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A Non-Parametric Independence Test Using Permutation Entropy

Abstract

In the present paper we construct a new, simple, consistent and powerful test for indepen-
dence by using symbolic dynamics and permutation entropy as a measure of serial dependence.
We also give a standard asymptotic distribution of an affine transformation of the permutation
entropy under the null hypothesis of independence. The test statistic and its standard limit
distribution are invariant to any monotonuous transformation. The test applies to time series
with discrete or continuous distributions. Eventhough the test is based on entropy measures, it
avoids smoothed nonparametric estimation. An application to several daily financial time series
illustrates our approach.

1 Introduction

Independence is one of the most valuable notions in econometrics, time series analysis and statistics
due to the fact that most tests boil down to checking some sort of independence assumption. As a
result, an extensive literature on how to test independence has arisen: Correlation tests (see King
(1987) for a survey) are widely used, but they are not consistent against alternatives with zero
autocorrelation. Examples of serially dependent processes that exhibit zero autocorrelation include
autoregresive conditional heteroskedastic (ARCH), bilinear, non-linear moving average processes
and iterative logistic maps. The nonparametric literature also contains a large number of serial
independence test (see Dufour et al. (1982) for a bibliographical survey on permutation, sign and
rank tests for independence). These test procedures work well under commonly used dependence
structures, like ARMA models, but they also fail to detect subtle nonlinear underlying dependence
structures. Needless to say that other nonparemetric tests have emerged (Brock et al. (1996) and
Pinkse (1998), among others) to cover these difficulties.

Serial independence has been increasingly studied by using entropy measures. These measures
avoid restrictive parametric assumptions on the probability distribution generating the data, and
they can capture the dependence present in a time series. As an outcome, establishing asymptotic
distribution theory for smoothed nonparametric entropy measures of serial dependence has been
so far challenging (see Hong and White (2005) and references therein). This line of research is
narrowly connected with Information Theory: Jaynes (1957) introduced the maximum entropy
principle (MEP) which determines the probability distribution of a random variable by maximizing
the Shannon entropy, subject to certain moment conditions. This optimization principle is the
same as the Kullback principle of minimizing the Kullback-Leibler relative entropy when one of the
distributions is uniform. Jaynes’ MEP was a turning point in the use of Shannon’s entropy as a
method of statistical inference.

The use of entropy has played a leading role as a measure of the dependence present in a time
series in the last two decades. Joe (1989a, 1989b) considered a smoothed nonparametric entropy
measure of multivariate dependence of an independent and identically distributed (i.i.d.) random
vector. Granger and Lin (1994) proposed a normalized smoothed nonparametric entropy measure



of serial dependence to identify important lags in time series. Robinson (1991) developed a test
for serial dependence using a modified entropy measure. Skaug and Tjgstheim (1993b, 1996) also
considered a general class of smoothed density-based tests for serial dependence, which includes a
test based on an entropy measure modified with a weight function.

As Granger and Lin (1994) pointed out, there is no asymptotic distribution theory available for
smoothed nonparametric entropy measures of serial dependence. Consistency and in some cases
convergence rates have been established, but asymptotic distributions for these entropy estimators
are not available. Robinson (1991) first provided an asymptotic distribution theory for a smoothed
nonparametric modified entropy measure of serial dependence, using a sample-splitting device.
Granger et al. (2004) introduced a transformed metric entropy of dependence. Recently, the
relevant investigation of Hong and White (2005) have provided, under certain assumptions, an
asymptotic theory for a class of kernel-based smoothed nonparametric entropy estimators of serial
dependence. They also show that their theory yields the limit distribution of the Granger and
Lin’s normalized entropy measure, which was previously unknown in the literature. Moreover, they
develop a test that is asymptotically locally more powerful than Robinson’s test. Nevertheless,
most of the methods used to test for independence via an entropy measure of serial dependence
extrictly require a continuous distribution function of the unknown underlying data generating
process and also need to estimate the density function with stochastic kernels. As a result, free-
choice parameters are introduced. Another difficulty acknowledged by Hong and White (2005) is
that the finite sample level of their own test (and in general of others entropy-based tests) differs
from the asymptotic one; furthermore, asymptotic theory may not work well even for relatively
large samples. This leads to implement, for each sample size, non-naive bootstrap procedures in
order to correctly compute the test. Moreover, Hong and White need the time series {X;} to have
a compact support in the interval [0, 1], although this is not necessarily a restriction whenever the
test is invariant under monotonous transformations of the series. Obtaining a compact support
can always be ensured by a continuous strictly monotonous transformation such as the logistic
function®.

On the other hand, there are a number of other nonparemetric tests for independence that avoid
smoothed nonparemetric estimation (Skaug and Tjgstheim (1993a); Delgado (1996); Hong (1998);
and Hong (2000), among others; see also Tjgstheim (1996) for an excellent complete survey). These
procedures are based on the empirical distribution function or on the characteristic function. Im-
portantly, some of these statistics are invariant to order preserving transformation; the distribution
generating the data can be continuous or discrete; under certain conditions, the tests are distribu-
tion free. Unfortunately, some of these statistics have nonstandard limiting distribution. In these
procedures, as in the case of tests based on smoothing estimation techniques, the test statistic is a
distance between the joint density (or estimated joint distribution) and the marginal densities (or
estimated marginal distributions).

