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Fear-type emotion recognition for future
audio-based surveillance systems
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aThales Research and Technology France, RD 128, 91767 Palaiseau Cedex, France
PLIMSI-CNRS, BP 133, 91408 Orsay Cedex, France
CTELECOM ParisTech, 37 rue Dareau, 75014 Paris, France

Abstract

This paper addresses the issue of automatic emotion recognition in speech. We focus
on a type of emotional manifestation which has been rarely studied in speech process-
ing: fear-type emotions occurring during abnormal situations (here, unplanned events
where human life is threatened). This study is dedicated to a new application in emo-
tion recognition - public safety. The starting point of this work is the definition and
the collection of data illustrating extreme emotional manifestations in threatening
situations. For this purpose we develop the SAFE corpus (Situation Analysis in a
Fictional and Emotional corpus) based on fiction movies. It consists of 7 hours of
recordings organized into 400 audiovisual sequences. The corpus contains recordings
of both normal and abnormal situations and provides a large scope of contexts and
therefore a large scope of emotional manifestations. In this way, not only it addresses
the issue of the lack of corpora illustrating strong emotions, but also it forms an in-
teresting support to study a high variety of emotional manifestations. We define a
task-dependent annotation strategy which has the particularity to describe simulta-
neously the emotion and the situation evolution in context. The emotion recognition
system is based on these data and must handle a large scope of unknown speakers
and situations in noisy sound environments. It consists of a fear vs. neutral classifica-
tion. The novelty of our approach relies on dissociated acoustic models of the voiced
and unvoiced contents of speech. The two are then merged at the decision step of
the classification system. The results are quite promising given the complexity and
the diversity of the data: the error rate is about 30%.

Key words: Fear-type emotions recognition; Fiction corpus; Annotation scheme;
Acoustic features of emotions; Machine learning; Threatening situations; Civil
safety.
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1 Introduction

One of the challenges of speech processing is to give computers the ability to
understand human behaviour. The computer input is the signal captured by a
microphone, i.e. the low level information provided by audio samples. Closing
the gap between this low level data and understanding of human behaviour,
it’s a scientific challenge. Consequently, the issue now is not only to know what
is said but also to know the speaker’s attitude, emotion or personality.

This paper concerns the emerging research field of emotion recognition in
speech. We propose to investigate the integration of emotion recognition in
a new application, namely automatic surveillance systems. This study comes
within the scope of the SERKET ! project, which aims to develop surveillance
systems dealing with dispersed data coming from heterogeneous sensors, in-
cluding audio sensors. It is motivated by the crucial role played by the emo-
tional component of speech in the understanding of human behaviour, and
therefore in the diagnosis of abnormal situation.

Our audio-based surveillance system is ultimately designed to consider the
information conveyed by abnormal non-vocal events such as gunshots (Clavel
et al., 2005), though we focus here on the part of the system dealing with vocal
manifestations in abnormal situations. We look at things from the viewpoint
of protecting human life in the context of civil safety and we choose to focus
on abnormal situations during which human life is in danger (e.g. fire, psycho-
logical and physical attack). In this context, the targeted emotions correspond
to a type of emotional manifestation which has been so far rarely studied —
fear-type emotions occurring during abnormal situations.

The development of an emotion recognition system can be broken down into
four distinct steps: the acquisition of emotional data, the manual annotation
of the emotional content, the acoustic description of the emotional content
and the development of machine learning algorithm. Given that the emotional
phenomenon is especially complex and hard to define, these steps require the
know-how of a set of distinct disciplines such as psychology, social sciences, bi-
ology, phonetic, linguistic, artificial intelligence, statistics, acoustics and audio
signal processing. In this introduction, we set out first to unravel the know-how
of these disciplines from an emotion recognition system point of view and then
to present the additional challenges implied by the surveillance application.

L http:/ /www.research.thalesgroup.com /software /cognitive _solutions/Serket /index.html



1.1  Ovwerview of emotion recognition systems

1.1.1 Acquisition of the emotional recordings

The basis of emotion research studies is the acquisition of data that are record-
ings of emotional manifestations. More precisely, data are required for the
conception of emotion recognition systems so that the machine can learn to
differentiate the acoustic models of emotion. In this case, the challenge is to
collect a large number of recordings illustrating emotions as they are expected
to occur in application data. In particular, data should be ideally represen-
tative of everyday life if the application has to run in everyday life contexts
(Douglas-Cowie et al., 2003). Besides, not only the type of collected emotions
but also the type of pictured contexts should be appropriate for the targeted
application. The context of emotion emergence concerns the situation (place,
triggering events), the interaction (human-human or human-machine, dura-
tion of the interaction), the social context (agent-customer for call centres),
the speaker (gender, age), the cultural context, the linguistic context (lan-
guage, dialect), and the inter-modal context (gesture and speech for surveil-
lance applications or speech alone for call centres).

The HUMAINE network of excellence has carried out an evaluation of the
existing emotional databases?. This evaluation shows that one requirement
is not adequately addressed in existing databases: there is a lack of corpora
illustrating strong emotions with an acceptable level of realism. Indeed spe-
cific real-life emotional data are difficult to collect given their unpredictable
and confidential nature. That’s the reason why acted databases are still used
to a large extent in emotional speech studies: Juslin and Laukka (2003) list
104 studies on emotions and estimate at 87% the percentage of studies carried
out on acted data. The difficulty is greater when dealing with extreme emo-
tions occurring in real-life threat contexts and extreme emotions are almost
exclusively illustrated in acted databases (Mozziconacci (1998), Kienast and
Sendlmeier (2000), van Bezooijen (1984), Abelin and Allwood (2000), Yacoub
et al. (2003), McGilloway (1997), Dellaert et al. (1996), Banse and Scherer
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(1996), Bénziger et al. (2006)).

Acted databases generally tend to reflect stereotypes that are more or less far
from emotions likely to occur in real-life contexts. This realism depends on the
speaker (professional actor or not) and on the context or the scenario provided
to the speaker for emotion simulation. Most acted databases are laboratory
data produced under conditions designed to remove contextual information.
Some recent studies have aimed to collect more realist emotional portrayals
by using acting techniques that are thought to stir genuine emotions through

2 http://emotion-research.net /wiki/Databases



action (Bénziger et al., 2006), (Enos and Hirshberg, 2006).

An alternative way to obtain realistic emotional manifestations is to induce
emotions without speaker’s knowledge, such as with the eWIZ database (Aubergé
et al., 2004), and the SAL database (Douglas-Cowie et al., 2003). However, the
induction of fear-type emotions may be medically dangerous and unethical, so
that fear-type emotions are not illustrated in elicited databases.

The third type of emotional database, real-life database, illustrates, to a large
extent, everyday life contexts in which social emotions currently occur. Some
real-life databases illustrate strong emotional manifestations (Vidrascu and
Devillers (2005), France et al. (2003)) but the types of situational contexts

are very specific (emergency call centre and therapy sessions), which raises

the matter of using databases illustrating a restricted scope of contexts (as
defined previously) for various applications.

1.1.2  Annotation of the emotional content

The second step consists of the emotional content annotation of the record-
ings. The challenge is to define an annotation strategy which is a good trade-off
between genericity (data-independent) and the complexity of the annotation
task. Annotated data are required not only to evaluate the performance of the
system, but also to build the training database by linking recordings to their
emotional classes. The annotated data must therefore provide an acceptable
level of agreement. However, the emotional phenomenon is especially complex
and subjected to discord. According to Scherer et al. (1980), this complexity
is increased by the two opposite effects push/pull implied in emotional speech:
physiological excitations “push” the voice in one direction and conscious at-
tempts driven by cultural rules “pull” them in an another direction.

