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ABSTRACT 

In this work, we present a text-independent automatic phone segmentation algorithm based on the 

Bayesian Information Criterion. Speech segmentation at a phone level imposes high resolution 

requirements in the short-time analysis of the audio signal; otherwise the limited information available 

in such a small scale would be too restrictive for an efficient characterisation of the signal. In order to 

alleviate this problem and detect the phone boundaries accurately, we employ an information criterion 

corrected for small samples while modelling speech samples with the generalised Gamma distribution, 

which offers a more efficient parametric characterisation of speech in the frequency domain than the 

Gaussian distribution. Using a computationally inexpensive maximum likelihood approach for 

parameter estimation, we evaluate the efficiency of the proposed algorithm in M2VTS and NTIMIT 

datasets and we demonstrate that the proposed adjustments yield significant performance improvement 

in noisy environments. 

Keywords: phonemic segmentation, Bayesian information criterion, generalised Gamma distribution, 

small sample. 

 

1. INTRODUCTION 

The identification of the starting and ending boundaries of voice segments in continuous speech is an 

important problem in many areas of speech processing. For example, it can benefit segment-based 

speech recognition systems, which have the ability to integrate the dynamics of speech better than 

frame-based ones (Glass, 2003). Phone segmentation can also assist the creation of speech database 

used for concatenative speech synthesis (Adell and Bonafonte, 2004). Conventional speech detection 

and segmentation systems that follow energy-based approaches work relatively well only in high signal 

to noise ratios (SNR) and for known stationary noise. But for low SNRs, the performance and 

robustness of energy-based voice activity detectors is not optimal. Since they rely on simple energy 
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ACCEPTED MANUSCRIPT 
 thresholds, they may misclassify non-stationary noise as speech activity. Furthermore, they are not able 

to identify unvoiced speech segments like fricatives satisfactorily, as the latter can be masked by noise. 

Consequently, they are inefficient in real-world recordings where speakers tend to leave artefacts such 

as breathing/sighing, mouth clicks, teeth chatters, and echoes (Pickett and Morris, 1999). Recently, 

much research discussion has been done regarding the exploration of the speech and noise signal 

statistics for speech segmentation and voice activity detection.  Statistical methods typically employ a 

decision rule derived from the likelihood ratio test (LRT) applied to a set of hypotheses (Sohn et al., 

1999). These approaches can be further improved by incorporating soft decision rules (Chang et al., 

2003) and higher order statistics (Nemer et al., 2001). Since these methods are more complicated than 

the energy-based detectors with respect to the computation time and storage requirements, they have a 

limited appeal in online applications. However, real-time applications are not the target of our work. 

In this paper, we propose an automatic acoustic change detection algorithm that identifies phone 

boundaries in speech, using an information criterion for statistical inference. Avoiding the need for 

linguistic constraints and training data, the algorithm is suitable for speaker segmentation, speech 

enhancement in telecommunications, speech transcription in computer-aided systems, and for 

multilingual speech recognition and synthesis applications. For this purpose, we also consider the 

robustness of the proposed algorithm to various or unknown noise conditions. The novelty of this work 

is that it suggests alternatives to Gaussian distribution (GD) for modelling the speech and noise signal 

and considers the limited availability of information in short-frame speech processing, employing 

small-sample approximations to model selection. Specifically, we exploit the representation power of 

generalised gamma distribution (GΓD) in order to model the noisy speech signal efficiently. GΓD has 

been rarely discussed in speech processing literature until recently. Shin and Chang (2005) have 

considered using GΓD in voice activity detection with encouraging results. Their method of parameter 

estimation has been used in our paper and it is discussed in Sect. 4 and in Appendix A. In (Huy Dat et 

al., 2006), GΓD is applied for MAP speech spectral magnitude estimation, yielding superior results 

under non-stationary noise conditions. Kokkinakis and Nandi (2006) have also demonstrated GΓD-

based score yields a consistent increase in convergence speed and separation performance for the task 

of blind source separation of speech signals. 

The remainder of this paper is organised as follows. Sect. 2 shortly describes the problem of 

phonemic segmentation and discusses the existing challenges. In the next section, we examine the 

Bayesian information criterion (BIC) as a parametric method for identifying segments in speech signal, 

we present the baseline algorithm for phone boundary detection and review alternative model selection 

methods. In Sect. 4 we assert that speech modelling in very small frame sizes impels to consider 

alternative distributions instead of Gaussians. In Sect. 5, we propose an algorithm for text-independent 

phone boundary detection by making necessary adjustments to the baseline algorithm and in the next 

section we present experimental results for evaluating phone boundary detection performance in two 

speech corpora. We demonstrate that the proposed method yields significant improvements in noisy 

environments. Finally, Sect. 7 concludes the paper and points out future research topics. 
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 2. PHONEMIC SEGMENTATION 

Speech may be roughly considered as the result of sequential linking of phonemes. A phoneme is 

defined in linguistics as the minimal information bearing distinct unit. Its acoustic realization, the 

phone, represents a distinct target configuration of the speech tract (regarding articulation as well as 

form of excitation). In the acoustic realization, however, phone boundaries are mostly ambiguous. In 

the short-time representation, the speech signal is typically considered stationary and the voiced 

segments quasi-periodic. Consequently, in statistical phone segmentation, it is assumed that the 

properties of the speech signal change instantly in the transition from one phone to the next. This is not 

always true, because, in reality, most signal structures change smoothly, not abruptly due to the mutual 

influence of adjacent phones as a result of articulatory conditions and restrictions (coarticulation). 

Therefore, phone boundaries can only serve as pointers to approximately the time instants where one 

sound ends and another begins.  

Speech segmentation algorithms can be typically categorised into decoder-guided, model-based, 

and metric-based approaches (Chen and Gopalakrishnam, 1998; Chen et al., 2002). In the decoder-

guided method, the speech changes are determined according to information provided by a speech 

recognition system, which decodes the spoken audio stream at first (Woodland et al., 1997). In model-

based approaches, it is assumed that a trained model of each component in the signal exists before the 

speech change detection algorithm starts. The acoustic changes are then determined as the instants 

when it is necessary to change the model in order for it to match the signal (Bakis et al., 1997). In the 

metric-based approach, acoustic changes occur when a dissimilarity distance measure between two 

adjacent windows, shifted along the speech signal, reaches a local maximum. A large number of 

metric-based approaches are combined with BIC, which is discussed in next section. 

Many works in the phonemic segmentation employing statistical methods exist in the literature. 

Pellom and Hansen (1998) investigate various segmentation, speech enhancement, and parameter 

compensation techniques in noisy channel corrupted environments. Using a linguistically constrained 

hidden Markov model (HMM) based method, they yield over 85% boundary detection rate in noise-

free environments at 20msec boundary misalignment (tolerance). Aversano et al. (2001) introduce a 

novel approach for text-independent speech segmentation where the preprocessing is based on critical-

band perceptual analysis.  It results in 74% segmentation accuracy while limiting over-segmentation to 

a minimum. Glass (2003) examines a maximum a posteriori (MAP) decoding strategy for segment-

based speech recognition where landmarks are modelled in addition to phonemic acoustic units. In 

(Zhao et al., 2005; Wang et al., 2006), a two-step HMM-based approach is proposed, where a well-

trained context dependent boundary model for segment boundary refinement is adapted using a MAP 

approach. The segmentation accuracy within a 20ms tolerance exceeds 90%. Schwarz P. et al. (2006) 

also deal with phoneme recognition using a hierarchical structure of multilayer perceptrons, where a 

block of spectral vectors is split into several blocks processed separately (a hierarchical structure of 

multilayer perceptrons with separate classification of input patterns in frequency bands, and split 

temporal context system). An overview of machine learning techniques exploited for phone 

segmentation is done by Adell and Bonafonte (2004). Evaluating HMMs, artificial neural networks, 

dynamic time warping, Gaussian mixture models, and pronunciation modelling, it is concluded that 
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 they yield 85-90% detection accuracy when training data is available and a 20ms tolerance is assumed. 