In the present paper we take a different way, and we propose a new test for independence also
based on Information Theory, but avoiding the potential disadvantage of depending on the choice of
a smoothing number. More precisely, the absence of dependencies in the unknown underlying data
generating process is studied via symbolic dynamics. Symbolic dynamics studies dynamical systems
on the basis of the symbol sequences obtained for a suitable partition of the state space. The basic
idea behind symbolic dynamics is to divide the phase space into a finite number of regions and
label each region by an alphabetical letter. In this regard, symbolic dynamics is a coarse-grained
description of dynamics. Some recent tests of independence are also a coarse-grained description of
the underlying dynamic from which the data was generated. Even though coarse-grained methods

Xy = m where X; is the observed data point and X its corresponding logistic transformation.



lose a certain amount of detailed information, some essential features of the dynamics may be
kept, e.g., periodicities and dependencies, among others. Symbolic dynamics has been used for
investigation of non-linear dynamical systems (for an overview see Hao and Zheng, 1998). The
process of symbolizing a time series is based upon the method of delay time coordinates, introduced
by Takens (1981), in order to carry out the phase space reconstruction. Such a reconstruction is
done from a scalar time series and all relevant components (relative to the underlying dynamics),
such as dependencies, periodicity and complexity changes, have to be extracted from it.

Then, given a time series { X;}, we study the dependence present in the series by translating the
problem into symbolic dynamic and then, we use the entropy measure associated to these symbols
to test the dependence present in the time series. More concretely, we study all m! permutations
(symbols) 7 of length m in the symmetric group S;, which are considered here as possible order types
of m different numbers. Afterwards, we give the distribution followed by the mentioned symbols
and define the entropy measure associated to them. This entropy measure is called permutation
entropy (see Bandt and Pompe (2002) and Section 2 for a detailed explanation). Moreover under
the null of independence we prove that an affine transformation of the permutation entropy is
asymptotically x? distributed.

This allows us to construct a simple, consistent, easy to compute and powerful test for indepen-
dence. The new test avoids restrictive assumptions on the probabilistic distribution generating the
data. This fact allows the test to be of more general applicability. The distribution generating the
data can be continuous or discrete. No moment is required; this is attractive for time series whose
variances are infinite, as often arises in financial time series. It does not involve sample splitting (as
Robinson (1991) requires) and thus, it does not need choosing tuning parameters that can lead to
ambiguous conclusions when the test is used by two different practitioners. An interesting property
of the proposed test is that it is invariant under monotonous (continuous or not) transformation of
the data. Therefore, provided that {X;} is i.i.d. if and only if any series of its continuous monoto-
nous transformation is i.i.d., the invariance property guaranties that no information is lost. Of
important relevance for our test is that the finite sample level does not differ from the asymptotic
level, and hence general applicability and reproducibility of the test is ensured.

The rest of the paper is structured as follows. In Section 2 we introduce the notation and several
definitions in order to describe the symbolic dynamic representation methodology. The procedure
is illustrated with an easy example. In Section 3 we give the construction of the independence test
via permutation entropy and we prove that under the null of independence an affine transformation
of the permutation entropy is asymptotically x? distributed. Size and power of the new test are
studied by Monte Carlo methods in Section 4. An empirical application for daily financial returns
is reported in Section 5. Finally, we give the conclusions and final remarks in Section 6.

2 Definitions and Notation

In this section we give some definitions and we introduce the basic notation. We illustrate the
definitions with a very easy example.

Let {X;}ter be a real-valued time series. For a positive integer m > 2 we denote by S, the
symmetric group of order m/!, that is the group formed by all the permutations of length m. Let

7w = (11,12, ... ,im) € Sym. We will call an element 7; in the symmetric group S,, a symbol. The
positive integer m is usually known as embedding dimension.
Now we define an ordinal pattern for a symbol m; = (i1, 42,...,%m) € Sy at a given time ¢ € I.

To this end we consider that the time series is embedded in an m-dimensional space as follows:

Xin(t) = (Xew1, Xewoy oo o, Xoym) fort € 1



Then we say that ¢ is of m;—type if and only if m; = (i1, 42, ..., 4m) is the unique symbol in the
group S, satisfying the two following conditions:

(@) Xipip < Xpgip <0 < Xy, and
(b) is—l < is lf Xt+is_1 - Xt+is

Condition (b) guaranties uniqueness of the symbol ;. This is justified if the values of X; have a
continuous distribution so that equal values are very uncommon, with a theoretical probability of
occurrence of 0.

Notice that for all ¢ such that ¢ is of m;-type the m-history X,,(¢) is converted into a unique
symbol ;. This symbol 7; describes how the ordering of the dates t+0 <t+1 < - - <t+(m—1)
is converted into the ordering of the values in the time series under scrutiny. In order to see this,
the following example will help the reader.

Take as embedding dimension m = 3. Thus the symmetric group is

S3 ={(0,1,2),(0,2,1),(1,0,2),(1,2,0),(2,0,1),(2,1,0)}.
Consider the finite time series of seven values
{X1=2,X2=8,X3=6,X4=5,X5=4,X¢=9,X7 =3} (1)
Then for ¢ = 2 we have that X;19 = 5 < X471 = 6 < Xip9 = 8 and therefore we have that the
period t = 2 is of (2,1, 0)-type.
Also, given a time series { X} }tc; and an embedding dimension m one could easily compute the

relative frequency of a symbol 7 € S, by:

:jj{tEI|tisof7r—type}
[I|—m+1

p(m) == px (2)

where by |I| we denote the cardinal of the set I.

Then for the time series given in (1) we have that the 3-history X3(1) = (X3 =2,X2 =8,X3 =
6) is represented by the symbol (0,2, 1); X3(2) = (8,6,5) and X3(3) = (6,5, 4) are represented by the
symbol (2,1,0); X3(4) = (5,4,9) is represented by the symbol (1,0,2) and finally X5(5) = (4,9, 3)
is represented by the symbol (2,0,1). Therefore we obtain that p((0,1,2)) = 0 = p((1,2,0)),
p((0,2,1)) = %a p((1’072)) = %) p((2,0,1)) = % and p((2,1,0)) = %

Now under this setting we can define the permutation entropy of a time series {X;}+cr for an
embedding dimension m > 2. This entropy is defined as the Shanon’s entropy of the m! distinct
symbols as follows:

h(m) = - Z Pr ln(pﬂ). (3)

TESm

Permutation entropy, h(m), is the information contained in comparing m consecutive values of
the time series. It is clear that 0 < h(m) < In(m!) where the lower bound is attained for an
increasing or decreasing sequence of values, and the upper bound for a completely random system
(i.i.d. sequence) where all m! possible permutations appear with the same probability. For the time
series given in (1) we have that h(3) = —3% ln(%) - %ln(%) ~ 1.332179.

