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Deduction of thermodynamic balance laws for bidimensional
nonmaterial directed continua modelling interphase layers

F. DELL'ISOLA (ROMA) and W. KOSINSKI (WARSZAWA)
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AN HEURISTIC METHOD for the solution of some contradictions arising in the formulation of direct
models for nonmaterial interphase layers is proposed. The novelty of the method consists in its
use as a guide for the formulation of the right balance laws for a pretty new object: nonmaterial
bidimensional continua. By means of an integration across the thicEness of the layer starting from
balance laws which are valid for 3D nonpolar contiriva, new 2D balance laws are derived. In
modelling surface phenomena associated with interfaces between phases a notion of “interfacial
thickness® that could vary both with respect to time and along the interface itself, is recognized,
even when the interphase layer is modeled as a 2D continuum. The quantities — together with
their evolution equations — necessary to describe surface phenomena, heuristically assuming that
the 2D continuum actually models a three-dimensional interfacial continuum, are indicated. Surface
balance laws for all k-moments with respect to the thickness of the interface, where suitable surface
extra-fluxes naturally appear, are deduced with quoted heuristic method and therefore postulated.
Preliminary considerations aiming to prove that Tolmann’s formula cannot be improved — in order to
match all experimental evidence — without introducing at least a first order model for the interface
between two phases, are developed.

1. Introduction

THE SURFACE phenomena play an essential role in the border land between the chemistry,
physics and mechanics of fluids and solids. Since the days of Young [51] mechanical
phenomena associated with fluid interface regions in equilibrium are well-described in
terms of a surface tension: indeed, the interface between two fluids — say, a liquid
and its vapor — has been considered from the mechanical point of view as if it were a
uniformly stretched mass-less membrane of zero thickness.

When a system in equilibrium is composed of two or more phases, the interface region
between any two phases has a small but perceptible contribution to the mechanical and
thermodynamic behavior of the system. An extensive description of thermostatic behavior
of multi-component interfaces was established by GIBBS [20]; it used the method of the
dividing surface. However, non-equilibrium situations are more complex. Any compre-
hensive theory must accommodate the possibility of transport phenomena both within and
across the interface; bulk motions may be induced by inhomogeneities of fields and of
the matter in the interfacial region (cf. BUFF [9], LEVINE [33], LEVICH and KRYLOV [32],
MURREL and BOUCHER [37], ONO and KONDO [41], OSCIK [42], SCRIVEN [44]) and
moreover, physical adsorption and evaporation can occur there.

The use of the classical method of the dividing surface of Gibbs has been pre-
ferred by many authors (cf. ONO and KONDO [41]) to avoid the necessity of assigning
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some thickness to the interface zone. In that method the surface tension is not only a
quantity strictly defined with reference to the dividing surface since the excess contribu-
tions to the densities and fluxes (currents) appear there in the form of superficial quan-
tities.

The above method for treating surface tension and description of the excess contribu-
tions to the densities and fluxes (currents) at the dividing surface in the form of superficial_
quantities, is simple, intuitive and often useful but:

i) it is of approximate nature from the molecular point of view (cf. ONO and KON-
DO [41]), for the structure of the fluid undergoes not a discontinuous but progressive
modification across the actual interface.

ii) it does not seem to be easily extendible to describe non-equilibrium phenomena
(for a full discussion of this point see DELL'ISOLA and KOSINSKI [11]).

In the majority of known models of interfaces a surface or a layer of singularity of
bulk fields appear, which in the case of models dealing with a 3D layer become ad-
ditionally carriers of interfacial fields; the latter being defined as mean quantities of
either true or excess bulk localized fields. In the both approaches: the singular divid-
ing surface and the interfacial layer of finite thickness, the resulting systems of universal
balance laws of mechanics and thermodynamics have in principle similar forms. The
differences concern interpretations of the terms appearing in the resulting balance equa-
tions (1).

At this point one should underline the difference appearing between two models based
on the concept of the interface 3D layer: the first referring to the excess quantities and
the second referring to the true ones. In the first model one introduces a dividing surface
located somewhere in the transition (interface) zone, and then the bulk quantities are ex-
trapolated up to this surface by stipulating (cf. DREEMER and SLATTERY [15], DUMALIS [16],
ALTS and HUTTER [5], GOGOSOV et al. [21]) that they must satisfy the typical 3.D balance
equations and the bulk constitutive relations (whatever these may be). The main problem
of this model consists in introducing surface excess densities (quantities) to compensate
the error introduced by replacing the exact (true) quantities by the extrapolated quantities
in the transition zone.

In the second model no extrapolation is made (*), instead two dividing surfaces are
introduced (cf. GATIGNOL [17]), which make the boundary between the single phase bulk
media and the interface zone; in the latter multi-phase behavior is observed, in which
the confining matter possess constitutive properties different from the surrounding bulk
phases.

In both models the averaging procedure is applied in which the integration along the
thickness is performed thus yielding mean quantities defined as surface fields. In the
first model one relates those quantities to the deviations between exact and extrapolated
quantities in the layer, in the second one the mean quantities are defined as the line
integrals of the exact fields on some reference (e.g. mean) surface located between the
previous two ones. Here no physical meaning is ascribed to that surface as it simply
models the “geometry” of the interface layer: however, for the convenience one can call
it the dividing surface (like in the first model).

(*) A slightly different point of view represents BLINOWSKI 7}

(%) For seek of selfconsistence we describe here the deduction procedure formally introduced in DELL’ISOLA
and KosiNski [11], and KosiXskl and ROMANO [29).
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In the present paper as well as in the second approach the interface is modeled as a
shell-like Eulerian region composed in principle of different material points at different
time instants. (*)

Having, without any extrapolations, the exact integral relations for the surface true
fields in terms of the bulk quantities of the layer, one tries to make constitutive description,
that takes into account the interface and its interaction with the bulk phases as a whole,
without retaining those “microscopical” details of its structure which could be regarded
(for a certain class of phenomena) as irrelevant. A more detailed description (%) for the
interface can be given by developing theories in which higher order moments of the true
fields appear (cf. DUMAIS [16] and DELL'ISOLA and KOSINSKI [12]) as proposed in the
last section of this paper.

In the phenomenological approach we are presenting the interface is modelled as a
finite slab, and more detailed information about the structure of the dividing surface is
introduced by relating the interfacial quantities to their 3D counterparts.

It should be pointed out at this place that both the approaches lead finally to equations
which are similar to those of the thermodynamics with surface field singularities. In this
way one can find a common point with the singular surface approach well developed in
the literature (cf. SCRIVEN [44], GHEZ [19], MOECKEL [35], ROMANO [43], DELL’ISOLA
and JANNECE [10], ALBANO, BEDEAUX and VLIEGER [2], KOSINSKI [24]).

It is one of our aims to draw attention that by localizing the surface phenomena to
their carrier, namely to the moving surfaces, we are loosing some information necessary in
the constitutive modelling (cf. MURDOCH [36].) To get it back we can explore the results
of our exact derivation and the formula in which the interfacial quantities appearing in
the interfacial balance laws are defined in terms of the corresponding 3D quantities. In
this way we get some “hints” and “compatibility” conditions to be taken into account
even when 2D balance laws are to be postulated, in that which is usually called the direct
approach for the development of the theory of 2D nonmaterial continua. The reasoning
developed in this paper could be considered in such a direct approach as “heuristic” in
nature.

2. Moving shell-like Eulerian region in a continuum

Let us now assume that the effect of the interface in a continuous material system B
occupying at time ¢ in a motion x a simply-connected region B in 3D space E? may be
localized in a three-dimensional moving region Z; of finite (and in a sense to be made
precise “small” when compared with its “area”) thickness. The region B; consists of two
phases B} and B; . In addition there exists a narrow layer 2, which divides the volume
phases BE.