Toledano and Gomez (2003) also use a modified HMM recogniser and propose a statistical correction 

procedure to compensate for the systematic errors produced by context-dependent HMMs. The 

algorithm is evaluated using the percentage of boundaries with errors smaller than 20ms as a figure of 

merit and attest that over 90% accuracy is possible. An evaluation of phoneme segmentation for unit 

selection synthesis showed that dynamic time warping is prone to gross labelling errors while HMM 

modelling exhibits a systematic bias of 15ms (Kominek et al., 2003). 

Compared to generative methods based on HMMs, phonemic segmentation methods based on 

spectral distortion measures are independent of linguistic constraints and computationally inexpensive. 

Many algorithms of this class that have been proposed in the literature define a change function as a 

function that directly measures the spectral variation of the acoustic signal and utilise this function as a 

transition penalty. Mitchell et al. (1995) have proposed the Delta Cepstral Function (DCF), which 

estimates spectral change by summing the normalised time derivative of each cepstral dimension, 

 where  is the  cepstral coefficient for the frame  

and  is the number of cepstral coefficients.  is then used to compute a cost function  

that is able to detect spectral changes associated with phoneme transitions. 
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Brugnara et al. (1992) and Mitchell et al. (1995) have used the Spectral Variation Function (SVF), 

which estimates spectral change as the angle between two normalised cepstral vectors that are 

separated in time by a fixed number of frames. 
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In (2),  is the difference between the  cepstral vector and the time average of the cepstral 

vectors that lie within a window centred at t  and the " "  indicates the scalar dot product operation. The 

change function is calculated as below 
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Since both these change functions are derived directly from the observation vectors, little signal 

processing overhead is required. 
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3. BAYESIAN INFORMATION CRITERION 

3.1 Hypothesis testing and model selection 

Common statistical methodology in speech processing areas, such as voice activity detection and 

speech segmentation, embraces binary decision-making strategies. When statistical parameters are 

estimated from random samples these parameters can also be considered as random variables. This 

additional level of uncertainty can be represented by a posterior distribution over parameter values 

(Bayesian perspective) or by the sampling distribution of the unknown true parameters (frequentist 

perspective) (Van Allen, 2000). While traditional significance tests are useful for interpreting data that 

arise from controlled experimental designs, in non-experimental settings, the utilisation of significance 

testing for pairwise model comparison and interpretation of effects within specific models has been 

criticised as ill-advised (Dayton, 2003; Raftery, 1999). In contrast, increasingly popular techniques 

such as Akaike information criterion (AIC) (Akaike, 1974) and BIC (Schwarz G., 1978) have been 

successfully employed for model selection and hypothesis testing procedures.  

In general, information criteria can be classified into two distinct classes (Anderson and Burnham, 

1999). The first type of criteria are estimates of Kullback-Leibler (KL) information/distance and 

attempt to select a good approximating model for inference, based on the principle of parsimony by 

penalising model complexity. The prominent member of this class is AIC which was introduced in 

1973 and allowed major practical and theoretical advances in model selection and the analysis of 

complex data sets (Bozdogan, 1987). AIC is defined as  

 

( ) 2 ln ( , )AIC M l M k= − +x  (4) 
 

where x are the sample data, is the maximised likelihood function under a model M and k is the 

number of estimated parameters of the model. 

( , )l Mx

Because AIC performs poorly if there are too many parameters in relation to the size of the 

sample, many variations of AIC were introduced later. AICC is a second order, small sample 

approximation to AIC derived under Gaussian assumptions (Sugiura, 1978), consistent AIC (CAIC) 

compensates for the overestimating nature of AIC using a correction factor based on the sample size 

(Bozdogan, 1987), QAIC adjusts for over-dispersion or lack of fit, while QAICC introduces a variance 

inflation factor and is based on quasi-likelihood theory (Anderson and White, 1994). Takeuchi’s 

information criterion (TIC), as a generalised AIC, extends AIC to be applicable to unfaithful models 

using the maximum likelihood estimation (MLE) as a learning method (Takeuchi, 1976). TIC is 

defined as 

 

( ) 2 ln ( , ) ( ( ) )TIC M l M tr= − − Σ0x I θ  (5) 
 

where   is the optimal set of model parameters for a given family which minimises the KL 

divergence to the true model and  denotes the information matrix (A.3) 

0θ

( )0I θ
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 and . By approximating the trace of  with the number of free 

parameters, k of the model M, we derive AIC, which is a good approximation when  is substituted 

by the MLE and the data are suitable replaced by their expectations taken with respect to the true 

model. 

� �( )(E Τ= − −Σ 0θ(x) θ θ(x) θ )0 ( )Σ0Ι θ

0θ

AIC-derived approaches can be regarded as holistic, in the sense that a variety of competing 

models can be assessed simultaneously and the best model is selected by applying a single rule. The 

underlying goal is to select the best approximating model, which is best supported from data among the 

models under consideration without being imposed to assume that one of these models is “true”. In 

fact, it is not necessary to assume that such a “true” model even exists. An apparent advantage of 

holistic approaches is that the considerations related to underlying distributions for random variables 

can be incorporated into the decision-making process rather than being regarded as an assumption 

whose robustness must also be considered (Dayton, 2003). 

The second type of criteria includes BIC, minimum description length principle (MDL) 

(Rissanen, 1978), Hannan and Quinn criterion (Hannan and Quinn, 1978), which are regarded as 

dimension consistent in that they attempt to consistently estimate the dimension of the true model 

(Anderson and Burnham, 1999). The goal of model selection here is to find the true model provided 

that such a model exists and it is in the set of candidate models. Assuming that implicitly, a dimension 

consistent criterion such as BIC will select the true model asymptotically with probability 1. As a 

consequence, this consistency imposes large sample size requirements in order to achieve efficient 

statistical inference.  

In statistics, the use of Bayes Factors (BF) is a Bayesian alternative to classical hypothesis testing. 

Given a model selection problem in which we have to choose between two models M0 and M1, on the 

basis of a data vector x, the BF is given by the ratio of integrated likelihoods for the two competing 

models: 

 

0

1

( | )
( | )

P MBF
P M

=
x
x

. (6) 

 

We should notice that (6) is similar to a likelihood-ratio test, but instead of maximising the likelihood, 

we average it over the parameters. Generally, if M0 and M1 are parameterised by parameter vectors θ0 

and θ1 the BF is then given by 
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The Bayesian approach to model comparison and selection is based on posterior model probabilities. In 

a classical binary-hypothesis test, the value of BF measures the strength of evidence meaning that it is 

more appropriate in the context of inference rather than decision-making under uncertainty. When 
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 comparing models M0 and M1, we can choose the model with the higher posterior probability, using 

Bayes’ theorem, by calculating their marginal likelihood ratio: 

 

0 0 0

1 1 1

( | ) ( | ) ( )  
( | ) ( | ) ( )

P M P M P M BF prior odds
P M P M P M

= = ×
x x
x x

. (8) 

 

BIC, also known as Schwarz’s criterion, is an asymptotically optimal method for estimating the best 

model using only sample estimates (Schwarz G., 1978). It can be viewed as a penalised maximum 

likelihood (ML) technique, because it imposes a penalty for including too many terms in a regression 

model in order to battle overfitting. BIC is defined as  

 

( ) 2 ln ( , ) ln( )BIC M l M k n= − +x  (9) 
 

where x are the sample data, is the maximised likelihood function under a model M, k is the 

number of estimated parameters, and n is the sample size (i.e. the number of observations; that is, the 

cardinality of x). For sufficiently large n, the best model for the data is the one that maximises the BIC. 

