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Abstract Limit cycles, because they are constituted of a periodic succession
of states (discrete or continuous) constitute a good manner to store infor-
mation. From any points of the state space reached after a perturbation or
stimulation of the cognitive system storing this information, one can aim to
join through a more or less long return trajectory a precise neighbourhood
of the asymptotic trajectory at a specific moment (or a specific place) on the
limit cycle, i.e. where the information of interest stands.

We propose that the isochronal fibration, initially imagined and described by
A. T. Winfree may be an excellent way to connect directly those two loca-
tions. Each isochron is indeed the set of points in temporal phase with one
single point of the attractor. The characterisation of the isochronal fibration
of various dynamical systems is not easy and until now has principally only
been done numerically but not analytically.

By integrating the homogeneous solutions of the dynamical system we can
solve this fibration in the case of the well known anharmonic pendulum. Other
isochronal fibration on classical examples such as the van der Pol system and
the non-symmetrical PFK limit cycle are obtained numerically and we also pro-
vide the first numerical study on 3-dimentional systems like the anharmonic
pendulum with a linear relaxation on its third variable and the Lorenz attrac-
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tor. The empirical approach seems us useful for dealing with the isochronal
fibration which could constitute a powerful tool for understanding and con-
trolling the dynamics of biological or biological-inspired systems.

Keywords Dynamical Systems - Isochrons - Mnesic Evocation - Isochronal
Fibration - Trajectory - Attractor - Anharmonic Pendulum - PFK - Lorenz
attractor

1 Introduction

Temporal persistence and spatial localization (indexation) are the 2 substrates
essential to store information. A limit cycle is then a support offering these
2 aspects. In the state space of a dynamical system described from a set of
particular initial conditions: a limit cycle is an example of attractor and the
set of initial conditions converging to it forms its basin of attraction. Each
point of the basin of attraction is associated to a latent asymptotic phase.
This notion was introduced by Winfree (1974) and is defined as follows: the
latent phase of a point in the state space is equal to the phase on the immedi-
ate neighbourhood of the attractor after a sufficient time, equal to a number
of periods T (T being the period of revolution of the limit cycle). The set of
points having the same latent phase is called isochron (Winfree, 2000). In other
terms, an isochron looks like the set of the successive observations performed
during a stroboscopic experience. A method developed by Minorsky (1959)
is based on the same principle. It is called the stroboscopic method. It con-
sists on transforming the differential equation (expressed on polar coordinates)
into a stroboscopic differential equation. Despite the fact that this method is
a way to characterize isochrons, Minorsky did not takle an equivalent notion
of isochron as Winfree did. Then, every point of the limit cycle is associated
to a hypersurface called ’isochronal fibration‘ (Winfree, 2000). Figure 18 il-
lustrates this notion. An isochron has the aspect of a one dimensional fibre
when the state space is bidimensional, and of a surface (membrane) when the
state space is 3-dimensional. It’s dimension is n — 1 when the state space is a
n-dimensional space.

Historically, the first practical use of the notion of isochron has been done
for interpreting the responses of a population of coupled biological oscillators
to periodic stimulations, like the oscillators involved in the photosensitivity
of the circadian time-sense in Drosophila pseudoobscura (Winfree, 1967) and
the first introduction of that notion in respiratory physiology concerned the
entrainment of the respiratory rhythm in cat (Dinh et al, 1983).

Therefore, isochrons allow us to have an idea about the dynamics of the
system in terms of velocity of trajectories. For example, in a bottleneck area
of isochrons, the trajectories tend to have a slow velocity. On the other hand,
knowing the isochrons of a dynamical system allows us to predict its future
state after being perturbated, thus anticipating its return to the periodic limit



cycle!. We enhance this analysis by a measurement of the synchronization
response to perturbation in a population of homogenous oscillators. This al-
lows us to classify the phase space into fast an slow synchronization regions.
The determination of isochrons is generally done via numerical methods. This
is due to the difficulty (coming from the absence of homogenous solution of
the system) to solve them analytically. Demongeot et al. (Demongeot et al,
2007b,a; Glade et al, 2007; Forest et al, 2007) infer an analytical approximation
of the isochrons based on a potential-Hamiltonian decomposition. The authors
suggest that the isochronal fibration tends to fit the potential part of the flow
when the Hamiltonian part is dominant, particulary in the neighbourhood of
the attractor. Thus, in (Demongeot and Frangoise, 2006), the authors propose
an approximation at the first order of the isochrons of polynomial Hamiltonian
systems. Recently, Osinga and Moehlis (Osinga and Moehlis, 2009) proposed
a very accurate method for approximating the global isochrons. The method
is based on the continuation of a two-point boundary value problem and then
of the linear approximation of the isochrons in the close neighbourhood of the
attractor.