4



3 Construction and Properties of the Independence Test

In this section we construct an independence test with all the machinery defined in Section 2. We
also prove that an affine transformation of the permutation entropy defined in (3) is asymptotically
x? distributed.

Let {X;}ier be a time series and m be a fixed embedding dimension. In order to construct a
test for serial independence in {X;}ier, which is the aim of this paper, we consider the following
null hypothesis:

H() : {Xt}tel i.i.d (4)

against any other alternative.
Now for a symbol m; = (i1, 12, ...,4m) € Sm we define the random variable Z,; as follows:

1 Xy < Xpgp <0 < Xy,
Zﬂ—it = (5)
0 otherwise,
that is, we have that Z.,; = 1 if and only if ¢ is of m;-type, Z,+ = 0 otherwise.
Then Z,,: is a Bernoulli variable with probability of “success” p,,, where “success” means that
t is of m;-type. It is straightforward to see that

> e =1 (6)

Now assume that the set I is finite and of order 7. Then we are interested in knowing how
many t’s are of m;-type for all symbol m; € Sp,. Let us.call K =T —m + 1. In order to answer the
question we construct the following variable

K
Yo, = Zzﬂ'it (7)
t=1

The variable Y7, can take the values {0,1,2,...,K}. Then it follows that the variable Y, is
the Binomial random variable
Yz, = B(K, pr,). (8)

For each symbol 7; € S, we are going to denote by
Ny, =t{t € I |tis of m; — type}. (9)

for ¢ = 1,2,...,m!. Then under the null Hy, the joint probability density function of the m!
variables (Y, Yoy, ..., Yz, ) is:

a1+ ag+ -+ am)! .
P(Yﬂ'l =a, Y7'r2 = ag,..., Yﬂ'm! = am!) = ( m) p?rlp;? .. .p?r7”<' (10)
atlag! - -+ - Q! 152 m

where a;+as+- - -+a, = K. Consequently the joint distribution of the m! variables (Yr,, Yoy, ..., Yx )
is a multinomial distribution.
The likelihood function of the distribution (10) is:

L(pmapmv s 7p7fm!) =



m!
and since Y pr, = 1 it follows that
i=1

Nry Nrg

Pry Prg™ "o (1 — Pm1Prg - 'pﬂm!ﬂ)nwm! (12)

L(prys Drgs -+ 2 Drpy) =

Ny !nﬁzl """ nTFm'

Then the logarithm of this likelihood function remains as

K i
Ln(L(pry, Pra> - - - apwm!)) = Ln(nm!nm! — nwm] Z nan pm
+ng,  Ln(l — pr,pr, - .pﬂ'm,!—l)' (13)
In order to obtain the maximum likelihood estimators py, of pr, for all i = 1,2,...,m!, we solve

the following equation
aLTL(L(pm,pm, s >p7fm!))
pTri

=0 (14)
to get that

N,

I

Then the likelihood ratio statistic is (see for example Lehmann, 1986):

I/)\TFZ' = (15)

m)!
K! n n N pnﬂ
™1 T .. m! H T
A(Y) Ty Mg Vo rpm DPry Pro = B
- #mn Sy Ay m! -
Ty Mg oot 1Py Prsy’ pwm. H (n;y)n,fl

% T, P at A m; P N
= Kl ! T x K i . 16
()" w12 a0

i=1
On the other hand, G(m) = —2Ln(A(Y)) asymptotically follows a Chi-squared distribution with
m! — 1 degrees of freedom (see for instance Lehmann, 1986). Hence

G(m) = —2Ln(A(Y)) = ~2[K Ln(K) + anLn (p”l )] ~ X2y (17)

n
=1 i

Now under the null Hy it is clear that p,, = i, for all t = 1,2,...,m!. Then it follows that

G(m) = =2K[Ln(K +Z"mL (pm)}

N,
= —2K[Ln(K) + Z nm <> — Ln(ng,))]
Do (=) - Mmi)
— 9K[Ln(K) + Z ( > Ln ( = ) = Ln(K))] (18)
m! m!
Now taking into account that h(m) = — > pr. In(pr,) = — > n]? Ln (n[?) we have that
i=1 =

G(m) = —2K[Ln(WlL ) + h(m)] = —2(K)[h(m) — Ln(m))] = 2K[Ln(m!) — h(m)].  (19)

Therefore we have proved the following theorem.



Theorem 3.1. Let {X;}ier be a real-valued time series with |I| = T. Denote by h(m) the per-
mutation entropy defined in (8) for a fived embedding dimension m > 2, with m € N. If the time
series { Xy bier 18 i.i.d., then the affine transformation of the permutation entropy

G(m) =2(T —m+ 1)[Ln(m!) — h(m)] (20)
15 asymptotically in!fl distributed.

Let a be a real number with 0 < o < 1. Let X(21 be such that

P(X2u_1 > X2) = a.

Then to test
HO : {Xt}tEI i.1.d.

the decision rule in the application of the G(m) test at a 100(1 — )% confidence level is:

If 0 <G(m) < x2 Accept H
Otherwise Reject Hy (21)

3.1 Consistency of the G(m)—test

Next we prove that the G(m) test is consistent for a wide variety of serial dependence processes.
This is a valuable property since the test will reject asymptotically serial independence whenever
there is serial dependence within the m—history. We will denote by é(m) the estimator of G(m).
The proof of the following Theorem can be found in Appendix 1.