The literature on emotion representation models has its roots in psycholog-
ical studies, and offers two major description models. The first one consists
of representing the range of emotional manifestation in abstract dimensions.
Various dimensions have been proposed and vary according to the underly-
ing psychological theory. The activation/evaluation space is recently the one
which is used the most frequently and is known to capture a large range of
emotional variation (Whissel, 1989).

The second one consists of using categories for the emotion description. A large
amount of studies dedicated to emotional speech use a short list of ‘basic’ (see
the overview of Orthony and Turner (1990)) or ‘primary’ (Damasio, 1994)
emotion terms which differ according to the underlying psychological theories.
The ‘Big Six’ (fear, anger, joy, disgust, sadness and surprise) defined by Ekman
and Friesen (1975) are the most popular. However fuller lists (Ekman (1999),
Whissel (1989), Plutchik (1984)) have been established to describe ‘emotion-



related states’ (Cowie and Cornelius, 2003) and Devillers et al. (2005b) have
shown that emotions in real-life are rarely ‘basic emotions’ but complex and
blended emotional manifestations. At a cognitive level, this type of description
involves drawing frontiers in the perceptive space. Each emotional category
may be considered as a prototype — center of a class of more or less similar
emotional manifestations (Kleiber, 1990) which can be linked to other simi-
lar manifestations. The difficulty of the categorization task strongly depends
on the emotional material. The majority of acted databases aim to illustrate
predefined emotional prototypes. All the emotional manifestations illustrated
by this type of corpus are strongly convergent to the same prototype. By con-
trast, emotions occurring in real-life corpora are uncontrolled. They display
unpredictable distances to their theoretical prototype. This propensity to oc-
cur in different situations through various manifestations engenders labelling
challenges when one makes use of a predefined list of labels. In addition, the
complexity of emotional categorization is increased by the diversity of the
data.

Existing annotation schemes fall short of industrial expectations. Noting this,
which is closely akin to the motivation of the EARL proposal® by the W3C
Emotion Incubator Group, leads us to unravel the emotion description task
from an emotion recognition system point view.

1.1.8  Acoustic description of the emotional content

After the emotional material has been collected and labelled, the next step
is to extract from the speech recordings acoustic features characterizing the
various emotional manifestations. This representation of speech signal will be
used as the input of the emotion classification system. Existing representa-
tions are based on both high-level and low-level features. High-level features,
such as pitch or intensity, aim at characterizing the speech variation accompa-
nying physiological or bodily emotional modifications (Picard (1997) Scherer
et al. (2001)). First studies focus on prosodic features which include typically
pitch, intensity and speech rate and are largely used in emotion classification
systems (Kwon et al. (2003) McGilloway (1997) Schuller et al. (2004)) and
stand out to be especially salient for fear characterization (Scherer (2003),
Devillers and Vasilescu (2003), Batliner et al. (2003)). Voice quality features
which characterize creaky, breathy or tensed voices have also recently been
used for emotional content acoustic representation (Campbell and Mokhtari,
2003). Low-level features such as spectral and cepstral features, were initially

3 Emotion  Annotation and Representation Language http://emotion-
research.net/earl/proposal. The W3C Emotion Incubator Group, after one
year of joint work involving several HUMAINE partners, has published its Final
Report and a paper in ACIT 2007 (Schroeder et al., 2007)



used for speech processing systems, but can also be used for emotion classifi-
cation systems (Shafran et al. (2003) Kwon et al. (2003)).

1.1.4 Classification algorithms

The final step consists in the development of classification algorithms which
aim to recognize one emotional class among others or to classify emotional
classes among themselves. The used emotional classes vary according to the
targeted application or the type of studied emotional data.

Emotion classification systems are essentially based on supervised machine
learning algorithms: Support Vector Machines (Devillers and Vidrascu, 2007),
Gaussian Mixture Models (Schuller et al., 2004), Hidden Markov Models (Wag-
ner, 2007), k nearest neighbors (Lee et al., 2002), etc.. It is rather difficult to
compare the efficiency of the various existing approaches, since no evalua-
tion campaign has been carried out so far. Performances are besides not only
dependent on the adopted machine learning algorithm but also on:

- the diversity of the tested data: contexts (speakers, situations, types of
interaction), recording conditions;

- the emotional classes (number and type);

- the training and test conditions (speaker-dependent or not) (Schuller et al.,
2003);

- the techniques for acoustic feature extraction which are more or less depen-
dent of prior knowledge of the linguistic content and of the speaker identity
(normalization by speaker or by phone, analysis units based on linguistic
content).

A first effort to connect existing systems has been carried out with the CE-
ICES (Combining Efforts for Improving automatic Classification of Emotional
user States) launched in 2005 by the FAU Erlangen through the HUMAINE*
network of excellence (Batliner et al., 2006).

1.2  Contributions

It emerges from the previous overview that the development of emotion recog-
nition systems is a recent research field and the integration of such systems
in effective applications requires to raise new scientific issues. The first sys-
tem on laboratory emotional data was indeed carried out recently by Dellaert
et al. (1996). Although some emotion recognition systems are now dealing with
spontaneous and more complex data (Devillers et al., 2005b), this research field

4 http://wwwb.informatik.uni-erlangen.de/Forschung /Projekte/HUMAINE /?language=en



just begins to be studied with the perspective of industrial applications such
as call centres (Lee et al., 1997) and human-robot interaction (Oudeyer, 2003).
In this context, our approach contributes to an important challenge, since the
surveillance application implies the consideration of a new type of emotion
and context — fear-type emotions occurring during abnormal situations — and
the integration of new constraints.

1.2.1 The application: audio-surveillance

Existing automatic surveillance systems are essentially based on video cues to
detect abnormal situations: intrusion, abnormal crowd movement, etc.. Such
systems aim to provide an assistance to human operators. The parallel surveil-
lance of multiple screens increases indeed the cognitive overload of the staff
and raises the matter of vigilance.

However audio event detection has only begun to be used in some specific
surveillance applications such as medical surveillance (Vacher et al., 2004).
Audio cues, such as gun shots or screams (Clavel et al.; 2005) typically, may
convey useful informations about critical situations. Using several sensors in-
creases the available information and strengthens the quality of the abnormal
situation diagnoses. Besides audio information is useful when the abnormal
situation manifestations are poorly expressed by visual cues such as gun-shot
events or human shouts or when these manifestations go out of shot of the
cameras.

1.2.2  The processing of a specific emotional category: fear-type emotions oc-
curring during abnormal situations.

Studies dedicated to the recognition of emotion in speech commonly refer to
a restricted number of emotions such as the ‘Big Six’ (see 1.1.2) especially
when they are based on acted databases. Among the studied emotions, fear-
type emotions in their extreme manifestations are not frequently studied in
the research field of real-life affective computing. Studies prefer to take into
account more moderate emotional manifestations which occur in everyday life
and which are shaped by politeness habits and cultural behaviours. Indeed, a
large part of applications is dedicated to improve the naturalness of the human-
machine interaction for everyday tasks (dialog systems for banks and commer-
cial services (Devillers and Vasilescu, 2003), artificial agents (Pelachaud, 2005),
robots (Breazeal and Aryananda, 2002)). However, some applications, such as
dialog systems for military applications (Varadarajan et al., 2006), (Fernandez
and Picard, 2003) or emergency call centres (Vidrascu and Devillers; 2005)
deal with strong fear-type emotions in specific contexts (see Section 1.1.1)

3

The emotions targeted by surveillance applications belong to the specific class



of emotions emerging in abnormal situations. More precisely fear-type emo-
tions may be symptomatic for threat situations where the matter of survival
is raised. Here, we are looking for fear-type emotions occurring in dynamic sit-
uations, during which the matter of survival is raised. In such situations some
expected emotional manifestations correspond to primary manifestations of
fear (Darwin, 1872): they may occur as a reaction to a threat. But the tar-
geted emotional class includes also more complex fear-related emotional states
(Cowie and Cornelius, 2003) ranging from worry to panic.