In the present article, we focus more on the use of isochrons in the under-
standing of biological systems showing periodic behaviours. Limit cycles ap-
pear indeed frequently in numerous biological systems, particularly in neural
networks but also in many regulatory networks. It has been notably demon-
strated that the asymptotic behaviours of neural networks is constituted by
limit cycles (over large ranges of parameters) in the case of discrete (Dinh
et al, 2008) and continuous (Budelli et al, 2010) ~time (and continuous—space)
models. It is also verified in real neural networks (Reyes, 2003). In the general
case of discrete time and space models (like in Hopfield-like networks), the
proportion of systems showing limit cycles increases with the number of nodes
(Elena et al, 2008; Demongeot et al, 2009; Ben-Amor et al, 2009; Elena, 2009).

We characterize analytically the isochrons of the anharmonic pendulum
by integrating its homogenous solutions. We give examples of the isochronal
fibration of some 2-dimensional systems either symmetrical (such as the van
der Pol system or the Wilson-Cowan system) or non-symmetrical (such as the
PFK system). We also calculated the isochronal hypersurfaces of 3-dimensional
systems in the case of an anharmonic pendulum having an additionnal linear
relaxation in the third direction, and in the case of the Lorenz attractor. In
the latter, we looked at their shapes in the state space by a series of cuts and
3D reconstructions by triangularisation methods. Finally, we discuss on their
importance, notably in the understanding of desynchronisation in cyclic bio-
logical processes such as those involved in the glycolysis (the PFK F6P/ADP
induced periodic behaviour) or in the neuronal activity that occurs during
mnesic evocation.

1 If we do know in which isochron the state of the perturbed system is then we know in
which point he will join the attractor



2 Mathematical definition of an isochron

Let us consider the space E C R™ of all states of a dynamical system and
the times set 7 C R (containing time 0). A flow ¢ is an application from
the Cartesian product E x T onto E satisfying the following properties: Va €
E Vs,t € T, then: (i) ¢(x,0) =z, (ii) p(p(z,t),s) = ¢(x,t + s). The implicit
notation of the flow z(¢) which stands for ¢(z, t) is called trajectory. The initial
condition is expressed by x(0) = . We stress that the value x(¢) is the state of
the dynamical system at time ¢ such that its state at time 0 is x. The orbit of a
state y iterated by the flow ¢ is the set of points O, (y) = {¢(y,t), t € T}. We
define the Birkhoff limit set L(z) of any state x of E taken as intial condition
of z(t), as the set of temporal accumulation points of this trajectory. If B(y, ¢)
denotes the set of states at distance of y less than e (B(y,¢) is reduced to
{y} in the discrete case): L(x) = {y € E;Ve > 0,Vt € T,3s € T / s >t and
Oy (p(x,5)) N B(y,€) # 0}

The attractor basin B(A) of a subset A of F is the set of all initial conditions
x not in A, but such as L(z) C A.

By introducing the necessity to exlude A from B(A), we eliminate the possibil-
ity to designate by attractors the closed trajectories of a Hamiltonian system
(like the Lotka-Volterra).

Let us denote L(A) = UyeaL(w). A is the set A completed by all possible
shadow trajectories (Bowen, 1975). An attractor A verifies (Cosnard and De-
mongeot, 1985b,a):

i) A is a fixed set for the composed set operator Lo B : A = L(B(4)),

ii) there is no set C' such as A C C C A, C # A, verifying i),

iii) there is no set D C A, D # A, verifying i) and ii).

An attractor A is invariant in the dual operations consisting firstly in con-
sidering all the trajectories of its basin from all initial conditions not in A,
but finishing their life in A, and secondly to restrict them to their ends of life
(Figure 1).

The notion of shadow trajectories allows to include inside an attractor all the
points at discrete distance 0 from the attractor. For example, the Hamming
distance can be relaxed to a quasi-pseudometric. We can consider that below
k different bits the distance between two sequences of bits is 0. This is defined
by the quasi-pseudometric dg, (x,y) = Maxz(0,nq4irf — k), where ng;¢s is the
number of different bits. Note that dg, corresponds to the Hamming distance.
When quasi-pseudometrics are used, one throw the axioms of the identity of
indiscernibles, i.e. d(z,y) = 0 for some x # y, and the triangular inequality is
not verified due to a change of behaviour of the distance function depending
on the sign of ng; ¢y — k (rough-grain below k, fine-grain otherwise).

