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geer@stat.math.ethz.ch

Abstract
We consider the problem of estimating a sparse linear regression vector β∗ under a gaussian
noise model, for the purpose of both prediction and model selection. We assume that prior
knowledge is available on the sparsity pattern, namely the set of variables is partitioned into
prescribed groups, only few of which are relevant in the estimation process. This group sparsity
assumption suggests us to consider the Group Lasso method as a means to estimate β∗. We
establish oracle inequalities for the prediction and ℓ2 estimation errors of this estimator. These
bounds hold under a restricted eigenvalue condition on the design matrix. Under a stronger
coherence condition, we derive bounds for the estimation error for mixed (2, p)-norms with
1 ≤ p ≤ ∞. When p = ∞, this result implies that a threshold version of the Group Lasso
estimator selects the sparsity pattern of β∗ with high probability. Next, we prove that the rate
of convergence of our upper bounds is optimal in a minimax sense, up to a logarithmic factor,
for all estimators over a class of group sparse vectors. Furthermore, we establish lower bounds
for the prediction and ℓ2 estimation errors of the usual Lasso estimator. Using this result, we
demonstrate that the Group Lasso can achieve an improvement in the prediction and estimation
properties as compared to the Lasso.

An important application of our results is provided by the problem of estimating multi-
ple regression equation simultaneously or multi-task learning. In this case, our result lead to
refinements of the results in [22] and allow one to establish the quantitative advantage of the
Group Lasso over the usual Lasso in the multi-task setting. Finally, within the same setting, we
show how our results can be extended to more general noise distributions, of which we only
require the fourth moment to be finite. To obtain this extension, we establish a new maximal
moment inequality, which may be of independent interest.



1 Introduction
Over the past few years there has been a great deal of attention on the problem of estimating a
sparse1 regression vector β∗ from a set of linear measurements

y = Xβ∗ +W. (1.1)

Here X is a given N × K design matrix and W is a zero mean random variable modeling the
presence of noise.

A main motivation behind sparse estimation comes from the observation that in several practi-
cal applications the number of variables K is much larger than the number N of observations, but
the underlying model is known to be sparse, see [8, 12] and references therein. In this situation,
the ordinary least squares estimator is not well-defined. A more appropriate estimation method
is the ℓ1-norm penalized least squares method, which is commonly referred to as the Lasso. The
statistical properties of this estimator are now well understood, see, e.g., [4, 6, 7, 18, 21, 36] and
references therein. In particular, it is possible to obtain oracle inequalities on the estimation and
prediction errors, which are meaningful even in the regime K ≫ N .

In this paper, we study the above estimation problem under additional structural conditions on
the sparsity pattern of the regression vector β∗. Specifically, we assume that the set of variables can
be partitioned into a number of groups, only few of which are relevant in the estimation process.
In other words, not only we require that many components of the vector β∗ are zero, but also
that many of a priori known subsets of components are all equal to zero. This structured sparsity
assumption suggests us to consider the Group Lasso method [39] as a mean to estimate β∗ (see
equation (2.2) below). It is based on regularization with a mixed (2, 1)-norm, namely the sum,
over the set of groups, of the square norm of the regression coefficients restricted to each of the
groups. This estimator has received significant recent attention, see [3, 10, 16, 17, 19, 25, 24, 26,
28, 31] and references therein. Our principal goal is to clarify the advantage of this more stringent
group sparsity assumption in the estimation process over the usual sparsity assumption. For this
purpose, we shall address the issues of bounding the prediction error, the estimation error as well
as estimating the sparsity pattern. The main difference from most of the previous work is that
we obtain not only the upper bounds but also the corresponding lower bounds and thus establish
optimal rates of estimation and prediction under group sparsity.

A main motivation for us to consider the group sparsity assumption is the practically important
problem of simultaneous estimation the coefficient of multiple regression equations

y1 = X1β
∗
1 +W1

y2 = X2β
∗
2 +W2

...
yT = XTβ

∗
T +WT .

(1.2)

Here X1, . . . , XT are prescribed n × M design matrices, β∗
1 , . . . , β

∗
T ∈ RM are the unknown

regression vectors which we wish to estimate, y1 . . . , yT are n-dimensional vectors of observations
and W1, . . . ,WT are i.i.d. zero mean random noise vectors. Examples in which this estimation

1The phrase “β∗ is sparse” means that most of the components of this vector are equal to zero.
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problem is relevant range from multi-task learning [2, 23, 28] and conjoint analysis [14, 20] to
longitudinal data analysis [11] as well as the analysis of panel data [15, 38], among others. We
briefly review these different settings in the course of the paper. In particular, multi-task learning
provides a main motivation for our study. In that setting each regression equation corresponds to a
different learning task; in addition to the requirement that M ≫ n, we also allow for the number
of tasks T to be much larger than n. Following [2] we assume that there are only few common
important variables which are shared by the tasks. That is, we assume that the vectors β∗

1 , . . . , β
∗
T

are not only sparse but also have their sparsity patterns included in the same set of small cardinality.
This group sparsity assumption induces a relationship between the responses and, as we shall see,
can be used to improve estimation.

The model (1.2) can be reformulated as a single regression problem of the form (1.1) by setting
K = MT , N = nT , identifying the vector β by the concatenation of the vectors β1, . . . , βT and
choosing X to be a block diagonal matrix, whose blocks are formed by the matrices X1, . . . , XT ,
in order. In this way the above sparsity assumption on the vectors βt translate in a group sparsity
assumption on the vector β∗, where each group is associated with one of the variables. That is,
each group contains the same regression component across the different equations (1.2). Hence
the results developed in this paper for the Group Lasso apply to the multi-task learning problem as
a special case.

1.1 Outline of the main results
We are now ready to summarize the main contributions of this paper.

• We first establish bounds for the prediction and ℓ2 estimation errors for the general Group
Lasso setting, see Theorem 3.1. In particular, we include a “slow rate” bound, which holds
under no assumption on the design matrix X . We then apply the theorem to the specific
multi-task setting, leading to some refinements of the results in [22]. Specifically, we demon-
strate that as the number of tasks T increases the dependence of the bound on the number of
variables M disappears, provided that M grows at the rate slower than exp(T ).

• We extend previous results on the selection of the sparsity pattern for the usual Lasso to the
Group Lasso case, see Theorem 5.1. This analysis also allows us to establish the rates of
convergence of the estimators for mixed (2, p)-norms with 1 ≤ p ≤ ∞ (cf. Corollary5.1).

• We show that the rates of convergence in the above upper bounds for the prediction and
(2, p)-norm estimation errors are optimal in a minimax sense (up to a logarithmic factor) for
all estimators over a class of group sparse vectors β∗, see Theorem 6.1.

• We prove that the Group Lasso can achieve an improvement in the prediction and estimation
properties as compared to the usual Lasso. For this purpose, we establish lower bounds for
the prediction and ℓ2 estimation errors of the Lasso estimator (cf. Theorem 7.1) and show
that, in some important cases, they are greater than the corresponding upper bounds for the
Group Lasso, under the same model assumptions. In particular, we clarify the advantage of
the Group Lasso over the Lasso in the multi-task learning setting.
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• Finally, we present an extension of the multi-task learning analysis to more general noise
distributions having only bounded fourth moment, see Theorems 8.1 and 8.2; this extension
is not straightforward and needs a new tool, the maximal moment inequality of Lemma 9.1,
which may be of independent interest.

1.2 Previous work
Our results build upon recently developed ideas in the area of compressed sensing and sparse
estimation, see, e.g., [4, 8, 12, 18] and references therein. In particular, it has been shown by
different authors, under different conditions on the design matrix, that the Lasso satisfies sparsity
oracle inequalities, see [4, 6, 7, 21, 18, 36, 41] and references therein. Closest to our study is
the paper [4], which relies upon a Restricted Eigenvalue (RE) assumption as well as [21], which
considered the problem of selection of sparsity pattern. Our techniques of proofs build upon and
extend those in these papers.

Several papers analyzing statistical properties of the Group Lasso estimator appeared quite
recently [3, 10, 16, 19, 25, 24, 26, 31]. Most of them are focused on the Group Lasso for additive
models [16, 19, 24, 31] or generalized linear models [25]. Special choice of groups is studied
in [10]. Discussion of the Group Lasso in a relatively general setting is given by Bach [3] and
Nardi and Rinaldo [26]. Bach [3] assumes that the predictors (rows of matrix X) are random
with a positive definite covariance matrix and proves results on consistent selection of sparsity
pattern J(β∗) when the dimension of the model (K in our case) is fixed and N → ∞. Nardi
and Rinaldo [26] address the issue of sparsity oracle inequalities in the spirit of [4] under the
simplifying assumption that all the Gram matrices Ψj (see the definition below) are proportional
to the identity matrix. However, the rates in their bounds are not precise enough (see comments in
[22]) and they do not demonstrate advantages of the Group Lasso as compared to the usual Lasso.
Obozinski et al. [28] consider the model (1.2) where all the matrices Xt are the same and all their
rows are independent Gaussian random vectors with the same covariance matrix. They show that
the resulting estimator achieves consistent selection of the sparsity pattern and that there may be
some improvement with respect to the usual Lasso. Note that the Gaussian Xt is a rather particular
example, and Obozinski et al. [28] focused on the consistent selection, rather than exploring
whether there is some improvement in the prediction and estimation properties as compared to
the usual Lasso. The latter issue has been addressed in our work [22] and in the parallel work of
Huang and Zhang [17]. These papers considered only heuristic comparisons of the two estimators,
i.e., those based on the upper bounds. Also the settings treated there did not cover the problem in
whole generality. Huang and Zhang [17] considered the general Group Lasso setting but obtained
only bounds for prediction and ℓ2 estimation errors, while [22] focused only on the multi-task
setting, though additionally with bounds for more general mixed (2, p)-norm estimation errors and
consistent pattern selection properties.

1.3 Plan of the paper
This paper is organized as follows. In Section 2 we define the Group Lasso estimator and describe
its application to the multi-task learning problem. In Sections 3 and 4 we study the oracle properties
of this estimator in the case of Gaussian noise, presenting upper bounds on the prediction and
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estimation errors. In Section 5, under a stronger condition on the design matrices, we describe
a simple modification of our method and show that it selects the correct sparsity pattern with an
overwhelming probability. Next, in Section 6 we show that the rates of convergence in our upper
bounds on prediction and (2, p)-norm estimation errors with 1 ≤ p ≤ ∞ are optimal in a minimax
sense, up to a logarithmic factor. In Section 7 we provide a lower bound for the Lasso estimator,
which allows us to quantify the advantage of the Group Lasso over the Lasso under the group
sparsity assumption. In Section 8 we discuss an extension of our results for multi-task learning to
more general noise distributions. Finally, Section 9 presents a new maximal moment inequality
(an extension of Nemirovski’s inequality from the second to arbitrary moments), which is needed
in the proofs of Section 8.