The boundaries between 2, and both B are regular surfaces £ and L7 ; between
them a reference (mean) surface X, is located to which the mean, interfacial, fields will
be referred. (Note the subscript ¢ appearing in the sets introduced, which reflects the fact

(®) This is unavoidable in the case of phase transition, while the case of adsorption may be also modeled
by a material region with extra mass supply sources, cf. OScik [42].

(*) Another approach can be developed by introducing two different scales: micro- and macro-coordinates,
the former responsible for the inner structure of the layer. The nonstandard analysis tool could be helpful here.




336 F. pELL’IsOLA AND W. KOSINSKI

that the sets are not fixed in the time, they change (°) with time.) In the case when the
excess quantities are used the reference surface X; plays the role of the dividing surface
(cf. DEEMER and SLATTERY [15] or ALTS and HUTTER [4-6]).

The model with a shell-like interfacial region, whose geometry was described above, is
aimed to formulate an initial boundary-value problem in terms of the bulk field equations
valid in the regions B and the interfacial field equations valid on Xy: indeed in the
present formulation of the problem the motion of the region Z; will be determined by
means of (free-moving) boundary conditions, since the conditions primitively (and physi-
cally) formulated on the lateral boundary of 2;, i.e on §2; := 92,\Z¥, once recalculated
(read: integrated along the thickness) will lead to boundary conditions for the interface
equations.

2.1. Geometry and kinematics of the interfacial layer

2.1.1. Normal coordinate system. In the case of layers of constant thickness z = z* — 2z~ and
the boundary surfaces Z‘f are equidistant (parallel) and the parallel surface coordinate
system (NAGHDI [38], NAPOLITANO [40]) is most convenient for the description of an
arbitrary point in the layer Z,. If the position of the reference surface at time ¢ is given
by '

(2.1) y =r(l',%1),

where {! and {2 are Gauss parameters of the surface, then an arbitrary point x in Z; can
be represented as

(2.2) x = (', 12, t) + In(e(l*, I, 1)),

where [ € [27, z*] is the third coordinate, measuring the distance of the point z from X
along the unit normal n. Here points of the region Z; are referred to a fixed rectangular
Cartesian coordinate system.

The representation (2.2) means that the zone Z; is delineated by the surfaces X}, at
the distance of [ from ¥, and represented by Eq. (2.2) with fixed /, and is delimited by
the surfaces £ and ¥, at the distance of | = z* and [ = z~ from X, respectively,
where to the surfaces lying between ¥ and B; the negative values of the coordinate l
are attributed. We will see in the next subsections that Eq. (2.2) allows us to “delineate”
the interfacial layer also when its “thickness” is variable.

2.1.2. Geometrical properties of parallel surfaces. Let
ar(l1*,t) ar(1°, 1)
—r Tia, e =i

ol al?
denote two linearly independent vectors a; and a; tangent to X at r, then a®, where o =
1,2, denote the co-tangent vectors of the surface X; defined by the relation ag - a% = 43,
where 3 = 1,2 and a® - n = 0. If we define the surface gradient grad,(-) by the formula

ou(lP,t)

(2.4) grad, u(l”,t) := N TTE ®a”,

(2.3)

(°) Only Eulerean formalism is possible in modeling surface phenomena at phase interfaces in phase
transition problems (c.f. DELLISOLA and RoMANO (13, 14]. :
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for an arbitrary vector (or tensor)-valbed smooth field u, then Eq. (2.4) allows us to define
the tensor field on (the tangent space of) the surface X, called the curvature or second
fundamental tensor, by

2.5) b:= —grad n,

for-which b, 3 are its components in the tensor basis {a* © a?}. The components of the
curvature tensor in the basis {a, ® ag} or in the mixed basis {a, ® a”}, are b*# and

G respectively. As we will need it when manipulating the expressions where b appears,
we recall here the Cayley-Hamilton theorem for 2 X 2 matrices, from which the identity
follows :

(2.6) d*>—dtrd + 1,detd = 0

for any surface tensor d, where 1, denotes the unit (metric) tensor of L.

Obviously Eq. (2.2) allows us to use for the parallel surface X! the same Gauss par-
ameters used for X;: in this way all geometric differential objects we have introduced
for X, are naturally inherited by all X}. To underline that except for the field of the
normal vector n, the intrinsic as well as the embedded geometries of the surfaces Xj can
be different, we shall explicitly consider the dependence of the objects a*, ag and b on
the third coordinate / (if [ differs from zero).

Using the representation (2.2), together with Eq. (2.3), we have, after performing the
necessary differentiation, the relation

2.7) aa(l) = (1, — Ib)a,.

In what follows we shall need the expansion formula for the second invariant of the
surface tensor (1, — [b), denoted by j(I), i.e. for the determinant of the matrix [62 - 1b8),

(2.8) j(l) := det[6? — 16%) = 1 = 2HI + K2,
where H and K are invariants of b, i.e. the mean and Gauss curvatures, respectively. If
we put kj(r) and k(r), for principal curvatures at r € X, then to avoid loss of regularity
of the representation of the layer, we have to restrict the thickness z of the layer to the
value
z < inf{min(|k;(r) "], [k2(r) ") v € 2e} .
The relationships (2.7) between the basis of a typical surface £} and X allows to

calculate its surface metric tensor components a,g(l), and the area element \/a(l); we
obtain

aap(l) := 8,(l) - ap(l) = as - (1, — Ib)’ag.
Hence a(l) := det{a,s(l)] = detfaqp] det(ls — Ib)* = aj(l)™. _
It means that the ratio of the surface area elements of X} to X is given by

(2.9) iy = yal)a-".

The last formula is particularly useful in splitting the volume measure dv in the layer
Z, into the product of two measures: dl and da;. Here dl represents the line measure
(element) of a typical segment {r+In(r): [ € [27,z*], r € X} in the layer, orthogonal
to each surface X!, while da; is the the surface measure (element) of X! The last
measure can be written as da; = \/a(l)dl'dl. From the orthogonality of segments and
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the surfaces X}, and the formula for j({), follows
(2.10) dv = dlde; = j(l)dlda,

where da is the the surface measure (element) of 2. We can proceed further to get
relations for other geometrical objects in the layer. Due to Egs (2.2), (2.5) and (2.8) we
obtain

(2.11) b(l) = j(1)" (b - K1) = 5(1)7 (s + (b — 2H1,).

The surface tensors appearing under the sign of the last bracket, will play an important
role in the further derivation, they satisfy the relation

(2.12) i1, = (1, — b)As(D),
where
(2.13) A():=1,+1b, b:=b-2HIL,.

Note that at a sphezical point of the surface 5, where b = H1,, the tensor b is of
opposite sign to b, i.e. b = —b. To determine af(l) we use the relation a(l) - a®(l) = 85,
valid for any [, to get

(2.14) a(l) = j() " (1, + b)a” = YA (Daf .

The expressions (2.7), (2.11), (2.14) relate the geometry of a typical surface X! tothe
geometry of X, quite similarly to the thin shell theory. What differs this derivation from
that in the shell theory is the fact that here the region 2, is not material, in general. To
finish the derivation of geometrical relationships in the layer let us transform the oriented
surface element N(/)da of the ruled surface {2; formed of segments

{r+in@):le[z7,27),reC: C Zi},
where C; is a curve (°) on X;. Here N(l) is the outward unit normal to {2, given by
(2.15) N() := t; x n|lt; x n|| 7",

where t; is a tangent vector to the curve C! which is the lifting of the curve C; to I}; the
vector tangent to the latter we shall denote by t, . Due to (2.2) and the fact that each of
t; and t, are orthogonal to n, and n has the unit length, we get (cf. Appendix)

(2.16) N()da = j(I)@"(l) ® ay)ndlds,

where we have put ii := ty X n/||t|| for the unit normal to the curve C; that is both
tangent and outwardly directed with respect to X, and by ds we denote the line element
“of the curve Cy.