Let us suppose now that the attractor A is a limit cycle, i.e., if we denote by
p the period of the limit cycle, A = {ao, a1 = p(ag,1),...,,ap—1 = p(ag,p—1)}
and there is a natural isomorphism 1 between A and the set S = {0,...,7—1}.
By denoting Ty = {t € T/t = s + kT }ken ses We have: T = UgesTs.
The isochron I, of phase s is the attractor basin of {¢(s) = a4} for the flow



vs (equal to p on E x Ty) and B(A) = Usesls. If T = R+ (the positive real
numbers set), I is transversal to A, i.e., the tangent vector to I, at the state
as is not tangent to A (Guckenheimer, 1975; Freire et al, 2007).

3 Numerical resolution of isochrons

All points delayed by a period T' (period of the limit cycle) are on the same
isochron because they have the same latent phase 2. The determination of
these points can be done by using numerical methods. Whatever the numeri-
cal method used is, checking if points of the state space belong to the isochron
of a chosen phase can be obtained by verifying, when they converge until the
attractor via the equations of the dynamical system, if they admit that phase
of the attractor once considered a certain limit. Several numerical methods are
possible: a systematic exploration of the state space by dividing it in small ar-
eas, a random exploration in all the state space, or a local random exploration
with a guidance of the research area along a direction given by the points
already founded (a kind of intelligent paintbrush). We pull out a point of the
state space randomly, then we compute a discrete version of the differential
equations until the trajectory reaches for the first time a point belonging to a
neighbourhood of fixed thickness 10~* of the attractor, where k is a thickness
parameter. The phase of this point on the attractor is memorized. This phase
minus the phase of the nearest isochron of interest is compared to a tolerance
value in order to determine whether this point can be considered as belonging
on the isochron or not. This tolerance value is equal to % (figure 2) where
T is the period of the attractor considered as a limit cycle, n is the number of
isochrons considered and p € [1, +inf] is a precision parameter.

3.1 Bidimensional systems
3.1.1 Symmetrical and anti-symmetrical systems

In 2-dimensional systems, isochrons of symmetrical and antisymmetrical sys-
tems (characterized by the shapes of their limit cycles) are easily obtained
and their isochrons correctly numerically resolved, on the contrary to non-
symmetrical systems (see below). The anharmonic pendulum (Demongeot
et al, 2007b,a; Glade et al, 2007; Forest et al, 2007), which is a particular
Aw-system (Murray, 1993), is a typical case of symmetrical system whose
isochrons are radially disposed. This system is studied in section (5). The
Van der Pol oscillator shown in Figure 3 (Right) is defined by the differential
system dx/dt =y, dy/dt = —x + py(1 — 2?) and pu = 2. The resolution of its
isochrons needs a very important precision in areas of convergence of multiple

2 However, an isochronal fibration is continuous, figure 18 illustrates this.



isochrons (i.e., at the neighbourhood of the phaseless point (0,0)) and on the
right and on the left sides of the attractor (Figure 3 Right).

3.1.2 Non-symmetrical systems: the example of the Phosphofructokinase
dynamical system

In Ricci (1995), a dynamical system is given modelling the PFK (Phosphofruc-
tokinase) behaviour. It describes the balance between the consumption of the
substrate, the F6P (Fructose6-phosphate), and the production of the product,
the ADP (Adenosine Diphosphate). It is defined by da/dt = A — L, dy/dt =