So, considering a binary hypothesis test we could indicate that model M

( , )l Mx

1 best fits the data, if its BIC 

value is greater than that of the reference model M0 that is assumed to stand by default: 

  

1 0( ) ( )BIC BIC M BIC MΔ = − . (10) 
 

BIC can be derived as an approximation of BF, because 1 02 ln ( ) ( )BF BIC M BIC M BIC≈ − = Δ . It 

provides a close approximation to BF when the prior over the parameters is the unit information prior. 

This is a multivariate normal prior with mean at the MLE and variance equal to the expected 

information matrix for one observation. This can be regarded as a prior distribution that contains the 

same amount of information as a single observation (Kass and Wasserman, 1995; Raftery, 1999) 

 

( )1
0 0, ( )k k kN −∼ θθIθ θ θ  (11) 

 

where  is the inverse of the block of the Fisher information matrix corresponding to 1−
θθI kθ .  

Historically, there has been much critique in the literature over the BIC methodology and its 

efficiency. According to Weakliem, BIC depends on implicit prior beliefs (the unit information prior) 

on the model parameters, something that might disagree with the observer’s prior information or belief 

(Weakliem, 1999). It is also argued that statistical consistent criteria like BIC are inclined to favour 

excessively simple models in practice (where the true model is not on the hypothesis candidate set) and 

thus it has little benefit over frequentist approaches or other criteria such as AIC (Anderson and 

Burnham, 1999). Raftery on the other hand, states that the unit information prior in BF and BIC 

provides reasonable representation when there is little prior information (Raftery, 1999). The 

hypothesis testing procedure defined by choosing the model with the higher posterior probability 

minimises the total error rate (the sum of Type I and Type II error rates). Even so, Bayesian model 
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 averaging, i.e. averaging the posterior densities of the quantity of interest across the different models 

with weights proportional to their posterior probabilities (derived from BFs) yield optimal predictive 

performance in situations that there is model uncertainty. Kuha (2004) has asserted that despite their 

different foundations, similarities between AIC and BIC can be observed, for example, in analogous 

interpretations of their penalty terms and argued that useful information for model selection can be 

obtained from using the two statistics together. Also, Burnham and Anderson (2004) have shown that 

BIC can be derived as a non-Bayesian result and AIC from a Bayesian standpoint to BF, making their 

distinction philological. 

 

3.2 Phonemic segmentation using the Bayesian Information Criterion  

In a typical statistical speech segmentation system, feature vectors are produced by moving a 

window/frame over the audio recording in a series of fixed length steps. Then, statistical decisions are 

made on a frame basis by calculating likelihood ratios. The choice of the frame length is a compromise 

between having sufficient data for calculating the feature vectors and limiting the influence of 

surrounding parts of the recording. The frame shift determines the time resolution for the boundaries. 

For an accurate segmentation, the frame shift should be as small as possible. Such an acoustic change 

detection system based on BIC has been proposed by Chen and Gopalakrishnam (1998). In this 

approach, adjacent signal segments are modelled using different multivariate GDs while their 

concatenation is assumed to obey a third multivariate GD, as in Fig. 1. The problem is to decide 

whether the data in the large segment fit better a single Gaussian or whether a two-segment 

representation describes it more accurately. The decision problem is undertaken by using BIC as a 

model selection criterion. A sliding window moves over the signal, making statistical decisions at its 

middle. When the window is sufficiently small, its adjacent sub-windows can be assumed as 

homogenous segments. The offset of the sliding window indicates the resolution of the system. For the 

purpose of phonemic segmentation, we would need to evaluate the following statistical hypotheses: 

- H0: (x1,x2,...,xn)~N(μZ,ΣZ): the data sequence comes from one source Z (i.e., noisy speech/silence, 

the same phone) and is described by model M0 

- H1: (x1,x2,...,xm)~N(μX,ΣX) and (xm+1,xm+2,...,xn)~N(μY,ΣY): the data sequence comes from two 

sources X and Y, meaning that there is a transition from speech utterance to silence, or a transition 

between two different phones or vice versa. We denote that the data come from model M1 

xi are Q-dimensional feature vectors in a transformed domain, typically using the Mel Frequency 

Cepstral Coefficients (MFCC) representation. Let ΣZ and ΣX, ΣY, respectively be the covariance 

matrices of the complete sequence Z and the two subsets X and Y, μZ, μX, μZ the corresponding mean 

vectors, while m and n-m are the number of feature vectors for each subset. When the hypothesis is 

tested at the time instant t, corresponding to the middle of the sliding window, then it is clearly m=n/2. 
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 t 

Fig. 1. Models for two adjacent speech segments. 

 

Since  , Gaussian model MQR∈ix 0 has 0

( 1)
2

Q Qk Q +
= +  parameters, while mixture model M1 has 

 parameters. The variation of the BIC value between the two models is given by Tritschler and 

Gopinath (1999) 

1 0k2k =

 
02 lnBIC R PλΔ = −  (12) 
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n

 
(14) 

 

where R is the Generalised Likelihood Ratio Test (GLRT), P0 is the penalty for model complexity 

regarding the two models and λ is a tuning parameter for the penalty factor. The complexity penalty P0 

depends on the degrees of freedom associated with the test. In (13), ( ; )l x xx ,μ Σ represents the 

likelihood of the sequence of feature vectors X given the multivariate Gaussian process ( )N x xx; ,μ Σ . 

( )l y yy; ,μ Σ  and (l )z zz; ,μ Σ  are similarly defined. Assuming multivariate GD modelling, we can 

easily calculate ΔBIC from sample values: 

 

0ln ln ( ) lnBIC n m n m PλΔ = − − − −Z X YΣ Σ Σ  (15) 
 

Positive ΔBIC values indicate that the multivariate Gaussian mixture best fits the data, meaning that t 

corresponds to a segment boundary.  

Regarding the application of BIC to the detection of phone boundaries, certain assumptions must 

be considered. First, the incoming signal must either originate from a single speaker or, equivalently, 

no multiple speakers must talk simultaneously. Second, since the phone durations are relatively small, 

we need to operate on very small frame sizes in order to correctly assume that the speech signal is 

stationary. The BIC scheme presented here, while inherently threshold-free can also be viewed as a 

dynamic thresholding scheme on the log-likelihood distance. There is still a penalty factor λ that 

depends on the type of analysed data and must be estimated heuristically (Chen et al., 2002; Tritschler 

and Gopinath, 1999). This allows for reducing Type II errors without increasing the number of Type I 

errors, but it is experimentally tuned. Also, BIC tends to choose oversimplistic models due to the heavy 

penalty on the complexity. Nevertheless, BIC is a consistent estimate and various speech processing 

algorithms have extended the basic method combining it with other metrics such as Kullback-Leibler 

X~N(μX,ΣX)
1 2 m m+1 m+2 n 

m feature vectors n-m feature vectors 

Y~N(μ ,ΣY Y) 

Z~N(μZ,ΣZ) 
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 (KL) distance, sphericity tests, and higher-order statistics (Delacourt and Wellekens, 2000; Nemer et 

al., 2001). 

Tritschler and Gopinath (1999) has proposed an improved segmentation algorithm for speaker 

detection using a variable window scheme instead of considering a fixed amount of data when no 

segment boundary is found in the current sliding window.  The new algorithm uses relatively small 

window sizes in areas where boundaries are very likely to occur, while increasing the window size 

more generously when boundaries are not very likely to occur. Incorporating long-term speech 

information (i.e. more observations) to the decision rule benefits the speech/pause discrimination and 

phone transition detection. 