2 Method
In this section, we introduce the notation and describe the estimation method, which we analyze in
the paper. We consider the linear regression model

y = Xβ∗ +W, (2.1)

where β∗ ∈ RK is the vector of regression coefficients, X is an N ×K design matrix, y ∈ RN is
the response vector and W ∈ RN is a random noise vector which will be specified later. We also
denote by x⊤

1 , . . . , x
⊤
N the rows of matrix X . Unless otherwise specified, all vectors are meant to

be column vectors. Hereafter, for every positive integer ℓ, we let Nℓ be the set of integers from 1
and up to ℓ. Throughout the paper we assume that X is a deterministic matrix. However, it should
be noted that our results extend in a standard way (as discussed, e.g., in [4], [8]) to random X
satisfying the assumptions stated below with high probability.

We choose M ≤ K and let the set G1, . . . , GM form a prescribed partition of the index set NK

in M sets. That is, NK = ∪M
j=1Gj and, for every j ̸= j′, Gj ∩ Gj′ = ∅. For every j ∈ NM , we

let Kj = |Gj| be the cardinality of Gj and denote by XGj
the N ×Kj sub-matrix of X formed by

the columns indexed by Gj . We also use the notation Ψ = X⊤X/N and Ψj = X⊤
Gj
XGj

/N for the
normalized Gram matrices of X and XGj

, respectively.
For every β ∈ RK we introduce the notation βj = (βk : k ∈ Gj) and, for every 1 ≤ p < ∞,

we define the mixed (2, p)-norm of β as

∥β∥2,p =

 M∑
j=1

∑
k∈Gj

β2
k


p
2


1
p

=

(
M∑
j=1

∥βj∥p
) 1

p

and the (2,∞)-norm of β as
∥β∥2,∞ = max

1≤j≤M
∥βj∥,

where ∥ · ∥ is the standard Euclidean norm.
If J ⊆ NM we let βJ be the vector (βjI{j ∈ J} : j ∈ NM), where I{·} denotes the indicator

function. Finally we set J(β) = {j : βj ̸= 0, j ∈ NM} and M(β) = |J(β)| where |J | denotes
the cardinality of set J ⊂ {1, . . . ,M}. The set J(β) contains the indices of the relevant groups
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and the number M(β) the number of such groups. Note that when M = K we have Gj = {j},
j ∈ NK and ∥β∥2,p = ∥β∥p, where ∥β∥p is the ℓp norm of β.

The main assumption we make on β∗ is that it is group sparse, which means that M(β∗) is
much smaller than M .

Our main goal is to estimate the vector β∗ as well as its sparsity pattern J(β∗) from y. To this
end, we consider the Group Lasso estimator. It is defined to be a solution β̂ of the optimization
problem

min

{
1

N
∥Xβ − y∥2 + 2

M∑
j=1

λj∥βj∥ : β ∈ RK

}
, (2.2)

where λ1, . . . , λM are positive parameters, which we shall specify later.
In order to study the statistical properties of this estimator, it is useful to present the optimality

conditions for a solution of the problem (2.2). Since the objective function in (2.2) is convex, β̂ is
a solution of (2.2) if and only if 0 (the K-dimensional zero vector) belongs to the subdifferential
of the objective function. In turn, this condition is equivalent to the requirement that

−∇
(

1

N
∥Xβ − y∥2

)
∈ 2∂

(
M∑
j=1

λj∥β̂j∥

)
,

where ∂ denotes the subdifferential (see, for example, [5] for more information on convex analy-
sis). Note that

∂

(
M∑
j=1

λj∥βj∥

)
=

{
θ ∈ RK : θj = λj

βj

∥βj∥
if βj ̸= 0, and ∥θj∥ ≤ λj if β

j = 0, j ∈ NM

}
.

Thus, β̂ is a solution of (2.2) if and only if

1

N
(X⊤(y −Xβ̂))j = λj

β̂j

∥β̂j∥
, if β̂j ̸= 0 (2.3)

1

N
∥(X⊤(y −Xβ̂))j∥ ≤ λj, if β̂j = 0. (2.4)

2.1 Simultaneous estimation of multiple regression equations and multi-
task learning

As an application of the above ideas we consider the problem of estimating multiple linear regres-
sion equations simultaneously. More precisely, we consider multiple Gaussian regression models,

y1 = X1β
∗
1 +W1

y2 = X2β
∗
2 +W2

...
yT = XTβ

∗
T +WT ,

(2.5)
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where, for each t ∈ NT , we let Xt be a prescribed n ×M design matrix, β∗
t ∈ RM the unknown

vector of regression coefficients and yt an n-dimensional vector of observations. We assume that
W1, . . . ,WT are i.i.d. zero mean random vectors.

We study this problem under the assumption that the sparsity patterns of vectors β∗
t are for any

t contained in the same set of small cardinality s. In other words, the response variable associated
with each equation in (2.5) depends only on some members of a small subset of the corresponding
predictor variables, which is preserved across the different equations. We consider as our estimator
a solution of the optimization problem

min

 1

T

T∑
t=1

1

n
∥Xtβt − yt∥2 + 2λ

M∑
j=1

(
T∑
t=1

β2
tj

) 1
2

: β1, . . . , βT ∈ RM

 (2.6)

with some tuning parameter λ > 0. As we have already mentioned in the introduction, this estima-
tor is an instance of the Group Lasso estimator described above. Indeed, set K = MT , N = nT ,
let β ∈ RK be the vector obtained by stacking the vectors β1, . . . , βT and let y and W be the ran-
dom vectors formed by stacking the vectors y1, . . . , yT and the vectors W1, . . . ,WT , respectively.
We identify each row index of X with a double index (t, i) ∈ NT × Nn and each column index
with (t, j) ∈ NT × NM . In this special case the matrix X is block diagonal and its t-th block is
formed by the n ×M matrix Xt corresponding to “task t”. Moreover, the groups are defined as
Gj = {(t, j) : t ∈ NT} and the parameters λj in (2.2) are all set equal to a common value λ.
Within this setting, we see that (2.6) is a special case of (2.2).

Finally, note that the vectors βj = (βtj : t ∈ NT )
⊤ are formed by the coefficients corresponding

to the j-th variable “across the tasks”. The set J(β) = {j : βj ̸= 0, j ∈ NM} contains the
indices of the relevant variables present in at least one of the vectors β1, . . . , βT and the number
M(β) = |J(β)| quantifies the level of group sparsity across the tasks. The structured sparsity (or
group sparsity) assumption has the form M(β∗) ≤ s where s is some integer much smaller than
M .

Our interest in this model with group sparsity is mainly motivated by multi-task learning. Let
us briefly discuss the multi-task setting as well as other applications, in which the problem of
estimating multiple regression equations arises.

Multi-task learning. In machine learning, the problem of multi-task learning has received much
attention recently, see [2] and references therein. Here each regression equation corresponds to a
different “learning task”. In this context the tasks often correspond to binary classification, namely
the response variables are binary. For instance, in image detection each task t is associated with
a particular type of visual object (e.g., face, car, chair, etc.), the rows x⊤ti of the design matrix Xt

represent an image and yti is a binary label, which, say, takes the value 1 if the image depicts the
object associated with task t and the value −1 otherwise. In this setting the number of samples
n is typically much smaller than the number of tasks T . A main goal of multi-task learning is to
exploit possible relationships across the tasks to aid the learning process.

Conjoint analysis. In marketing research, an important problem is the analysis of datasets con-
cerning the ratings of different products by different customers, with the purpose of improving
products, see, for example, [1, 20, 14] and references therein. Here the index t ∈ NT refers to the
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customers and the index i ∈ Nn refers to the different ratings provided by a customer. Products
are represented by (possibly many) categorical or continuous variables (e.g., size, brand, color,
price etc.). The observation yti is the rating of product xti by the t-th customer. A main goal of
conjoint analysis is to find common factors which determine people’s preferences to products. In
this context, the variable selection method we analyze in this paper may be useful to “visualize”
peoples perception of products [1].

Seemingly unrelated regressions (SUR). In econometrics, the problem of estimating the regres-
sion vectors β∗

t in (2.5) is often referred to as seemingly unrelated regressions (SUR) [40] (see
also [34] and references therein). In this context, the index i ∈ Nn often refers to time and the
equations (2.5) are equivalently represented as n systems of linear equations, indexed by time. The
underlying assumption in the SUR model is that the matrices Xt are of rank M , which necessarily
requires that n ≥ M . Here we do not make such an assumption. We cover the case n ≪ M
and show how, under a sparsity assumption, we can reliably estimate the regression vectors. The
classical SUR model assumes that the noise variables are zero mean correlated Gaussian, with
cov(Ws,Wt) = σstIn×n, s, t ∈ NT . This induces a relation between the responses that can be used
to improve estimation. In our model such a relation also exists but it is described in a different
way, for example, we can consider that the sparsity patterns of vectors β∗

1 , . . . , β
∗
T are the same.

Longitudinal and panel data. Another related context is longitudinal data analysis [11] as well
as the analysis of panel data [15, 38]. Panel data refers to a dataset which contains observations
of different phenomena observed over multiple instances of time (for example, election studies,
political economy data, etc). The models used to analyze panel data appear to be related to the
SUR model described above, but there is a large variety of model assumptions on the structure
of the regression coefficients, see, for example, [15]. Up to our knowledge however, sparsity
assumptions have not been been put forward for analysis within this context.

3 Sparsity oracle inequalities
Let 1 ≤ s ≤ M be an integer that gives an upper bound on the group sparsity M(β∗) of the true
regression vector β∗. We make the following assumption.

Assumption 3.1. There exists a positive number κ = κ(s) such that

min

{
∥X∆∥√
N∥∆J∥

: |J | ≤ s,∆ ∈ RK \ {0},
∑
j∈Jc

λj∥∆j∥ ≤ 3
∑
j∈J

λj∥∆j∥
}

≥ κ,

where J c denotes the complement of the set of indices J .

To emphasize the dependency of Assumption 3.1 on s, we will sometimes refer to it as As-
sumption RE(s). This is a natural extension to our setting of the Restricted Eigenvalue assumption
for the usual Lasso and Dantzig selector from [4]. The ℓ1 norms are now replaced by (weighted)
mixed (2,1)-norms.

Several simple sufficient conditions for Assumption 3.1 in the Lasso case, i.e., when all the
groups Gj have size 1, are given in [4]. Similar sufficient conditions can be stated in our more
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general setting. For example, Assumption 3.1 is immediately satisfied if X⊤X/N has a positive
minimal eigenvalue. More interestingly, it is enough to suppose that the matrix X⊤X/N satisfies
a Restricted Isometry condition as in [8] or the coherence condition (cf. Lemma A.2 below).

To state our first result we need some more notation. For every symmetric and positive semi-
definite matrix A, we denote by tr(A), ∥A∥Fr and |||A||| the trace, Frobenius and spectral norms of
A, respectively. If ρ1, . . . , ρk are the eigenvalues of A, we have that tr(A) =

∑k
i=1 ρi, ∥A∥Fr =√∑k

i=1 ρ
2
i and |||A||| = maxki=1 ρi.