R(L — Ny) with L(w,y) = 22 LEDUTLCUICHI) and R = 107, The
numerical determination of the isochrons of the PFK was obtained for the
following values of parameters: Ly = 3000, n =3, C =0.02, D=1, A =0.1,
N =0.01 and P = 3. The PFK system exhibits a non-symmetrical limit cycle
with a region of the attractor where velocity of the flow is very fast. This be-
haviour makes the resolution of the isochrons of the system hard to perform.
Winfree (2000) wrote: “In practice, the isochron structure is poorly resolved
near the isochrons’ convergence... That implies unusual difficulty in measuring
phase with adequate precision near the region of convergence. It also means
that the system is particulary susceptible to the random perturbations that
chronically afflict any real experiment, especially biological experiments”. This
is indeed what Figure 4 clearly shows. We tested several values for the preci-
sion parameter between 1 and 1000. The two extremes we calculated are shown
with the lowest precision (1) on the left and a highest precision (1000) on the
right. We calculated here 30 isochrons, which appear very tightened in some
regions of the state space. Moreover, at the bottom of the 2 figures appears
a region where isochrons seem to be overlapped and poorly resolved even at
high precisions. This means that, at a given resolution, latent phases are not
so clearly allocated to their isochrons, so that a certain synchronisation is lost.
Theoretical isochrons of 2-dimensional systems are unidimensional fibres, but
real ones’; i.e., those determined by numerical methods (resp. measured from
experiments on natural systems) are very sensitive to numerical errors (resp.
natural noise or experimental imprecision) in such desynchronisation areas.

3.2 Tridimensional systems

The isochrons of 3-dimensional systems are 2-dimensional surfaces. We used
the same algorithm as for 2-dimensional systems. When a valuable density of
solved points is reached (e.g., about 4.10% points for the Lorenz pendulum),
the algorithm stops. Such a huge number of points is hard to handle and to
visualize 2, so we used meshing techniques to reconstruct the surfaces and
render them. Moreover, cuts in the state space and through the isochronal

3 exploration (rotations, zooms, ...) and visual rendering (lights and shadows) of the sur-

face



surface allow to have a better understanding of their complicated shapes. Two
systems are presented here: the anharmonic pendulum-like system and the
Lorenz system.

3.2.1 Anharmonic pendulum-like system

We add a third component to the classical anharmonic pendulum. The 37¢
component is a linear relaxation to the plane (zy). This is expressed by the fol-
lowing differential system: dx/dt = y+z(1—22—y?), dy/dt = —x+y(1—22—y?)
and dz/dt = —kz with k > 0. As the relaxation is linear and normal to the
attractor, the isochrons of this system are intersecting half-planes in the z axis.
The isochrons of this system are presented in Figure 5.

3.2.2 Lorenz system

The strange attractor of Lorenz has been a main step of the chaos theory.
The system is defined by the differential system: dz/dt = o(y — x), dy/dt =
pr —y—axz and dz/dt = zy — $z. We calculated its isochronal fibration within
conditions (o = 10, p = 350, 8 = 8/3) giving a periodic behaviour (a periodic
attractive orbit numerically resolved) of period T' = 0.37 and only one loop,
instead of a chaotic one. Isochrons are continuous surfaces in the 3-dimensional
state space (Winfree, 2000). They appear as very complicated surfaces with
quasi-planar parts and regions of strong curvature (Figure 6). We also observed
that a certain desynchronisation occurs in some regions where the isochrons
are very close together and where overlaps are observed.

4 Analytical resolution of the isochrons of the anharmonic
pendulum

Isochronal fibration can be described by another approach based on a tempo-
ral discretization of the initial system by choosing as a time step the period T
of revolution of the system. In other words, the flow of the new system will ob-
tained by integrating on the time set T, (where s is the phase of the isochron)
the velocity of the studied dynamical system. The obtained flow will help us
to obtain the position of the points having the same phase (therefore being on
the same isochron) until their convergence to the corresponding point in the
attractor. The expected value of the distance between successive points on the
isochron will tend to zero when the number of iterations tends to infinity.

In the following, we have studied the isochrons of the anharmonic pendu-
lum. This system is advantageous: it is simple, the expression of its homo-
geneous solutions is known and its isochrons are in the simpliest expression:
they are radially distributed. The differential equations that describe it are:

dr/dt = y+z(1—22—y?), dy/dt = —x+y(1—2%—y?) and their homogeneous
cos (t—0p)

solutions (described in (Demongeot et al, 2007a)) are: z(t) = ppe’ et
polesr—



y(t) = —Poet\/% with (po, o) the polar coordinates corresponding to

(2(0),9(0)).
Let v the limit cycle of the system. Integrating on a strictly positive number
k of revolutions on the attractor v is formalized by: If (x(0),y(0)) € ¢ then

VEe N* [T dzgr = AKTw =0 and [ Wt = ATy = 0 with T > 0.

kT o Cos(kaeo)ekT . o
Then, we solve the system Ag'z = poi\/m cos (fp) = 0 and

B kT

ATy — po% — sin (6y) = 0 with T > 0.