Fear manifestations are indeed varying according to the imminence of the
threat (potential, latent, immediate or past). For our surveillance application,
we are interested in the human assistance by detecting not only the threat but
also the threat emergence. There is therefore a strong interest to consider all
the various emotional manifestations inside the fear class.

1.2.8 The application constraints

From a surveillance application point of view, the emotion recognition system
has to:

- run on data with a high diversity in terms of number and type of speakers,

- cope with more or less noisy environments (e.g. bank, stadium, airport,
subway, station),

- be speaker independent and cope with a high number of unknown speakers,

- be text-independent, i.e. not rely on a speech recognition tool, as a conse-
quence of the need to deal with various qualities of the recorded signal in a
surveillance application.

1.2.4  Approach and outline

In this paper, we tackle all the various steps involved in the development of
an emotion recognition system:

- the development of a new emotional database in response to the applica-
tion constraints: the challenge is to collect data which illustrate a large
scope of threat contexts, emotional manifestations, speakers, and envi-
ronments (Section 2),

- the definition and development of a task-dependent annotation strategy
which integrates this diversity and the evolution of emotional manifesta-
tions according to the situation (Section 2),

- the extraction of relevant acoustic features for fear-type emotions char-
acterization: the difficulty relies in finding speaker-independent and text-
independent relevant features (Section 3)
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- the development of an emotion recognition system based on machine-
learning techniques: the system needs to be robust to the variability of
the expected data and to the noise environment (Section 3),

- the performance evaluation in experimental conditions as close as possible
to those of the effective targeted application (Section 4).

2 Collection and annotation of fear-type emotions in dynamic sit-
uations

2.1 Collection of audiovisual recordings illustrating abnormal situations

Abnormal situations are especially rare and unpredictable and real-life surveil-
lance data are often inaccessible in order to protect personal privacy. Given
these difficulties, we chose to rely on a type of support hitherto unexploited by
emotional studies, namely the fiction. Our fiction corpus (the SAFE Corpus —
Situation Analysis in a Fictional and Emotional corpus) consists of 400 audio-
visual sequences in English extracted from a collection of 30 recent movies from
various genres: thrillers, psychological drama, horror movies, movies which aim
at reconstituting dramatic news items or historical events or natural disasters.
The duration of the corpus totals 7 hours of recordings organized in sequences
from 8 seconds to 5 minutes long. A sequence is a movie section illustrating one
type of situation — kidnapping, physical aggression, flood etc. The sequence
duration depends on the way of illustration and segmentation of the targeted
situation in the movie. A majority -~ 71 % — of the SAFE corpus depicts abnor-
mal situations with fear-type emotional manifestations among other emotions,
the remaining data consisting in normal situations to ensure the occurence of
a sufficient number of other emotional states or verbal interactions.

The fictional movie support has so far rarely been exploited for emotional
computing studies®. On the one hand, fiction undoubtedly provides acted
emotions and audio recordings effects which cannot always reflect a true pic-
ture of the situation. Furthermore, the audio and video channels are often
remixed afterward and are recorded under better conditions than in real sur-
veillance data. On the other hand, we are here working on data very different
from laboratory data, which are taken out of context with clean recording
conditions, and which have been largely studied in the past. The fiction pro-
vides recordings of emotional manifestations in their environmental noise. It
offers a large scope of believable emotion portrayals. Emotions are expressed
by skilled actors in interpersonal interactions. The large context defined by the

> We found only one paper (Amir and Cohen, 2007) which exploits dialog extracted
from an animated film to study emotional speech.



movie script favours the identification of actors with characters and tends to
stir genuine emotions. Besides, the emotional material is quite relevant from
the application point of view. Various threat situations, speakers, and record-
ing conditions are indeed illustrated. This diversity is required for surveillance
applications. But the two major contributions of such a corpus are:

- the dynamic aspect of the emotions: the corpus illustrates the emotion evo-
lution according to the situation in interpersonal interactions.

- the diversity of emotional manifestations: the fiction depicts a large variety
of emotional manifestations which could be relevant for number of applica-
tions but which would be very difficult to collect in real life.

2.2 In situ description of the emotional content

We propose a task-dependent annotation strategy which aims both to define
the emotional classes that will be considered by the system and to provide
information to help understand system behaviours.

2.2.1 Annotation tools and strateqy

The annotation scheme is defined via the XML formalism (eXtensive Mark-up
Language) under ANVIL (Kipp, 2001) (Devillers et al., 2005a) which provides
an appropriate interface for multimodal corpora annotation (see Figure 1).

The audio content description is carried out ‘en situ’, which means in the
context of the sequence and with the help of video support. It consists in the
sequence description of both situational and emotional contents. The sequence
is split into audio-based annotation units — the segments. These derive from the
dialog and emotional structure of the interpersonal interactions. The segment
corresponds to a speaker turn or a portion of speaker turn with an homo-
geneous emotional content, that is without abrupt emotional change, taking
into account the following emotional descriptors (categorical and dimensional).
This ‘in situ’ description makes it possible to capture the evolution of the emo-
tional manifestations occurring in a sequence and to study its correlation with
the evolution of the situation.

2.2.2 Annotation tracks

The situation illustrated in the sequence is depicted by various contextual
tracks:

- The speaker track provides the genre of the speaker and also its position in

10



Annotation tool : ANVIL (DFKI)

g Video: Cape_cl4s1.avi

Video
support

e rtual Treake: Annotation unit: segment

speech description

|(::}

Contextual tracks :

Emotional tracks :
category and
dimensions(intensity,
evaluation, reactivity

Contextual tracks :
threat description

In situ emotional description: emotional manifestation evolution during the sequence

Fig. 1. Annotation scheme under ANVIL

the interaction (aggressor, victim or others).

- The threat track gives information about the degree of imminence of the
threat (no threat, potential, latent, immediate or past threats) and its in-
tensity. Besides, a categorization of threat types is proposed by answering
the following step by step questions: If there is a threat, is it known by the
vietim(s)? Do the victims know the origin of the threat? Is the aggressor
present in the sequence? Is he/she a familiar of the victims?

- The speech track stores the verbal and non-verbal (shouts, breathing) con-
tent of speech according to the LDC ¢ transcription rules. The type of audio
environment (music/noise) and the quality of speech are also detailed. The
categories obtained via this annotation could be employed to test the ro-
bustness of the detection methods to environmental noise.

Linguistic Data Consortium
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Categorical and dimensional descriptors are used to describe the emotional
manifestations at the segment level. Categorical descriptors provide a task-
dependent description of the emotional content with various levels of accuracy.
Indeed, it is especially difficult to accurately delimit the emotional categories
(in terms of perceived classes for the annotation strategy and of acoustic mod-
els for the detection system see Section 1.1.2) when the data variability is
high, as it is the case here. In order to limit the number of emotion classes,
we have selected four major emotion classes: global class fear, other negative
emotions, neutral, positive emotions. Global class fear corresponds to all fear-
related emotional states and the neutral class corresponds to non-negative and
non-positive emotional speech with a faint emotional activation, as defined in
Devillers (2006) 7. These broad emotional categories are specified by emotional
subcategories which are chosen from a list of emotions occurring in abnormal
situations. This list consists in both simple subcategories presented in Table 1
and mixed subcategories obtained by combining the simple subcategories (e.g.
stress-anger).

Table 1
Emotional categories and subcategories.