Lemma 3.1. Consider the model (2.1), and let M ≥ 2, N ≥ 1. Assume that W ∈ RN is a
random vector with i.i.d. N (0, σ2) gaussian components, σ2 > 0. For every j ∈ NM , recall that
Ψj = X⊤

Gj
XGj

/N and choose

λj ≥
2σ√
N

√
tr(Ψj) + 2|||Ψj|||(2q logM +

√
Kjq logM). (3.1)

Then with probability at least 1− 2M1−q, for any solution β̂ of problem (2.2) and all β ∈ RK

we have that

1

N
∥X(β̂ − β∗)∥2 +

M∑
j=1

λj∥β̂j − βj∥ ≤ 1

N
∥X(β − β∗)∥2

+ 4
∑

j∈J(β)

λj min
(
∥βj∥, ∥β̂j − βj∥

)
, (3.2)

1

N
∥(X⊤X(β̂ − β∗))j∥ ≤ 3

2
λj, (3.3)

M(β̂) ≤ 4ϕmax

λ2minN
∥X(β̂ − β∗)∥2, (3.4)

where λmin = minM
j=1 λj and ϕmax is the maximum eigenvalue of the matrix X⊤X/N .

Proof. For all β ∈ RK , we have

1

N
∥Xβ̂ − y∥2 + 2

M∑
j=1

λj∥β̂j∥ ≤ 1

N
∥Xβ − y∥2 + 2

M∑
j=1

λj∥βj∥,

which, using y = Xβ∗ +W , is equivalent to

1

N
∥X(β̂ − β∗)∥2 ≤ 1

N
∥X(β − β∗)∥2 + 2

N
W⊤X(β̂ − β) + 2

M∑
j=1

λj
(
∥βj∥ − ∥β̂j∥

)
. (3.5)

By the Cauchy-Schwarz inequality, we have that

W⊤X(β̂ − β) ≤
M∑
j=1

∥(X⊤W )j∥∥β̂j − βj∥.
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For every j ∈ NM , consider the random event

A =
M∩
j=1

Aj, (3.6)

where

Aj =

{
1

N
∥(X⊤W )j∥ ≤ λj

2

}
. (3.7)

We note that

P (Aj) = P
({

1

N2
W⊤XGj

X⊤
Gj
W ≤

λ2j
4

})
= P

({∑N
i=1 vj,i(ξ

2
i − 1)√

2∥vj∥
≤ xj

})
,

where ξ1, . . . , ξN are i.i.d. standard Gaussian, vj,1, . . . , vj,N denote the eigenvalues of the matrix
XGj

X⊤
Gj
/N , among which the positive ones are the same as those of Ψj , and the quantity xj is

defined as

xj =
λ2jN/(4σ

2)− tr(Ψj)√
2∥Ψj∥Fr

.

We apply Lemma A.1 to upper bound the probability of the complement of the event Aj . Specif-
ically, we choose v = (vj,1, . . . , vj,N), x = xj and m(v) = |||Ψj|||/∥Ψj∥Fr and conclude from
Lemma A.1 that

P
(
Ac

j

)
≤ 2 exp

(
−

x2j

2(1 +
√
2xj|||Ψj|||/∥Ψj∥Fr)

)
.

We now choose xj so that the right hand side of the above inequality is smaller than 2M−q. A
direct computation yields that

xj ≥
√
2|||Ψj|||/∥Ψ∥Frq logM +

√
2(|||Ψj|||q logM)2 + 2q logM,

which, using the subadditivity property of the square root and the inequality ∥Ψj∥Fr ≤
√
Kj|||Ψj|||

gives inequality (3.1). We conclude, by a union bound, under the above condition on the parameters
λj , that P(Ac) ≤ 2M1−q. Then, it follows from inequality (3.5), with probability at least 1 −
2M1−q, that

1

N
∥X(β̂ − β∗)∥2 +

M∑
j=1

λj∥β̂j − βj∥ ≤ 1

N
∥X(β − β∗)∥2 + 2

M∑
j=1

λj
(
∥β̂j − βj∥+ ∥βj∥ − ∥β̂j∥

)
≤ 1

N
∥X(β − β∗)∥2 + 4

∑
j∈J(β)

λj min
(
∥βj∥, ∥β̂j − βj∥

)
,

which coincides with inequality (3.2).
To prove (3.3), we use the inequality

1

N
∥(X⊤(y −Xβ̂))j∥ ≤ λj, (3.8)
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which follows from the optimality conditions (2.3) and (2.4). Moreover, using equation (2.1) and
the triangle inequality, we obtain that

1

N
∥(X⊤X(β̂ − β∗))j∥ ≤ 1

N
∥(X⊤(Xβ̂ − y))j∥+ 1

N
∥(X⊤W )j∥.

The result then follows by combining the last inequality with inequality (3.8) and using the defini-
tion of the event A.

Finally, we prove (3.4). First, observe that, on the event A, it holds, uniformly over j ∈ NM ,
that

1

N
∥(X⊤X(β̂ − β∗))j∥ ≥ λj

2
, if β̂j ̸= 0.

This fact follows from (2.3), (2.1) and the definition of the event A. The following chain yields the
result:

M(β̂) ≤ 4

N2

∑
j∈J(β̂)

1

λ2j
∥(X⊤X(β̂ − β∗))j∥2

≤ 4

λ2minN
2

∑
j∈J(β̂)

∥(X⊤X(β̂ − β∗))j∥2

≤ 4

λ2minN
2
∥X⊤X(β̂ − β∗)∥2

≤ 4ϕmax

λ2minN
∥X(β̂ − β∗)∥2,

where, in the last line we have used the fact that the eigenvalues of X⊤X/N are bounded from
above by ϕmax.

We are now ready to state the main result of this section.

Theorem 3.1. Consider the model (2.1) and let M ≥ 2, N ≥ 1. Assume that W ∈ RN is a
random vector with i.i.d. N (0, σ2) gaussian components, σ2 > 0. For every j ∈ NM , define the
matrix Ψj = X⊤

Gj
XGj

/N and choose

λj ≥
2σ√
N

√
tr(Ψj) + 2|||Ψj|||(2q logM +

√
Kjq logM).

Then with probability at least 1− 2M1−q, for any solution β̂ of problem (2.2) we have that

1

N
∥X(β̂ − β∗)∥2 ≤ 4∥β∗∥2,1

M
max
j=1

λj. (3.9)

If, in addition, M(β∗) ≤ s and Assumption 3.1 holds with κ = κ(s), then with probability at least

10



1− 2M1−q, for any solution β̂ of problem (2.2) we have that

1

N
∥X(β̂ − β∗)∥2 ≤ 16

κ2

∑
j∈J(β∗)

λ2j , (3.10)

∥β̂ − β∗∥2,1 ≤ 16

κ2

∑
j∈J(β∗)

λ2j
λmin

, (3.11)

M(β̂) ≤ 64ϕmax

κ2

∑
j∈J(β∗)

λ2j
λ2min

, (3.12)

where λmin = minM
j=1 λj and ϕmax is the maximum eigenvalue of the matrix X⊤X/N . If, in

addition, Assumption RE(2s) holds, then with the same probability for any solution β̂ of problem
(2.2) we have that

∥β̂ − β∗∥ ≤ 4
√
10

κ2(2s)

∑
j∈J(β∗) λ

2
j

λmin

√
s

. (3.13)

Proof. Inequality (3.9) follows immediately from (3.2) with β = β∗. We now prove the remaining
assertions. Let J = J(β∗) = {j : (β∗)j ̸= 0} and let ∆ = β̂−β∗. By inequality (3.2) with β = β∗

we have, on the event A, that

1

N
∥X∆∥2 ≤ 4

∑
j∈J

λj∥∆j∥ ≤ 4

√∑
j∈J

λ2j ∥∆J∥. (3.14)

Moreover by the same inequality, on the event A, we have that
∑M

j=1 λj∥∆j∥ ≤ 4
∑

j∈J λj∥∆j∥,
which implies that

∑
j∈Jc λj∥∆j∥ ≤ 3

∑
j∈J λj∥∆j∥. Thus, by Assumption 3.1

∥∆J∥ ≤ ∥X∆∥
κ
√
N
. (3.15)

Now, (3.10) follows from (3.14) and (3.15).
Inequality (3.11) follows by noting that, by (3.2),

M∑
j=1

λj∥∆j∥ ≤ 4
∑
j∈J

λj∥∆j∥ ≤ 4

√∑
j∈J

λ2j∥∆J∥ ≤ 4

√∑
j∈J

λ2j
∥X∆∥√
Nκ

and then using (3.10) and
∑M

j=1 ∥∆j∥ ≤
∑M

j=1 ∥∆j∥λj/λmin.
Inequality (3.12) follows from (3.4) and (3.10).
Finally, we prove (3.13). Let J ′ be the set of indices in J c corresponding to s largest values of

λj∥∆j∥. Consider the set J2s = J ∪ J ′. Note that |J2s| ≤ 2s. Let j(k) be the index of the k−th
largest element of the set {λj∥∆j∥ : j ∈ J c}. Then,

λj(k)∥∆j(k)∥ ≤
∑
j∈Jc

λj∥∆j∥/k.
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This and the fact that
∑

j∈Jc λj∥∆j∥ ≤ 3
∑

j∈J λj∥∆j∥ on the event A implies

∑
j∈Jc

2s

λ2j∥∆j∥2 ≤
∞∑

k=s+1

(∑
ℓ∈Jc λℓ∥∆ℓ∥

)2
k2

≤
(∑

ℓ∈Jc λℓ∥∆ℓ∥
)2

s
≤

9
(∑

ℓ∈J λℓ∥∆ℓ∥
)2

s

≤
9(
∑

j∈J λ
2
j)∥∆J∥2

s
≤

9(
∑

j∈J λ
2
j)∥∆J2s∥2

s
.

Therefore, it follows that

λ2min∥∆Jc
2s
∥2 ≤ 9

s

∑
j∈J

λ2j∥∆J2s∥2

and, in turn, that

∥∆∥2 ≤ 10

s

∑
j∈J

λj
2

λ2min

∥∆J2s∥2. (3.16)

Next note from (3.14) that

1

N
∥X∆∥2 ≤ 4

√∑
j∈J

λ2j∥∆J2s∥. (3.17)

In addition,
∑

j∈Jc λj∥∆j∥ ≤ 3
∑

j∈J λj∥∆j∥ easily implies that∑
j∈Jc

2s

λj∥∆j∥ ≤ 3
∑
j∈J2s

λj∥∆j∥.

Combining Assumption RE(2s) with (3.17) we have, on the event A, that

∥∆J2s∥ ≤
4
√∑

j∈J λ
2
j

κ2(2s)
.

This inequality and (3.16) yield (3.13).

The oracle inequality (3.10) of Theorem 3.1 can be generalized to include the bias term as
follows.

Theorem 3.2. Let the assumptions of Lemma 3.1 be satisfied and let Assumption 3.1 holds with
κ = κ(s) and with factor 3 replaced by 7. Then with probability at least 1 − 2M1−q, for any
solution β̂ of problem (2.2) we have

1

N
∥X(β̂ − β∗)∥2 ≤ min

96

κ2

∑
j∈J(β)

λ2j +
2

N
∥X(β − β∗)∥2 : β ∈ RK ,M(β) ≤ s

 .
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This result is of interest when β∗ is only assumed to approximately sparse, that is when there
exists a set of indices J0 with cardinality smaller than s such that ∥(β∗)Jc

0
∥2 is small.