As a first approximation, we will suppose that pg = 1 and 6y = 0 is a point
belonging to the attractor, so we have T' = 27.

Let us notice that the two entities Al'z et Al'y represent the respective
variations of x and y after one revolution*. So, #(T) = x(0) + Az and
y(T) = y(0) + Aly. Therefore, let us define z,,41 = x(T), ¥, = x(0) and
we apply the same for y. By substituting in AZ'z (resp. AL'y) po cos (6p) (resp.
posin (0o)) by ,, (resp. y,) and p3 by (22 +y2), we obtain the following discrete

627r e27r

@y 1 )]
It is formed by the series of points on the same isochrons starting from equally
phase distributed initial points (xg, yo) far from and around the attractor (Fig-

ure 7).

system: x, 41 = X, *

) and Ynt+1 = Yn * \/1+(z

5 Bridges over the attractors: Guckenheimer’s effect

In the very close neighbourhood of the attractor, the Hamiltonian part of the
flow becomes dominant (and the trajectories appear like an onion structure),
so the isochrons tend to fit the potential part of the flow (Demongeot et al,
2007b,a; Glade et al, 2007), i.e., they cross their attractor transversely (perpen-
dicularly), as first described by (Guckenheimer, 1975). Nevertheless, we were
wondering on how the isochrons that appear — from a macroscopical point of
view — very tilted compared to the direction of the asymptotic trajectory (for
example see the isochrons of the van der Pol system in Figure 3 or those of the
PFK system in Figure 4), cross their attractor. We ran simulations to solve
numerically, with a very high precision (precision > 10" = tolerance — 0),
2 isochrons of the van der Pol system (its isochrons are not perpendicular to
the limit cycle like those of the anharmonic pendulum) in the very close neigh-
bourhood of the limit cycle. We did not expect what we observed and what
we consequently called the Gukenheimer’s effect : isochrons form a particular
structure having a crescent shape (or a kind of bridge), that locally breaks the
monotony of the isochronal fibre (figure 8). The crescent shaped isochronal fi-
bre crosses perpendicularly the limit cycle, even if the whole fibre (farest from
the limit cycle) is stongly tilted compared to the asymptotic trajectory (Fig-
ure 8 right). We also looked at other systems like the Lorenz system and the

4 These entities are null when pg tends to 1. The attractor of the anharmonic pendulum
is indeed the unit circle.



behaviour of the isochrons at the neighbourhood of the attractor is similar. It
verifies the assumptions proposed in (Demongeot et al, 2007b,a; Glade et al,
2007; Demongeot and Francoise, 2006) and it is in agreement with Gucken-
heimer’s assertions (Guckenheimer, 1975).

6 Maximum phase shift computation

Once considered a population of uncoupled oscillators of same nature, it may
be of interest to have a measure of the synchronization that occurs after a
perturbation tranlating the state of all the oscillators to an other region at the
same time, i.e. conserving that way the shape of the limit cycle (see Figures
14 and 15). The isochronal fibration gives a qualitative idea of the phase shift
or on the contrary of the resynchronization which may result from a perturba-
tion affecting this population. The divergence (resp. convergence) of equally
distributed isochrons in a particular region of the phase space means indeed
that this region is a fast (resp. slow) synchronization one. A quantitative mea-
surement, can be calculated from this fibration. We computed the phase shift
between the two isochrons containing the set of n points (P;);e[1,,) Obtained
after a translation of the limit cycle as follows:

— The phase ¢; of each P; is calculated as described in section 3.

— The vector (F;); is sorted by order of the increasing values of ¢;.

— The vector ((A@i,i—&-l)ie[l,n—l]vAq)n,o) is determined. Aqsz’,i+1 = (257;_'_1 — gf)z
for i € [1,n — 1] and AD,, g =27 — (¢n, — ¢P0)-

— The maximum phase shift is A® s, = 27 —Max((AP; i11)ici1,n-1]) APn,0)-

Those steps are repeated for several values of the amplitude between 0 and
Rynax (maximum perturbation). When the system is symmetrical, we compute
the maximum phase shift along an arbitrary direction of perturbation 13. This
is not valid when the dynamical system is asymmetrical like the phospho-fructo
kinase (PFK) system (see Figure 9).