 

3.3 DISTBIC 

DISTBIC is a two-pass distance-based algorithm that searches for change point candidates at the 

maxima of distances computed between adjacent windows over the entire signal (Delacourt and 

Wellekens, 2000). First, it uses a distance computation to choose the possible candidates for a change 

point. Different criteria such as KL distance or GLRT can be applied to this pre-segmentation step. 

Using the log-value of the GLRT, associated with the defined hypothesis test, the dissimilarity between 

the two subsequent segments of Fig. 1 is measured by the distance D 

 

( )
ln ln ( ) ( ) ( )

( ) ( )
l

D R L L L
l l

= = = − −z z x x y y

z; ,z z z; , x; , y; ,
x; , y; ,x x y y

μ Σ
μ Σ μ Σ μ Σ

μ Σ μ Σ
 (16) 

 

where 
 
denote the log-likelihood. Next, a plot of distances is created and significant local 

peaks are selected as candidate change points. Thresholds that filter out the insignificantly small 

distance values in the plot (horizontal threshold) or thresholds that constrain the minimum 

horizontal/time distance between consecutive local maxima corresponding to candidate segmentation 

points (vertical threshold) can be applied. In the last step, using the variable window scheme of 

Tritschler and Gopinath (1999), ΔBIC values are used in order to validate or discard the candidates 

determined in the first step. A free parameter constrains the maximum window length. The last step of 

DISTBIC can be iterated and serves as a refinement step in order to avoid over-segmentation. 

( ) ln ( )L l⋅ = ⋅

DISTBIC has been found efficient in detecting acoustic changes that are relatively close one 

another but at the price that a lot of false changes are detected too. Nevertheless, by tuning the 

parameters of the algorithm it is possible to fix the over-segmentation (false alarms) on a minimum 

value and then try to maximise the detection rate. 

 

3.4 Modification of the Bayesian Information Criterion for small samples 

A central problem in statistical inference is dealing with situations where little information from data is 

given. This is clearly the case with phone segmentation where the duration of a single phone can be as 

small as a few milliseconds (Villiers and Preez, 2001). Most researchers agree that the number of 

estimated parameters must be substantially fewer than the number of observations in order to obtain a 

valid optimum (Olsthoorn, 1995). As stated in Sect. 3.2, an estimator is statistically consistent if it 
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 converges on the true value given enough data and it is considered efficient if the rate of convergence is 

as fast as possible. BIC asymptotically favours the correct model with a probability that tends to 1 as 

sample size increases. But the difference between BIC and twice the logarithm of BF has a 

nonvanishing asymptotic error of constant order O(1) (Volinsky and Raftery, 2000). While the error 

vanishes for an implicit choice of prior on the parameters (the overall unit information prior), for 

general priors of the parameters, the error tends to zero as a proportion of BIC, since the absolute value 

of BIC increases with n. Therefore, BIC has the undesirable property that for any constant C, BIC+C 

also approximates twice the log BF to the same order of approximation as BIC itself. This implies that 

the BIC approximation is rudimentary, and the performance might suffer for small samples. 

Furthermore, while the BIC target model does not depend on sample size n, the number of 

parameters that can be estimated reliably from finite data does depend on n. For small n, the BIC-

selected model can be quite biased as an estimator of its target model. Due to this limitation, the 

application of the BIC measure to target domains containing an insufficiently small number of samples 

requires caution (Lee, 2002). There has been much discussion in the literature about the challenges in 

determining n in the BIC equation (9), especially for dependent data (Visser et al., 2005). It is stated 

that for multivariate observations, n in (9) should be replaced by the number of observed statistics per 

parameter. In effect, n may depend on the values of specific parameters, meaning that different 

parameters may have different values of effective sample sizes associated with them. According to 

Raftery (1999) n should be the rate at which the Hessian matrix of the log-likelihood function grows. 

Using the Laplace approximation for calculating the integrals in (10) and substituting θ with the 

MLE parameter estimates �θ  there, it is possible to derive approximations to the BF by suggesting 

alternative model complexity penalties (Raftery and Richardson, 1996). Subsequently, it is possible to 

derive modified BIC criteria that perform better than ordinary BIC for model selection and for different 

sample sizes. From Appendix A, we have 

 

1/ 2

ˆ ˆ2 ln ( | ) 2 ln ( | , ) 2 ln ( | ) ln 2 ln( ) ln ( )

( )
k k k k k k kP M P M P M d d n I

O n

π
−

− = − − − + +

+

x x ˆ
E kθ θ θ

 (17) 

 

where  is the posterior distribution, ( | )kP Mx ˆ( | , )k kP Mx θ  is the prior distribution of X  given the 

model ˆ( , )k kM θ ,  is the log-likelihood at the MLE ˆln ( | ) ( )k k kP M L=θ θ̂ k̂θ , dim( )kd = kθ  is the 

dimension of the parameter space of the model kM  and EI is the expected information matrix per 

observation.  

Accordingly, Kashyap’s modification (KBIC) (Kashyap, 1977), is defined as  

 

ˆ ˆ2 ( ) ln( ) ln | ( ) |k k E kKBIC L d n I= − + +θ θ  (18) 
 

and can be derived by (17) by discarding ˆ2ln ( | , )k kP Mx θ  and ln(2 )kd π . Haughton’s BF 

modification (HBF) (Haughton, 1988) is defined as  
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ˆ2 ( ) ln
2k k

nHBF L d
π

= − +θ  (19) 

 

where the terms ˆ2ln ( | , )k kP Mx θ  and ˆln ( )E kI θ  are discarded from (17). Likewise, Bollen’s BF 

approximation ABF1 (Bollen et al., 2005) eliminates ˆ2ln ( | , )k kP Mx θ  from (17): 

 

ˆ ˆ1 2 ( ) ln ln | ( ) |
2k k E k

nABF L d I
π

= − + +θ θ  (20) 

 

Bollen’s ABF2 is derived by considering a specific implicit unit information prior that is more flexible 

than BIC (Bollen et al., 2005). By choosing special scaled unit information prior 2( | )k k ABFP Mθ  

 
1

0
2

ˆ( )ˆ( | ) , k
k k ABF k

I
P M N w

n

−⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∼ θ
θ θ  (21) 

 

where the optimum value of scale w maximises , and using a Laplace approximation only for 

the likelihood, we get 

( | )kP Mx

 

ˆ ˆ2 ( ) 1 ln  , if  ( )ˆ ˆ ˆ( )2
ˆ ˆ ˆ ˆ2 ( ) ( )                 , otherwise

Tk
k k k k E kT

k E k k

T
k k E k k

dL d d I
IABF

L I

⎧ ⎛ ⎞
− + + >⎪ ⎜ ⎟⎜ ⎟= ⎨ ⎝ ⎠
⎪
− −⎩

ˆ
k̂θ θ θ θ

θ θ θ

θ θ θ θ

 (22) 

 

It has been attested that the performance gain using ABF2 instead of BIC in small samples (n<60) is 

significant (Bollen et al., 2005). Another BF modification is Rissanen’s Shortest Data Description 

criterion (SSD) (Rissanen, 1978) that was originally derived as a solution to the problem of minimum-

bit representation of a signal and is defined as  

 

2ˆ2 ( ) ln 2 ln( 1)
24k k k

nSSD L d d+
= − + + +θ . (23) 

 

Alternative penalty factors for BIC have also been proposed by Visser et al. (2005) (generalised BIC, 

genBIC), Bogdan et al. (2004), Gheissari and Bab-Hadiashar (2003) (Geometric BIC, GBIC), and 

Tremblay and Wallach (2004) (BIC corrected, BICC). BICC has been described as BIC corrected for 

small samples. It considers the case where the residual errors of the linear regression in the sample are 

independent and identically distributed as a Gaussian process. It is defined as: 