Proof. Let β be arbitrary. Set ∆ = β̂ − β. By inequality (3.2), we have, on the event A that

1

N
∥X(β̂ − β∗)∥2 +

M∑
j=1

λj∥∆j∥ ≤ 1

N
∥X(β − β∗)∥2 + 4

∑
j∈J(β)

λj∥∆j∥.

Let y > 0 be arbitrary. We consider two cases:

case i) 4
∑

j∈J(β) λj∥∆j∥ ≥ 1
N
∥X(β − β∗)∥2

case ii) 4
∑

j∈J(β) λj∥∆j∥ < 1
N
∥X(β − β∗)∥2

In case i), we have

1

N
∥X(β̂ − β∗)∥2 +

M∑
j=1

λj∥∆j∥ ≤ 8
∑

j∈J(β)

λj∥∆j∥.

This implies ∑
j∈J(β)c

λj∥∆j∥ < 7
∑

j∈J(β)

λj∥∆j∥.

Thus, by Assumption 3.1 (with factor 3 replaced by 7), we have

∥∆J(β)∥ ≤ ∥X∆∥
κ
√
N
.

We obtain

1

N
∥X(β̂ − β∗)∥2 +

M∑
j=1

λj∥∆j∥ ≤ 8

κ

√ ∑
j∈J(β)

λ2j
∥X∆∥√

N

≤ 8

κ

√ ∑
j∈J(β)

λ2j

[
∥X(β̂ − β∗)∥√

N
+

∥X(β − β∗)∥√
N

]

≤ 1

2

∥X(β̂ − β∗)∥2

N
+

32

κ2

∑
j∈J(β)

λ2j

+
∥X(β − β∗)∥2

N
+

16

κ2

∑
j∈J(β)

λ2j .

Hence
1

N
∥X(β̂ − β∗)∥2 + 2

M∑
j=1

λj∥∆j∥ ≤ 96

κ2

∑
j∈J(β)

λ2j +
2

N
∥X(β − β∗)∥2.
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Case ii) gives
1

N
∥X(β̂ − β∗)∥2 +

M∑
j=1

λj∥∆j∥ < 2

N
∥X(β − β∗)∥2.

Hence
1

N
∥X(β̂ − β∗)∥2 ≤ min

β

96
κ2

∑
j∈J(β)

λ2j +
2

N
∥X(β − β∗)∥2

 .
We end this section by a remark about the Group Lasso estimator with overlapping groups,

i.e., when NK = ∪M
j=1Gj but Gj ∩ Gj′ ̸= ∅ for some j, j′ ∈ NM , j ̸= j′. We refer to [42] for

motivation and discussion featuring the statistical relevance of group sparsity with overlapping
groups. Inspection of the proofs of Lemma 3.1 and Theorem 3.1 immediately yields the following
conclusion.

Remark 3.1. Inequalities (3.2) and (3.3) in Lemma 3.1 and inequalities (3.10)–(3.12) in Theorem
3.1 remain correct in the more general case of overlapping groups G1, . . . , GM .

4 Sparsity oracle inequalities for multi-task learning
We now apply the above results to the multi-task learning problem described in Section 2.1. In
this setting, K =MT and N = nT , where T is the number of tasks, n is the sample size for each
task and M is the nominal dimension of unknown regression parameters for each task. Also, for
every j ∈ NM , Kj = T and Ψj = (1/T )IT×T , where IT×T is the T × T identity matrix. This fact
is a consequence of the block diagonal structure of the design matrix X and the assumption that
the variables are normalized to one, namely all the diagonal elements of the matrix (1/n)X⊤X are
equal to one. It follows that tr(Ψj) = 1 and |||Ψj||| = 1/T . The regularization parameters λj are
all equal to the same value λ, cf. (2.6). Therefore, (3.1) takes the form

λ ≥ 2σ√
nT

√
1 +

2

T

(
2q logM +

√
Tq logM

)
. (4.1)

In particular, Lemma 3.1 and Theorem 3.1 are valid for

λ ≥ 2
√
2σ√
nT

√
1 +

5q

2

logM

T

since the right-hand side of this inequality is greater than that of (4.1).
For the convenience of the reader we state the Restricted Eigenvalue assumption for the multi-

task case [22].

Assumption 4.1. There exists a positive number κMT = κMT(s) such that

min

{
∥X∆∥√
n∥∆J∥

: |J | ≤ s,∆ ∈ RMT \ {0}, ∥∆Jc∥2,1 ≤ 3∥∆J∥2,1
}

≥ κMT,

where J c denotes the complement of the set of indices J .
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We note that parameters κ, ϕmax defined in Section 3 correspond to κMT/
√
T and ϕMT/T

respectively, where ϕMT is the largest eigenvalue of the matrix X⊤X/n.
Using the above observations we obtain the following corollary of Theorem 3.1.

Corollary 4.1. Consider the multi-task model (2.5) for M ≥ 2 and T, n ≥ 1. Assume that
W ∈ RN is a random vector with i.i.d. N (0, σ2) gaussian components, σ2 > 0, and all diagonal
elements of the matrix X⊤X/n are equal to 1. Set

λ =
2
√
2σ√
nT

(
1 +

A logM

T

)1/2

,

where A > 5/2. Then with probability at least 1− 2M1−2A/5, for any solution β̂ of problem (2.6)
we have that

1

nT
∥X(β̂ − β∗)∥2 ≤ 8

√
2σ√
nT

(
1 +

A logM

T

)1/2

∥β∗∥2,1 . (4.2)

Moreover, if in addition it holds that M(β∗) ≤ s and Assumption 4.1 holds with κMT = κMT(s),
then with probability at least 1− 2M1−2A/5, for any solution β̂ of problem (2.6) we have that

1

nT
∥X(β̂ − β∗)∥2 ≤ 128σ2

κ2MT

s

n

(
1 +

A logM

T

)
(4.3)

1√
T
∥β̂ − β∗∥2,1 ≤ 32

√
2σ

κ2MT

s√
n

(
1 +

A logM

T

)1/2

(4.4)

M(β̂) ≤ 64ϕMT

κ2MT

s, (4.5)

where ϕMT is the largest eigenvalue of the matrix X⊤X/n.
Finally, if in addition κMT(2s) > 0, then with the same probability for any solution β̂ of

problem (2.6) we have that

1√
T
∥β̂ − β∗∥ ≤ 16

√
5σ

κ2MT(2s)

√
s

n

(
1 +

A logM

T

)1/2

. (4.6)

Note that the values T and
√
T in the denominators of the left-hand sides of inequalities (4.3),

(4.4), and (4.6) appear quite naturally. For instance, the norm ∥β̂ − β∗∥2,1 in (4.4) is a sum of M
terms each of which is a Euclidean norm of a vector in RT , and thus it is of the order

√
T if all

the components are equal. Therefore, (4.4) can be interpreted as a correctly normalized “error per
coefficient” bound.

Corollary 4.1 is valid for any fixed n,M, T ; the approach is non-asymptotic. Some relations
between these parameters are relevant in the particular applications and various asymptotics can
be derived as special cases. For example, in multi-task learning it is natural to assume that T ≥ n,
and the motivation for our approach is the strongest if also M ≫ n. The bounds of Corollary 4.1
are meaningful if the sparsity index s is small as compared to the sample size n and the logarithm
of the dimension logM is not too large as compared to T .
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More interestingly, the dependency on the dimension M in the bounds is negligible if the
number of tasks T is larger than logM . In this regime, no relation between the sample size n and
the dimension M is required. This is quite in contrast to the standard results on sparse recovery
where the condition

log(dimension) ≪ sample size

is considered as sine qua non constraint. For example, Corollary 4.1 gives meaningful bounds if
M = exp(nγ) for arbitrarily large γ > 0, provided that T > nγ .

Finally, note that Corollary 4.1 is in the same spirit as a result that we obtained in [22] but
there are two important differences. First, in [22] we considered larger values of λ, namely with(
1 + A logM√

T

)1/2
in place of

(
1 + A logM

T

)1/2
, and we obtained a result with higher probability. We

switch here to the smaller λ since it leads to minimax rate optimality, cf. lower bounds below. The
second difference is that we include now the “slow rate” result (4.2), which guarantees convergence
of the prediction loss with no restriction on the matrix X⊤X , provided that the norm (2, 1)-norm
of β∗ is bounded. For example, if the absolute values of all components of β∗ do not exceed some
constant βmax, then ∥β∗∥2,1 ≤ βmaxs

√
T and the bound (4.2) is of the order s√

n

(
1 + A logM

T

)1/2
.

5 Coordinate-wise estimation and selection of sparsity pattern
In this section we show how from any solution of (2.2), we can estimate the correct sparsity pattern
J(β∗) with high probability. We also establish bounds for estimation of β∗ in all (2, p) norms with
1 ≤ p ≤ ∞ under a stronger condition than Assumption 3.1.

Recall that we use the notation Ψ = 1
N
X⊤X for the Gram matrix of the design. We introduce

some additional notation which will be used throughout this section. For any j, j′ in NM we define
the matrix Ψ[j, j′] = 1

N
X⊤

Gj
XGj′ (note that Ψ[j, j] = Ψj for any j). We denote by Ψ[j, j′]t,t′ , where

t ∈ NKj
, t′ ∈ NKj′ , the (t, t′)-th element of matrix Ψ[j, j′]. For any ∆ ∈ RK and j ∈ NM we set

∆j = (∆t : t ∈ NKj
).

In this section, we assume that the following condition holds true.

Assumption 5.1. There exist some integer s ≥ 1 and some constant α > 0 such that:

1. For any j ∈ NM and t ∈ NKj
it holds that (Ψ[j, j])t,t = ϕ and

max
1≤t,t′≤Kj ,t̸=t′

|(Ψ[j, j])t,t′| ≤
λminϕ

14αλmaxs

1√
KjKj′

.

2. For any j ̸= j′ ∈ NM it holds that

max
1≤t≤min(Kj ,Kj′ )

|(Ψ[j, j′])t,t| ≤
λminϕ

14αλmaxs

and
max

1≤t≤Kj ,1≤t′≤Kj′ ,t̸=t′
|(Ψ[j, j′])t,t′ | ≤

λminϕ

14αλmaxs

1√
KjKj′

.
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This assumption is an extension to the general Group Lasso setting of the coherence condition
of [22] introduced in the particular multi-task setting. Indeed, in the multi-task case Kj ≡ T ,
λmin = λmax, and for any j ∈ NM the matrix XGj

is block diagonal with the t-th block of size
n×1 formed by the j-th column of the matrix Xt (recall the notation in Section 2.1) and ϕ = 1/T .
It follows that (Ψ[j, j′])t,t′ = 0 for any j, j′ ∈ NM and t ̸= t′ ∈ NT . Then Assumption 5.1 reduces
to the following: max1≤t≤T |(Ψ[j, j′])t,t| ≤ 1

14αsT
whenever j ̸= j′ and (Ψ[j, j])t,t =

1
T

. Thus, we
see that for the multi-task model Assumption 5.1 takes the form of the usual coherence assumption
for each of the T separate regression problems. We also note that, the coherence assumption in
[22] was formulated with the numerical constant 7 instead of 14. The larger constant here is due
to the fact that we consider the general model with not necessarily block diagonal design matrix,
in contrast to the multi-task setting of [22].