7 Mnesic Evocation

Let us consider a network (neural or genetic) made of several subsystems, like
modules, identical or different, and weakly or strongly connected (Elena et al,
2008; Demongeot et al, 2009) : in Figure 10, M1 is an arbitrary subnetwork
and M2 is made of a simplified Hippocampus one-layered network, with one
Cyto-Architectural 1 (CA1l) and one Cyto-Architectural 3 (CA3) pyramidal
neuron, one Entorhino-Cortical neuron (EC) and one Inter-Neuron (IN), all
interconnected. If we simplify this module in a subnetwork of size 2, we obtain
a structure called negative regulon, with one negative circuit and 2 positive
self-loops. We will consider in the following that this subnetwork is sequen-
tially repeated in a chain of modules, each of them being weakly linked to the
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following at the level of the CA3 neurons (the X;’s in Figure 11): CA3 neurons
send axons with excitatory synapses to CA1 and CA3 neurons, these latter
sending axons with excitatory synapses to EC neurons through the Subicu-
lum (SB), and EC forming global inhibitory connections with CA3 neurons
through Inter-Neurones (IN) of Dentate Gyrus (DG) (Buzsaki, 1984; Gluck,
1996; Hefft and Jonas, 2005; Bartesaghi et al, 2006; Mori et al, 2007).

When the system WC is stimulated through a perturbation S translating
all the initial conditions on the limit cycle C into a fast region (Figure 14),
then all the return trajectories go to the same phase x;, provoking a syn-
chronization of all the activities X;’s. In other terms, if the X;’s before the
stimulation are dispatched uniformly on the limit cycle C, then their sum
denoted A(t) = >_,_, , Xi(t) is about zero, because the positive values of
the X;’s are compensated by the negative ones. If the X;’s run in phase,
A(t) behaves like nX;(t) and can be detected for example by a Pet-scanner
of a functional MRI device (Figure 15). The Wilson-Cowan system WC (Wil-
son and Cowan, 1974) used to simulate the dynamics of a subnetwork repre-
sented by a negative regulon (Figure 11) is given by 2n differential equations:
Vi =1,..,n, dXi/dt = —Xi/a + tanh(in) — tanh(in) + kX 1, d)fz/dt =
—Y;/a + tanh(bX;) + tanh(bY;). This system is closed to a Hopfield neural
network, when b is positive and large, and a is negative and large (Tonnelier
et al, 1999) whose dynamics were fully characterized in (Elena et al, 2008;
Demongeot et al, 2009). Trajectories and isochrons of WC are represented in
Figure 12, showing fast (resp. slow) regions, i.e., zones where the flow runs
fast (resp. slow).

If the coupling between the WC subnetworks is made at the level of the CA3
neurons (whose activities are the X;’s) is weak, then a desynchronization oc-
curs (Figure 16-1), allowing the exit out the perseveration behaviour (Figure
16-2). If the neuronal activity is noised, the desynchronization obtained with
a weak coupling is not perfect (Figure 16-3), as well as the perseveration (Fig-
ure 16-4), both behaviours exhibiting a small residual synchronized activity. In
case of synchronization, the global activity A(t) of the CA3 neurons "evokes"
the common limit cycle (Csicsvari et al, 1999) of the X;’s and can be considered
as the phenomenologic result of the recall of a mnesic temporal pattern stored
in the network (Demongeot et al, 2000; Samsonovich and Ascoli, 2005). If the
succession of states to be transiently evoked is only a part of this attractor,
then a fast desynchronization is needed, which is ensured by a weak coupling
(Figure 17). The richness of the stored souvenirs comes from the number and
the complexity of the common attractors of the X;’s. If their number increases
(e.g., from 1 to 2) as well their complexity (e.g., passing from the circular limit
cycle coming from a fixed configuration of focus type through a Hopf bifur-
cation, to a chaotic behaviour through doubling period bifurcations), then we
can locally store and evoke complicated temporal patterns coding for complex
cognitive entities or serving for moving objects detection in a complex scene
(Hayashi et al, 2007). Such a bifurcations landscape can be simply obtained
from the simulation of a fully connected Hopfield network of size 16, involved
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in a learning process, as shown on Figure 19 (Nérot, 1996).