2.1.3. Kinematics of a family of parallel surfaces. TO describe the kinematics of Z; we employ the
vector

_ or(le,t)

T ot

which represents the velocity of the displacement of the point

(2.17) c:

[% = const.

GVIfC = XN Z., then the ruled surface will be the lateral boundary of Z4,ie. dZ\(ET YV ZF).
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It is obvious that in another parametric representation of the moving surface, say z =
r'(k“,t), the calculated time derivative will lead in general to another value

LGRS

ot
However, the normal component of both the derivatives ¢ and o,
(2.18) n-c=n-¢ =¢,

are equal. That is easy to see, if one starts with the implicit representation of the hy-
persurface S := |J X; x {t} in terms of some nontrivial differentiable function g by the
equation

S C {(=,t): g(z,t) = 0}.

Then substituting r or ¢ into the equation g(z,t) = 0 and performing the differentiation
under the identity sign, we get

dg(r, 1)
ot
due to the expression for the normal vector n. The normal component ¢,, of the velocity
of the displacement of the point [ = const is called the normal speed of displacement
of the surface, since it is independent of the parameterization. On the contrary, the
tangential component ¢® := ¢ - a® is strictly related to the parameterization (/), for in
another parameterization ¢/* = ¢ - a®. Let us notice that if the both are related by a

time-dependent transformation

(2.19) [l grad gl = —cs,

. ke (P, 1)
o

Now, if we choose the transformation k% ({?, t) such that its time derivative is equal to
—c®, then in the parameterization A® the tangential velocity ¢'* vanishes. That particular
parameterization of the moving surface is called the convected parameterization (BOWEN
and WANG [8], KOSINSKI [27]), in that parameterization ¢ is equal to c,n. The integral
curve of the field u = ¢,n, i.e. the spatial projection of a solution of the vector differential
equation

kS = Eo’(lﬂ,t) then ¢'® = ¢

dt _

T
— = ¢,n(x), T 1,

ds

is called the normal trajectory of the moving surface {S;} if at ¢y, = t(0) it begins at
a certain point of the initial surface X, ; each point of Y is the starting point for
a certain normal trajectory; moreover, through different points of X different normal
trajectories are passing. In the convected parameterization the normal trajectory is a
locus of the surface point k% = const. The choice of the convected parameterization in
the description is of particular convenience in the derivation of any formula of a general
nature.

Moreover, no final formula should depend on the particular choice of the parame-
terization of the moving surface, consequently it should be independent of the tangential
component of the velocity field ¢, only its normal component c, has the geometrical
meaning.
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In the literature, however, one can find a discussion concerning the form of the c%a,.
In our opinion this velocity has no physical meaning, unless a fictitious point [“ = const
will be equipped with an additional structure.

2.2. Displacement and other time derivatives

In the derivation of the local balance laws in the interfacial layer, an invariant time
derivative has to appear, which is independent of the chosen parameterization of the
moving surface X;. Introducing the velocity of displacement ¢ of the moving surface in
a particular parameterization, namely in the convected parameterization, and following
THOMAS [47, 48] and HAYES [22], the so-called

displacement time derivative Eu

of a quantity (a C''-smooth field) u can be defined on the ‘hypersurface S as the time
derivative of u at fixed convected parameters of the moving surface {Z.}, ie. by the
formula
6 Ou(k“,1)
7 h TR
where (k,t) is the convected parameterization of S. It is a direct consequence of
Eq. (2.20) that in any (not necessarily convected) parameterization (I%,t) the operation
formula for this derivative is

] du(l®,t)

(2.21) V= 5

Together with displacement (or Thomas) derivative we need to introduce other time
derivatives of fields defined on a moving surface . To this aim we begin to ag)ply the
representation (2.2) of the surface X! so that the velocity of displacement of 3} can be
calculated as

(2.22) c(l) = ¢ — l(grad, ¢, + bc).

Here the explicit dependence of the fields on the coordinate [ is written only, neither
dependence on [* nor on t is represented. To get Eq. (2.22) we have to differentiate (2.2)
with respect to time ¢ keeping [* and [ constant. Hence we need the time derivative of
the normal vector field n (note that here n is the same for each l in the zone Z;). Due
to the fact that n-a, = 0, where the dot - denotes the inner product in E?and a = 1,2,
we get

(2.20)

—grad uc.

On _ N dc(l*, 1)
ot ale

The derived formula (2.22) for the velocity is exact and can be compared with that
proposed by GATIGNOL and SEPPECHER [18] and others. Additionally to the derivative
related to the motion of the reference surface X, and due to the derived representation
for ¢(l) in Eq. (2.22), we may introduce the time derivative following the displacement of
the whole region (layer) Z;. We denote this derivative by d./dt and define it by

de  _ 0%(,0)
dt’ ot

2.23 ®a® = —ngrad, ¢ = —(grad, ¢, + bc).
g $ §

(2.24) + grad ¢(x, t)e(x),
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where, according to Eq. (2.2), we put = r(I',*,t) + In(r(l', *, 1)) and ¢ is an arbitrary
(C'-smooth field) defined (at least) on 8

§:=U{Z, x {t}:tel},

2.3. Moving regions of variable thickness

The assumption about the constant thickness of the layer is rather reasonable when
very thin layer of the interfacial medium is modeled. However, the constant in time (and in
the surface coordinates) interfacial layer restricts the class of physical problems successfully
treated by both the models based upon Gibbs’ excess or true quantities. Consequently in
this section to overcome this drawback we shall try to drop this assumption and to check
its consequences on the formulae derived till now.

We consider a narrow layer 2, dividing the volume phases Bf: the boundaries between
Z, and both BE are regular surfaces £} and X, which, however, are not in general
any more equidistant (parallel). As before we use the parallel surface coordinate system
describing an arbitrary point in the layer Z;: if the position of the reference surface is
given by Eq. (2.1), then an arbitrary point z in Z; can be represented as in Eq. (2.2),
where the third coordinate ! measuring the distance of the point z from X; does not
run over a fixed interval. Indeed, two scalar fields (™ and (* on the hypersurface S
are defined such that their values give the distance of the boundary surfaces T from
X,. The thickness z of the layer can then change according to the difference of both the
functions, depending on the point and time, i.e.

(2.25) z(r,t) = (" (r,1) = (T (r, 7).

The interfacial zone Z; is therefore delineatect by the surfaces X}, at distance ! from
¥, and represented by Eq. (2.2) with fixed /, and is delimited by the surfaces XFand X7
given by
(2.26) YE={yeZ:y=r+ CE(r,t)n(r), re X4}
which are not parallel to X, unless (*(r,t) is independent of the position r. Let us
notice that under the present weaker assumptions the layer can shrink locally to a surface
if (¥ = 0. Moreover, it is possible now to describe the situation when the lateral boundary
of the whole layer is not a ruled surface.

To avoid any singularities in the representation of the layer described in terms of

the parallel surface coordinates, the assumption similar to that made in Sec. 2.2 and
concerning the maximal thickness of the layer

¢ += sup{max(|¢ ™ (r, )}, [C" (r,)) : (r,1) € S}

should be done. The geometry of the boundary surfaces Zti will be related to that of X
as follows. If aciY , @ = 1,2, denote the natural base vectors of either surface, then due
to Eq. (2.26), we get

USICON
ol

For the components of the metric tensor we then obtain

(2.27) at = (1, - (¥b)a, +

ac:t 3Qi

+ _ .+, .t _ st py2 R S
(2.28) ayp = ay -+ ag =a, - (l; — (Tb)ag + 915 BIF
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The directed surface element of £ is given by (cf. Appendix)
(2.29) n(r)dae® := af: X aétdl'dl2 = (G(CE, Pn(r) - A(Ci)grads ¢*)da,

where on the RHS the surface element da = \/adl'dl%. In what follows the ratio da® /da
we denote by j¥; it is a function of r and t.