Theorem 3.2. Let {X;}icr be a strictly stationary process, and m > 2 with m € N. Then
Tlgl;o Pr(G(m) > C) = 1 under serial dependence of order < m for all 0 < C < 0o, C € R.

Thus, the test based on G(m) is consistent against all serial dependence of order < m alterna-
tives to the null of serial independence. Since Theorem 3.2 implies G(m) — +o0c with probability
approaching 1 under serial dependence of order < m, then upper-tailed critical values are appro-
priated. We underline at this point that our conditions about the process are milder than those
required in other test procedures (see for instance Hong and White (2005), Skaug and Tjgstheim
(1996) and references therein).

3.2 Selection of the free parameter m

It is important to note, from a practical point of view, that the researcher has to decide upon
the embedding dimension m in order to compute permutation entropy and therefore to calculate
the G(m) statistic. Fortunately, this decision can be easily conducted. Note that 7' should be
larger than the number of permutation symbols (m!) in order to have at least the same number
of m — histories as possible symbols (events) 7;,7 = 1,...,m!. When the x? is applied in practice,
and all the expected frequencies are > 5, the limiting tabulated x? distribution gives, as a rule, the
value x2 with an approximation sufficient for ordinary purposes (see chapter 10 of Rohatgi (1976)).
For this reason, we require to work with data sets containing at least five times the number of
possible events (symbols). For instance, a data set of 200 observations is enough for computing
G(4) because 24 symbols are obtained for m = 4; similarly, 600 observations is the smallest data set
that can be considered for an embedding dimension of m = 5 since in this case 120 (=5!) symbols
might be found. Beyond embedding dimension of m = 6, data requirements are unrealistic for real



economic time series, so we do not use such dimensions. Conversely, for m = 3 only six possible
symbols are analyzed, and then the degree of information capture by these symbols is very limited
and therefore we do not suggest the use of m = 3. Through this paper we compute permutation
entropy in a manner that the researcher has not to choose the embedding dimension: For a given
data set of T observations, the embedding dimension will be the largest m that satisfies 5m! < T
with m = 2,3,4,.... For example, in case of T = 500, we then set m = 4. On the other hand,
we note that if 7" is too large (7' > 25.200), then the selected m will be too large as well (indeed
m > 7), and hence the procedure will be too expensive in terms of computational time. For this
reason, and because of the usual length of economic time series, we recommend to operate with
m = 6 for T" > 3600.

As indicated before, it is worth noting that the possible dependence detected by the G(m) test
has to be of order < m. This is due to the fact that if the dependence structure of the process is of
order > m, then this dependence is not present in every m-history and therefore the symbols may
not capture it.

4 Monte Carlo Evidence

In this section we examine the finite sample behavior of the G(m) test and we also compare our
test with other nonparametric tests of independence including those based on smoothing procedures
and those based on the empirical distribution function and on the empirical characteristic function.

4.1 Finite sample behavior of G(m)

Various time series were generated in order to test the size and power of the G(m) test. We have
studied the new test for three embedding dimensions: m = 4,5 and 6, accordingly, sample sizes
of T'=120,7 = 600 and T" = 3600 have been considered, respectively?. In order to conduct size
experiments the analyzed models have been the following:

1. A Gaussian distribution, zero mean and unit variance, N(0,1)
2. A Uniform distribution on the (0,1) interval, U(0,1)
3. A Chi-square distribution with 4 degrees of freedom, x?

4. A Student’s t-distribution with 4 degrees of freedom, t4

FEach process was repeated 2000 times and the proportion of rejections of the i.i.d. null was
calculated using a nominal size of 1, 5 and 10 per cent.

Table 1 reports the empirical size of our test under the four i.i.d. models. As it can be seen, even
for the smallest considered data set (that is, for m = 4 where T' = 120 = 5m)!), the test is reasonably
well sized, with rejection frequencies occurring at approximately their nominal rates. The finite
sample level does not differ from the asymptotic level. Furthermore, test’s size improves as T
increases (T > 5m!). The same behavior is obtained (although not reported here for sake of space)
for m = 5 and m = 6. These observations are relevant because as Hong and White (2005) note
the finite sample level of their own test (and in general of the previous entropy-based tests) differs
from the asymptotic one, not only for small samples but also for large samples. As a result, the
G(m) test does not need computing non-naive bootstrap procedures in order to compute the test.

“Notice that according to subsection 3.2, the selected sample sizes (T') correspond to the lowest sample sizes for
which, as a rule, we recomend to compute the test.



These results also show that the new test behaves well when facing several random distributions
with different shaped probability density functions such as fat-tailed, either symmetric or not, and
infinitely fat-tailed like the uniform distribution.

Table 1. Size of the G(m) test

G(4)
T =120 T =240 T =580
1% 5% 10% 1% 5% 10% 1% 5% 10%
N(0,1) 1,90 545 10,49 1.65 5.40 10.40 1.60 4.49 10.22
U0,1) 200 6,15 10,32 1.40 445 10.21 1.81 5.10 10.15
p% 2,05 6,14 10,43 1.85 4.95 10.10 151  4.67 10.03
ta 1,85 560 10,16 1.62 430 9.51 1.12 500 9.63

Notes: For each distribution, 2000 simulation iterations for G(m) test have been computed.

On the other hand, in order to study the power of the G(m) test, we have considered several
data generating processes (DGPs) that have been previously analyzed in the relevant literature:
Several processes studied in Granger and Lin (1994) have been chosen because of its rich nonlinear
variety, and other selected models have been analyzed with different independence tests like those
mainly found in Hong and White (2005), Skaug and Tjgstheim (1993a, 1996), Robinson (1991),
Delgado (1996), Hong (1998) and Hong (2000). The models under scrutiny are the following:

DGP 1 X;=¢ +0.8¢7 4,

DGP 2 X; =¢; +0.8¢7 ,,

DGP 3 X; =¢; +0.8¢7 5,

DGP 4 X;=¢; +0.8¢2 | + 087, + 0.8¢7 5,
DGP5 X;= 0.8|Xt_1|0'5 €,

DGP 6 X; = sign(X;_1) + 0.43¢,,

DGP 7 Xt = O.3Xt71 + &¢,

DGP 8 Xt = thl + ¢y

DGP 9 X; =0.8;_1X;_1+ ey,

DGP 10 X;=4X; 1(1 - X;)

DGP 11 - Xy =+/hie, he = (1+08X2 )

where ¢; ~ iid, N(0,1).

