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ABSTRACT

The process of calculating a good orbit from astrometric observations of

the same object involves three main steps: preliminary orbit determination,

least squares orbit fitting, and quality control assessing the orbit’s uncer-

tainty and reliability. For the next generation sky surveys, with much larger

number density of observations, new algorithms, or at least substantial re-

visions of the classical ones, are needed. The classical theory of preliminary

orbit algorithms was incomplete in that the consequences of the topocentric

correction had not been fully studied. We show that it is possible to rig-

orously account for topocentric observations and that this correction may

increase the number of alternate preliminary orbits without impairing the

overall performance. We have developed modified least squares algorithms

including the capability of fitting the orbit to a reduced number of parame-

ters. The restricted fitting techniques can be used to improve the reliability of

the orbit computing procedure when the observed arcs have small curvature.

False identification (where observations of different objects are incorrectly

linked together) can be discarded with a quality control on the residuals and

a ‘normalization’ procedure removing duplications and contradictions. We

have tested our algorithms on two simulations based on the expected per-

formance of Pan-STARRS - one of the next generation all-sky surveys. The

results confirm that large sets of discoveries can be handled very efficiently

resulting in good quality orbits. In these test we lost only 0.6 to 1.3% of the

possible objects with a false identification rate in the range 0.02 to 0.06%.

Key Words: Celestial Mechanics; Asteroids, Dynamics; Orbits
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1 Introduction

The problem of preliminary orbit determination is old, with very effective

solutions developed by [Laplace 1780] and [Gauss 1809]. However, the meth-

ods of observing Solar System bodies have changed radically since classical

times and have been changing even faster recently due to advances in digital

astrometry. The question is, what needs to be improved in the classical orbit

determination algorithms to handle the expected rate of data from the next

generation all-sky surveys? Alternatively, what can we now use in place of

the classical algorithms?

The issue is not one of computational resources because these grow at the

same rate as the capability of generating astrometric data. Reliability is the

main problem when handling tens of millions of detections of Solar System

objects. An algorithm failing once in 1, 000 usages may have been considered

reliable a few years ago, but now we must demand better performance.

This is particularly important because of the strong correlation between

difficulties in the orbit computation and the scientific value of the discovered

object. Main Belt Asteroids (MBAs) are commonplace and their orbits are

easily computed. In modern asteroid surveys only a few in a 1, 000 of the

objects (to a given limiting magnitude) are the more interesting Near Earth

Objects (NEOs) while a few in 100 are the equally interesting Trans Nep-

tunian Objects (TNOs); in both cases the computation may be much more

difficult for reasons explained later. Thus an algorithm that successfully com-

putes orbits for 99% of the discoveries may still fail on a large fraction of the
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most interesting objects like NEOs and TNOs.

To determine if there are problems with the classical orbit determina-

tion techniques we must re-examine whether the assumptions invoked in the

derivations of the classical techniques are still appropriate. E.g., neglect-

ing multiple preliminary orbits and dismissing the topocentric corrections is

wrong when searching for NEOs; neglecting the case in which the observed

track on the sky has insignificant curvature is wrong for TNOs. Another con-

sideration is the immensely superior computing power available to us: in the

trade off between simpler and more reliable computations we almost always

select the latter while the classical authors were forced to do the opposite.

1.1 Problems and solutions: preliminary orbits

It has long been known that Gauss’ [Gauss 1809] and Laplace’s [Laplace 1780]

preliminary orbit determination methods are equivalent to some level of ap-

proximation but it is important here to understand the approximations under

which this is true and to check whether they are still applicable for con-

temporary observation. If the observations are geocentric the two methods

are equivalent up to the algebraic equation of degree 8 corresponding to a

quadratic approximation in time. We will show below that with topocen-

tric observations they are not equivalent. [Crawford et al. 1930, page 99]

and [Marsden 1985] have shown that Gauss’ method, at least in the version

of [Merton 1925], can be used with topocentric observations employing the

same formulae but Laplace’s method can not.

The difference between topocentric and geocentric observations is not
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negligible apart from some special cases. Laplace’s method can account for

topocentric observations but only within an iterative procedure whose con-

vergence can not be guaranteed. Following a suggestion by [Poincaré 1906]

Laplace’s method can be modified to account for topocentric observations in

the degree 8 equation.

The very useful qualitative theory of [Charlier 1910] that allows us to

compute the number of preliminary orbit solutions for Laplace’s method does

not apply to the modified method. It also does not apply to Gauss’ and can

not describe iterative methods. This is a problem if we are concerned with

the reliability of our orbit determination algorithm. Although it is always

possible to improve the orbit with iterative methods, if the first approxima-

tion provides a wrong number of solutions it is possible to completely miss

the correct one!

In Section 4 we develop a new qualitative theory, fully accounting for

topocentric observations, for the solutions of the equation of degree 8 for

both Gauss’ and the modified Laplace-Poincaré methods. We show that the

number of solutions can be larger than in Charlier’s theory, e.g., there may be

double solutions near opposition and triple solutions at low solar elongations.