The boundary surfaces Eti move now with a velocity different than that calculated
by Eq. (2.22). In fact, performing the time differentiation in Eq. (2.26) we obtain the
following velocities ¢* of displacement of £ .

ocE
(2.30) t=c- Ci(grads ¢n + be) + —ng

To finish the geometrical preparation to the next section concerning the general balance
law for 3D fields we write the product of j* and the normal speed of displacement of
either boundary surface ¥ % (cf. Appendix)

+
@31) et ntw) = i enk ) + CFarad, CEALCH) - prad,

3. Balance laws for a moving non-material shell-like region

The tools we developed in the previous sections will be now applied to derive the
general and particular balance laws of thermomechanics. It will be done for the case of
interfacial layer with nonvanishing thickness and for true, not excess, quantities.

3.1. General balance law

In one of previous papers (cf. DELL'ISOLA and ROMANO [14] or KOSINSKI and
ROMANO [2]) it was assumed that the lateral boundary of the whole interface (transi-
tion) region, i.e.

ZA\TSu Xy

is a ruled “lifted from a curve” surface .

It turns out that this assumption can be disregarded out on the global level keeping,
however, this assumption, on the local level, i.e. during the passage from global to local
forms of balance laws. It can be done assuming the integral form of the laws to be valid
for any sub-layer, which is a proper subset of the whole layer bounded by subsurfaces of
Z‘ti and a lateral boundary which is a ruled surface. In such a case the natural boundary
conditions given on the lateral boundary of Z, need to be recalculated in an appropriate
way, also by introducing lines with material properties.

According to our notation the normal unit vector of Ef will point from the region
“~” to “+”. The question how to choose the surfaces Eti and the reference surface X
lying between 2E will not be discussed here (cf. DELL'ISOLA and KOSINSKI [11]). The
choice of its position should be based on the mathematical convenience in the process

- of modelling and solving; this convenience is especially evident in the case of variable
thickness of the layer.
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The surface field p® defined by

+

¢
(3.1 p* (', 2,0, 1) = [ p(e(I%,8) + In(r), )i (1, x(1°, t))dl
-
with j(I,r(l*,1)), « = 1,2, given by Eq. (2.8), will be called the surface mass density.
Here and in what follows both the cases of constant and variable thickness are discussed,
for the former (¥ should be identified with 2%,
Notice that in terms of the surface mass density p° the mass of the matter contained
at instant { in the zone Z; is

M(Z,):= j p(x,)dv = f pida.

=z 3

<t 2t

Therefore our definition of “surface” density is such that introduction of the 2D
continuum ¥; as a model for the interface Z; does not cause a loss of the quantity M.
On the other hand, let us notice, that the definition of the surface mass does not take into
account the type and the form of the 3D motion governed by the particle velocity field v
in the layer (especially its tangential components): as a consequence we shall get an extra
term in the flux of the mass in the 2D continuity equation (3.21). However, confining the
velocity field to a particular form we could define the surface mass density in a different
way appropriate to this form. Particular examples of 3D motions in a material zone are
discussed in KOSINSKI and WASOWSKI [30].

After choosing the moving reference surface L as a geometrical object the remaining
material structure of Z; is preserved by equipping the surface ¥; with a structure of 2D
continuum. It is done by defining, in addition to p®, next surface densities and fluxes
of physical quantities as suitable integrals of the corresponding volume ones along the
thickness of Z;. Hence, following the definition of the mass density, we can define for £,
representing the density of a bulk quantity (i.e. a 3D density field) in the layer Z;, the
corresponding surface field f° as

¢t .
(3.2) fo= [0+ in@),dl = (5 f).
2

The procedure makes possible the identification of interfacial quantities which appear
in surface balance laws, even when we are dealing with non-material continua. Moreover,
a more careful discussion of the Galilean invariance of the derived interfacial balance
laws is possible when dealing with the explicit representations of the interfacial densities
and fluxes (cf. Eq. (3.2) and (3.11)), respectively. This was the subject of the previous
papers of DELL’ISOLA and ROMANO [14], KOSINSKI and ROMANO [29], DELL’ISOLA and
KOsINSKI [11].

Referring to this last paper for a more detailed discussion, we remark here that, in
our opinion, to the geometrical surface speed field c,,, describing how Z; moves in E3,
no physically meaningful tangential component can be added. In the literature, however,
such a component is searched for, which is “reasonable” from the physical point of view,
thus getting a “complete” velocity field to be used in the balance of linear momentum
(cf. IsHII [23], GATIGNOL and SEPPECHER [18], MOECKEL [35]): in DELLISOLA and
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ROMANO [14] it is proved that these reasonable reasonings are valid only in the case of
perfectly viscous interfaces as defined by Ishii.

On the other hand, in phase transition problems the material particles constituting
the interfacial matter at instant ¢ differ from those at another instant t'. Hence, together
with the field ¢,n, we have to introduce an average velocity V* of particles belonging to
the layer. In terms of the 3D material (particle) velocity field v, the densities p and p°,
the "surface” material point velocity V* is given by the relation for the surface momentum
density

, ¢
(33) pvi = [ vl

-
together with Eq. (3.1). A continuous 2D system modelled by X will be called non-
material if (7)

cpn=c-nFVieon,

which means that in the mean the material points (particles) occupying the interface layer
will not stay in it all the time. The difference
(3.4) d,=(-V):n

is a Galilean invariant and it is relevant to phase transition and adsorption processes if
it does not vanish. It can be regarded as a quantity which needs to be determined by a
constitutive equation (cf. DELL’ISOLA and ROMANO [11] and KOSINSKI [28]).

The classical balance law for the quantity + with its Galilean invariant flux (current)
w and the source (supply + production) term p in the material volume P; C By is of the
form

3.5) %ﬁ( Pdv = —81£w- Nda + 1;{11(11/,

where N is the outward unit normal to dP;. Using the derivative d./dt , we get the
following integral balance law for % in the non-material, in general, region Z; moving
with the velocity ¢,

d. :
(3.6) d—tfzpdv=— [ (v —c)+w)-Nda + [ pdv.

9z,

After the partition of both volumetric and surface measures into the product measures
(cf. Eqs. (2.10) and (2.16)) we get ®

dC s’ s ~

3N = [ vda=~ [ oW {$} - ¢°Po)iids
z Ce

- f((\ijn)_ + (Wyjn)")da + fp’da.