Lemma A.2, which is presented in the appendix, establishes that Assumption 5.1 implies As-
sumption 3.1. Note also that, by an argument as in [21], it is not hard to show that under Assump-
tion 5.1 any group s-sparse vector β∗ satisfying (2.1) is unique.

Theorem 3.1 provides bounds for compound measures of risk, that is, depending simultane-
ously on all the vectors βj . An important question is to evaluate the performance of estimators for
each of the components βj separately. The next theorem provides a bound of this type and, as a
consequence, a result on the selection of sparsity pattern.

Theorem 5.1. Let the assumptions of Theorem 3.1 be satisfied and let Assumption 5.1 hold with
the same s. Set

c =

(
3

2
+

16

7(α− 1)

)
. (5.1)

Then with probability at least 1− 2M1−q, for any solution β̂ of problem (2.2) we have that

∥β̂ − β∗∥2,∞ ≤ c

ϕ
λmax. (5.2)

If, in addition,

min
j∈J(β∗)

∥(β∗)j∥ > 2c

ϕ
λmax, (5.3)

then with the same probability for any solution β̂ of problem (2.2) the set of indices

Ĵ =

{
j : ∥β̂j∥ > c

ϕ
λmax

}
(5.4)

estimates correctly the sparsity pattern J(β∗), that is,

Ĵ = J(β∗).

Proof. Set K∞ = max1≤j≤M Kj . We define first for any j, j′ ∈ NM the K∞ ×K∞ matrix Ψ̃[j, j′]
as follows. If j ̸= j′ we have (Ψ̃[j, j′])t∈NKj

,t′∈NKj′
= Ψ[j, j′] and (Ψ̃[j, j′])t,t′ = 0 if t > Kj or if

t′ > Kj′ . If j = j′ we have (Ψ̃[j, j])t,t′∈NKj
= Ψ[j, j]−ϕIKj×Kj

and (Ψ̃[j, j])t,t′ = 0 if t > Kj or if

t′ > Kj . Similarly, for any ∆ ∈ RK and any j ∈ NM we set ∆̃j ∈ RK∞ such that (∆̃j
t)t∈NKj

= ∆j

and ∆̃j
t = 0 for any t > Kj .
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Set ∆ = β̂ − β∗. We have

ϕ∥∆∥2,∞ ≤ ∥Ψ∆∥2,∞ + ∥(Ψ− ϕIK×K)∆∥2,∞. (5.5)

Using Cauchy-Schwarz’s inequality we obtain

∥(Ψ− ϕIK×K)∆∥2,∞ = max
1≤j≤M

 Kj∑
t=1

 M∑
j′=1

Kj′∑
t′=1

(
Ψ̃[j, j′]

)
t,t′

∆̃j′

t′

21/2

≤ max
1≤j≤M

 Kj∑
t=1

(
M∑

j′=1

(
Ψ̃[j, j′]

)
t,t
∆̃j′

t

)2
1/2

+ max
1≤j≤M

 Kj∑
t=1

 M∑
j′=1

Kj′∑
t′=1,t′ ̸=t

(
Ψ̃[j, j′]

)
t,t′

∆̃j′

t′

21/2

. (5.6)

We now treat the first term on the right-hand side of (5.6). We have, using Assumption 5.1 and
Minkowski’s inequality for the Euclidean norm in RKj , that

max
1≤j≤M

 Kj∑
t=1

(
M∑

j′=1

(
Ψ̃[j, j′]

)
t,t
∆̃j′

t

)2
1/2

≤ λminϕ

14αλmaxs

 Kj∑
t=1

(
M∑

j′=1

|∆̃j′

t |

)2
1/2

≤ λminϕ

14αλmaxs
∥∆̃∥2,1

≤ λminϕ

14αλmaxs
∥∆∥2,1,

since ∥∆̃∥2,1 ≤ ∥∆∥2,1 by definition of ∆̃. Next we treat the second term in the right-hand side of
(5.6). Cauchy-Schwarz’s inequality gives

max
1≤j≤M

 Kj∑
t=1

 M∑
j′=1

Kj′∑
t′=1,t′ ̸=t

(
Ψ̃[j, j′]

)
t,t′

∆̃j′

t′

21/2

≤ λminϕ

14αλmaxs
max

1≤j≤M

 1

Kj

Kj∑
t=1

 M∑
j′=1

Kj′∑
t′=1

|∆̃j′

t′ |√
Kj′

21/2

≤ λminϕ

14αλmaxs

M∑
j′=1

Kj′∑
t′=1

|∆̃j′

t′ |√
Kj′

≤ λminϕ

14αλmaxs
∥∆̃∥2,1 ≤

λminϕ

14αλmaxs
∥∆∥2,1.

Combining the four above displays we get

∥∆∥2,∞ ≤ 1

ϕ
∥Ψ∆∥2,∞ +

2λmin

14αλmaxs
∥∆∥2,1.
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Thus, by inequalities (3.3) and (3.11), with probability at least 1− 2M1−q, it holds that

∥∆∥2,∞ ≤
(

3

2ϕ
+

16

7ακ2

)
λmax.

By Lemma A.2, ακ2 = (α − 1)ϕ, which yields the first result of the theorem. The second result
follows from the first one in an obvious way.

Assumption of type (5.3) is inevitable in the context of selection of sparsity pattern. It says that
the vectors (β∗)j cannot be arbitrarily close to 0 for j in the pattern. Their norms should be at least
somewhat larger than the noise level.

Theorems 3.1 and 5.1 imply the following corollary.

Corollary 5.1. Let the assumptions of Theorem 3.1 be satisfied and let Assumption 5.1 hold with
the same s. Then with probability at least 1− 2M1−q, for any solution β̂ of problem (2.2) and any
1 ≤ p <∞ we have that

∥β̂ − β∗∥2,p ≤
c1
ϕ
λmax

 ∑
j∈J(β∗)

λ2j
λminλmax

 1
p

, (5.7)

where

c1 =

(
16α

α− 1

)1/p(
3

2
+

16

7(α− 1)

)1− 1
p

. (5.8)

If, in addition, (5.3) holds, then with the same probability for any solution β̂ of problem (2.2) and
any 1 ≤ p <∞ we have that

∥β̂ − β∗∥2,p ≤
c1
ϕ
λmax

∑
j∈Ĵ

λ2j
λminλmax

 1
p

, (5.9)

where Ĵ is defined in (5.4).

Proof. Set ∆ = β̂ − β. For any p ≥ 1 we use the norm interpolation inequality

∥∆∥2,p ≤ ∥∆∥
1
p

2,1∥∆∥
1− 1

p

2,∞ .

Combining inequalities (3.11) and (5.2) with κ =
√
(1− 1/α)ϕ (cf. Lemma A.2) and the last

inequality yields (5.7). Inequality (5.9) is then straightforward in view of Theorem 5.1.

Note that we introduce inequalities (5.2) and (5.9) valid with probability close to 1 because
their right-hand sides are data driven, and so they can be used as confidence bands for the unknown
parameter β∗ in mixed (2,p)-norms.

We finally derive a corollary of Theorem 5.1 for the multi-task setting, which is straightforward
in view of the above results.
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Corollary 5.2. Consider the multi-task model (2.5) for M ≥ 2 and T, n ≥ 1. Let the assumptions
of Theorem 5.1 be satisfied and set

λ =
2
√
2σ√
nT

(
1 +

A logM

T

)1/2

,

where A > 5/2. Then with probability at least 1− 2M1−2A/5, for any solution β̂ of problem (2.6)
and any 1 ≤ p ≤ ∞ we have

1√
T
∥β̂ − β∗∥2,p ≤

2
√
2c1σs

1/p

√
n

(
1 +

A logM

T

)1/2

, (5.10)

where c1 is the constant defined in (5.8) and we set x1/∞ = 1 for any x > 0. If, in addition,

min
j∈J(β∗)

1√
T
∥(β∗)j∥ > 4

√
2cσ√
n

(
1 +

A logM

T

)1/2

, (5.11)

then with the same probability for any solution β̂ of problem (2.6) the set of indices

Ĵ =

{
j :

1√
T
∥β̂j∥ > 2

√
2cσ√
n

(
1 +

A logM

T

)1/2
}

(5.12)

estimates correctly the sparsity pattern J(β∗), that is,

Ĵ = J(β∗).

6 Minimax lower bounds for arbitrary estimators
In this section we consider again the multi-task model as in Sections 2.1 and 4. We will show that
the rate of convergence obtained in Corollary 4.1 is optimal in a minimax sense (up to a logarithmic
factor) for all estimators over a class of group sparse vectors. This will be done under the following
mild condition on matrix X .

Assumption 6.1. There exist positive constants κ1 and κ2 such that for any vector ∆ ∈ RMT \{0}
with M(∆) ≤ 2s we have

(a)
∥X∆∥2

n∥∆∥2
≥ κ21, (b)

∥X∆∥2

n∥∆∥2
≤ κ22.

Note that part (b) of Assumption 6.1 is automatically satisfied with κ22 = ϕMT where ϕMT is
the spectral norm of matrix X⊤

X/n. The reason for introducing this assumption is that the 2s-
restricted maximal eigenvalue κ22 can be much smaller than the spectral norm of X⊤

X/n, which
would result in a sharper lower bound, see Theorem 6.1 below.

In what follows we fix T ≥ 1,M ≥ 2, s ≤M/2 and denote by GS(s,M, T ) the set of vectors
β ∈ RMT such that M(β) ≤ s. Let ℓ : R+ → R+ be a nondecreasing function such that ℓ(0) = 0
and ℓ ̸≡ 0.