Broad categories Subcategories

fear stress, terror, anxiety, worry, anguish,
panic, distress, mixed subcategories

other negative emotions | anger, sadness, disgust, suffering, decep-
tion, contempt, shame, despair, cruelty,
mixed subcategories

neutral g

positive emotions joy, relief, determination, pride, hope,
gratitude, surprise, mixed subcategories

Dimensional descriptors are based on three abstract dimensions: evaluation,
intensity and reactivity. They are quantified on discrete scales. Evaluation
axis covers discrete values from wholly negative to wholly positive (-3,-2,-
1,0,41,+2,+3). The intensity and reactivity axes provide four levels from 0 to
3. The intensity dimension is a variant of the activation dimension defined in

" The concept of neutral emotion is ambiguous and needs to be clarified. The per-
ception of “neutral” emotion is speaker-dependent and varies according to the “emo-
tional intelligence” of the labellers (Clavel et al., 2006a). In this work, the “neutral”
emotion corresponds to the cases where the judges could not perceive any emotion
in the multimodal expression. Indeed, we are here focusing on the expressive aspect
of the emotional phenomenon, that is one of the three aspects (cognitive, physio-
logical, and expressive) currently accepted as composing the emotional phenomenon
(Scherer, 1984). Harrigan et al. (2005) specify also this focus on the expressive aspect
of emotion to define neutral attributes for their study.
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psychological theories (Osgood et al., 1975) as the level of corporal excitation
expressed by physiological reactions such as heartbeat increasing or transpi-
ration. But we prefer to use the intensity dimension as we estimate it more
suitable for the description of the oral emotional manifestations. For intensity
and evaluation, the level 0 corresponds to neutral. The reactivity value indi-
cates whether the speaker seems to be subjected to the situation (passive, level
0) or to react to it (active, level 3) and has been adapted to the application
context from the most frequently used third dimension - named the control
dimension (Russell, 1997). Besides this dimension is only used for emotional
manifestations occurring during threats.

Abstract dimensions allow the specification of the broad emotional categories
by combining the different levels of the scaled abstract dimensions. The per-
ceptual salience of those descriptors and of the annotation unit was evaluated
at the beginning of our work and as a preliminary step in validating the data
acquisition and annotation strategy in Clavel et al. (2004).

2.2.3  Annotation task of labellers

The segmentation and the first annotation of the corpus were carried out by
a native English labeller (Labl). Two other French/English bilingual labellers
(Lab2 and Lab3) independently annotated the emotional content of the pre-
segmented sequences. It would be interesting to carry out further annotation
exercises to strengthen the reliability but the annotation task is especially
costly.

The contextual and video support of the sequence complicates the segment
annotation and increases the annotation time. Indeed, the annotation of the
emotional content in the pre-segmented sequences (7 hours) takes about 100
hours as the decision is taken by considering the context and the several chan-
nels (audio, video). But this support is crucial to strengthen the reliability
of the annotations. The segmentation process is also very costly, since the
complete segmentation and annotation task takes twice the time of the simple
annotation of the pre-segmented sequences. Given the scale of this task we do
not so far have a validation protocol for the segmentation step and for the
other annotation tracks.

2.2.4  FEvaluation of the reliability

When dealing with emotion computing, there are two main aspects to handle:
the diversity of emotional manifestations and the subjectivity of emotion per-
ception. We attempt to deal with the first aspect by considering various levels
of accuracy in our annotation strategy. The second aspect is here unraveled
by a comparative in-depth analysis of the annotations obtained by the three

13



labellers (Labl, Lab2 and Lab3). The inter-labeller agreement is evaluated
using traditional kappa statistics (Carletta, 1996) (Bakeman and Gottman,
1997) for the four emotional categories, and using Cronbach’s alpha measure
(Cronbach, 1951) for the three dimensions.

The kappa coefficient x corresponds here to the agreement ratio taking into
account the proportion of times that raters would agree by chance alone:

Po — De
K= —
11— Pe
where p, is the observed agreement proportion and p,. the chance term. These
two proportions are computed as follows: py = ﬁ e Psegi and P =

DO pglk. Pel, corresponds to the overall proportion of segments labelled with
the class k, and the proportion p,,, corresponds to the measure of agreement
on each segment i between the N,,, labellers. The kappa is at 0 when the
agreement level corresponds to chance, and at 1 when the agreement is total.

Cronbach’s alpha is another measure of inter-labeller reliability, more suitable
than kappa for labels on a numerical scale. It is computed by the following

formula: -
Nonn T

T Ny — )7
where 7 is the average intercorrelation between the labellers. The higher the
score, the more reliable the generated scale is. The widely-accepted social
science cut-off is that alpha values at .70 or higher correspond to an acceptable

reliability coefficient but lower thresholds are sometimes used in the literature
(Nunnaly, 1978).

The Cronbach’s alpha and the kappa statistics computed on the SAFE Corpus
between the three labellers’ annotations are presented in Table 2.

Table 2
Kappa score and Cronbach’s alpha coefficient computed between the three labellers
computed on the 5275 segments of the SAFE corpus

Kappa | Cronbach

Categories (four categories) | 0.49

Labl vs. Lab2 0.47

Labl vs. Lab3 0.54

Lab2 vs. Lab3 0.48
Intensity (four levels) 0.26 0.77
Evaluation (seven levels) 0.32 0.86
Reactivity (four levels) 0.14 0.55
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The kappa score obtained for the agreement level of the four emotional cat-
egories between the three labellers is 0.49, which is an acceptable level of
agreement for subjective phenomena such as emotions (Landis and Koch,
1977). Indeed, the use of global emotional categories allows us to obtain an
acceptable level of agreement for the development of an automatic emotion
recognition system. Moreover, this choice has been adopted by other studies:
Douglas-Cowie et al. (2003), Shafran et al. (2003), Devillers et al. (2005b).

On the other hand, the kappas obtained for the three labellers are indeed
much lower than for global categories. The kappa used here is the same as
the one used for the categories and is dedicated to measure the level of strict
agreement between the dimensional levels. The best kappa value is at 0.32
and is obtained for the evaluation axis from which the categories are derived.
It shows that the level of strict agreement is poor and not sufficient to use
the dimensions as distinct classes for the system. However the labellers’ an-
notations according to the dimensions come out as correlated especially for
intensity and evaluation, as illustrated by the high Cronbach’s alpha values in
Table 2. Each labeller seems to use his own reference scale on the dimension
axis. However, this dimensional annotation provides interesting information
to analyse the discrepancies between the labellers’ annotations such as done
in Clavel et al. (2006a).

For the system presented in this work, we make use of the annotation in
global categories. For each category, we keep the data annotated as this cat-
egory by the two labellers who have shown the highest disagreement on the
entire corpus (the couple of labellers who has the lowest kappa). Segments
for which these two labellers disagree are not considered for the system. This
choice corresponds to a trade-off between the quantity and the reliability of
the data considered for the training. Indeed, we did not choose to consider
for the system the three annotations because the quantity of data where the
three annotations converge is insufficient to build Gaussian mixture models.
The intersection of two annotations allows us to obtain more data and the
consideration of the two most divergent labellers (with the lowest kappa) en-
sures that on the data, where they agree, someone else would more probably
also agree® .

8 Another solution to obtain a trade-off between the quantity and the reliability is to
consider the segments where at least two of the evaluators agree. This configuration
could be tested in a future work.
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2.8 SAFFE Corpus Content

2.3.1 Global content

Table 3 describes the SAFE corpus content in terms of sequences and seg-
ments. The segment duration depends on dialog interactions and on emotional
variations in a speaker’s turn. It follows that the segment duration is highly
variable. The 5275 segments of the SAFE corpus represent 85% of the total
duration of the corpus, and correspond to 6 hours of speech. The remaining
15% correspond to portions of recordings without speech, that is with silence
or noise only.

Table 3
SAFE Corpus Content
Unit minimum | maximum | mean
number of segments per sequence 1 23 13
Segments duration 40 msec. | 80 msec. | 4 msec.
total number and duration 5275 -6 h
Sequences duration 8 sec. 5 min. 1 min.
total number and duration 400 - 7h

2.8.2 Sound environments

In most movies, recording conditions tend to mirror reality: speaker move-
ments implying a natural variation in voice sound level are thus respected.
However, the principal speaker will be audible more often in a fictional context.
We can hypothesize that this is not systematically the case in real recording
conditions. Overall, the sound environments are strongly dependent on the
movie and may vary inside a movie and also inside a sequence. They depend
on the type of situations depicted and their evolution.