For each DGP, we first generate T + 200 observations and then discard the first 200 to mitigate
the impact of initial values. DGP’s 1 —4 are MA processes of order 1, 2,3 and 3 respectively. DGP’s
5 — 7 are AR(1) autoregressions with various decaying memory properties. DGP 8 is a simple (1)
with persistent memory and DGP 9 is bilinear with white noise characteristics. DGP 10 is the
logistic function generating chaotic dynamics. DGP 11 is a ARCH(1) process commonly employed
in financial applications.

We shall use these models to evaluate the power of our nonparametric dependence test. A
minimum of 2000 Monte Carlo replications from each model are computed. Code was written in
Mathematica 5.2 programming language.

Table 2 reports the empirical rejection rates of G(4), G(5), G(6) under DGPs 1-11, for T' = 120,
T = 600 and T" = 3600, respectively. As we can see, the power of our test against dependent models
(either linear or non-linear) is near 100% when T' = 3600. For T' = 600 and regarding the nonlinear
moving average processes (DGPs 1-4), the power of the G(m) test is significantly high at all levels,
except, perhaps, for the DGP 3 at 1%. This test’s performance does not hold for the smallest data
set. Concerning the AR(1) processes (DGPs 5-7) the power of the test for T = 600 is very close to



100% at all levels, while for T = 120 the results are not so optimistic. The behavior of the test,
in terms of power, in presence of an I(1) process with persistent memory (DGP 8) is near 100%,
regardless the sample size. The performance of the test for the bilinear with white noise (DGP 9)
is very high at all levels, except for the case of T'= 120. As expected, the chaotic nature of process
(DGP 10) is always capture regardless the sample size. Finally, for the ARCH model (DGP 11),
our test only performs well for the largest sample size.

Table 2. Power of the G(m) test

G(a) G(5) G (6)
T =120 T =600 T = 3600

1% 5% 10% 1% 5% 10% 1% 5% 10%
DGP 1 15.60 27.15 36.75 97.50 99.30 99.75 100 100 100
DGP 2 5.70 14.45 22.55 80.65 91.10 94.35 100 100 100
DGP 3 3.15 10.40 14.35 49.05 65.50 72.20 100 100 100
DGP 4  44.80 63.90 100 100 100 100 100 100 100
DGP 5 9.25 19.30 26.70 61.70 78.45 85.81 100 100 100
DGP 6 19.25 34.50 44.70 99.65  99.95 100 100 100 100
DGP 7 8.58 20.01  28.00 71.65 85.10 89.45 100 100 100
DGP 8 91.75 96.60 98.10 100 100 100 100 100 100
DGP 9 16.60 31.55 42.25 100 100 100 100 100 100
DGP 10 100 100 100 100 100 100 100 100 100

DGP 11  3.45 9.75  14.85 31.50  49.15  59.85 96.25 98.80 100

Notes: For each DGP, 2000 simulation iterations for G(m) test have been computed

Two compatible reasons can explain why DGP 11 is not captured by G(4) and G(5). One relies
on the fact that we are computing the tests over small sample sizes. The other one is that the
number of analyzed symbols (24 symbols for m = 4, and 120 symbols for m = 5) is not enough to
capture the complexity of ARCH processes. Figure 1 shows the power of G(4) test for increasing
sample sizes (T goes from 120 to 5000). By inspection of Figure 1 it is evident that valuable powers
are attained for large sample sizes at all nominal levels®. Sample sizes greater than 5000 are needed
for G(4) to obtain, at all nominal levels, powers larger than 75%. This fact underlines the central
role played by the number of analyzed symbols for a given data set. In this regard, observe from
Table 2 that the power against DGP 11 is almost 100 per cent for 7" = 3600 and m = 6. Note
that this power’s gain is obtained via rising the number of symbols with which the data set is
analyzed, and not merely by increasing the sample size (7). Therefore, even though the sample
size is certainly important for G(m) test’s power, it seems to be more relevant the role played by
the number of symbols used for detecting dependence.

3The same occurs for m = 5.
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Figure 1: Powers of G(4) test for increasing sample sizes T : 120 = 5000

4.2 Comparison with other tests for independence

So far, it has been shown that the G(m) statistic has a standard limiting distribution under the null,
it is distribution free, it is consistent against a broad class of alternatives. In addition the test seems
to be well-behaved in finite samples sizes. We compare now the new statistic for independence with
other existing tests that also deal with serial dependence (including smoothed and non-smoothed
procedures). The comparison is made (i) taking into account some statistical properties of the
tests under consideration and (ii) comparing the power of the tests under study against several
alternatives.

In comparison with other tests for independence based also on entropy concepts (Robinson
(1991); Skaug and Tjgstheim (1996); Hong and White (2005)), the main advantages of our test
are the following: (a) It does not require to select many free parameters, in fact, the unique free
parameter is the number of symbols (m!) upon which permutation entropy is computed. (b) The
test is well defined for both continuous and discrete processes. (c¢) The test is invariant under
monotonous (either linear or nonlinear) transformation of the data set. Invariance is important
since otherwise inadvertent transformations would produce different levels of dependence. Notice
that this property is essential when testing independence in time series. For instance in Hong
and White’s test, in order to ensure that the support of the time series belongs to the compact
interval [0,1] they make a logistic transformation (monotonous) of the data. Therefore if the
test is invariant under monotonous transformations, then the condition on the support is not a
restriction.  (d) G(m) test does not need any estimation of the density function nor the use of
stochastic kernels for its computation, something that does not occur with most of the entropy-
based tests for serial dependence. (e) No moment condition is required; this is attractive for time
series whose variances are infinite, as usually arises in economics and high frequency financial time
series. In sum, advantages (a) — (e) make the G(m) test not only more general and less dependent
on free choice parameters than other entropy-based tests, but also easier to compute and shorter
in computing running time.

