a minimum since we have

0(X,)=0 and o(0)=0.

Moreover we have assumed that on S 8% = 6~ = 8 so that the other variables on which o
depends are
Ya = {H’ 6’ pi’ Cf-: Po> Cl.,}'

Therefore the equilibrium values for Y, are given by the equations:

do
aXa X,=0,Y,

=0; (4 1)

t In order to derive (3.5), we have used lemma (10.2) in [3], as the quantity A, (because of clear physical reasons) is an
isotropic vector function.
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which actually reads
[p]=2Hy

Vsﬂho IX,=0 =0= Uy,
plo=uilo=uy los  holo=0
(=)™ o= (= c1p)* o= (ko = c1 111 ). (4.2)

These equations show that in this more general equilibrium situation the convenient
thermodynamical potentials are a suitable combination of the total and reduced chemical
potentials as it is usually assumed in classical thermochemistry.

Similarly from (3.2)s we deduce:

0

in Cp H1‘0=ﬁ1

v =O${, 0 L 4.3

ko in Cy  pylo= iy, (.3)
hi0=0 inCLUCV

o = const.

where {1, and fi,, are constants.
Recalling (2.4), (2.5) and (4.3) we obtain the following set of equilibrium conditions":

Vo= pLVU(X)O
pac(x)=fy. in Cp
6.(x) = 6,
Vpv=py,VU(x)
pav(x) = 1y in 8‘v

Ov(x) = 6,
pT—=p =2yH; Vgy=0=y=const. (4.4)
pi=ur  onS  gT-ciul =g —ciu;y (4.5)
B, =BT Uo = Cp by, =8¢ —ciui (4.6)

In (4.5); and (4.6), we used the equality u =g which holds for closed systems. In all these
equations the unknowns are the basic volume fields p;, py, ¢;;, ¢;v and surface fields Po, €1,
as the temperature field 6 has been assumed uniformly equal to 6, in C, U C,..

Now it is possible to simplify the solution of this system if other variables are adopted,
especially in the case of plane interface.

First of all owing to this last hypothesis, the surface quantities disappear in (4.4), (4.5). In
second place, if the relations :

p=p(p, c1)

p = py(p, cy) (4.7)
Y= ¥{(Po, €1,)

pa, =y, (0o, €1,) (4.8)

are separately invertible, we can adopt as set of basic fields: p; , Pv, M, Miv, ¥, Ky, instead of
PL; Pv, CiLs C1v, Po, Ci,-

Of course the hypothesis of invertibility of the aforesaid system is equivalent to a
requirement of physical admissibility on the constitutive equations. In order to solve system
(4.4), (4.5) we begin observing that the chemical potential u, is uniform in all the volume
C, U C; and that from now on we will denote its constant value by i,.

Moreover equation (4.5); (when H =0) permits to regard (4.5); as an implicit relation
between p™ and f;:

flp™, m)=0. (4.9)
If it is solvable with respect to p™ we attain to a function:
pT= o). (4.10)

t We oriented the normal toward the phase Cy, so that f* is the evaluation of fv on the interface.
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On the other hand since y, is a constant, equation (4.4), can be written in the usual form:

V(PL(p(x), &) — U(x)) =0,
where

dp,
pr(pr, i)

Consequently, when we take into account (4.10) and fix the arbitrary constant U in a suitable
way, we have:

P(pe, ) = f

P(pr(x), 1) — U(x) = P(¢(i21), iy).

Similarly from (4.4); and the condition p™ = p~ when we define the function Py in a similar way
as done for P, we deduce that:

Py(py(x), @) — U(x) = Py($(@11), it1)-

Moreover, u,, and y are determined by (4.6) since the terms on the right sides are known.
To conclude we can state that

when the body forces are conservative, the interface is flat, the temperature field is uniform, (4.7)
(4.8) are invertible and (4.9) defines implicitly (4.10), one and only one equilibrium solution is
determined when the quantity [i, is given (i.e. the value of reduced chemical potential in a point
and consequently in the whole volume, or equivalently (see (4.10)) the external uniform pressure

Pe)-

Obviously the corresponding distributions of p and ¢, are generally non-uniform. Quoted
result is an extension to a more general situation of the well-known Gibbs’ phase rule for plane
interfaces according to which the variance of a binary system with two phases is two (i.e. the
temperature and the chemical potential or the external pressure).

5. THE INFLUENCE OF MASS ADSORPTION ON SURFACE TENSION

In the previous section we proved that there are infinitely many equilibrium states with plane
interface and uniform temperature. One of them is determined when we fix either the value of
the reduced chemical potential or that of the external pressure.

On the other hand (4.9) implies p™ to be constant on § together with p~, ¢i (and p*, c7)
owing to (4.7). In other words, an equilibrium state is characterized when the value of one of
the variables

Pes i =ui,p =p~, p*, cf,
is fixed.

In particular, the surface tension y, which at equilibrium is constant on S, can be regarded
together with the other equilibrium fields as functions of the variable cy.