The first diagram (Figure 2) indicates the segment distribution according to
their sound environment (N= noise only, M = music only, N & M = noise
and music, clean = without neither noise nor music) and the second diagram
(Figure 3) according to speech quality (Q0=bad quality to Q3=good quality).
78% of the segments present an acceptable level of speech quality (Q2 or Q3)
even though clean segments are not the majority part (21%) of the corpus. It
shows that, despite the strong presence of noise or music, the speech quality
is quite good. The corpus provides therefore a high number of exploitable
segments. As presented further (see corpus SAFE 1 in Section 4.1), we select,
for the system development and evaluation, segments with an acceptable level
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of speech quality.
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Fig. 2. Segment division according to the Fig. 3. Segment division according to
sound environment. speech quality.

2.3.8 Speakers

The surveillance application needs to cope with a high number of unknown
speakers. With this in mind, the SAFE Corpus contains about 400 different
speakers. The distribution of speech duration according to gender is as fol-
lows: 47% male speakers, 31% female speakers, 2% children. The remaining
20% of spoken duration consists in overlaps between speakers, including oral
manifestations of the crowd (2%). We are aware of the need to process all
the various types of spoken manifestations including overlaps for the ultimate
application. However, the current work, given its exploratory character, does
not take into account the 20% of the spoken duration consisting in overlaps
(see corpus SAFE 1 in Section 4.1), as the acoustic modelling of fear is much
harder in this case (e.g concurrent sources for pitch estimation).

2.3.4 FEmotions

In this paper we emphasize the main features characterizing the emotional
content of the SAFE corpus, that is the presence of extreme fear as illustrated
by abstract dimension intensity and the relationship between the emotion label
and context (threat). The emotional content is presented by considering the
percentage of attributions for each label by the three labellers, so that the
three annotations are taken into account? . The attribution percentage of the
four emotional categories is thus the following: 32% for fear, 31% for other
negative emotions, 29% for neutral, and 8% for positive emotions.

9 We don’t use the majority voting because there are more possible annotation
choices than labellers. So there are segments where the three labellers may have
three distinct annotations and which could therefore not be taken into account for
the corpus description.
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The attribution percentages of the various levels of the three dimensions is
presented in the table 4. The reactivity is only evaluated on segments occurring
during abnormal situations (71% of the segments) (see Section 2.2.2). In this
context, the emotional manifestations are more majoritary associated with a
low reactivity of the speaker to the threat. Very few segments are evaluated
as positive on the evaluation axis (8% of positive emotions) and almost none
of them is evaluated as level 3. Another specificity of our corpus consists in
the presence of intense emotional manifestations: 50% of the segments are
evaluated as level 2 or 3 on the intensity axis.

Table 4
SAFE Corpus Content: attribution percentage of emotional dimensions

dimensions o 3 2 = 0 ! 2 3
intensity . . : 29% | 21% | 30% | 20%
evaluation 9% | 34% | 20% | 29% | 5% | 3% | 0%
reactivity : . : 6% | 36% | 19% | 10%

Fear-type emotions are perceived as more intense than other emotions. 85%
of fear segments are labelled as level 2 or 3 on the intensity scale while the
major part of other emotions are labelled level 1. Besides, the presence of cries
(139) seems to be associated with the presence of extreme fear.

2.3.5 FEmotional manifestations and threat

The correlation of categorical descriptions of emotions with the threat provides
a rich material to analyse the various emotional reactions to a situation. Fig-
ure 4 shows the distribution of each emotional category (fear, other negative
emotions, neutral, positive emotions) as a function of the threat imminence.
Fear is the major emotion during latent and immediate threats. By contrast
fear is not very much in evidence during normal situations. Normal situations
include a major part of neutral segments and also negative and positive emo-
tions. Latent and past threats seem to cause a large part of other negative
emotions than fear, which suggests that emotional reactions against a threat
may be various.

Table 5 illustrates the segment distribution (%) according to each fear sub-
category for each degree of imminence. The subcategory anxiety has almost
never been selected by the labellers. Therefore we choose to merge the two
subcategories worry and anxiety. The three last columns correspond to the
most frequent mixed categories (see Section 2.2.2). Taken as a whole, the sub-
categories which are the most represented are thus anxiety-worry, panic and
stress. During immediate threats, the major emotional sub-category is panic
(31.8%). By contrast, normal situations include a major part of anxiety-worry
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Fig. 4. Segment distribution according to emotional categories for each degree of
threat imminence

but neither distress nor fear mixed with suffering, and very little terror and
stress during normal situations. These sub-categories are almost exclusively
present during immediate or latent threats. Otherwise, it is worth noting that
fear frequently occurs mixed with other emotions such as anger (mostly)
surprise, sadness and suffering.

3

During past threats, the subcategories anxiety-worry and panic are in the
majority. The past threats which are depicted in the SAFE corpus are indeed
threats occurring at the end of a sequence, and they occur just after immediate
threats. It explains the presence of similar emotional manifestations as those
occurring during immediate threats, yet with a higher proportion of anxiety
caused by the threat.

Table 5

Segment distribution (%) according to each fear sub-category for each imminence
degree (Pot. = potential, Lat. = latent, Imm. = immediate, Norm. = normal situa-
tion, anz. — anziety, wor. = worry, ang. — anguish, distr. = distress, pan. — panic,
terr. = terror)

threat g anx. | stress | ang. | distr. | pan. | terr. | fear- fear- fear-
WOr. anger | suffering | surprise

Norm. 64,1 | 43 54 0,0 | 12,0 | 76 3.3 0,0 2,2

Pot. 61,2 | 4,1 6,1 0,0 | 10,2 | 6,1 | 10,2 0,0 2,0

Lat. 50,9 | 9,7 8,3 5,0 | 17,3 | 4,2 3.1 0,0 0,0

Imm. 25,2 | 13,7 | 6,7 6,0 | 31,8 | 81 3.5 2,7 0,8

Past 42,0 | 4.0 4.0 8,0 |22,0] 6,0 6.0 0,0 0,0
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3 Carrying out an audio-based fear-type emotion recognition sys-
tem

The fear-type emotion detection system focuses on differentiating fear class
from neutral class. The audio stream has been manually pre-segmented into
decision frames which correspond to the segments as defined in Section 2.2.
The system is based on acoustic cues and focuses as a first step on classifying
the predefined emotional segments.

3.1 Acoustic features extraction, normalization and selection

The emotional content is usually described in terms of global units such as
the word, the syllable or the ‘chunk’ (Batliner et al., 2004), (Vidrascu and
Devillers, 2005) by computing statistics. Alternatively, some studies use de-
scriptions at the frame analysis level (Schuller et al., 2003). Here, we propose
a new description approach which integrates various units of description that
are at both the frame analysis level and the trajectory level. A trajectory gath-
ers successive frames with the same voicing condition (see Figure 5). These
two temporal description levels have the advantage of being automatically
extracted.

Emotions in abnormal situations are accompanied by a strong body activity,
such as running or tensing, which modifies the speech signal, in particular by
increasing the proportion of unvoiced speech. Therefore some segments in the
corpus do not contain a sufficient number of voiced frames. The information
conveyed by the voiced content of the segment is therefore insufficient to de-
duce whether it is a fear segment or not. Such segments occur less frequently in
everyday speech than in strong emotional speech. Here, 16% of the collected
fear segments against 3% of the neutral segments contain less than 10% of
voiced frames. The voiced model is not able to exploit those segments. Given
the frequency of unvoiced portions and in order to handle this deficiency of
the voiced model, a model of the emotional unvoiced content needs to be built.
The studies which take the unvoiced portions into account consist of global
temporal level descriptions (Schuller et al. (2004)), by computing for exam-
ple the proportion of unvoiced portions in a ‘chunk’. Our approach is original
because it separately considers:

- the wvoiced content traditionally analysed and which corresponds to vowels
or voiced consonants such as “b" or “d" and,

- the unvoiced content which is a generic term for both articulatory non voiced
portions of the speech (for example obstruants) and portions of non-modal
speech produced without voicing (for example creaky, breathy voice, mur-

20



mur).