 

ln( )ˆ2 ( )
1

k
k

k

d n n
BICC L

n d
= − +

− −
θ  (24) 
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 where n is the sample size, and  the number of estimated parameters. It must be noticed that for a 

given number of parameters , the penalization term is constant regardless of which parameters are 

estimated. Tremblay and Wallach (2004) have attested that BICC performs better than classic BIC both 

in terms of mean squared error of the parameter estimates and in terms of prediction error. 

kd

kd

For the purpose of this paper, we are going to use BICC and ABF2 approximations as model 

selection criteria and we will evaluate them as viable components for automatic phonemic 

segmentation systems. When Χ are Q-variate data it is common to assume that the statistical 

components are independent. This simplifies the computations greatly, since we have to deal with 

diagonal covariance matrices. Consequently, the marginal probabilities multiply and the log-likelihoods 

add, so we can presume univariate statistics. If for example, each independent component q is modelled 

by a univariate GD ( ; ) ( , )q q q qP M N μ σ∼θ , then , where ( , )T
q q qμ σ=θ qμ and qσ  are the mean and 

standard deviation respectively. Clearly, the number of the parameters for each component which need 

to be estimated for model Mk is dim( ) 2q qd = =θ  and the total number of estimated parameters is 

. Working independently, we can approximate the multivariate joint probability distribution 

functions (PDF) using the marginal PDFs. 

2kd = Q

 

 

4. SPEECH MODELLING WITH THE GENERALISED GAMMA DISTRIBUTION 

A critical parameter that affects the performance of statistical speech segmentation methods is the 

choice of distribution for modelling clean speech and noise/silence. A common assumption for most 

algorithms in speech processing is that both noise and speech spectra can be modelled satisfactorily by 

GDs. Furthermore, using a transformed feature space, it is also possible to assume that these two 

Gaussian random processes are independent of each other and the spectral coefficients of the clean 

speech and noise differ only in magnitude. In such cases, maximum a posteriori estimators can be used 

to determine the signal parameters.  

Nevertheless, the choice of the GD is generally justified on its simplicity and its nice theoretical 

properties (e.g. central limit theorem). Previous work in speech processing has demonstrated that 

Laplacian (LD) and Gamma (ΓD) distributions are more suitable than GD for approximating active 

voice segments for many frame sizes (Gazor and Zhang, 2003; Martin, 2005). More specifically, LD 

fits well the highly correlated univariate space of speech amplitudes as well as the uncorrelated 

multivariate space of feature values after a Karhunen-Loeve Transformation (KLT) or Discrete Cosine 

Transformation (DCT). It is also asserted that DCT coefficients of clean speech samples are better 

modelled using the generalised Gaussian distribution (GGD) since they have a distribution which is 

more peaky than a LD (Gazor and Zhang, 2003). Nakamura (2000) proposes a generalised Laplace 

distribution (GLD) for speech recognition, demonstrating significant improvement in word accuracy 

when MFCC is used. 

Recently, it has been asserted that the generalised Gamma, GΓD, fits the voiced speech signal 

even better than Gamma, Laplacian, and Gaussian distributions, especially in small frame sizes, and 

consequently it offers great perspectives in very short-time speech analysis and in phone boundary 
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 detection (Shin and Chang, 2005). Fig.2 illustrates that GΓD has the better fit than GD with the 

empirical PDF of the speech spectra in MFCC domain. 

 

 
Fig. 2. Empirical histogram and GΓD, GD PDFs for the real part of the 4th MFCC coefficient in speech data (100ms NTIMIT 

sample). 

 

The four-parameter GΓD was first proposed by Stacy (1962) and it is defined with the PDF 

 

-1
-

( , , , , )
( )

( - )st

t

st

x q
rt

f x q r s t ex r s
x q

−⎛ ⎞
⎜ ⎟
⎝ ⎠=

Γ
 (25) 

 

where Γ(s) denotes the gamma function, q, r, s, and t are positive real values corresponding to location 

(q), scale (r), and shape/power (s), and power (t) parameters of GΓD respectively. Although the GΓD is 

of considerable importance in theoretical and applied statistics, it has been used mostly in reliability 

modelling and life data analysis. Until recently, little interest was shown in speech processing 

literature, the main reason being its complexity. It is likely that two GΓDs which have quite different 

parameters can look alike. Furthermore, estimating the parameters of GΓD analytically using the MLE 

method is difficult, because the maximised likelihood results in nonlinear equations involving 

numerical integrations. Nevertheless, various numerical methods have been discussed in the literature. 

These require nonlinear equations to be solved, but under certain approximations, these equations may 

only involve simple functions such as digamma and trigamma, which are well behaved and available in 

many software packages where they can be accurately computed using algorithms by Bernando (1976) 

and Schneider (1978), respectively. A discussion on a MLE for the four-parameter GΓD is given by 

Harter (1967), while Cohen and Whitten (1986) have proposed a method based on moment estimation. 
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 Parr and Webster (1965), Hager and Bain (1987), and Lawless (1980) have considered MLE for the 

GΓD but reported problems with the iterative solution of the nonlinear equations implied by this 

method, unless the sample size is large and the shape parameter is also relatively large. Numerical 

methods organised around Gibbs sampling have been shown to perform well for Bayesian inference 

(Tsionas, 2001).  

In their proposal for voice activity detection, Shin and Chang (2005) use a simpler, 

reparameterised, three-parameter, two-sided version of the GΓD, with the location parameter discarded 

 

1 | |( ) | |
2 ( )

a cac b xcb
f x x ex a

− −=
Γ

 (26) 

 

where b, and a, c are positive real values corresponding to scale (b) and shape (a, c) parameters 

respectively. GD is a special case of (26) for c=2 and a=0.5. For c=1 and a=1, (26) yields the LD, while 

for c=1 and a=0.5, it represents the common ΓD. GΓD also includes GGD, log-normal, exponential and 

Weibull, distributions as special cases. This special property of GΓD (the ability to simulate either 

LD/ΓD or GD) allows the modelling of both clean speech and noise/silence respectively.  

A computationally efficient on-line algorithm for the three-parameter GΓD in (26), based on the 

MLE and the gradient ascent algorithm, has been introduced by Shin and Chang (2005). The shape 

parameter c is numerically determined by using the gradient ascend algorithm according to the MLE 

principle. Using a learning factor we can then reestimate the value of c that locally maximizes the log-

likelihood function L, until L convergences. Using this value and the data samples, we can determine 

the scale (b) and shape (a) parameters. The rationale for the parameter estimation algorithm is given in 

Appendix C. 

 

 

5. PHONEMIC SEGMENTATION USING GENERALISED GAMMA DISTRIBUTION 

Our goal is to detect the boundaries of phone segments without any previous knowledge of the audio 

stream, while achieving a robust performance under noisy environments. For this purpose, we 

introduce an improved version of the DISTBIC algorithm, DISTBIC-Γ, where the signal is modelled 

using GΓDs instead of GDs. Considering the discussion in Sect. 4, we modify the pre-segmentation and 

refinement steps of the DISTBIC algorithm by assuming a GΓD distribution model for our signal in the 

analysis windows. 

The proposed algorithm, DISTBIC-Γ, works in two steps. First, using a sufficiently big sliding 

window and modelling it and its adjacent sub-segments with GΓDs instead of GDs, we calculate the 

distance D associated with the GLRT using (13). It must be noticed here that zero inputs are ignored 

because the GΓD in (26) cannot be specified when the argument equals zero exactly. Once the 

parameters for each of the Q components have been estimated with the online gradient ascent 

algorithm, the likelihood ratio can be calculated. Here, as in (Gazor and Zhang, 2003), we are making 

the assumption that the noisy speech signal has uncorrelated components in the MFCC domain. 