The “weighted” limiting bulk-field values (Wjn)¥ are
(3.8) @jn)E = W(r + (Ea(), G0,

(7) The surface is p-material if the equality holds (KOSINSKI 27).
(%) Here P denotes the tangent projection operator, i.¢. Pe = ¢y,
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where
3.9 wi=ypR((v—c)+w

is the new flux in Eq. (3.6) appearing under the surface integral over 9Z;, and we have
used the fact that Nd« = (jn)*da on E;‘t Let us notice that in the case of a constant

thickness (* = z¥ is independent of r and ¢, and
(3.10) (n)* = £5G*,0n,

while the case of a variable thickness is governed by Eq. (2.29) with ¢ * depending on
r and ¢, in general. Since the definition of a general surface density has been given by
Eq. (3.2) we have the definition of the surface flux in place of w. To the flux w in Eq. (3.9)

the corresponding surface flux Ws'{z,/)} (note the prime over s) is defined as
(3.11) W () = (¥ ® (v + L grad, c,,)As (1)) + (wA(1)) -

The above definition together with Eq. (3.2) give at the same time the only possible
relationships between the surface quantities and their bulk counterparts (better to say —
their primitives), in order to make the interfacial balance law localized on the surface X}
compatible and derivable from the 3D law. The latter is postulated for 9 in the integral
form Eq. (3.5). Let us notice that the surface flux W' {4} is Galilean invariant (due
to the Cayley-Hamilton identity (2.6)). Now, we can get the final form of the integral
balance law for layer Z;

f (El—cd)s + 1° div; c,)da + f (Ws,{’(/)} - ¥° ® ¢r)nds
s, dt &

Y

= - f ((Wjn)~ + (wyn)")da + fp’da.
b e

Here we have used ¢, to denote the tangential part of c. However, in order to obtain
the local, differential form of the law we have to perform the localization procedure by
applying the integral law to an arbitrary subzone Z{ of Z,. Here by a subzone we mean an
arbitrary (shell-like) subregion Z! of Z, C P; bounded by subsurfaces X" £ of Ef: with
a subsurface X} of ¥; and with a nonvanishing lateral boundary being a ruled surface,
for which the Stokes and Green-Gauss theorems can be applied.

After calculating the time derivative of the first integral and applying the obtained
integral law to the arbitrary ¥} (supporting, by means the lifting along its normal field
the subzone Z; of the layer 2Z;), we get under the continuity of the integrand (®), the
following local equations:

d , . '
(3.12) (—ﬁws + ¥* divs ¢ + divg(W* {¥} — ¢° D ¢r)
= -y -9+whn +({ve (- +wlin'}+p°.
(®) If weaker conditions were assumed, like measurability of the integrand, the derived equation (3.12)

should hold except for a set of H *-measure zero, (i.¢. at most on curves) where H 2_measure represents the 2D
Hausdorff measure. This more general case leads to additional equations responsible for contact line effects.



346 ) F. DELL’ISOLA AND W. KOSINSKI

Using the Thomas displacement derivative é,,/6t (cf. (2.20)), together with the rela-
tionship

d , . é
T+ vt divee - div(¢e;) = S ¥ 2 ey,

we arrive at
611, . I
(3.13) ;S—t-z[’s — 2He,¥° + divg WP {1,[’}

=-{{ve+)+wliin) +({va(v-o+ wiin)*} + p°.

In the constant thickness case we obtain the following formula, which we quote here
for the sake of completeness:

(3.14) %d’s —2H e, ¥* + divg Wsl{zb} =[(v—c)+w]-n+p°,
where
(3.15) lg]:= g(r + ¢ n(e), D) — g(r + C*n(r).1)

for an arbitrary field ¢ defined on B;.

The last equation is very well known in thermodynamics with surface singularities
(called also: thermodynamics with singular surfaces, cf. MOECKEL [35], IsH1I [23], KO-
SINSKI [24, 26, 27], ROMANO [43], ALTS [3], DELL'ISOLA and ROMANO [13]). The surface
term p°, called there a surface supply, is equal here to

(3.16) p* = p® +[h{¢(v—1c)+w}]-n,

where h(z*,r) ;= (K (r)z% — 2H (r))z%, and as previously r € L.

ALTS [3], ALTs and HUTTER [5, 6] gave a boundary layer model for curved phase
boundaries and compared it with the model employing a singular surface. In their deriva-
tion, however, the surface quantities are identified with the so-called excess interfacial
quantities in contrast with the definition given in the present paper. Moreover, they
made use of balance laws for fields which are “extensions” of the bulk-field values at
the boundary layer edges, i.e. at ._‘_}ti, in our notation. In this way their definition of
the surface quantities depends on the method of continuation of the bulk fields into the
layer. The same definition of surface quantities has been used by DUMAIS [16], who
performed the derivation for the case of a fixed material volume, not taking into account
the diffusion terms. Partial results under the similar definition was obtained by Deemer
and SLATTERY [18] together with the structural models for interface employing local area
averages dealing with excess quantities. The present results could be compared with those
of GATIGNOL and SEPPECHER [18], where dimensional and quantitive analyses of an ap-
proximation were performed. The present derivations are rather close to the results of
the 2D approximation theory of shells. A comparison will be done in the other paper by
KosIiNskI and WASOWSKI [30].

The variable thickness case ends with the law similar to Eq. (3.14), in which however
the surface supply term »° is different and if we denote it by p;, then due to Egs. (2.29)
and (2.31) it is equal to

1) =" +IATE 0 + Wil m = [ 0 (v + CF rad, en)A(( ) grad, ]
b
~twa(cHygrad, 41 [ Eetui]
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Brief inspection of this term (in view of the previous one) shows the contribution of a
new tangential part. This can be particularly important even in the case of the equilibrium
equation for the interfacial stress tensor. The change of the thickness of the soap film on
the bubble could be explained by means of those new terms.

3.2. Particular balance laws

Let us consider the particular quantities to be balanced by Eq. (3.14).

a. Mass balance equation: 1 is equal to p, and if the mass is conserved in the bulk
medium, the flux of mass w and supply p of p (compare notation in (3.11)) are zero. The

surface flux W' {p} is given by

(3.18) W {p} = (p(v+ Lgrad, c,)A.(1)) =: (m(1)),
which can be split into two parts

(3:19)  W{p} = p*V3 + W, = p"V3 + (p(A,()) — j(DL,)v + lpgrad, c,A(0)) .

In the obvious way this equation leads to the definition of the extra mass flux W,.
Hence the local balance equation for the mass is

671 .
(3.20) Eps — 2 c,p® + divs(p®Vi) + divs W, = [jp(v—¢)] - n

. . 6n g .
oty + ¢ grad, ea)As (¢ -erad, 51— [ 2¢%0i]
where from (3.18) and (3.19) follows the explicit form of the surface extra mass flux W,
(3.21) W, = ([pv)b — K (PpPv) + {{Ip)1, + (*p)b} grad, c,, .

The last two terms on the RHS of Eq. (3.20) disappear in the constant thickness case.
The simple inspection of Eq. (3.21) shows that the first two moments of the mass (i.e. (/p)
and (!?p)) and of the momenta (i.e. (Ipv) and ([*pv)) lead to the nonvanishing, in general,
extra flux of the mass. Dealing with a p-material interface and the excess mass density field
p—p*, in the constant thickness case, ALTS [3] and then ALTS and HUTTER [4, 5] put the
term corresponding to our W, equal to zero. They chose, however, the surface coordinates
as lines that are frozen to the motion of the surface “particles” (where the particles are
defined in terms of the excess mass density). They should however distinguish between the
density of surface particles defined in terms of the true mass distribution and that defined
in terms of the excess fields, since their mass density can be negative. Moreover, their
choice is local in (¥, and the disappearing of W, cannot be interpreted as a constraint
on the thickness of the layer which, in the constant thickness case, is a material intrinsic
quantity, independent of /7.

On the other hand, assuming that a reference surface should be chosen in the layer
so that the quantity on RHS in Eq. (3.3) could represent the flux of mass, one cannot
regard the same quantity as the surface linear momentum density, independently of the
kinematics and the geometry of the surface, due to the K and grad, c,, appearing in it. It
follows that in the exact theory of interfaces one should expect the additional term W, in
the balance of mass, as compared with the form of this law given by the singular surface
approach.
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Let us notice that in the present model of an interface layer, the appearance of the non-
vanishing extra flux of the mass W, means that the flux of the surface mass is different from
the density of interfacial linear momentum density; this observation has been already made
by DELL’ISOLA and ROMANO [14] and SEPPECHER [45], using however an approximate
theory. '

b. Linear momentum balance equation: ¢ = pv and the Cauchy stress T with the
minus sign serves as the flux of linear momentum, and the body force pf is the supply

term (no production in the bulk medium is admitted). For the surface flux Wsl{pv} we
have

(3.22) W {pv} = (pv @ (v + L grad, ¢,)A,() — (TAL(D))
which can be split into two parts
(3.22") W {pv} = V' @ W {p} +T,.