The speech flow of each segment is divided into successive frames of 40 ms
with a 30 ms overlap. The voicing strength of the frame is evaluated under
Praat (Boersma and Weenink, 2005) by comparing the autocorrelation func-
tion to a threshold in order to divide the speech flow into voiced and unvoiced
portions. Features are first computed frame by frame. In order to model the
temporal evolution of the features, their derivatives and statistics (min, max,
range, mean, standard deviation, kurtosis, skewness) are then computed at
the trajectory level such as illustrated in Figure 5. Some features (the jitter,
the shimmer and the unvoiced proportion) are computed at the segment level.

Frame analysis |$kms - overlap 759}

——
V | V| V [NV|NV |NV|NV
e o — e '
"'I_TL.HI trajectony Unvariced trajectory <5
T

Segment |annotation unit)

Matrix of features i Matrix of features

Volced content Unwoiced content

Fig. 5. Feature extraction method which separately considers the voiced and unvoiced
content and integrates various temporal levels of description

The computed features allow us to characterize three types of acoustic content,
and can be sorted into three feature groups:

- the prosodic group which includes features relating to pitch (F0), intensity
contours, and the duration of the voiced trajectory, which are extracted with
Praat. Pitch is computed using a robust algorithm for periodicity detection
based on signal autocorrelation on each frame. Pitch and duration of the
voiced trajectory are of course computed only for the voiced content;

- the wvoice quality group which includes the jitter (pitch modulation), the
shimmer (amplitude modulation), the unvoiced rate (corresponding to the
proportion of unvoiced frames in a given segment) and the harmonic to
noise ratio (ratio of signal periodic part to non-harmonic part computed
here using the algorithm developed in Yegnanarayana et al. (1998). The
HNR allows us to characterize the noise contribution of speech during the
vocal effort. The perceived noise is due to irregular oscillations of the vocal
cords and to additive noise. The algorithm relies on the substitution degree
for harmonics by noise.

- the spectral and cepstral features group consisting of the first two formants
and their bandwidths, the Mel Frequency Cepstral Coefficients (MFCC)

i
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the Bark band energy (BBE) and the spectral centroid (Cs).

A total of 534 features are thus calculated for the voiced content and 518 for
the unvoiced content.

Acoustic features are not varying exclusively with the emotional content. They
are also dependent on the speaker and on the phonetic content. It is typically
the case for pitch-related features and for the first two formants. To handle
this difficulty most of the studies use a speaker normalization for pitch-related
features and a phoneme normalization for the first two formants. However
the speaker normalization may be judged as inadequate to the surveillance,
since the system needs to be speaker independent and has to cope with a
high number of unknown speakers. The SAFE corpus provides about 400 dif-
ferent speakers for this purpose. The phoneme normalization is here also not
performed as it relies on the use of a speech recognition tool in order to be
able to align the transcription and the speech signal. The recording condi-
tions of the speech signal in a surveillance application require to develop a
text-independent emotion detection system which does not rely on a speech
recognition tool. As a preliminary solution, we choose to use a min-max nor-
malization which consists in the scaling of the features between -1 and 1.
However, in future work, we plan to test more complex normalization tech-
niques such as those used for speaker recognition (e.g. feature warping) and
which might improve robustness to the mismatch of sound recordings and to
noise.

The feature space is reduced by selecting the 40 most relevant features for a
two class discrimination by using the Fisher selection algorithm (Duda and
Hart, 1973) in two steps. A first selection is carried out on each feature group
(prosodic, voice quality, and spectral) separately. One fifth of features is se-
lected for each group providing a first feature set including about 100 features.
The final feature set is then selected by applying the Fisher algorithm to the
first feature set a second time . This method avoids having strong redundan-
cies between the selected features by forcing the selection algorithm to select
features from each group. The salience of the features is evaluated separately
for the voiced and unvoiced contents. The Fisher selection algorithm relies on
the computation of the Fisher Discriminant Ratio (FDR) of each feature i:

. . 2
FDRl _ (,uz,neutral Nz,fear)

2 2
Ui,neutral + Ui,fear

where [1; neutrar a0d 1 feqr are class mean value of feature vector i for fear class

and neutral class respectively and 07,1, and 07 f,,, the variance values.
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3.2 Machine learning and decision process

The classification system merges two classifiers, the voiced classifier and the
unvoiced classifier, which consider respectively the voiced portions and the
unvoiced portions of the segment (Clavel et al., 2006b).

The classification is performed using the Gaussian Mixture Model (GMM)
based approach which has been thoroughly benchmarked in the speech com-
munity. For each class C, (Fear, Neutral and for each classifier (Voiced, Un-
voiced) a probability density is computed and consists of a weighted linear
combination of 8 Gaussian components p,, , :

p(x/Cy) = Zl Win,qPrm,q(T)

where w,, , are the weighted factors. Other model orders have been tested but
led to worse results. The covariance matrix is diagonal which means that the
models are trained by considering independently the data corresponding to
each feature.

The parameters of the models (the weighted factors, the mean vector and
the covariance matrix of each Gaussian component) are estimated using the
traditional Expectation-Maximization algorithm (Dempster et al., 1977) with
10 iterations.

Classification is performed using the Maximum A Posteriori decision rule. For
the voiced classifier, the A Posteriori Score (APS) of a segment associated
with each class corresponds to the mean a posteriori log-probability and is
computed by multiplying the probabilities obtained for each voiced analysis
frame, giving for example for the voiced content:

Ng¢ .
Sonliree log(p(a/Cy))

fuoiced

Apsvoiced<cq> =

Depending on the proportion r of voiced frames (r € [0;1]) in the segment, a
weight (w) is assigned to the classifiers in order to obtain the final APS of the
segment:

APSfinal - (1 - U}) * APSvoiced +w * APSunvoiced

The weight is dependent on the voiced rate (r € [0; 1]) of the segment according
to the following function: w = 1 — 7. « varies from 0 (the results of unvoiced
classifier are considered only when the segment does not contain any voiced
frame) to +oo (only the results of unvoiced classifier are considered). The rate
that the weight decreases as a function of the voiced rate is adjusted with «.
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The segment is then classified according to the class (fear or neutral) that has
the maximum a posteriori score:

go = arg 1%1[?:};] APSfmal(Cq)

4 Experimental validation and results
4.1 Fxperimental database and protocol

The SAFE corpus stands for the variability of spoken emotional manifesta-
tions in abnormal situations at several levels: in terms of speakers, sound etc.
In order to restrict this variability given the exploratory character of this work,
we focused here on the most prototypical emotional distinction, i.e. the fear
vs. neutral discrimination. The following experiments and analysis are thus
performed on a subcorpus containing only good quality segments labelled fear
and neutral. The quality of the speech in the segments concerns the speech
audibility and has been evaluated by the labellers (see Section 2.3). Remain-
ing segments include various environment types (noise, music). Segments with
overlaps between speakers have been discarded (see Section 2.3.3). Only seg-
ments, where the two human labellers who have obtained the lowest kappa
value agree, are considered (see Section 2.2.4), i.e. a total of 994 segments
(38% of fear segments and 62% of neutral segment). Table 6 shows the quan-
tity of data corresponding to each class in terms of segment, trajectory and
frame analysis. This subcorpus will be named SAFE 1.