Depending on the window size, this assumption gives a reasonable approximation for the multivariate 

probability densities using the marginal PDFs. Using the equations (C.4) and (C.9) in Appendix C, the 
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 average log-likelihood function for each univariate marginal distribution in the given hypothesis test 

can be calculated. Since the multivariate equivalents of likelihood are simple products over the Q 

components, the dissimilarity distance in (16) can be easily calculated. While KL distance offers better 

discriminative ability than GLR and other similarity measures (Delacourt and Wellekens, 2000), 

especially in noisy signals, it is unrealistic to use maximum likelihood estimates, such as those derived 

for GΓD in Appendix C, with the KL-divergence loss function. As the parameters are estimated on 

relatively few data it becomes increasingly likely that KL-divergence for a maximum-likelihood 

estimate is infinite (Van Allen, 2000). 

Next, we create a plot of the distances as output with respect to time and filter out insignificant 

peaks using the same heuristic criteria as (Delacourt and Wellekens, 2000). In the second step, using 

the BIC test as a merging criterion, we compute the ΔBIC values for each segmentation point candidate 

in order to validate the results of the first step. A block diagram depicting the processing stages of the 

proposed phonemic segmentation system is given in Fig. 3. A potential problem arises when using 

MLE for short segments, but we can relax the convergence conditions of the gradient ascend method 

and still yield satisfactory results (Shin and Chang, 2005). In order to further improve performance we 

also propose alternative versions of the algorithm, DISTBICC-Γ and DISTABF2-Γ, where the BIC is 

replaced by BICC and ABF2 respectively, as in Sect. 3.4. The model complexity penalty P0 for ABF2, 

assuming GΓD modelling, is given in Appendix B. These four algorithms, DISTBIC, DISTBIC-Γ, 

DISTBICC-Γ, and DISTABF2-Γ are tested in the setting of phonemic segmentation in the next section. 
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Fig. 3. Block diagram of the proposed phonemic segmentation system. 

 

 

6. EVALUATION 

The performance of the proposed methods is assessed using two sets of experiments on two different 

datasets. In the first experiment, we compare the efficiency of the proposed methods using samples 

from the M2VTS audio-visual database (Pigeon and Vandendorpe, 1997). In our tests we used 25 audio 

recordings that consist of the utterances of ten digits from zero to nine in French. We measured the 

mismatch between manual segmentation of audio performed by a human transcriber and the automatic 
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 segmentation provided from the DISTBIC, DISTBIC-Γ, DISTBICC-Γ, and DISTABF2-Γ algorithms. 

The human error and accuracy of visually and acoustically identifying segmentation points were taken 

into account. A phone boundary identified by the system is considered “correct” if it is placed within a 

range of ±20ms from a true (hand-labelled) segmentation point, which implies a 20ms tolerance. White 

and babble noise from the NOISEX-92 database (Varga et al., 1992) was added to the clean speech 

samples at various SNR levels ranging from 20 to 5 dB. 

In the second set of experiments we used samples from the Test Set of the NTIMIT corpus 

(Jankowski et al., 1990). NTIMIT is a telephone bandwidth version of the well-known TIMIT dataset 

(Garofolo et al., 1990), where its utterances are transmitted over telephone channels through either 

local or long-distance calls. The dataset in our experiments consisted of 2 male and 2 female speakers 

from each of the 8 dialects (32 speakers in total) with 8 utterances per speaker. Common utterances sa1 

and sa2 were not used. This accounts for 256 unique utterances totalling 787 seconds of speech time. 

The performance of the detector was evaluated against the manual phonetic transcription that is 

provided in the dataset. In this set of experiments, we made performance comparisons against 

segmentation algorithms reported in the literature by including DCF, SVF, and TIC in the tests. TIC is 

being considered as an alternative to BIC-based criteria in the candidate point verification step of the 

algorithm as described in Sect. 5. We call the resulting algorithm DISTTIC. For both experiments we 

used the same set of parameter values and features (20ms analysis window, 10ms overlap/shift, first 12 

MFCCs excluding the energy component, λ=7 for DISTBIC, λ=1 for the rest, 20ms tolerance). 

The errors that can be identified in acoustic change point detection are distinguished by whether 

the point corresponds to a phone boundary, and by the position in an utterance in which the error 

occurs (beginning, middle, or end). A point incorrectly identified as a change point gives a Type II 

error (false alarm, FA) while a point totally missed by the detector is a Type I error (missed detection, 

MD). The detection error rate of the system is described by the missed detection rate (MDR) and the 

false alarm rate (FAR) as defined in (Esposito and Aversano, 2004). ACP stands for the actual change 

points in the signal as determined by human in our case and AP is the overall points in the system (i.e. 

the total number of the frames). 

 

 
100%

FA
FAR

AP ACP
=

−
 (27) 

100%
MD

MDR
ACP

=
 

(28) 

 

A high value of FAR means that an over-segmentation of the speech signal is obtained, while a high 

value of MDR means that the algorithm does not segment the audio signal properly. The equations (27) 

and (28) imply that a higher detection performance (lower MDR) comes at expense of a higher FAR. 

An important aspect inherited from original DISTBIC is that segmentation results can be refined by an 

iterative operation. Also, by tuning the system parameters (e.g. frame size) it is possible to search for 

an optimal FAR after the required MDR has been met. Just as in DISTBIC, it is possible to fine-tune the 

performance and limit the over-segmentation by changing the penalty factor λ. Fig. 4 depicts type I and 

type II errors for the NTIMIT sentence sx404. 
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Fig. 4. Phonemic segmentation using the DISTABF2-Γ algorithm for utterance sx404 of NTIMIT female speaker PAS0 (“Barb 

burned paper and leaves in a big bonfire”).   

 

The detection performance of the system can be assessed by precision (PRC) and recall (RCL) rates: 

 

100%     100%
CFC CFC

PRC RCL
DET ACP

= =  (29) 

 

where CFC is the number of correctly found changes and DET is the number of changes detected by 

the system. The overall objective effectiveness of the system can be evaluated by the F1-measure: 

 

2
1

PRC RCL
F

PRC RCL
⋅ ⋅

=
+

 (30) 

 

The results of the system error rates for the M2VTS dataset are demonstrated in Table 1, while the 

recall-precision results are illustrated in Table 2, where we calculate the average PRC, RCL, and F1 

rates over all recordings. Examining the average F1-measure using a two-sample one-tailed t test we 

see that the DISTIBIC-Γ performance is superior to DISTBIC at a confidence level of 0.05 for every 

case, since the t values are larger than the corresponding critical values (t0=1.677 corresponding to one-

tailed t-test with 25+25-2=48 degrees of freedom). The improved results demonstrate the higher 

representation power of the GΓD. Similarly, using different model selection criteria than BIC, we yield 

even better results than DISTIBIC-Γ under all SNRs. Fig. 5 depicts the overall performance of the four 

algorithms under various classes of additive noise at different SNRs. We can easily deduce that 

DISTABF2-Γ performs best, followed by DISTBICC-Γ. The performance improvement is most 

notable at low SNRs. The significance test results that are depicted in Table 3 validate the experimental 

findings. 

For the NTIMIT dataset, we compare the segmentation accuracy of the DISTBIC-based 

algorithms regarding noisy speech against other phonemic segmentation algorithms reported in the 
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 literature using the Receiver Operating Characteristic (ROC) curves in Fig. 6. Different points in the 

ROC are calculated by varying the free parameters mentioned in Sect. 3.4. The closer a curve is to the 

bottom left in the diagram, the more accurate is the segmentation. The overall performance of the 

segmentation algorithms is shown in Table 4. The results show that DISTABF2-Γ yields significantly 

better detection results than DISTBIC and DISTBIC-Γ at all FAR rates. DCF has comparable 

segmentation accuracy with DISTBIC-Γ while DISTTIC and SVF perform worse than DISTBIC. 