20



Theorem 6.1. Consider the multi-task model (2.5) forM ≥ 2 and T, n ≥ 1. Assume thatW ∈ RN

is a random vector with i.i.d. N (0, σ2) gaussian components, σ2 > 0. Suppose that s ≤M/2 and
let part (b) of Assumption 6.1 be satisfied. Define

ψn,p =
σ

κ2

s1/p√
n

(
1 +

log(eM/s)

T

)1/2

, 1 ≤ p ≤ ∞,

where we set s1/∞ = 1. Then there exist positive constants b, c depending only on ℓ(·) and p such
that

inf
τ

sup
β∗∈GS(s,M,T )

Eℓ
(
bψ−1

n,p

1√
T
∥τ − β∗∥2,p

)
≥ c, (6.1)

where infτ denotes the infimum over all estimators τ of β∗. If, in addition, part (a) of Assump-
tion 6.1 is satisfied, then there exist positive constants b, c depending only on ℓ(·) such that

inf
τ

sup
β∗∈GS(s,M,T )

Eℓ
(
bψ−1

n,2

1

κ1
√
nT

∥X(τ − β∗)∥
)

≥ c. (6.2)

Proof. Fix p and write for brevity ψn = ψn,p where it causes no ambiguity. Throughout this proof
we set x1/∞ = 1 for any x ≥ 0. We consider first the case T ≤ log(eM/s). Set 0 = (0, . . . , 0) ∈
RT , 1 = (1, . . . , 1) ∈ RT . Define the set of vectors

Ω =
{
ω ∈ RMT : ωj ∈ {0, 1}, j = 1, . . . ,M, and M(ω) ≤ s

}
,

and its dilation
C(Ω) =

{
γψn,pω/s

1/p : ω ∈ Ω
}
,

where γ > 0 is an absolute constant to be chosen later. Note that C(Ω) ⊂ GS(s,M, T ).
For any ω, ω′ in Ω we have M(ω − ω′) ≤ 2s. Thus, for β = γψn,pω/s

1/p, β′ = γψn,pω
′/s1/p

parts (a) and (b) of Assumption 6.1 imply respectively

1

n
∥Xβ −Xβ′∥2 ≥

κ21γ
2ψ2

n,pρ(ω, ω
′)T

s2/p
, (6.3)

1

n
∥Xβ −Xβ′∥2 ≤

κ22γ
2ψ2

n,pρ(ω, ω
′)T

s2/p
(6.4)

where ρ(ω, ω′) =
∑M

j=1 I{ωj ̸= (ω′)j} and I{·} denotes the indicator function. This and the
definition of ψn,p yield that if part (a) of Assumption 6.1 holds, then for all ω, ω′ ∈ Ω we have

1

nT
∥Xβ −Xβ′∥2 ≥ γ2

κ21σ
2

κ22n

(
1 +

log(eM/s)

T

)
ρ(ω, ω′). (6.5)

Also, by definition of β, β′,

1√
T
∥β − β′∥2,p =

γσ

κ2
√
n

(
1 +

log(eM/s)

T

)1/2

(ρ(ω, ω′))
1/p

I{ω ̸= (ω′)}. (6.6)
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For θ ∈ RN , we denote by Pθ the probability distribution of N (θ, σ2IN×N) Gaussian random
vector. We denote by K(P,Q) the Kullback-Leibler divergence between the probability measures
P and Q. Then, under part (b) of Assumption 6.1,

K(PXβ, PXβ′) =
1

2σ2
∥Xβ −Xβ′∥2

≤ κ22γ
2

2σ2s2/p
nψ2

n,pρ(ω, ω
′)T

≤ γ2s[T + log(eM/s)]

≤ 2γ2s log(eM/s) (6.7)

where we used that ρ(ω, ω′) ≤ 2s for all ω, ω′ ∈ Ω. Lemma 8.3 in [32] guarantees the existence
of a subset N of Ω such that

log(|N |) ≥ c̃s log

(
eM

s

)
(6.8)

ρ(ω, ω′) ≥ s/4,∀ω, ω′ ∈ N , ω ̸= ω′,

for some absolute constant c̃ > 0, where |N | denotes the cardinality of N . Combining this with
(6.5) and (6.6) we find that the finite set of vectors C(N ) is such that, for all β, β′ ∈ C(N ), β ̸= β′,

1√
T
∥β − β′∥2,p ≥

γσs1/p

41/pκ2
√
n

(
1 +

log(eM/s)

T

)1/2

=
γ

41/p
ψn,p ,

and under part (a) of Assumption 6.1,

1

nT
∥Xβ −Xβ′∥2 ≥ γ2

κ21σ
2s

4κ22n

(
1 +

log(eM/s)

T

)
=
γ2

4
κ21ψ

2
n,2 .

Furthermore, by (6.7) and (6.8) for all β, β′ ∈ C(N ) under part (b) of Assumption 6.1 we have

K(PXβ, PXβ′) ≤ 1

16
log (|N |) = 1

16
log (|C(N )|)

for an absolute constant γ > 0 chosen small enough. Thus, the result follows by application of
Theorem 2.7 in [35].

Consider now the case T > log(eM/s). Introduce the set of vectors

Ω′ =
{
ω ∈ RMT : ω = (ω1, . . . , ωM), ωj ∈ {0, 1}T if j ≤ s and ωj = 0 otherwise

}
,

and the associated dilated set C(Ω′) defined as above. Note that C(Ω′) ⊂ GS(s,M, T ).
For any ω, ω′ ∈ Ω′ we define ρ′(ω, ω′) =

∑M
j=1

∑T
t=1 I{ωtj ̸= ω′

tj} =
∑s

j=1

∑T
t=1 I{ωtj ̸=

ω′
tj}.

We assume first that T ≥ 16 and s ≥ 16. Then Varshamov-Gilbert Lemma (see Lemma 2.9 in
[35]) guarantees that there exists a subset N ′ of Ω′ such that

|N ′| ≥ 2Ts/8, (6.9)

ρ′(ω, ω′) ≥ Ts

8
, ∀ω, ω′ ∈ N ′, ω ̸= ω′.
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Next for any ω, ω′ ∈ N ′ we have M(ω − ω′) ≤ 2s, and thus under parts (a) and (b) of Assump-
tion 6.1 we have, respectively,

1

n
∥Xβ −Xβ′∥2 ≥ κ21γ

2ψ2
nρ

′(ω, ω′)

s2/p
,

1

n
∥Xβ −Xβ′∥2 ≤ κ22γ

2ψ2
nρ

′(ω, ω′)

s2/p

where β = γψnω/s
1/p, β′ = γψnω

′/s1/p are any two elements of C(N ′).
Now, using Lemma A.3 in the Appendix we get that, for all ω, ω′ ∈ N ′ such that ω ̸= ω′,

∥ω − ω′∥2,p ≥
( s
16

)1/p √T
4

, ∀ 1 ≤ p ≤ ∞. (6.10)

Thus, for all β, β′ ∈ C(N ′) such that β ̸= β′ we have

1√
T
∥β − β′∥2,p =

γψn

s1/p
√
T
∥ω − ω′∥2,p ≥

γ

161/p4
ψn

(recall that ψn = ψn,p), and under part (a) of Assumption 6.1,

1

nT
∥Xβ −Xβ′∥2 ≥ γ2

8

sκ21σ
2

κ22n

(
1 +

log(eM/s)

T

)
=
γ2

8
κ21ψ

2
n,2.

Furthermore, for all β, β′ ∈ C(N ′) under part (b) of Assumption 6.1,

K(PXβ, PXβ′) ≤ 2γ2sT ≤ 1

16
log(|C(N ′)|),

where, in view of (6.9), the last inequality holds for an absolute constant γ > 0 chosen small
enough. We apply again Theorem 2.7 in [35] to get the result.

Finally, if T > log(eM/s) and T < 16, s < 16, then the rate ψn is of the order 1/n. This is the
standard parametric rate and the lower bounds are easily obtained by reduction to distinguishing
between two elements of GS(s,M, T ).

As a consequence of Theorem 6.1, we get, for example, the lower bounds for the squared loss
ℓ(u) = u2 and for the indicator loss ℓ(u) = I{u ≥ 1}. The indicator loss is relevant for comparison
with the upper bounds of Corollaries 4.1 and 5.2. For example, Theorem 6.1 with this loss and
p = 1, 2 implies that there exists β∗ ∈ GS(s,M, T ) such that, for any estimator τ of β∗,

1√
nT

∥X(τ − β∗)∥ ≥ C

√
s

n

(
1 +

log(eM/s)

T

)1/2

and

1√
T
∥τ − β∗∥ ≥ C

√
s

n

(
1 +

log(eM/s)

T

)1/2

,
1√
T
∥τ − β∗∥2,1 ≥ C

s√
n

(
1 +

log(eM/s)

T

)1/2

with a positive probability (independent of n, s,M, T ) where C > 0 is some constant. The rate on
the right-hand side of these inequalities is of the same order as in the corresponding upper bounds
in Corollary 4.1, modulo that logM is replaced here by log(eM/s). We conjecture that the factor
log(eM/s) and not logM corresponds to the optimal rate; actually, we know that this conjecture
is true when T = 1 and the risk is defined by the prediction error with ℓ(u) = u2 [32].

A weaker version of Theorem 6.1, with ℓ(u) = u2, p = 2 and suboptimal rate of the order
[s log(M/s)/(nT )]1/2 is established in [17].
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Remark 6.1. For the model with usual (non-grouped) sparsity, which corresponds to T = 1, the
set GS(s,M, 1) coincides with the ℓ0-ball of radius s in RM . Therefore, Theorem 6.1 generalizes
the minimax lower bounds on ℓ0-balls recently obtained in [30] and [32] for the usual sparsity
model. Those papers considered only the prediction error and the ℓ2 error under the squared loss
ℓ(u) = u2. Theorem 6.1 covers any ℓp error with 1 ≤ p ≤ ∞ and applies with general loss
functions ℓ(·). As a particular instance, for the indicator loss ℓ(u) = I{u ≥ 1} and T = 1, the
lower bounds of Theorem 6.1 show that the upper bounds for the prediction error and the ℓp errors
(1 ≤ p ≤ ∞) of the usual Lasso estimator established in [4] and [21] cannot be improved in a
minimax sense on ℓ0-balls up to logarithmic factors. Note that this conclusion cannot be deduced
from the lower bounds of [30] and [32].

7 Lower bounds for the Lasso
In this section we establish lower bounds on the prediction and estimation accuracy of the Lasso
estimator. As a consequence, we can emphasize the advantages of using the Group Lasso estimator
as compared to the usual Lasso in some important particular cases.

The Lasso estimator is a solution of the minimization problem

min
β∈RK

1

N
∥Xβ − y∥2 + 2r∥β∥1, (7.1)

where ∥β∥1 =
∑K

j=1 |βj| and r is a positive parameter. The following notations apply only to
this section. For any vector β ∈ RK and any subset J ⊆ NK , we denote by β|J the vector in
RK which has the same coordinates as β on J and zero coordinates on the complement J c of J ,
J ′(β) = {j : βj ̸= 0} and M ′(β) = |J ′(β)|.

We will use the following standard assumption on the matrix X (the Restricted Eigenvalue
condition in [4]).

Assumption 7.1. Fix s′ ≥ 1. There exists a positive number κ′ such that

min

{
∥X∆∥√
N∥∆|J∥

: |J | ≤ s′,∆ ∈ RK \ {0},
∑
j∈Jc

|∆j| ≤ 3
∑
j∈J

|∆j|
}

≥ κ′,

where J c denotes the complement of the set of indices J .

Theorem 7.1. Let Assumption 7.1 be satisfied. Assume that W ∈ RN is a random vector with

i.i.d. N (0, σ2) gaussian components, σ2 > 0. Set r = Aσ
√

ϕ logK
N

where A > 2
√
2 and ϕ is the

maximal diagonal element of the matrix Ψ = 1
N
X⊤X . If β̂L is a solution of problem (7.1), then

with probability at least 1−K1−A2

8 we have

1

N
∥X(β̂L − β∗)∥2 ≥ M ′(β̂L)

A2σ2ϕ logK

4ϕmaxN
, (7.2)

∥β̂L − β∗∥ ≥ Aσ

2ϕmax

√
M ′(β̂L)

ϕ logK

N
, (7.3)
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where ϕmax is the maximum eigenvalue of the matrix Ψ. If, in addition, M ′(β∗) ≤ s′, and

min{|Ψjjβ
∗
j | : j ∈ Nm, β

∗
j ̸= 0} >

(
3

2
+

16s′

κ′2
max
j ̸=k

|Ψjk|
)
r, (7.4)

where Ψjk denotes the (j, k)-th entry of matrix Ψ, then with the same probability we have

M ′(β̂L) ≥M ′(β∗). (7.5)

Proof. Inequality (B.3) in [4] yields (7.2) on the event A =
{

1
N
∥X⊤

W∥∞ ≤ r
2

}
of probability

P(A) ≥ 1−K1−A2

8 .
Next, (7.3) follows from (7.2) and the inequality

1

N
(β̂L − β∗)⊤X⊤X(β̂L − β∗) ≤ ϕmax∥β̂L − β∗∥2.