Table 6
Ezperimental database SAFE 1 (seg. = segment, traj. = trajectories)

Classes | number of seg. | number of traj. | number of frames | duration
Fear 381 2891 113 385 19 min
Neutral 613 5417 181 615 30 min
Total 994 8308 295 000 49 min

The test protocol follows the Leave One Movie Out protocol: the data is
divided into 30 subsets, each subset contains all the segments of a movie. 30
trainings are performed, each time leaving out one of the subsets from training,
and then the omitted subset is used for the test. This protocol ensures that

the speaker used for the test is not found in the training database .

10 This is actually almost the case. Three speakers over the 400 speakers can be
found in two films.
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4.2 Global system behaviour

4.2.1 Selected features

It comes out from the feature selection step that pitch-related features are
the most useful for the fear vs. neutral voiced classifier. With regard to voice
quality features, both the jitter and the shimmer have been selected. The spec-
tral centroid is also the most relevant spectral feature for the voiced content.
As for the unvoiced content, spectral features and the Bark Band Energy in
particular come out as the most useful.

Each classifier considers the features selected as the most relevant for the
two-classes discrimination problem. Table 7 and Table 8 show the 40 selected
features sorted by group for each content voiced or unvoiced. For the voiced
content, the prosodic features are all selected after the second overall Fisher
selection, which means that this feature group — especially the pitch related
features — seems to be the most relevant for the fear-type emotions charac-
terization. Voice quality features also seem to be relevant: both, jitter and
shimmer have been selected. However the harmonic to noise ratio has not
been selected. This may be explained by the presence of various environmen-
tal noise in our data which makes the HNR estimation more difficult. We
should also keep in mind that the presence of music could bias the feature
selection, such as the environmental noise. However, the segments which have
been selected for the experiments contains also background music, but at a
rather high signal (speech) to noise (music) ratio, so that this influence should
not be detrimental.

The spectral and cepstral features which correspond to lower level features are
preferred over the HNR. This feature group — initially in the greatest number
— was the most represented in the final feature set. The most relevant spectral
feature is the spectral centroid and cepstral features seem to be more relevant
than features describing directly the spectral energy. Formants are also largely
represented in the final feature set.

For the unvoiced content the Bark band energy-related features seem to be
more relevant than cepstral features. The HNR has also been selected.

Overall, the selected features correspond to statistics computed at the trajec-
tory level which seems to be suitable for emotional content characterization.

4.2.2  Voiced classifier vs. unvoiced classifier

Classification performance is evaluated by the equal error rate (EER). The
EER corresponds to the error rate value occurring when the decision threshold
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Table 7

List of the 40 selected features for the voiced content of SAFE 1 (Table 6). Ninil =
number of extracted features, Nini2 = number of features which are submitted to the
second selection (Nini2 = [%w ), Nfinal = number of selected features at the end
of the two successive selections, stdev = standard deviation, kurt = kurtosis, skew =
skewness, d= derivative

Group Nini2/Ninil | Selected features Nfinal/Nini2
Prosodic 7/33 meanky, minky, Fy, maxFy, | 7/7
stdevdFy, rangedFy, rangeky
Vocie quality | 8/37 Jitter, Shimmer 2/8
Spectral 93/464 meanCl, minMFCC1, | 31/93
meanM FCCA4, maxF,
minMFCC4, mindFy, mindF5,
meanM FCC1, rangedFy,
rangedlFy, rangely, rangeksy,
MFECCA4, MFCC1, stdev Fy,
maxdFy, maxdFy, maxMFCC4,
maxCl, minM FCC3,
skewBBE3, meanBBE3, maxFs,
stdevdM FCC11, stdevdFy,
kurtdF, minky, kurtFy,
rangeM FCC1, stdevd M FCC6,
minM FCC6
Table 8
List of the 40 selected features for the unvoiced content of SAFE 1 (Table 6).
Group Nini2/Ninil | Selected features Nfinal/Nini2
Prosodic 4/16 rangelnt 1/4
Voice quality | 8/36 taurNonV oise, kurtd PAP 2/8
Spectral 93/464 rangeBBE6, rangeBBE7, rangeBBE10, | 37/93
stdevBBEG, stdevBBET, range BBES,
rangeBBE5, stdevBBFE10, rangeBBFE11,
rangeBBE9, stdevBBES, rangeBBFE12,
maxMFCCS3, stdevBBES, stdevBBE9,
rangeBBFA4, rangeM FCC10,
rangeM FCC12, stdevBBE1l, minBBE10,
rangeM FCCS, minBBET, minBBEG,
rangeBBE3, rangeM FCC6, minBBES,
rangedBBE6, minMFCC11, stdevBBE12,
stdevBBEA4, minBBE9, meanM FCC3,
rangeM FCC11, rangedBBEb, maxBwi,

rangedBBFE4, maxBws
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of the GMM classifier is set such that the recall will be approximately equal
to the precision.

Figure 6 shows the EER for fear from neutral classification for various values
of a.. The voiced classifier is more efficient than the unvoiced one. The EER
reaches 40% when the unvoiced classifier is used alone (o = oc). This worst
case is equivalent to never considering the voiced content. However, the EER
is at 32% when the voiced classifier is used in priority (the unvoiced classifier
is used only when the segments are totally unvoiced, o = 0). Best results
(EER = 29%) are obtained when the unvoiced classifier is considered with a
weight decreasing quickly as the voiced rate increases (o = 0.1).

40
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Fig. 6. EER according to the weight (w = 1—r%) of the unvoiced classifier against the
voiced classifier obtained on SAFE 1 (Table 6) (confidence interval at 95%: radius
< 3%)

The confusion matrix resulting from the fear vs. neutral classifier with the
alpha parameter set at o = 0.1 is presented in Table 9. It illustrates the con-
fusions between the automatic labeling of the classifier and the manual labels
provided by the labellers. We compute also the Mean Error Rate (MER) and
the kappa (see Section 2.2.4) between human annotation and system classifi-
cation for the performance evaluation. The kappa value at 0.53 corresponds
here to the performance of the system taking into account the chance. This
value integrates the unbalanced repartition of the data into the two classes
and allows us to compare the system with chance (when x = 0, the system is
working such as chance).

The mean accuracy rate of the system is 71%. It corresponds to quite promis-
ing results given the diversity of fear manifestations illustrated in the SAFE
Corpus (400 speakers, various emergence contexts and recording conditions).
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Table 9

Confusion matriz, mean error rate (MER), equal error rate (EER) and k for fear
vs. neutral classification tested on SAFE 1 (Table 6) (confidence interval at 95%:

radius < 3%)

manual automatic Neutral | Fear
Neutral 1% 20%
Fear 30% 0%

MER 29%

EER 29%

P 0.53

Otherwise, if one would expect deterioration of performance when trying to
detect fear expressed in real context, performance could be improved by adapt-
ing the system to a specific sound environment and recording condition for a
specific surveillance application.

We compute also the confusion matrix between the system outputs and each
of the three labellers separately in Tables 10, 11, 12. The EER obtained are
between 30% (when considering Lab3’s annotation) and 35% (when consid-
ering Labl’s annotation) which means a 5% gap. It corresponds to similar
results, given the confidence intervals.