Overall, DISTABF2-Γ performs best, followed by DISTBICC-Γ. The performance of DISTABF2-Γ 

compares favourably with the results of  Esposito and Aversano (2004). In their work, they proposed a 

fitting procedure, which places segmentation boundaries into the barycentre of each group of quasi-

simultaneous sharp transitions. Using a relative thresholding procedure and a Melbank front-end, they 

yielded over 80% recall rate in TIMIT and NTIMIT with a ±20ms tolerance while keeping over-

segmentation at a minimum. 

 
 

Table 1. Error rates in M2VTS. 

  DISTBIC DISTBIC-Γ DISTBICC-Γ DISTABF2-Γ 

Noise SNR (dB) MDR FAR MDR FAR MDR FAR MDR FAR 

(clean) - 18.9 2.01 16.4 1.53 15.2 1.47 13.5 1.30 

white 20 21.9 2.09 18.1 1.76 16.3 1.57 15.8 1.36 

white 10 26.5 2.36 22.6 2.03 19.1 1.64 17.1 1.54 

white 5 29.7 2.79 25.1 2.26 21.0 1.93 20.0 1.67 

babble 20 25.4 2.29 20.3 1.97 17.7 1.78 16.8 1.64 

babble 10 28.4 2.5 22.9 2.15 20.2 1.92 19.8 1.77 

babble 5 33.4 2.79 27.0 2.38 23.8 2.01 22.4 1.88 

 

 
Table 2. Recall, Precision, and F1 measure in M2VTS. 

  DISTBIC DISTBIC-Γ DISTBICC-Γ DISTABF2-Γ 

Noise SNR (dB) PRC RCL F1 PRC RCL F1 PRC RCL F1 PRC RCL F1 

(clean) - 70.4 81.1 75.3 76.3 83.6 79.7 77.2 84.8 80.7 79.6 86.5 82.8 

white 20 68.8 78.4 73.2 73.2 81.9 77.3 75.8 83.7 79.5 78.4 84.2 81.2 

white 10 64.6 73.5 68.7 69.1 77.4 72.9 74.5 80.9 77.5 76.0 82.9 79.3 

white 5 59.7 70.3 64.5 66.1 74.9 70.2 70.6 79.0 74.5 73.8 80.0 76.7 

babble 20 65.7 74.6 69.8 70.5 79.7 74.7 73.1 82.3 77.3 74.9 83.2 78.8 

babble 10 62.8 71.6 66.8 67.8 77.1 72.1 70.9 79.8 75.0 72.7 80.2 76.2 

babble 5 58.3 66.6 62.1 64.3 73.0 68.4 69.0 76.2 72.4 70.7 77.6 73.9 
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Table 3. One-sided two-sample pooled t-test comparing the F1 values of DISTBIC-Γ against DISTBIC, DISTBICC-Γ against 

DISTBIC-Γ, and DISTABF2-Γ against DISTBICC –Γ. 
Total Actual Change Points 925 

Number of recordings 25 

Critical  value at 0.05 t0=1.677 

 

 

  
DISTBIC-Γ vs 

DISTBIC 

DISTBICC-Γ vs 

DISTBIC-Γ 

DISTABF2-Γ vs 

DISTBICC -Γ 

Noise SNR (dB) t values t values t values 

(clean) - 8.76 1.95 4.03 

white 20 8.12 4.31 3.23 

white 10 8.67 9.02 3.53 

white 5 11.95 8.88 4.37 

babble 20 9.98 5.21 2.83 

babble 10 11.00 5.93 2.35 

babble 5 13.37 8.30 3.17 
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Fig. 5. Overall system evaluation using the F1 measure for the M2VTS dataset. 
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Fig. 6. ROC curves for different segmentation algorithms in NTIMIT. 

 

 
Table 4. Average Error rates in NTIMIT. 

SNR (dB) MDR FAR PRC RCL F1 

DISTBIC 28.40 5.30 65.86 71.6 68.59 

DISTBIC-Γ 26.13 5.02 67.76 73.87 70.65 

DISTBICC-Γ 23.74 4.69 69.89 76.26 72.9 

DISTABF2-Γ 19.28 4.38 72.52 80.72 76.37 

DCF 26.57 4.57 69.62 73.43 71.46 

SVF 31.17 4.88 66.85 68.83 67.76 

DISTTIC 28.59 5.49 64.99 71.41 68.02 

 

 
 
7. CONCLUSIONS 

The identification of phone boundaries in continuous speech is an important problem in areas of 

speech synthesis and recognition. In this work, we examine the applicability of the DISTBIC algorithm 

for the text-independent detection of phone boundaries in continuous speech under noisy conditions. 

DISTBIC and its variants have been used primarily for speaker-based segmentation (Delacourt and 

Wellekens, 2000; Kadri et al., 2006; Wand and Cheng, 2004; Zhang et al., 2006). Because the 

performance of the baseline algorithm is sensitive to sample sizes, we proposed modifications on the 

original algorithm so that it serves better for the phonemic segmentation task. By considering small-

sample corrections to Bayesian information criterion, we were able to improve the segmentation 

accuracy by replacing BIC with BICC or ABF2. 
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 We have also demonstrated that by representing the signal samples with a GΓD, we are able to 

yield improved results compared to the normal distribution for an offline two-pass algorithm. We 

concluded that the GΓD model is more adequate to characterise noisy speech than the Gaussian model. 

Despite making assumptions on the correlation of distribution components for the computation of the 

likelihood ratio in GΓD-based algorithms (DISTBIC-Γ, DISTBICC-Γ, DISTABF2-Γ), we generally 

improved the segmentation accuracy. While GΓD offers great flexibility and can represent accurately 

the speech signal especially in a small scale, its MLE is problematic since it has large bias in moderate 

and small sample sizes. Nevertheless, judging from the results in the present application, this 

inefficiency is not destructive and we are able to relax the convergence requirements of the online 

gradient ascent algorithm for the parameter estimation by assuming initial values close to ΓD or LD. 

These have been found to be good approximations of the speech signal in various domains. Using 

alternative parameter estimation methods for GΓD, such as the method of moments, would be worth 

exploring since many have asserted that the extracted estimates introduce less bias than MLE when 

small sample sizes are considered (Hwang and Huang, 2002). Likewise, Shin et al. (2005) have also 

yielded improved performance by modelling both speech and noise with a two-sided GΓD in the DFT 

domain. An assumption is made there that the real and imaginary parts of the DFT coefficient are 

statistically independent and distributed according to the same GΓD. Their LRT-based detector 

obtained better results under vehicular and office noise than conventional methods. In our work, we 

have asserted that we can operate in the MFCC domain as well with similar success.  

Evaluation of automatic phone segmentation in two different datasets and for different noise 

conditions confirmed that ABF2 performed best overall, followed by BICC. The superior results in 

small sample sizes can be credited to the fact that ABF2 has a more flexible implicit unit information 

prior than BIC. Performance comparisons with other speech segmentation algorithms reported in the 

literature show that DISTABF2-Γ yields improved results. 