On the other hand, we emphasize that a number of independence tests (Skaug and Tjgstheim,
(1993a); Delgado (1996); Hong (1998); and Hong (2000), among others) which are based on the
empirical distribution function (or on the characteristic function), avoid estimation by smoothing
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procedures. Note that these tests rest on the fact that the null hypothesis holds if and only if the
joint distribution equals the product of the marginals, while our test uses a new technique, namely,
it rests on the uniformity of symbols’ distribution under the null of independence. Some of these
tests share in common with the G(m) test part but not all of its advantages: for example, Skaug and
Tjgstheim (1993a), Delgado (1996) and Hong (2000) test procedures have a non-standard limiting
distribution; and the tests developed by Hong (1998) require stronger assumptions on the DGP to
guarantee consistency; in addition, the free selection of kernel functions is necessitated in order to
implement the tests.

Since the G(m) test is strongly powerful when the sample size increases (due basically to the
increase of the number of symbols under scrutiny), we have conducted a power comparison among
different tests (Skaug and Tjgstheim, (1993a); Delgado (1996); Hong (1998); and Hong (2000)) for
independence for a relatively small sample size, T = 200.

Skaug and Tjgstheim’s (1993a) statistic and Hong’s (1998) statistic are closely based on the
Hoeffding (1948) dependence measure

T
&) = (T—3) > b} (X, Xi ) (22)
t=j+1
where
pj(x,y) = Fj(z,y) — Fj(x,00)Fj(c0,y) j=1,..,T—-1
and
T
Fi(zy)=(T—j) > 1(Xi <a)1(Xe; < y)
t=j+1

being 1(-) the indicator function.
The Skaug and Tjgstheim (1993a) statistic Tgrpy = (T —1) >0, 62(4), under the null of
independence, converges in distribution to
o o
> oD Gm T Um) G, (23)

7=11=1

where X?l(p) are independent Xg—variables. We generate 10000 realizations of (23) where j =
1,...,200 and [ = 1, ...,200, to obtain critical values.
Hong’s (1998) statistic

T— . N Ay _
- g0 it KU/ (T~ )5*() — 367"}
p) — T-2 .
{2720k }
where we have selected, following Hong (2000), the Daniell kernel k(z) = sin(wz)/7z, is asymptot-

ically N(0,1).
Delgado’s (1996) statistic is given by

Trr(

2

m T p p T
TD(p) = Z m_l Z H 1 (Xt—j < Xs—j) — H m_l Z 1 (Xt_]‘ < Xs—j)
7=0

t=1 s=p+135=0 s=p+1

and its limit distribution is non-standard. Its asymptotic critical values can be approximated in
different ways (see Delgado, (1996)), however, since we focus only on p = 1, and since in this
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case Tp(p—1) has the same asymptotic distribution as the Blum et al. (1961) test, we then use the
tabulated values given in Blum et al. Notice that statistics T'sp(,) and T, also involve the choice
of lag order p.

In this power comparison, we also consider the two generalized statistics presented in Hong
(2000). Importantly both tests, as happens with G(m) — test, do not depend on lag (p) selection.

These tests are the following,

-1 N2

Toony = S L =0)5°G)
= (n)?

where now 62(j) = T2, 321, P} (X¢, X)), and

= 1/ V2sin(jm\)
_ 1/2
Toxs = 255, sup ;(T—J) 12pi (Xi, Xs) — |

Both statistics have a non-standard asymptotic distribution. In consequence, empirical critical
values have to be used. In this paper, given the rapid convergence of empirical critical values for
these tests, we have utilized critical values given in Hong (2000).

Lastly, we have also included the power of three smooth tests given in Hong and White (2005),
namely, Robinson (1991), R(p); Skaug and Tjgstheim (1996), J(p), and Hong and White’s test,
HW ((p). To save space, in Table 3 we only report power at the 1% level based on 2000 iterations
of each of the following alternatives: DGP1, DGP5, DGP7, DGP9 and DGP11.

Table 3. Power Comparison

Permutation Entropy Test Smoothed Tests Non-smoothed Tests
DGPs G(4) HW(@) R(1) J(A)  Tsray Tpay Tuw Teem  Teks
DGP1 28.0 49.8 37.2 43.2 36.9 36.8 36.9 37.1 22.2
DGP5 13.1 10.0 8.4 7.4 78.8 78.9 79.1 69.0 66.5
DGP7 14.0 7.4 7.6 5.8 80.1 79.6 79.6 72.5 48.3
DGP9 31.7 86.8 75.4 92.4 83.1 83.1 79.7 72.1 48.9
DGP11 4.1 41.0 25.2 68.0 8.9 8.7 8.7 4.2 3.9

Notes: (i) DGP1, X = £;40.8¢7_;DGP5, X, = 0.8|X, |%5+¢4;;DCP7, X, = 0.3X;_1+¢¢;
DGPY, X ,= 0854 1X; 1+4e4;DGP1L, X,=v/Ryer, hy= (1 4+ 0.8X7 ), where g4~ N(0,1).

(ii) For each DGP, 2000 simulation iterations for each test have been computed.

We observe the following:

(a) Kernel-based smoothed nonparametric entropy tests dominates other tests against the bilinear,
ARCH and nonlinear moving average models, while the permutation entropy new test and
clearly the rest of non-smoothed tests dominate against AR(1) and fractional AR(1) models.