We now prove (7.5). If M ′(β̂L) < M ′(β∗) then there exists j ∈ J ′(β̂L)c ∩ J ′(β∗). Set
∆ = β∗ − β̂L and recall that Ψ = 1

N
X

⊤
X . Using that any Lasso solution β̂L satisfies{

1
N
(X

⊤
(y −Xβ̂L))j = sign(β̂L

j )r, if β̂L
j ̸= 0,∣∣∣ 1N (X

⊤
(y −Xβ̂L))j

∣∣∣ ≤ r, if β̂L
j = 0.

(7.6)

and the triangle inequality we get, on the event A, that |(Ψ∆)j| ≤ 3r
2

. Consequently,

|Ψjjβ
∗
j | = |Ψjj∆j| =

∣∣∣∣∣(Ψ∆)j −
∑
k ̸=j

Ψjk∆k

∣∣∣∣∣ ≤ 3r

2
+ ∥∆∥1 max

j ̸=k
|Ψjk|. (7.7)

Next, Corollary B.2 in [4] yields that, on the event A,

∥∆|J ′(β∗)c∥1 ≤ 3∥∆|J ′(β∗)∥1.

Thus, the Cauchy-Schwarz inequality, Assumption 7.1 and [4, Inequality (7.8)] give that, on the
event A,

∥∆∥1 ≤ 4∥∆|J ′(β∗)∥1 ≤ 4
√
s′∥∆|J ′(β∗)∥ ≤ 4

√
s′

κ′
(∆

⊤
Ψ∆)1/2 ≤ 16s′

κ′2
r. (7.8)

Combining (7.7) and (7.8) yields, on the event A, that

|Ψjjβ
∗
j | ≤

(
3

2
+

16s′

κ′2
max
j ̸=k

|Ψjk|
)
r,

which contradicts the condition (7.4).
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Let us emphasize that the Theorem 7.1 establishes lower bounds, which hold for every Lasso
solution if β̂L is not unique.

Theorem 7.1 highlights several limitations of the usual Lasso as compared to the Group Lasso.
Let us explain this point in the multi-task learning case. There, the usual Lasso estimator β̂L is a
solution of the following optimization problem

min

{
1

T

T∑
t=1

1

n
∥Xtβt − yt∥2 + 2r

T∑
t=1

M∑
j=1

|βtj|

}
.

By comparing the prediction error lower bound in Theorem 7.1 for this estimator with the corre-
sponding upper bound for Group Lasso estimator derived in Corollary 4.1, we reach the following
conclusions.

• The usual Lasso does not enjoy any dimension independence phenomenon as compared to
the Group Lasso.

In the multi-task learning setting we have N = nT , K = MT . Assume that the tasks’
design matrices are orthogonal, namely X⊤

t Xt/n = IM×M for every t ∈ NT . Hence, Ψ =
ITM×TM/T , so that ϕmax = ϕ = 1/T and Ψjj = 1/T for all j. Let a special instance of
group sparsity assumption be realized, namely, all vectors β∗

t have exactly s non-zero entries
at the same positions. Then, M(β∗) = s and M ′(β∗) = sT . Moreover, condition (7.4)
simplifies to the requirement that

min
j:β∗

j ̸=0
|β∗

j | ≥
3Aσ

2

√
log(MT )

n
.

We conclude by inequalities (7.2) and (7.5) that, with probability at least 1− (MT )1−
A2

8 ,

1

nT
∥X(β̂L − β∗)∥2 ≥ A2σ2s

log(MT )

4n
. (7.9)

This bound holds no matter what the number of tasks T is. In contrast, the bounds in Corol-
lary 4.1 can be made independent of the dimension M and of the number of tasks T as soon
as T ≥ logM . Specifically, under the above assumptions we have, recalling Definition 4.1,
that κMT ≥ 1 and by (4.3), with probability close to 1, every Group Lasso solution β̂ satisfies

1

nT
∥X(β̂ − β∗)∥2 ≤ 128σ2 s

n

(
1 +

A logM

T

)
. (7.10)

• The Group Lasso achieves faster rates of convergence in some cases as compared to the usual
Lasso. We consider separately two cases. The first one is already discussed the preceding
remark. It corresponds to T ≥ logM . Then the upper bound for the Group Lasso (7.10) is
smaller than the lower bound (7.9) for the Lasso by a logarithmic factor. This factor can be
large if T is large, for example exponential in n, so that (7.9) gives no convergence result
for the Lasso. The second case is T < logM . Then the lower bound (7.9) is of the order
s(logM)/n, while the upper bound (7.10) is of the order s(logM)/(nT ). The ratio is of the
order T in favor of the Group Lasso.

In (7.9) and (7.10) we have only compared the prediction errors of the two estimators. In view of
inequality (4.6) and Theorem 7.1, similar observations are valid for the ℓ2 estimation errors.
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8 Non-Gaussian noise
In this section, we show that the above results extend to non-gaussian noise. We consider here
the multi-task setting described in Section 2.1 and we only assume that the components of random
vector W are independent with zero mean and finite fourth moment E[W 4

tj]. As we shall see the
results remain similar to those of the previous sections, though the concentration effect is weaker.

We need the following technical assumption.

Assumption 8.1. The matrix X is such that

max
t∈NT

(
1

n

n∑
i=1

max
j∈NM

|(xti)j|2
)

≤ x2∗

for a finite constant x∗.

This assumption is quite mild. It is satisfied for example, if all (xti)j are bounded in absolute
value by a constant uniformly in i, t, j. We have the two following theorems.

Theorem 8.1. Consider the model (2.1) for any M ≥ 2, T, n ≥ 1. Assume that the components
of random vector W are independent with zero mean, maxt∈NT ,j∈NM

E[W 4
tj] ≤ b4, all diagonal

elements of the matrix X⊤X/n are equal to 1 and M(β∗) ≤ s. Let also Assumption 8.1 be
satisfied. Set

λ =
x∗b√
nT

(
1 +

(logM)3/2+δ

√
T

)1/2

,

with δ > 0. Then with probability at least 1 − 4
√

log(2M)[(8 log(12M))2+1]1/2

(logM)3/2+δ , for any solution β̂ of
problem (2.6) we have

1

nT
∥X(β̂ − β∗)∥2 ≤ 4x∗b√

nT

(
1 +

(logM)3/2+δ

√
T

)1/2

∥β∗∥2,1. (8.1)

If, in addition, Assumption 4.1 holds, then with the same probability for any solution β̂ of problem
(2.6) we have

1

nT
∥X(β̂ − β∗)∥2 ≤ 16x2∗b

2

κ2MT

s

n

(
1 +

(logM)3/2+δ

√
T

)
, (8.2)

1√
T
∥β̂ − β∗∥2,1 ≤ 16x∗b

κ2MT

s√
n

(
1 +

(logM)3/2+δ

√
T

)1/2

, (8.3)

M(β̂) ≤ 64ϕMT

κ2MT

s, (8.4)

where ϕMT is the largest eigenvalue of the matrix X⊤X/n. If, in addition, κMT(2s) > 0, then with
the same probability for any solution β̂ of problem (2.6) we have

1√
T
∥β̂ − β∗∥ ≤ 4

√
10x∗b

κ2(2s)

√
s

n

(
1 +

(logM)3/2+δ

√
T

)1/2

.
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Theorem 8.2. Consider the model (2.1) for M ≥ 2, T, n ≥ 1. Let the assumptions of Theorem 8.1
be satisfied and let Assumption 5.1 hold with the same s. Set

c̃ =

(
3

2
+

8

7(α− 1)

)
x∗b.

Let λ be as in Theorem 8.1. Then with probability at least 1− 4
√

log(2M)[(8 log(12M))2+1]1/2

(logM)3/2+δ , for any

solution β̂ of problem (2.6) we have

1√
T
∥β̂ − β∗∥2,∞ ≤ c̃√

n

(
1 +

(logM)3/2+δ

√
T

)1/2

.

If, in addition, it holds that

min
j∈J(β∗)

1√
T
∥(β∗)j∥ > 2c̃√

n

(
1 +

(logM)3/2+δ

√
T

)1/2

,

then with the same probability for any solution β̂ of problem (2.6) the set of indices

Ĵ =
{
j :

1√
T
∥β̂j∥ > c̃√

n

(
1 +

(logM)3/2+δ

√
T

)1/2 }
estimates correctly the sparsity pattern J(β∗):

Ĵ = J(β∗).

Proof. The proofs of these theorems are similar to those of Theorems 3.1 and 5.1 up to a modifi-
cation of the bound on P(Ac) in Lemma 3.1. We consider now the event

A =

 M
max
j=1

√√√√ T∑
t=1

(
n∑

i=1

(xti)jWti

)2

≤ λnT

 .

Define the random variables

Ytj =

(
n∑

i=1

(xti)jWti

)2

−
n∑

i=1

|(xti)j|2E[W 2
ti], j = 1, . . . ,M, t = 1, . . . , T.

We have

P(Ac) = P

 max
1≤j≤M

T∑
t=1

(
n∑

i=1

(xti)jWti

)2

≥ (λnT )2


≤ P

(
max

1≤j≤M

T∑
t=1

Ytj ≥ x2∗b
2n
√
T (logM)3/2+δ

)

≤
E max1≤j≤M

∣∣∣∑T
t=1 Ytj

∣∣∣
x2∗b

2n
√
T (logM)3/2+δ

.
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Applying the maximal moment inequality of Lemma 9.1 below with m = 1 and constant c(1) = 2
we obtain

E max
1≤j≤M

∣∣∣∣∣
T∑
t=1

Ytj

∣∣∣∣∣ ≤
√

8 log(2M) E

[ T∑
t=1

max
1≤j≤M

Y 2
tj

]1/2 (8.5)

≤
√

8 log(2M)

[
T∑
t=1

E
(

max
1≤j≤M

Y 2
tj

)]1/2

≤ 4
√
log(2M)

b4x4∗n2T +
T∑
t=1

E

 max
1≤j≤M

∣∣∣∣∣
n∑

i=1

(xti)jWti

∣∣∣∣∣
4


1/2

.

By the maximal moment inequality of Lemma 9.1 with m = 4 and constant c(4) = 12 (since
M ≥ 2) the last expectation is bounded, for any t = 1, . . . , T , as

E

 max
1≤j≤M

∣∣∣∣∣
n∑

i=1

(xti)jWti

∣∣∣∣∣
4
 ≤ (8 log(12M))2E

[ n∑
i=1

max
1≤j≤M

(xti)
2
jW

2
ti

]2 .