In the present work, the size of experiments was limited and the computation time in the proposed 

approach was multiple times greater for the method with GΓDs than using the simple DISTBIC 

algorithm. We assert that by refining the set of algorithm parameters (i.e. analysis window size/shift, 

penalty factor λ, etc.) it is possible to limit both type-I and type-II errors. There are numerous 

combinations worth exploring for offline two-step speech segmentation at phone level. In future, it will 

be worth investigating alternative corrected versions of BIC and evaluate them against other criteria, 

such as the deviation information criterion (DIC) (Spiegelhalter et al., 2002), MDL, and ICOMP 

(Bozdogan, 1988), similarly corrected for small samples. The advantage of DIC, for Bayesian model 

selection, is that DIC is easily calculated from the samples generated by a Markov chain Monte Carlo 

simulation while AIC and BIC require calculating the likelihood at its maximum over parameters θ, 

which is not readily available from the Markov Chain Monte Carlo (MCMC) simulation. Sugiyama  

and Ogawa (2001) have proposed the subspace information criterion (SIC), which gives an unbiased 

estimate of the generalisation error in model selection when finite samples are considered. They have 

attested that SIC outperforms other criteria, including AIC, BIC, and CAIC, in small samples. A more 

detailed discussion of different information criteria, including BIC, is given in (Chickering and 
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 Heckerman, 1997) and (Gheissari and Bab-Hadiashar, 2003). An evaluation of model selection criteria 

for acoustic segmentation is given in (Cettolo and Federico, 2000). 

 

APPENDIX A. Bayesian Information Criterion small sample approximation assuming a 

generalised Gamma distribution prior. 

A method widely used in probabilistic modelling to approximate the value of marginal likelihoods in 

model comparison is Laplace’s method. This approach approximates the integral of a function 

( )f x dx∫  by fitting a Gaussian at the maximum x̂  of ( )f x , and computing the volume under the 

Gaussian. The covariance of the fitted Gaussian is determined by the Hessian matrix H of ln ( )f x  at 

the maximum point x̂ . In other words, Laplace’s method is a way of approximating the posterior 

distribution with a Gaussian centred at the MAP estimate. This can be justified by the fact that under 

certain regularity conditions, the posterior distribution approaches a GD as the number of samples 

grows (Gelman et al., 1995). Despite using a full distribution to approximate the posterior, Laplace's 

method still suffers from most of the problems of MAP estimation. Estimating the variances does not 

help if the procedure has already lead to an area of low probability mass. Laplace’s method employs a 

Taylor series expansion of H around the MAP estimate lx , taken to second order 

 

l l/ 2 1/ 2( ) ( )(2 ) | ln( ( ) |kf d f fπ −≈ −∇∇∫ x x x x . (A.1) 
 

In Bayesian statistics, the marginal likelihood )  which indicates the evidence for model M ( | kP MX

place’ approximation  

k 

is computed by integrating over the unknown parameter values in that model. Considering the 

hypothesis testing of Sect. 3.2, we need to calculate the BF for the model M1 against the model M0 

given data X. The BF is the ratio of posterior to prior odds, i.e. the ratio of the marginal likelihoods. 

The likelihoods for M0 and M1 can be written down explicitly, so once the prior has been fully 

specified, the marginal likelihood in (7) can be computed using La
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where ( | )k kp Mθ is the prior distribution of θ given the model Mk, κ
�θ corresponds to the mode of 

( | )k kp Mθ , dim( )kd = kθ  is the dimension of the parameter space, 0 ( )I ⋅�  is Fischer’s observed 

information matrix of the posterior distribution  and ( | )kp Mx ⋅  denotes the determinant of a matrix. 

By substituting κ
�θ with the MLE estimated value � kθ , and replacing by the expected information 

matrix per observation 
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 where n is the number of observations (i.e. the sample size), we get: 

 

1/ 2
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O n

π
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x x ˆ
E kθ θ θ

 (A.4) 

 

 

APPENDIX B. Calculation of ABF2 model complexity penalty when using a generalised Gamma 

distribution prior for data. 

As stated in Sect. 3.4, Bollen et al propose a special unit information prior where the variance of the 

parameter kθ is scaled by w (Bollen et al., 2005). By using the optimum value for w that maximises the 

posterior probability  and approximating only the likelihood( | )kP MX ( | )k kp Mθ  with Laplace’s 

method, we can derive (Bollen et al., 2005) 
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 (B.1) 

 

Looking at (B.1), it is clear that the expected Fisher’s information matrix must be calculated explicitly. 

When we have univariate data and a single parameter θ to estimate, Fisher’s information is defined as: 
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If we have n independent observations 1 2{ , ,..., }nx x x=x  then the probability densities multiply and 

log-likelihoods add. Thus, by linearity of expectation  

 

( | ) ( | )E EI nI xθ θ=x  (B.3) 
 

where x is any one of the xi. This means that n times as many observations should give us n times as 

much information about the value of an unknown parameter. Accordingly, for multiple parameters and 

observations,  

 

( | ) ( | )E EI nI x=xθ θ . (B.4) 
 

Assuming observation comes from an i.i.d distribution, the average (per observation) expected 

information matrix per observation at the MLE ˆ( )E kI θ  is given in (A.3). For the 3-parameter GΓD 

PDF of (30)  , it is clearly . Under the MLE 

approximation, each element in the expected information matrix can be analytically calculated, e.g. 

~ GΓD( , , )a b cX 1 2 3( , , ) ( , , )T
k a b cθ θ θ= =θ T
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Similarly,  
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where ψ0 and ψ1 are the digamma and trigamma functions respectively: 
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The expected information matrix is then 
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Since we have i.i.d. data, the average expected information matrix per observation 11( )E kI θ is given by 

 

1( ) ( )E k EI I
n

= kθ θ . (B.10)

 

We can now calculate the complexity penalty in (B.1) by first calculating the term 
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APPENDIX C. Parameter estimation of Generalised Gamma Distribution. 

The complexity of GΓD imposes difficulties in the estimation of its parameters. Various existing 

methods include the method of moments, MLE, minimum mean square error, Gibbs sampling, etc. 

Shin and Chang (2005) have suggested an inexpensive MLE approach using the gradient ascend 

method. Gradient ascent is an optimisation method for finding the nearest local minimum of a 

univariate or multivariate function. Starting at a point , the algorithm moves from  to  by 

maximising along the line extending from P

0P iP 1iP+

i
 in the direction of the local uphill gr ( )iadient f P∇ . 

Taking steps proportional to the gradient (or the approximate gradient) of the function at the current 

point, f increases fastest, reaching a local maximum, assuming that the sequence convergences.  

Given n data 1 2{ , ,..., }nx x x=x
 
and assuming the data are univariate and mutually independent, 

the log-likelihood function is 
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In order to calculate the MLE of the parameters, we need to differentiate the log-likelihood function 

with respect to a, b, and c. Setting the partial derivatives of the function to zero simultaneously  
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we get the following equations 
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 where ψ0 is the digamma function which is the first-order derivative of ln ( )xΓ (B.7). In order to 

estimate the three parameters, we iteratively update the following statistics by computing them over the 

given data 
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updating each time the parameter c as 
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where ξ is a forgetting factor and μ>0  is small enough number that corresponds to the learning rate of 

the gradient ascent approach. The online version of the gradient of the average log-likelihood function 

with respect to c, , is derived by (C.3) and (C.4) �( ( ), ( ), )a i c i xφ �
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Using appropriate initial estimates for the parameter c (e.g. (1) 1c =� , which corresponds to ΓD or LD), 

we are able to recursively estimate the remaining parameters by solving the equations:  
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The left part of (C.7) is monotonically increasing function of , which means that we can determine 

uniquely the solution by having an inverse table. Once the algorithm has converged, or after a sufficient 

number of iterations, the log-likelihood can be computed 

� ( )a m
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A weakness of the gradient ascent algorithm is that it may require many iterations to converge towards 

a local maximum/minimum, if the curvature in different directions is very different or for functions 

which have long, narrow valley structures. As a result, finding the optimal c per step can be time-

consuming. Conversely, using a fixed c can yield poor results. Methods based on Newton's method and 

inversion of the Hessian using conjugate gradient techniques are often a better alternative (Shewchuk, 

1994). 
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