(b) Those tests that do not depend on selecting lag-parameter have less power than others.

(c¢) Comparing with non-smoothed tests (ie., G(4), Tsr, Tp, T, Tcom and Tgis), the G(4)-test
has less power than other non-smoothed tests when the lag parameter is correctly chosen.
Note that in this power comparison p = 1 and models of Table 3 are all first-order dependence
alternatives. However, in practice, p is unknown and hence it is possible that two different lag
orders may give conflicting conclusions. It is natural then to question what is the behavior of
such tests when a wrong lag order is chosen to compute non-smoothed corresponding statistic.
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To answer the question indicated in (c) we have firstly compute the power of G(4), Tsr, Tp, Tr, Tacom

and Tgis against the nonlinear model (DGP3) for T'= 200 and T' = 400. Results at 1% level are
presented in Table 4.

Table 4. Power of Non-smoothed Tests for Xt:£t+0.8£f2/73‘

G4) Tsray Tpay Tuwy Tecm Teks
T =200 4.5 2.0 1.9 1.9 1.9 1.8

T =400 46.1 2.1 2.0 1.9 2.8 2.6
Note: Rejection frequencies at 1 per cent level for 2000 iterations of DPG 3.

From Table 4 it seems that the G(4) test dominates other non-smoothed statistics for indepen-

dence when these tests are computed based on a wrong lag order choice (p) regarding the unknown
underlying process. Note further that when the sample size increases, statistics that do not depend
on lag order (ie., G(4), Tgeom and Tgrs) notably improve their power performance (this is par-
ticularly relevant for the G(4) test). On the contrary, for the remainder tests (Tsp, Tp and Tg),
power almost does not vary by changing the sample size.

In sum, the new test has desirable theoretical statistical properties. Some of these properties are

shared by other tests for independence, either smoothed or non-smoothed tests. For relatively small
sample sizes, our test dominates other tests when prior information on the dependence structure is
not available (as it usually occurs), while the opposite happens if the lag dependence structure is
known beforehand.

5 Empirical Applications

This section illustrates our test by using the G(m) statistic to explore possible serial dependences
in the following well studied daily financial returns: Dow Jones Industrial Average (DJIA), S&P
500 and three exchange rate time series, namely, the French franc, the German mark and the
Canadian dollar, all against the U.S. dollar. Daily returns of Dow Jones Industrial Average (DJIA)
ranges from January 3, 1928 to October 18, 2000. S&P 500 ranges from January 1, 1992 to
December 31, 2003. Finally daily exchange rate’s returns go from January 4, 1971 to December
31, 1998. Returns, Ry, are defined as the difference of logarithm of the stock price index (or of
the corresponding exchange rate) (R, = Aln P;), where P, is the daily closing price index (or
the closing exchange rate). We are interested in testing independence? of the {R;} as a way of
examining the correctness of the random walk hypothesis for the logged prices (or for the logged
the three exchange rates).

Table 5. G(m) Test for Independence for several financial returns
DIJIA S&P 500  French Franc German Mark Canadian Dollar
G(m) 2151.01 152.94 3597.55 3480.00 3980.14

p-value (<0.0001) (0.019) (<0.0001) (<0.0001) (<0.0001)
Note: The G(5) has been used for the S&P500 data set, while the G(6) has been used otherwise.

Provided that T > 3600 for all data sets except for the S&P 500 data set, we have computed

the G(m) test for m = 6 and m = 5, respectively’. Results for the five data sets are reported in
Table 5. As can be observed, the null of independence is rejected at 1 per cent significance level
for all studied returns. These results indicate that the DJIA daily stock returns, the S&P 500

4The exchange rate time series under study in this section have been recently analyzed looking for chaotic behavior

in Fernandez et al. (2005); the same happens for the DJIA data set, see Shintani and Linton (2004). Hong and White
(2005) have explored for possible nonlinear serial dependence in the daily S&P 500 stock price index.

®See subsection 3.2.
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return index, and the three exchange rate time series do not follow a random walkS. However such
rejection of the random walk hypothesis might be due to potential strong volatility clustering (see
Ding et al., 1993).

Given that volatility clustering might be present in stock returns (and then may have contributed
to the rejection of the random walk hypothesis), we fit an ARMA(p,q)-GARCH(1,1) model to each
time series under consideration. To this end the quasi-maximum likelihood estimation (QMLE)
method has been used, and the lags have been selected according to the optimizer of Schwarz’s
Bayesian Criterion. The corresponding significant estimated models are presented in Appendix 2.
We now apply the G(m) test to the standardized residuals {ét}?zl of those models that, accord-
ing to our estimations, have significant estimated parameters. We note that like test procedures
described in section 4, our theory is based on observed raw data rather than estimated residuals,
however it is plausible that parameter estimation uncertainty has no impact asymptotically, as the
symbols’ hypothetical distribution does not contain additional unknowns parameters. Moreover, to
counter the problem of potential changes in the finite sample distribution due to test over standard-
ized residuals, we simulate an empirical distribution of G(m) statistic by first generating the true
ARMA (p,q)-GARCH(1,1) process, then estimating a correctly specified model-on the generated
data, and then we calculate the G(m) statistic of the standardized residuals. Finally, we compute
the p-value (denoted by p*-value) as the fraction of the simulations runs that gave a G(m) value
greater than that obtained by the ARMA (p,q)-GARCH(1,1) standardized residuals, {£;}/_, (from
the original returns under study). Results are reported in Table 6, where p*-values of the G(m)
test are given in parenthesis.

Table 6. G(m) test for Independence for Standardized Residuals
S&P 500  French Frank  German Mark ~Canadian Dollar
G(m) test 153.84 725.22 784.75 711.65

p*-value (0.016) (0.429) (0.047) (0.601)
Note: The G(5) has been used for S&P500 residuals, while the G(6) has been used otherwise.