Table 10

Confusion matriz for the fear vs. neutral classification system using Labl’s annota-
tions as a reference (704 segments for neutral class and 631 segments for fear class,
confidence interval at 95%: radius < 4%)

Labl System Neutral | Fear
Neutral 0% | 30%
Fear 39% 61%

MER 34%

EER 35%

" 0,48
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Table 11

Confusion matriz for the fear vs. neutral classification system using Lab2’s annota-
tions as a reference (1322 segments for neutral class and 518 segments for fear class,
confidence interval at 95%: radius < 4%)

Table 12

Confusion matriz for the fear vs. neutral classification system using Lab3’s annota-
tions as a reference (352 segments for neutral class and 309 segments for fear class,

Lab2 System Neutral | Fear
Neutral 69% | 31%
Fear 32% 68%

MER 32%

EER 32%

" 0,45

confidence interval at 95%: radius < 5%)

Lab3 System Neutral | Fear
Neutral 2% | 29%
Fear 31% | 69%

MER 30%

EER 30%

K 0.53

4.2.3  System performance vs. human performance

A supplementary “blind” annotation based on the audio support only (i.e. by
listening to the segments with no access to the contextual information con-
veyed by video and by the global content of the sequence) has been carried
out by an additional labeller (LabSys) on SAFE 1. LabSys has to classify the
segments into the categories fear or neutral with the same available informa-
tion as the one provided to the system. We present in Table 13 the confusion
matrix and the kappa score obtained by LabSys on SAFE 1. This table can be
linked with Table 9 in order to compare the system performance with human
performance.

The kappa obtained by the system is 0.53. It corresponds to a good per-
formance compared to the value of 0.57 obtained by LabSys. However, the
behaviors of LabSys and the system are quite different. LabSys is better to
recognize neutral (99% of correct recognition against 71% for the system) and
the system is better to recognize fear (70% of correct recognition against 64%
for LabSys).
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Table 13
Confusion matriz obtained by LabSys on SAFE 1

SAFE 1 LabSys Neutral | Fear
Neutral 99% 1%
Fear 36% 64%
K 0.57

LabSys annotates more segments as neutral. Almost all the segments anno-
tated neutral and 36% of those annotated fear in SAFE 1 are labelled neutral
by LabSys. This shows that some fear cues are difficult to be perceived only
with the audio channel.

4.3 Local system behaviour

Table 14 specifies the system behaviour on the various segments according to
the threat during which they occur. With this aim, the emotional category
annotations are correlated with the threat track annotations as presented in
Clavel et al. (2007). Five fear subclasses are thus obtained:

- NoThreat Fear: fear occurring during normal situation, i.e. situation with
no threat,

- Latent Fear: fear occurring during latent threats,

- Potential Fear: fear occurring during potential threats,

- Immediate Fear: fear occurring during immediate threats.

- Past Fear: fear occurring during past threats.

The reliability of the error rates err is evaluated by the 95% confidence interval
(Bengio and Mariéthoz., 2004). The radius r of the confidence interval I =
lerr — r; err + 7] is computed according to the following formula:

err(l —err)

=1,96
: ’ Nseg

where N, is the number of segments used for the test.

The segment distribution of the fear class in the experimental database ac-
cording to the type of the threat during which the segment occurs is presented
in Table 14.

With regard to the fear recognition, we can see in Table 9 that 70% of the seg-

ments labelled fear are correctly recognized by the system. Best performances
(78%) are obtained on Immediate Fear segments. By contrast, the recognition
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Table 14
Proportion and recognition rate with confidence interval at 95% of fear segments
according to the degree of imminence of the threat on SAFE 1 (Table 6)

% of tested segments | recognition rate
no threat ™% 61%+18%
potential threat 4% 64%+24%
fear latent threat 33% 60%+8%
immediate threat 50% 78%+5%
past threat 5% T1%+18%

rate falls on fear segments occurring during normal situation (61%+18%), po-
tential (64%=+24%) or latent (60%=+8%) threats. Indeed, these last types of
threats correspond to situations where the threat is not clearly present and
where types of fear, such as anxiety or worry, frequently occur. In such seg-
ments, fear is less expressed at the acoustic level than in fear segments occuring
during immediate or past threats, which explains the performance gap.

5 Conclusions and future work

The expectations in automatic emotion recognition/detection are ambitious.
This research field is still emerging, and the emotional phenomenon remains
especially complex to grasp. In this context our study corresponds to a pre-
liminary work. So far, we have explored the different steps and strategies used
in the development of a fear-type emotion recognition system dedicated to
a given application, the audio-video surveillance. This innovative application
has motivated us to take up new challenges in terms of emotional database
and emotion recognition systems due to the specific class of the targeted emo-
tions and the applicative constraints. Indeed, such an application implies to
deal with heterogeneous data in noisy environments, which significantly makes
more complex the classification task.

The first issue that we have addressed is the collection of recordings with
emotional manifestations occurring in abnormal situations. Abnormal situa-
tions are especially rare and unpredictable and surveillance data are hardly
accessible in order to protect the person privacy. Besides there is a lack of
emotional databases (acted or real-life) which illustrate fear-type emotions in
threat situations. The audiovisual corpus — the SAFE corpus — that we have
built, contributes to handle this deficiency. We use a new material fiction

to illustrate in situ emotional manifestations, including fear-type emotions
(worry, terror, panic, etc.). More generally, the corpus contains recordings of
both normal and abnormal situations and provides a large scope of contexts
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and therefore a large scope of emotional manifestations. In this way, it forms
an interesting support to study a high variety of emotional manifestations.

One of the lessons to be learned from our work, is that it is crucial to develop a
detailed annotation scheme which allows us to better understand the variety of
emotional manifestations and the associated system behaviour. One of our ma-
jor contribution is to have defined an annotation strategy with various levels
of accuracy which allows us both to better understand the variety of emotional
manifestations and to provide computable emotional classes. Our annotation
strategy has also the particularity to describe simultaneously the emotion
evolution and the situation evolution. The annotation has been carried out
by three labellers, and the three annotations have been confronted. This con-
frontation underlines the subjectivity of emotion perception and shows that
our annotation strategy provides an acceptable level of agreement and consti-
tutes a correct trade-off between genericity (data independent) and easiness
of the labellers’ task.

Another contribution which is worth mentioning is the dissociated description
of the speech flow in terms of the voiced and unvoiced contents. This descrip-
tion has the advantage of considering the speech production peculiarities when
the speaker is expressing strong emotions such as fear. We have extracted a
large set of acoustic features and a selection of the most salient features has
been performed using the Fisher selection algorithm. For the voiced content,
the prosodic feature group — especially the pitch-related features — seems to
be the most relevant for the fear-type emotion characterization, though voice
quality features and lower level features, such as spectral and cepstral features,
are also selected.

The fear vs. neutral classification achieves a mean accuracy rate of 71%. This
is a quite promising result, given the diversity of fear manifestations illustrated
in the SAFE Corpus (400 speakers, various emergence contexts and recording
conditions). As the fear class gathers indeed a large scope of emotional mani-
festations which vary according to threats in particular, we have also studied
the system behaviour on fear class according to the threat imminence. As ex-
pected, the best performance (78%) is obtained on fear segments occurring
during immediate threats. In such segments, fear is indeed strongly expressed
at the acoustic level with strong acoustic manifestations such as cries.

To sum up, the material used for our study is very complex. Given this com-
plexity and the maturity of the field of emotion computing, we proceeded step
by step by providing a first classification fear vs. neutral in order to overcome
the complexity of the data. Indeed, it is important to deal with this complex-
ity in terms of noisy speech and diversity of the data (speakers, situations)
because it will be present in real audio surveillance data.
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The discrimination between fear-type emotions and other emotions (e. g. pos-
itive and other negative emotions) will be one of the next steps of our study.
Besides, it would be interesting to upgrade our system by modelling the evolu-
tion and the temporal context of the emotional manifestations. This dynamic
aspect is already integrated into the annotation strategy and an analysis of
emotional manifestations according to the threat imminence was performed.
In a surveillance perspective, we would also like to change from the classi-
fication fear vs. neutral to the detection of fear-type emotions among other
emotions.

Another challenge, which needs to be answered, is the processing of overlaps
between speakers and of crowd emotional manifestations. This type of data are
present in the SAFE corpus. They might provide acoustic cues characterizing
group and crowd vocal manifestation during abnormal situations.
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