Setting for brevity xi = max1≤j≤M(xti)
2
j we have

E

[ n∑
i=1

max
1≤j≤M

(xti)
2
jW

2
ti

]2 ≤ b4

(∑
i̸=k

xixk +
n∑

i=1

x2i

)

= b4

(
n∑

i=1

xi

)2

≤ b4x4∗n
2.

Combining the above four displays yields

P(Ac) ≤
4
√
log(2M)

[
(8 log(12M))2 + 1

]1/2
(logM)3/2+δ

.

9 Maximal moment inequality
In this section we prove the following inequality for the m-th moment of maxima of sums of
independent random variables.

Lemma 9.1. (Maximal moment inequality) Let Z1, . . . , Zn be independent random vectors in
RM , and let Zi,j denote the j-th component of Zi. Then for any m ≥ 1 and M ≥ 1 we have

E

(
max

1≤j≤M

∣∣∣∣∣
n∑

i=1

(
Zi,j − EZi,j

)∣∣∣∣∣
m)

≤
[
8 log(c(m)M)

]m/2

E

([
max

1≤j≤M

n∑
i=1

Z2
i,j

]m/2
)
,

where c(m) = min{c > 0 : em−1 − 1 ≤ (c− 2)M}. In particular, 2 ≤ c(m) ≤ em−1 + 1.
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Before giving the proof, we make some comments. The case m = 2 of Lemma 9.1 implies
– modulo constants – Nemirovski’s inequality (see [27], page 188, and [13], Corollary 2.4). In
general, Nemirovski’s inequality concerns the second moment of ℓp-norms (1 ≤ p ≤ ∞) of
sums of independent random variables in RM , whereas we only consider p = ∞. On the other
hand, even for m = 2 Lemma 9.1 is more general than what is given by Nemirovski’s inequality
because we interchange the maximum and the sum on the right hand side. The case M = 1 of
Lemma 9.1 yields the Marcinkiewicz-Zygmund inequality (see [29], page 82), and as an immediate
consequence the inequality

E

(∣∣∣ n∑
i=1

ξi

∣∣∣m) ≤ [8 log(c(m))]m/2nm/2−1

n∑
i=1

E |ξi|m , m ≥ 2, (9.1)

for independent zero-mean random variables ξi. Thus, as a particular instance, we give a short
proof of (9.1) and provide the explicit constant. This constant is of the optimal order in m but
larger than the one obtainable from the recent sharp moment inequality due to Rio [33].

Proof. Let (ε1, . . . , εn) be a sequence of i.i.d. Rademacher random variables independent of Z =
(Z1, . . . , Zn). Let EZ denote conditional expectation given Z. By Hoeffding’s inequality, for all
L > 0 and all i and j,

EZ exp[Zi,jεi/L] ≤ exp[Z2
i,j/(2L

2)]. (9.2)

Define

ζ = max
1≤j≤M

∣∣∣∣ n∑
i=1

Zi,jεi

∣∣∣∣.
Using successively Jensen’s inequality (the function x 7→ logm (x+ em−1 − 1) is concave for
x ≥ 1), the inequality e|x| ≤ ex + e−x, ∀ x ∈ R, the independence of εi, and (9.2), we obtain

EZ(ζ
m) ≤ LmEZ log

m

{
exp [ζ/L] + em−1 − 1

}
≤ Lm logm

{
EZ exp [ζ/L] + em−1 − 1

}
≤ Lm logm

{ M∑
j=1

EZ exp

[∣∣∣∣ n∑
i=1

Zi,jεi

∣∣∣∣/L
]
+ em−1 − 1

}

≤ Lm logm

{
2M exp

[
max

1≤j≤M

n∑
i=1

Z2
i,j/(2L

2)

]
+ em−1 − 1

}
.

Note that 2Mx + em−1 − 1 ≤ c(m)Mx for all x ≥ 1, where c(m) is the constant defined in the
statement of the lemma. This and the previous display yield

EZ(ζ
m) ≤ Lm logm

{
c(m)M exp

[
max

1≤j≤M

n∑
i=1

Z2
i,j/(2L

2)

]}

= Lm

{
log(c(m)M) +

max1≤j≤M

∑n
i=1 Z

2
i,j

2L2

}m

.
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Choosing

L =

√
max1≤j≤M

∑n
i=1 Z

2
i,j

2 log(c(m)M)

gives

EZ

(
max

1≤j≤M

∣∣∣∣ n∑
i=1

Zi,jεi

∣∣∣∣m
)

≤

[
2 log(c(m)M) max

16j≤M

n∑
i=1

Z2
i,j

]m/2

.

Hence,

E

(
max

1≤j≤M

∣∣∣∣ n∑
i=1

Zi,jεi

∣∣∣∣m
)

≤
[
2 log(c(m)M)

]m/2

E

[ max
1≤j≤M

n∑
i=1

Z2
i,j

]m/2
 .

Finally, we de-symmetrize (see Lemma 2.3.1 page 108 in [37]):(
E max

1≤j≤M

∣∣∣∣ n∑
i=1

(Zi,j − EZi,j)

∣∣∣∣m
)1/m

≤ 2

(
E max

1≤j≤M

∣∣∣∣ n∑
i=1

Zi,jεi

∣∣∣∣m
)1/m

.
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A Auxiliary results
Here we collect some auxiliary results which we have use in the paper.

The first result is taken from [9, Eq. (27)] and was used in the proof of Lemma 3.1.

Lemma A.1. Let ξ1, . . . , ξN be i.i.d. N (0, 1), v = (v1, . . . , vN) ̸= 0, ηv = 1√
2∥v∥

N∑
i=1

(ξ2i − 1)vi and

m(v) = ∥v∥∞
∥v∥ . We have, for all x > 0, that

P(|ηv| > x) ≤ 2 exp

(
− x2

2(1 +
√
2xm(v))

)
.

The next lemma provides the link between Assumptions 5.1 and 3.1 and was used extensively
in our analysis in Section 5.

Lemma A.2. Let Assumption 5.1 be satisfied. Then Assumption 3.1 is satisfied with κ =
√
(1− 1/α)ϕ.
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Proof. We use here the notations introduced in the proof of Theorem 5.1. For any subset J of NM

such that |J | ≤ s and any ∆ ∈ RK we have

|∆⊤
J (Ψ− ϕIK×K)∆J | ≤

∑
j,j′∈J

Kj∑
t=1

Kj′∑
t′=1

∣∣∣∣(Ψ̃[j, j′]
)
t,t′

∣∣∣∣ |∆̃j
t ||∆̃

j′

t′ |

=
∑
j,j′∈J

min(Kj ,Kj′∑
t=1

∣∣∣∣(Ψ̃[j, j′]
)
t,t

∣∣∣∣ |∆̃j
t ||∆̃

j′

t |

+
∑
j,j′∈J

Kj∑
t=1

Kj′∑
t′=1,t′ ̸=t

∣∣∣∣(Ψ̃[j, j′]
)
t,t′

∣∣∣∣ |∆̃j
t ||∆̃

j′

t′ |.

We now treat separately the first and second terms in the right-hand side of the above display. For
the first term we have, using consecutively Assumption 5.1, Cauchy-Schwarz and Minkowski’s
inequality for the Euclidean norm in RKj , that

∑
j,j′∈J

Kj∑
t=1

∣∣∣∣(Ψ̃[j, j′]
)
t,t

∣∣∣∣ |∆̃j
t ||∆̃

j′

t | ≤ λminϕ

14αλmaxs

Kj∑
t=1

(∑
j∈J

|∆̃j
t |

)2

≤ λminϕ

14αλmaxs
∥∆J∥22,1

≤ λminϕ

14αλmax

∥∆J∥2.

For the second term we get, using Assumption 5.1 and Cauchy-Schwarz’s inequality twice, that

∑
j,j′∈J

Kj∑
t=1

Kj′∑
t′=1,t′ ̸=t

∣∣∣∣(Ψ̃[j, j′]
)
t,t′

∣∣∣∣ |∆̃j
t ||∆̃

j′

t′ | ≤ λminϕ

14αλmaxs

∑
j∈J

1√
Kj

Kj∑
t=1

|∆j
t |

2

≤ λminϕ

14αλmax

∥∆J∥2.

Combining the two above displays yields

∆⊤
JΨ∆J

∥∆J∥2
= ϕ+

∆⊤
J (Ψ− ϕIK×K)∆J

∥∆J∥2

≥ ϕ

(
1− 2λmin

14αλmax

)
.

We proceed similarly to treat the quantity |∆JcΨ∆J |. We have, using Assumption 5.1, Cauchy-
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Schwarz and Minkowski’s inequalities, that

|∆JcΨ∆J | ≤
∑

j∈Jc,j′∈J

Kj∑
t=1

∣∣∣∣(Ψ̃[j, j′]
)
t,t

∣∣∣∣ |∆̃j
t ||∆̃

j′

t |

+
∑

j∈Jc,j′∈J

Kj∑
t=1

Kj′∑
t′=1,t′ ̸=t

∣∣∣∣(Ψ̃[j, j′]
)
t,t′

∣∣∣∣ |∆̃j
t ||∆̃

j′

t′ |

≤ λminϕ

14αλmaxs
∥∆Jc∥2,1∥∆J∥2,1

+
λminϕ

14αλmaxs

∑
j∈J

Kj∑
t=1

1√
Kj

|∆j
t |

∑
j∈Jc

Kj∑
t=1

1√
Kj

|∆j
t |


≤ 2λminϕ

14αλmaxs
∥∆J∥2,1∥∆Jc∥2,1.

Next we have, for any vector ∆ ∈ RK satisfying the inequality
∑

j∈Jc λj∥∆j∥ ≤ 3
∑

j∈J λj∥∆j∥,
that

∥∆Jc∥2,1 =
∑
j∈Jc

∥∆j∥

≤
∑
j∈Jc

λj
λmin

∥∆j∥

≤ 3

λmin

∑
j∈J

λj∥∆j∥

≤ 3λmax

λmin

∥∆J∥2,1.

Combining these inequalities we find that

∆⊤Ψ∆

∥∆J∥2
≥ ∆⊤

JΨ∆J

∥∆J∥2
+

2∆⊤
JcΨ∆J

∥∆J∥2

≥ ϕ− 2λminϕ

14αλmax

−
12ϕ∥∆J∥22,1
14αs∥∆J∥2

≥
(
1− 1

α

)
ϕ.

Lemma A.3. Let T ≥ 16 and s ≥ 16. If ω and ω′ are two elements of N ′ such that ρ′(ω, ω′) ≥ Ts
8

,

then the cardinality of the set J(ω, ω′) =
{
j ≤ s :

∑T
t=1 I{ωtj ̸= ω′

tj} > T
16

}
is greater than or

equal to s
16

.
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Proof. Assume that |J(ω, ω′)| < s/16. Then, denoting by J(ω, ω′)c the complement of J(ω, ω′),
and using that |J(ω, ω′)c| ≤ s, we get

ρ′(ω, ω′) ≤
∑

j∈J(ω,ω′)c

T∑
t=1

I{ωtj ̸= ω′
tj}+ |J(ω, ω′)|T < Ts/8,

which contradicts the premise of the lemma.
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