The Galilean invariant interfacial surface stress tensor T, can be written as the sum of
two invariant parts S and W,,,, where the definition of the first part imitates exactly that
known in the continuum mixture theory (with the integration across the thickness instead
of summing up over mixture constituents), and the second part can be called the extra
surface linear momentum flux, ie.

—S(r, 1) := (TA,(D) = (p(v = V) & (v = VA, (1)),
Wu(r, ) 1= (p(v — V*) ® (As(l) — G(D1)V* + Lp grad, coAs (1))

The other splitting can be made by defining two new components contributing to T
as S! and S?, where we put

(3.23)

§'(r, 1) := —(TA,(1))
(3.24) S%(r, 1) := {(v— V) @ m(l)),
T, =S'+§°.

Using the last formula we can write the local balance equation for the linear momen-
tum as below, where the superscript £ is omitted,

6 , : ;

(3.25) ﬁ(pst) — 2H ¢, p®V® + divg(V® @ (p°V5 + W,) + T,) = p°F°

+(pv® (v+ 1 — ¢) = Ta)j] = [ov @ (v + C grad, ca)A,() grad, (]
. 4 :

+1a, (0 g, - [ 6]
The last three terms on the RHS of Eq. (3.25) disappear in the constant thickness case.
The above expressions for the interfacial stress tensor T show that even in the equilibrium
case, when the diffusion terms S and W, are put equal to zero, the symmetry of the

tangential components of S cannot hold automatically. Moreover, the normal component
nT; of the surface stress tensor T, contains a contribution from the diffusion terms unless
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the tangential component v, of the velocity field v is constant along each segment of the
layer (1), i.e. is independent of [.

The last but not the least important proposition concerning the interfacial stress ten-
sor concerns the explicit dependence of S on the curvature of the interface 3. The
dependence will be present even in the case when the contribution due to the diffusion
is neglected. Consequently, in formulating a constitutive equation for the surface stress
tensor one should not forget that § is a function of b as well. In particular, if the interface
is modelled as a two-phase Korteweg fluid, then

~T=pl+ancn, (M)

with a scalar p as the pressure, then even in equilibrium (i.e. when v—V*® = 0), the surface
stress will be different from the spherical tensor because of the term —(Ip)b. Note that in
the case of a spherical interface with non-vanishing thickness (e.g. a soap bubble) under
equilibrium conditions v — V* = 0, the surface stress will be

(3.26) T, = (p(1 + /)L,

where 7 is a radius of the bubble. We can interpret the term (p) as the classical surface
tension, here the additional part (pl/r) appears, which is normally very small, unless the
thickness of the bubble is comparable with the radius r. This will be the case of very small
bubbles. In our opinion, a deeper investigation of the consequences of (3.26) will lead to
the improvement of Tolmann’s formula which is considered necessary by ADAMSON [17]
to match the experimental evidence. The quoted investigation will be made possible
by means of the introduction of a first order model for the interface (cf. the following
section).

It is seen from the above derivation that the local balance equations known in the
singular surface approach are limited to very particular cases of the present approach and
are valid under a particular set of assumptions.

c. Angular momentwm balance equation: 1 = x X pv. We restrict ourselves only to
nonpolar continua. The master angular momentum balance law is well known in the 3D
theory; its interfacial counterpart requires to define two quantities, namely

(3.27) ¥® = (j(r+In) x pv), ¥ := (jln x pv)
and the corresponding flux and production terms
(3.28) w(i)' = —(r+In)xT, wz(l? = —[n x Tf
p* = (j(r+n)x pf), p; = (jln x pf) ~ (jF),
where .
JF:=(l+lb~- K1) XT)~nXT-n—=m(l) X (v-a)n+jpv X cpn.

Making use of the balance law (3.14), replacing 1° with those defined in Egs. (3.27)
together with the corresponding terms from Eqs. (3.28), we arrive at a pair of equations.

(%) In that case (fv), = (f)v, for an arbitrary field f, and v, = vi = V2. Such condition has been
admitted by DELL'ISOLA and RoMANO [14] and interpreted as the perfect viscosity consequence of the viscosity
of the 3.D matter contained in the layer.

(') We are assuming here that inside the layer i) Vp is parallel to the field n inside the layer, ii) o is a
nonvanishing scalar field.
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Subtracting the second from the first one and using the cross product of r with the linear
momentum equation (3.25), we end up with

(3.290 (L xT) =0

which is automatically satisfied if T is symmetric. On the other hand, the last equa-
tion, which represents the zero order condition of non-polarity of the layer, leads to the
following one: :

(3.29), h+h+(3-n@n)XT,=bx 't,
13 1,
where:
i. The product
NxM
1,3

between 3-3 double tensors N and M, whose components in a given basis are Ni,, and
M¥*™ respectively, is a 3-vector whose i-th component in the same basis is:
6,']';;1\"'7,,, M km )
with €;; being the components of the three-dimensional Levi-Civita tensor.
Similarly the X product between 3-2 tensors is introduced; it N and M are 3-2 tensors
£,3

whose components are N j, and M*“, respectively, with a fixed basis e; for E? and
another one a, for the tangent plane to ¥y, then we denote with the symbol N X M a
1,3

three-dimensional vector whose i-th component in the basis e; is given by:
€ijkNjaA'1 ko .

ii. The quantities lo, 1, and IT, have to be determined by means of constitutive
equations. The quantities 1y and I represent, respectively, the zero and higher order
sources of kinetical couples, and are introduced in order to describe those features of the
kinematics of the layer which cannot be completely neglected even in the case of very thin
layers. Indeed they can be represented, in terms of 3D fields, as follows:

Iy = (p(vn — ca)n X (VT — V1)),
| 2= (1 = §)p(vn — ea)n X (7 = VE)) + (wp x (V- mm)
+b 'M?® x 'V° — (grad, cn X lpgv) ,
where
M o= ('m(D)) = (ilpvis) + W
is the flux of the first moment of mass, V¢ is defined by
s tve = (pljv), 'p*:={pil),
and
l“’p = (lp(As(l) —Jjlvt lzp grad, CnAs(l)) .
Finally the quantity
g, = 'S, + 'S;
represents the interfacial first moment of stress tensor, where

15, {pv} := ((v— 'V)® m(l)), 'Sa{pv} = —{TAL))-
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Before closing the discussion of the equation of motion we shall write the explicit
relation for the normal and antisymmetric parts of the surface stress tensor T, in the
natural basis {a,,n}. They are

TP = —(GT™) + (jp(v - n— ea)(v® = V) + (v = V) - mwg) = (GIOGT™)) ,
(3.30)
T = T2 = —(IONT™ = T") + (b = B)T)
where
T :=n-T,a", T?:=a'.Ta%, etc.
d. Energy balance equation: ¢ = p(e +0.5v-v) =: pE, where e represents the specific

internal energy, the sum —vT + q serves as the flux of the total energy, where q is the
heat flux vector, the sum p(f - v + 7) is the supply term, where  represents the body heat

supply density. For the surface flux W' {pE} we have
(3.31) W' {pE} = (Em(l)) - {("T — q)As(1)) -
If we define
p’e® := (jpé), €:=e+05(v— Vi, Tt = (Gp(r + (v - V),
(332) ¢ = ((pE(v— V*) + g — (v— VYDA (),
Wi = (p&(As(l) — F()1,)V* + lpE grad, c.As (D)) ,
then the local energy balance equation will be

(3.33) %(p’(e” +0.5V° - V*)) — 2H cpp®(e® + 0.5V° - V°)

+divs(p®(€® + 0.5V - V)V + ¢° + Wg + V°T, + 0.5V° - V'W,)
= p°F -V + p°F +[(p(e + 0.5v - v)(v—¢) + q—VT)j] - m
~[p(e + 0.5v - v)(v + C grad, ¢, )A4(C) grad, ]+ (VT — q)As(C) grad, (]

- ﬂ%(p(e +0.5v- v)j]l .