8 Conclusion

By transforming the initial dynamical system, we have obtained a new dis-
crete time system in which the trajectories are the isochrons of the first one.
This new system has an infinity of fixed points and the set of those points
constitutes the limit cycle of the anharmonic pendulum system. Therefore,
one can imagine a linkage between those 2 systems in order to determine the
phase of a perturbation and force the dynamical system to relax rapidly to-
wards its attractor. For example, one can imagine 2 coupled oscillators (e.g.,
2 coupled neural networks of regulon type (Glade et al, 2007) like in the
cardio-respiratory system), the one having the behaviour of the anharmonic
pendulum and the other having that of its ’isochronal system’: then the switch
from the one to the other would depend from the state — perturbed or not —
of the system, i.e., occurs when the distance between the isochronal fibres be-
comes greater than a certain limit. In this example, as for in neural networks
applications like in mnesic evocation, the isochronal fibration constitutes a
continuous phase and serves as synchrony set of pointers to the attractor. In
the example of the anharmonic pendulum, we could have a direct expression
of the isochronal fibration depending on the latent phase by integrating the
homogenous solution of the initial system. However, most of the homogenous
solutions of the dynamical systems are unknown. Therefore, it is difficult to
apply this reasoning on other examples. Nevertheless, we think that it is possi-
ble to identify the dual dynamical system, ’isochronal system’; by determining
numerically the values of the latent phase ¢ and of the isochronal curvi-linear
abscissa x(equal to 0 on the attractor, positive out the limit cycle and nega-
tive inside), and by searching to match the 2 spaces (z,y,t) — (X, ¢). Finally,
one can wonder if; as it is the case for the inner ear that physically treats the
audio signals as a Fourier transform, our brain is able to work in ’isochron
mode’, i.e., to use these shortcuts. Future works on discrete Hopfield networks
or continuous Wilson-Cowan networks shall try to implement (in the form of
neural networks) such neuronal modules working in the isochron space (x, ¢)
coupled to other neuronal modules working in state and time space (z,y,t).
This would consitute a powerful tool for designing new storage systems and
an advance in the researches on the memory and mnesic evocation.
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Attractor basin

Attracting conditions

Fig. 1 Definition of an attractor (the character ’star’) and its basin (the gray bubble) in the
case of a Boolean network, whose the states space E is the hypercube {0,1}!! (left). Initial
conditions are indicated in gray disks and attracting conditions for the majority rule and
synchronous iterations (the state of a node equals 1 if its activating neighbours in state 1
are equally or more numerous than the inhibiting ones) are given outside gray disks (right).

Tolerance = T/32 Tolerance = T/16
Precision = 2 Précision = 1
Iso2 : p=T/4
Iso3 : ¢=3T/8 Iso1 : @=T/8
Iso4 : <p=T/2‘ llsoo L =0

Tolerance = T/(n.2.p)
Precision=1 .. «

Fig. 2 Graphical description of the measure of precision Let us consider 8 isochrons
equally spaced. The largest acceptable tolerance is 7'/16, ie. the phase interval between
2 isochrons is equally divided. The precision parameter is used to express the tolerance
parameter as follow: Tolerance = T'/(Precision * 2 * Nisochrons)
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Fig. 3 Isochrons of different dynamical systems (Top) Radial isochrons of a symmet-
rical system: anharmonic pendulum. (Bottom) Isochrons of an anti-symmetrical system:
the Van der Pol oscillator (parameter p = 2).
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Fig. 4 Isochrons of an non-symmetrical system: the PFK enzymatic balance
Isochrons and attractor of the PFK system obtained for (Top) a precision equal to 1 and
(Bottom) a high precision (1000). Note that the area at the bottom of the two figures is
high sensitive to numerical errors. In this area, the isochrons are overlapped, which indicates
a sensitivity to numerical precision and corresponds to a desynchronisation area.

Fig. 5 Attractor and planar isochrons of the 3-dimensional anharmonic-like pendulum.
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Fig. 6 One isochron of the Lorenz system (Top Left) Side view of one isochron
of the Lorenz system and (Top Right) a reconstitution of its central part using meshing
techniques. (Bottom Left) The attractor (black) is shown with a section (zz plane) of this
isochron (dark grey) and a trajectory starting from a point of the isochron (light grey).

Fig. 7 Trajectories, attractor of the anharmonic pendulum and isochrons calcu-
lated from the discrete system given before (Left) The limit cycle of the system is circular
and its isochrons are segments of straight lines. Far from and ouside the attractor, the sys-
tem is mainly potential so the isochrons are asymptotes for the trajectories of the dynamical
system (exponential part). (Right) In the area delimited by the attractor, the system is
mainly Hamiltonian, so its trajectories are spring spiral curves. Here, the isochrons inside
and outside the attractor are dephased by a half-phase.
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Fig. 8 Isochronal bridges over the van ver Pol attractor. (Top): Two isochrons
(Left and Right) of the van der Pol system (see figure 3) are calculated with a very high
precision. The picture in the center is a zoom of the crescent structure on the left. The
isochrons on the right appear discontinuous. This is only due to a limitation of the numerical
resolution. The same reason explains their thickness. (Bottom): The same is obtained in a
3-dimensional system, the Lorenz pendulum. The picture on the left is a top view of that
on the right.
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Maximum Phase Shift of the Phosphofructokinase (PFK) in response to perturbations.