Now it is experimentally verified (see [9,10]) that y(c{) is either an increasing or a
decreasing function.

The first circumstance occurs when ¢, (c7’) <cj (negative adsorption), while the other one
when ¢, (c7) > ¢y (positive adsorption).

In order to obtain theoretically this result in {11] Gibbs assumed it was possible to substitute
the actual system constituted by bulk phases separated by a narrow interfacial layer with a
fictious one in which the quoted layer is substituted by a plane suitably chosen inside it and
where bulk phases are assumed to homogeneously fill the remaining part of the same layer.
This plane is assumed placed in such a way that Gibbs’ relative surface excess (see for instance
[10] or [11]) of one of the constituents of the mixture vanishes.

T It remains to take into account (4.2)s, (4.3); which refer to heat conduction. We will suppose, according with (3.35),
in [2] the constitutive equations relative to h and h, be such that heat conduction vanishes when grad u, =
grad 6 =0, grad u,_ =grad 6, = 0. In this way quoted equations are satisfied at every equilibrium state.
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Under these assumptions Gibbs derived the relative adsorption equation (see [12], p. 25):

dy=-Tp,da, t (5.1)
where T, and 4, in our notations are given by:
1'12 = pa<C10 — CI)
C2

=g+ cou;. (5.2)
Other models of the surface layer have been proposed in [12] and [13]. The greater
complexity of these models makes it possible to avoid the introduction of “ad hoc” surfaces in
deriving (5.1). Our aim is to deduce within the framework of our theory a relation between y

and ¢; at equilibrium corresponding to (5.1). To this end, from now on we will neglect the
explicit dependence of v, on a so that from (4.6), we obtain:

Y/ P = Yo — Y -pTlpT +ou - Ci1, My, .

Henceforth we omit the mark ( )~ bearing in mind that all quantities are evaluated on the
interface and refer to the liquid phase.

Moreover, recalling the remarks at the beginning of this section we will regard all the
equilibrium quantities as functions of ¢, .

Using (4.6), the previous relation becomes:

y=po{¢o“w_p/p+ul(cl—cl,,)}‘ (5.3)

As every quantity in both members of (5.3) are to be regarded as functions of ¢;;, we can
calculate the total derivative of the first and second members:

dy _dp,
L =_C -0+ -
de,  dc, {vo—g + (¢ WY
dy,dp, dy,d 3¢ ogd du, dp 3
0{_‘&_&+l&__g_.ﬁ_f’ (l—clo)<—ﬁ—p+—“—l>+m< _a_cl_o>}
dp, dc;  dc,, dc; 3¢y dpdc, dp dc, ¢, 3¢,
dpo
=G0, Mo = 1,61, =g+ e+ v/p,)
¢y
dp, de,, /oy Sp oy 4
oot S B (s 2 (2 )
p{ VPog, T, e P3e) 5, plr L
dp du, ( dcl)}
X—+(c;—¢y,)—+ -
¢ (¢ Cl")dc} 310! de,

Owing to (3.5), and (4.2), together with the definitions of chemical and chemical reduced
potential, we finally obtain:
Y3 _ podp

y e e —
de, Polr, = de;,  pde;’ (5-4)
In order to compare (5.4) and (5.1) we observe that (5.2), implies:
dg, dgd 3 d
dy_Sgdp e . duw
de; 9pdey  Ocy dc,
3 3
SE Nt ILTNENE 4
op p~ pdp/de; \dc, pac,
du, 1dp du,
— + — = =
Mty T pde, Tt g,
tiy= opy is the ordinary chemical potential.
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This relation, together with that one linking the concentrations, allows us to put (5.4) in the
form:
_d_}’z_ (Cl,,—cl)d.al PoC2, dp

- —_—— 5.5
dc, Cs de, pc, de, :3)

We will conclude with some observations:

(a) Since c7 is the evaluation of the concentration field c,, on the surface, then equations
(5.5) and (5.1) coincide when this field is uniform in the volumet and:

2, d
‘C:E-ZP‘« ley, — ¢l
p di,
This last condition is verified at least for ideally diluted liquid mixtures, see [10], p.
333.
(b) Sincei:
% >0
dclL

and because of the considerations referred to in (a), both equations (5.1) and (5.5)
prove that the function y (c;) actually has the experimentally observed behaviour.
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NOTATIONS

Bold Roman indicates a vectorial quantity denoted for instance by v.

A dot on a letter indicates the material derivative. For instance 6 means the material
derivative of the temperature field.

If v~e, is a surface vector field (the vectors e, being an arbitrary set of independent tangent
vectors) with the simbol vfs we denote its covariant derivative.

d is the symbol of partial differentiation.

V means nabla.

+ As usually assumed in classical thermochemistry.
1 See for instance [14] equation (96.7), p. 319.
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div and div; respectively denote volume and surface divergence operators.
: Sharing two tensor quantities denotes the operation of saturation between them. For
instance T:Vx denotes the scalar quantity:
8%/ . .
Tj-a-— sum over both indexes i and j.

i

o

-