The last three terms on the RHS of Eq. (3.33) disappear in the constant thickness case.
The above expressions for the interfacial heat flux Q° and the supply terms p°7® lead to
the following relations:

Qs = qs +Wg,

port # P71,
which mean that even the case of a nonconductor of heat at the 3D level leads to the
nonvanishing interfacial heat flux, and the vanishing heat supply term pr at the 3D level

leads to the interfacial heat supply p*7* equal to (jpf - (v — V*)), which does not need
to vanish if f is different from zero.

(3.34)

f. Thermodynamic inequality
The second law of thermodynamics for the 31D material continuum is assumed in the
form of the entropy production inequality

d * § q
(3.35) T J pndv > — f (g/9 + k) - Nda + f/)?/’l)dl/,
P, P P,
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where 77 and ) represent the specific entropy and the absolute temperature, respectively,
while k is the so-called extra entropy flux. Performing the usual localization for the
interfacial layer we get the inequality

(3.36) %psns — 2Heap®n® + divy(p°° Ve + K° + W,)
> p°ry +{(pn(v—c) + q/? + K)j]-n -
—[pn(v + Cgrad, ,)A,(C) grad, ¢ — [(q/?¥ + K)A,(¢) grad, ¢] - I[E?(""”]I ,

where

W {pn} = (pym() + ((@/? + KA,()) ,
and we have defined

= (o oS 1= (in (e 0)
(3-37) k*:= ((p(a/9 + K)As(1) + (pn(v — V' DAL(D)
W, = (pn(As(l) — j(D1)V* + [pngrad, caAq (D)) -

The last three terms on the RHS of (3.36) disappear in the constant thickness case.
The above expressions for the interfacial entropy flux cannot be simple related to the
interfacial heat flux Q°, even in the case of the vanishing extra-term k. However, under
particular set of assumptions concerning the kinematics and the constitutive properties of

the matter in the layer, some simplification can be made in order to derive such a relation.
This will be the subject of a future paper.

4 . H-order models for nonmaterial twodimensional continua

Using the model developed in the previous sections one could not completely take into
account the influence of the thickness of the layer on the thermomechanical behaviour of
phase interfaces. The quoted model will be called a 0-th order model.

On the other hand the considerations preceding and following formula for (3.26)
clearly point out the following circumstance: if one wants to account the influence of
surface effects in the formation of small drops, one has to consider (at least) the first
moment of the interfacial tension field.

In order to provide a guide to the introduction of a more complex structure to non-
material bidimensional continua, an H -th order model can be developed (cf. DELL’ISOLA
and KOSINSKI [12] for the case of the constant thickness) the idea of which comes from
DUMAIS [16]. Similarly to the previous sections we will assume that the interfacial layer
has a variable thickness, in the sense made precise in Sec. 2.

4.1. H-th order model
One introduces the k-th moment field (k¢ < H') of a typical-interfacial quantity f by
(4.1) , kf =i, t*)f whenz € 2.

Here {*¥ means the k-th power of I.
Then for every k the following A-th local balance equation for the physical quantity
represented by the field ¢ can be easily derived by evaluating partial time derivative of
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the k-th moment ¥4, using the properties of the function /(z,t*) and using the local
balance equation for the field ¢ (see Eqgs. (3.17)—(3.20) in KOSINSKI [31]):

(4.2) 5 by +divi*vov+ *w= o+ k(F o (v-n=-c)+ *'w-n).
Regarding Eq. (4.2) as the local form of a particular case of Eq. (3.5) and recalling
the form (3.14) we get the following surface balance equation:

bn

&t
=[(*va -0+ "Wl-a+ B+ Gh(* v o (v-n—c)+ *'wen)),

where the following definition has been used:

(4.4) ki)i =t rp{ @ (v—c)+ *w}]-n

: : oy, .
" © (v + (F grad, ca)As(C*) grad, (¥ - [ *wAs(¢*) grad, (*] - |[;t-<* ’waﬂ :

Equation (4.3) is valid for any £ > 1.

We remark that when k& = 0 the primitive interfacial balance law (3.14) with (3.17)
yields Eq. (4.3) as a particular case.

However, a question may arise concerning the completeness of a k-th order model,
formulated by postulating, for the interface, the first £ + 1 surface balance equations of
the type (4.3) and assuming that all the higher order quantities appearing in them are
determined by means of constitutive equations.

To answer this question one should first notice that the k-th moment of a typical
function f in Eq. (4.1) (regarded as a function of { only) defines the projection of f on
the polynomial /* belonging to the basis formed by all polynomials of the function space

L} ([z~,2%),du = jdly.

The measure p is positive and absolutely continuous with respect to the Lebesgue
measure as long as j is positive and H and K are finite; this corresponds to the assumed
hypothesis on the thickness of the layer Z,. Therefore the H-order theory deals with
truncated expansions across the thickness of the layer of the physical quantities to be
balanced.

(4.3) Fp® — 2H e, ¥ + dive(( ¢ @ (v + [ grad, ¢,)A4(1)) + { *wA, (1))

4.2. H-th order thermomechanical balance equations

We present here the balance equations of A-th moments of mass, linear momentum,
energy and entropy.

We explicitly remark that balance of angular momentum leads to some surface equa-
tions which simply generalize either Eq. (3.29); or its different formulation (3.29),.

a. Balance of mass

6 ) Lk
4.5) 3% kps — 2Hc, *p* + divy( Fp® V) + div, *w,
= (jk*p(v= o)) cn+[j *p(v- ) - m

5, ,
—[ *p(v + ¢ grad, c,)As(CF) - grad, (] - ﬂgc* "pyn ,
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where we have used the following notation:

kp* BV = (5 Fpv) .

b. Balance of linear momentum

(4.6) kp® ky®) — 2Hec, *p® FV° + divy(*V' @ *M® + FS! + Fs))

ot 5P
= Fn® +[(Fpv@ (vemn—cn) - *Ta)j]+ (k( ¥ lpv@ (vom—¢) - k=1rn)j)
—[ *pv® (v + ( grad, en)As(C) grad, (] + [ “TA.(() grad, (] - ‘[&c pv J]
where we have omitted the superscript + and used the following notations:
( ¥p(v + I grad, ca)As(D) =: ( m()) = *M",
ks (r,1) := —( *TAL()),
ks2(r,t) = (v~ V)@ ‘m(D)).
c. Balance of energy
6 ' . sk :
@7 Z(p'(Fe +05 kys . k%)) — 2Hc, Fp?(Fe® + 0.5 5V - FV?)
‘ +dive( Fp*( Ke® + 0.5 5V . vo) v 4 Kt 4+ Fwg
+ kvs kTs +0.5 kvs . sz kw’)) = k(pns . kvs kps ks
+[( *p(e + 0.5v-v)(v—¢) + kq— FvT)j]-n
+(k(*'p(e + 0.5V V)(v — ¢) + k=g — *IyT)j) - n
~[ *p(e + 0.5v-v) @ (v + ¢ grad, cn)As(C ) grad, (]
. . 6 .
[T = A grad, Gl - [ 72¢ Hpte +05v- vl
where we have used the notations:

ko ket = (jp*E),  p"Fi= (fAp(r + 14 (V= V),

T, = FS + *S;.
d. Thermodynamic inequality
(4.8) (;7; kps kp —2He, kps *ps + divs( kps kps bys 4 R+ fwy)
> kp* bt 4 [(Fpn(v—o) + Fq/9 + )] n
[ *on(v + Cgradscn)As(c)gradsgll—[[( “q/9 + "K)A(Q) grad, (]
e tona] + tkon -+ s+ Hoi) -,

where we have used the following notations:

kps kps o= (5%pn),  Ep*rd = (i p(r/D)),
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= ((Fpa/d + WAL + (CFpn(v = V)AWD))
W, = ( “pn(As(l) — JOL)IV* + 1 “pngrad, caAq(0)) .