Fig. 9 Maximum phase shift of the PFK (Up) and the van der Pol (Down)
oscillators in response to perturbations. Dark (resp. bright) colors correspond to fast
(resp. slow) synchronization regions. White regions correspond to regions where the phase
is not well-defined (very strong sensitivity to numerical imprecision). This synchronization
map is very irregular and clearly shows that it is hard to sycnhronize the PFK (Up) due
to a (strong non linearity and asymmetry of the system). Synchronizing the whole system
needs to choose very precisely the direction and amplitude of the perturbations. This is very
different for the van der Pol (Down) system where regions of synchronization (underneath
and overhead) and desynchronization (on the right and on the left) are well defined and
localized in the phase space. The synchronization map of the van der Pol system (Down) can
be superimposed with the isochronal profile given in Figure 3 (down). One can observe the
striking similarity between the slow (resp. fast) synchronization areas and the regions where
the isochrons are very close together (resp. where the gap between consecutive isochrons is
important).
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Fig. 10 Modular structure, in which the module M1 is arbitrary and M2 represents Hip-
pocampus subnetwork.

+ + +
+ + +
X1 — X2 —_— e — Xn
—
. v + \ - +
-“)\ iy |
Y4 Yo 3 xar , 'n
+ + T+

Fig. 11 Scheme of a sequential modular structure made of a chain of negative regulons,
where X represents the activity of CA3 and X the activity of CA1l (see anatomy of CA3,
CA1, DG and SB in the cartouche)
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Maximum phase shift of the Wilson-Cowan oscillator

Maximurm Phase shift

Fig. 12 (Up) Isochronal and trajectory landscape for the Wilson-Cowan dynamics of a
negative regulon, showing fast (resp. slow) regions, where the velocity is high (resp. low).
(Down) Fast (resp. Slow) synchronization regions in dark colors (resp. bright colors) of the
Wilson-Cowan oscillator obtained by computing the maximum phase shift in response to
perturbations.
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Phase response to perturbation of the Wilson-Cowan oscillator

Maximum phase shift

Perturbation

Fig. 13 The phase shift between the two isochrons containing the limit cycle after trans-
lating with respect to amplitude of perturbation. Slow (resp. fast) synchronization area are
situated (qualitatively) for an amplitude below (resp. above) 2.

Return trajectory

Isochron n

Fast region

Isochron 1

v

Fig. 14 Synchronizing stimulation S translating the limit cycle C' in a fast region of the
states space E
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Fig. 15 Isochronal and trajectory landscape with perturbations translating the limit cycle
C either in a desynchronizing slow region (C1), or in a synchronizing fast region (C2)

fMRI threshold

Fig. 16 Post-stimulation global activity A(t) of CA3 neurons (A(t) = 32,  , Xi(9)),
with a weak deterministic intra-CA3 coupling showing a fast desynchronization (1), without
coupling showing a perseveration (2), with a weak noised coupling showing a fast desynchro-
nization followed by a residual synchronization (3) and with noise without coupling showing
a slow desynchronization (4)
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Fig. 17 Post-stimulation global activity A(t) of CA3 neurons (A(t) = X7, X;(t)), (left)

with a weak deterministic intra-CA3 coupling showing a fast desynchronization, and (right)
with a high deterministic intra-CA3 coupling showing a slow desynchronization
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Fig. 18 Example of isochron: case of the Van Der Pol oscillator Trajectories (small
dashed points) obtained from points located on both sides of the isochron (large dashed
points) of phase ¢ 4. The value of the phase is determined using an arbitrary reference point

on the attractor (black closed curve). The period is detected when the trajectory passes
again near the same point considering a threshold tolerance distance.
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Fig. 19 Bifurcations of the attractors of the dynamics (X1(t — 1), X1(t)) for the first of
16 neurons fully connected in a classical Hopfield neural network, when a function W of
its synaptic weights w;; vary during a learning process, showing alternance of chaotic and
periodic behaviours
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