Our results show that the ARMA(1,1)-GARCH(1,1) model cannot (at the 5 per cent level) fully
capture the dynamics of the S&P 500 daily returns. This is consistent with Hong and White’s (2005)
results which also included a similar-conclusion by using Robinson’s (1991) test. This empirical
finding suggests that either higher-order conditional moments are time-varying, or conditional mean
and variance are misspecified. The same occurs for the German Mark daily returns. On the other
hand, it seems that rejection of the random walk hypothesis for the French Franc and the Canadian
Dollar daily returns was due to clustering volatility”.

6 Conclusions

From a general and wide perspective, this paper expands the interrelationship between Information
Theory, statistics and inference, and the research line based on entropy concepts. Particularly, the
present paper attempts to analyze limited and noisy data using minimal assumptions. In this
fashion, we have proposed a new test for independence which relies on the concept of entropy.
This concept, as presented here, is formulated in terms of symbols obtained from ordinal patterns
found in a time series. In other words, we do not work with the actual observed values which are

%1t is also interesting to comment that the same conclusions are obtained by fixing m = 4 and m = 5. Although
not reported in the paper, these results are available from the authors.

"Interestingly, the same conclusions are obtained by using standard p-values, i.e. considering that parameter
estimation uncertainty has no impact on the distribution of the G(m) statistic, given the sample sizes here considered.

15



real numbers, rather we take the number of order patterns in the observed series as a measure of
its complexity. Although this methodology loses a certain amount of detailed information, some
essential features of the dynamics are kept, among others, dependence or independence of the data
generating process.

Independence is one of the most valuable notions in statistics and econometrics, therefore testing
for serial independence is crucial. In this regard and in connection with entropy econometrics,
certain amount of significant research has tested for independence by using smoothed nonparametric
entropy measures. Robinson (1991), Skaug and Tjgstheim (1996), and recently Hong and White
(2005) have provided an asymptotic distribution theory for certain entropy measures, and as a
result they have obtained some tests for independence. These tests rely on kernel-based estimation
techniques, and hence kernels and bandwidths have to be freely selected by the researcher. Most
importantly, the finite sample level of these tests differs from the asymptotic one; furthermore, as
Hong and White point out, asymptotic theory may not work well even for relatively large samples.
Also of relevant importance is that all known entropy-based tests for independence make several
assumptions about the data generating process that restrict the general applicability of the test.

As has been shown, this paper provides the asymptotic distribution (standard) of an affine
transformation of the permutation entropy under the null of independence. The theoretical dis-
tributions allows us to construct a test for independence which is consistent against a broad class
of serial dependences (including those with zero autocorrelation). Importantly for our test, the
finite sample level does not differ from the asymptotic level, which is an interesting property that
guaranties general applicability and reproducibility of the test.. Moreover, the test is invariant
under monotonous transformations of data. Invariance makes our procedure very attractive in
practice. Most importantly, our test makes no assumptions about the continuous or discrete nature
of the data generating process and of its marginal densities. In sum, it is more general than other
entropy-based tests. Two final advantages are its computational simplicity and hence its short
running computational times.

An empirical application to daily Dow Jones Industrial Average price index; to S&P 500 index;
and to three daily exchange rate returns has illustrated our approach by testing the random walk
hypothesis on these returns.

7 Appendix 1: Proofs

Proof of Theorem 3.2

Proof. First notice that the estimator h(m) = — XS: prIn(pr) of h(m), where pr = 7=, is
TESM
consistent because pTlim D = pr for every stationary process (see Bandt and Pompe (2002)), and
—00
hence
p lim h(m) = h(m). (24)
T—o00

Recall that G(m) = 2(T — m + 1)[In(m!) — A(m)] and 0 < h(m) < In(m!). Denote by H(m) =
In(m!) — h(m), so G(m) = 2(T — m + 1)H(m). Then by (24) it follows that

p Jim H(m) = H(m) (25)
Let 0 < C < oo with C' € R and take T' large enough such that

C

ST —mi < H: (26)
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Then, under serial dependence of order < m, it follows that H(m) # 0 and thus

Pr[2(T—m+1)H (m)>C]
(

[2(T — m + 1)(H(m) — H(m)) > C = 2(T —m + 1)H(m)] =
Pr2(T —m+1)(H(m)— H(m)) <2(T —m+1)H(m) — C] =
Pr[H(m) — H(m) < H(m) — 2(T_Cm+1)]. (27)
Therefore, by (25), (26) and (27) we have that
Jim Pr(G>C)=1
as desired. ]

8 Appendix 2: ARMA (p,q)-GARCH(1,1) Models

S&P 500 estimated model:

Xy = 0.0003 4 0.8222X;_; — 0.8516e4-1 + th 1/2

(0.0001)  (0.1043) (0.0960)
hy = 5.86E — 07+ 0.0662h,_127 1 + 0.9305h;_1
(1.52E—-07) (0.0108) (0.0089)

where the number inside the parentheses are robust QMLE standard errors.
French Franc estimated model:

X, = L66E—05+0.0348X,_1 + &7/
(7.77 E=05)  (0.0119)

hy = 1A7E — 08 + 0.1652hy_127 | + 0.8742h;_,
(2.4E—09) (0.0201) (0.0187)

German Mark estimated model:

X, = —0.0001 +0.0328X,_ + &h,/>
(8.02 E—05)  (0.0119)

h = T7.37TE — 07+ 0.0909h,_127 | + 0.8942h,_;
(3.9E—07) (0.0201) (0.0287)

Canadian Dolar estimated model:

X, = 3.79E — 03 +0.0526X,_1 + &k,
(3.18 E-03)  (0.0110)

hy = 4.13E—08+0. 0986ht 161 +0. 9003ht 1
(3.9E—07)  (0.0083) (0.0075)
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