4.3. Epilogue: future developments towards a constitutive theory for nonmaterial twodimensional continua

The problem which has to be faced at this stage of the development of our model
concerns Constitutive Modelling of the interfacial layers.

Self-consistence arguments will lead us to try to deduce, exactly so as it was done for
balance equations, the constitutive relations for nonmaterial bidimensional continua from
the corresponding threedimensional ones.

One observation is immediately possible: let us look, for instance, at the previously
obtained expression for surface stress tensor: the deduction of the surface constitutive re-
lations is not straightforward from the threedimensional ones. Indeed, in the expression
for 2D quantities the 3D velocity field v appears: this means that the particular kine-
matical situations inside the layer affect the behaViour of the twodimensional continuum
modelling it.

The last circumstance, while giving reasonable chances to yield the right framework
for modelling Marangoni effects, renders the constitutive description of bidimensional
nonmaterial continua more complex.

A possible way of avoiding such a difficulty is suggested in the classical “Theory of
Shells” (material bidimensional continua) by LOVE [34]: some physically reasonable as-
sumptions about the kinematics inside the thin continua are made, what leads to suffi-
ciently accurate bidimensional models.

This procedure proved itself to be fruitful also in the theory of nonmaterial bidimen-
sional continua: indeed, for the so-called perfectly viscous interfacial layers (introduced
by IsHII [23]) even the deduction of surface balance laws is greatly simplified (for more
details see DELL'ISOLA and ROMANO [13, 14] or SEPPECHER [45]).

For this reasons we are led to define the Kirchhoff-Love type interfaces.

We call the Kirchhoff-Love type interfaces such interfaces Z; that:

i) Z; is delineated (in the sense of our Sec. 2) by a surface ¥, and surface fields (*
(or z%),

ii) the material 3D field v has the following particular form:

4.9) v(l;r, 1) = vo(r, t) — l(grad, w, + byv),
where vy, v, and w,, are the suitable vectors, tangent (to L) and scalar fields defined on
X, and on every X!, respectively.
Previous definition can be interpreted as follows:
a) all the particles belonging to the line
L, :={z€ 2/IN€C,(*] z=r+In}
move with the same normal (i.e. along the vector field n) speed: vy - n;

b) when the fields w,, and v, are independent of the variable /, then the tangential
velocity field along the same I, depends linearly upon the variable l;
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c) when the following equalities
(4.10) Vi e lC—aC+] Wy =€y (L—m@0)Vy =V,

hold, then all the particles belonging to the same I, at a given instant ¢ will belong (if they
still belong to Z,) to the same line 1, for every different instant 7,

d) when, togheter with the relations (4.10), also the following equality
Vo N = Cy,y
holds, then the layer 2, is material,

The case d) was considered by Love, in his classical treatment of the theory of material
shells.

Appendix

Here the derivation of the transformation of the oriented surface element N({)da of
the ruled surface 2; formed by segments {r + In(r): [ € [z7,z%],r€ C: C X}, where
C, is a curve (12) on ¥, will be given. Here N(!) is the outward unit normal to 2,, given
by
(A.1) N(/) := t; x nljt; x n|| ™",
where t; is a vector tangent to the curve C{ which is lifting of the curve C; to X}; the
tangent vector to the latter we shall denote by t,. Due to Eq. (2.2) and to the fact that
each of t; and t, is orthogonal to n, and n has a unit length, we get

t = (13 — lb)tn and t; X n= (19 - “))t() Xn
and
(A2) [l x nll = fitll = F(Olitol] -

If by ds; and ds we denote the line element of the curves C! and Cy, respectively, then
from Eq. (A.2) it follows that its ratio ds;/ds := ||t{|/||to]| is equal to 7 (). 1f the tangent
vector t, has (') the splitting d*a,, then t; = d“a,(!), and denoting components of the
alternation tensor £([) of the surface T by eap(l) = j(1eya (cf. one formula above
Eq. (2.9) and the next one, i.e. (2.10)), we obtain

t; x n = d%q () x n = d%,o(Da"(l) = d°j(Deyaa” (1)

= d°j(D)epadla™(l) = d*j(Depala” - ay)a” (1)
= d°j(l)(@a x 1) - 2,a7(1) = j(1)@ () @ a,)to X 0.

If we put fi := ty X n/||ty|| for the unit normal to the curve C; that is both tangent and
outwardly directed with respect to Ly, then the last expression, together with Egs. (A.1)
and (A.2), will lead to relation
(A.3) N(\)da = N(l)dl ds; = j(I)@" () ® a,)ndl ds.

The componentwise derivation of the last formula can be found in ALT and HUT-
TER [4].

(B IfC, = £ N Z,, then the ruled surface will be the lateral boundar of 24, ie. Z\(Z; UE))
y t t

(13) If A, running along some interval of the real line, is a parameter of the curve C; and each of C}, then
d = dl*/d\.
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The normal {not unit) vector to either surface Eti in Eq. (2.26) will be given by

(A4) af: X ait =a, X a; — Ci(bal X a; + a; X ba;) + (Ci)zba, X bas
aﬂ-i aci “ aC:t aci
o +nX32-')T'— (blxnalz+nxbazﬁ-l—)

. to act L oct
. + 2 +
= c12(1 = (Eurb + (¢E) detb)n + ¢ (b1 oIp - b= o )

0 0
—"l’g (b‘ di'v b% agll) 12grad C:h

Inspecting the contents of the first bracket we can see the value of the Jacobian j
at | = (%, while the next two brackets give minus (¥(b — 2H 1,)grad, (¥ equal (cf.
Eq. (2.12)) to — —(*b grad, ¢ % With this at hand and remembering the tensor A,(!) from
Eq. (2.13), we write the final relationship

(A.S5) nf(r)daet := ait X a3 Fdld? = (G(¢E, rn(r) - A(Ci)grads (*)da,
where on RHS the surface element da = \/adi'dI? In what follows the ratio da*/da is
denoted by ji; it is a function of r and ¢.

The boundary surfaces £ move now with a velocity different than that calculated

by Eq. (2.22). In fact perlormmg the time dlﬂeremlatlon in Eq. (2.26) we obtain the
following velocities ¢* of displacement of Et :

+alxn

+ -t S
(A.6) ¢* =c¢— (T(grad,c, + bc) + —(_)—[—n
Now we are making the final calculation of the product of j* and the normal speed
of displacement of either boundary surface X;~. It will proceed as follows

(A7) jteE . nE(r)

4
= (= c¥erad, c0 +b0) + %T“) G, n(e) - ACH grad, ¢*)

e

= j(Ci,r)<cn + d;—f — grad, Cic) + (3 grad, CEALCE) - grad, ¢, .

Using the formula (2.21) for the displacement derivative we can rewrite Eq. (A.7) to
get
4+t iy ¢* -+ (ot
(A.8) Jjre* - n*(r) = 3(¢,r) (cn + W) + (F grad, (TA4((T) - grad, ¢y, .
Hence follows the expression for j*
§* = |laf x a3 = VaG(¢*,r) + grad, (¥ - AL((F) grad, (F)"*,

which can be useful in some derivations.
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