Some examples are given to show that the existence of additional solutions

can affect the reliability of the orbit determination for real asteroids. This

progress tips the balance in favor of applying Gauss’ method to preliminary

orbit determination because it can handle topocentric observations in a nat-

ural way.

While these mathematical arguments are interesting an abstract qualita-
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tive theory is useful only if it is exploited by software which can compute

and keep track of all the solutions of the algebraic equations. This has not

been the case to date. A tricky problem arises when, after the solution of the

degree 8 equation, an iterative method is used to improve the preliminary

orbit: the number of limit points of the iteration may be different from the

number of starting solutions. As a compromise we use a two step procedure

in which the two versions, with and without iterative improvement, are used

in sequence.

1.2 Problems and solutions: weakly determined orbits

Preliminary orbit methods fail when the components of curvature in the

observations are so poorly determined that even their sign is uncertain. This

happens when either the observed arc is too short or the object is very distant.

In Section 5 we present how to detect when these conditions occur and how

to estimate the corresponding orbit uncertainty.

To deal with these low curvature cases we use a Virtual Asteroids (VA)

method. A VA is a complete orbit compatible with the available obser-

vations but by no means determined by them. A number of VA are se-

lected, either at random [Virtanen et al. 2003] or by some geometric con-

struction [Milani et al. 2004], among the orbits compatible with the obser-

vations (many VA methods are described in the literature; for a recent re-

view see [Milani 2005]). A very effective method for the problem at hand

uses just one VA that is derived from the theory of the Admissible Region

[Milani et al. 2004].
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The set of preliminary orbits consistent with the observations is used as a

first guess for the nonlinear optimization procedure (differential corrections)

that computes the nominal orbit fulfilling the principle of least squares of

the observation residuals. If the preliminary orbits are well defined then

at least one of them is likely to belong to the convergence domain of some

least squares orbit in the differential corrections. In this case it is enough to

use all the preliminary orbits as input to the differential correction routine.

If the preliminary orbits are poorly defined they may be so far from the

nominal solution that the differential corrections may not converge at all or

may converge to the wrong solution.

Thus, it is essential to increase the size of the convergence domain by

using modified differential corrections methods. A number of these methods

exist and most of them have one feature in common; the number of orbital

parameters determined is less than 6. There are 4-fit methods in which 2

variables are kept fixed (e.g., [Milani et al. 2006]) and 5-fit or constrained

least squares solutions in which one parameter is fixed (the fixed parameter

need not be one of the orbital elements but may be defined in some intrinsic

way [Milani et al. 2005a]).

1.3 Numerical simulations and algorithms performances

In Section 6 we describe two tests; one based on small, focused simulations

with only the most difficult orbits (NEOs and TNOs), and another including

all classes of solar system objects in their correct ratio (dominated by MBAs).

Both tests were performed with synthetic realizations of the Pan-STARRS
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[Jedicke et al. 2007] next generation survey. Moreover, we will show that all

the innovative solutions we have proposed in this paper are essential for the

accurate and reliable determination of the most difficult orbits.

2 Equations from the Classical Theory

In this section we provide a compact summary of the basic formulae to be

used in Sections 3-5 that lead to the dynamical equation and the associated

equation of degree 8 for both the Gauss and Laplace methods. We also

summarize Charlier’s theory on the number of solutions for Laplace’s method

which will be compared to the new qualitative theory of Section 4.

2.1 Laplace’s Method

An observation defines a unit vector ρ̂ = (cos δ cos α, cos δ sin α, sin δ) where

(α, δ) are right ascension and declination respectively. The heliocentric po-

sition of the observed body can then be written as

r = ρ + q = ρρ̂ + qq̂

where q is the observer’s position. Let s be the arc length parameter for the

path described by the relative position ρ̂(t) and η the proper motion, then

ds

dt
= η =

√
α̇2 cos2 δ + δ̇2 ;

d

ds
=

1

η

d

dt
.

We use the moving orthonormal frame [Danby 1962, Sec. 7.1]

ρ̂ , v̂ =
dρ̂

ds
, n̂ = ρ̂ × v̂ (1)

and define the geodesic curvature κ by the equation

dv̂

ds
= −ρ̂ + κn̂ . (2)

9



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

Then the relative acceleration is

d2ρ

dt2
= (ρ̈ − ρη2)ρ̂ + (ρη̇ + 2ρ̇η)v̂ + (ρη2κ)n̂ (3)

and the differential equations of relative motion are

d2ρ

dt2
= r̈ − q̈ =

μq

q3
− μr

r3
(4)

with the following approximations: q = q⊕ coincides with the center of mass

of the Earth and the only force operating on both the Earth and the object

at r is the gravitational attraction by the Sun, (no lunar and planetary

perturbations, not even indirect perturbation by the Earth itself). From

(3)·n̂ =(4)·n̂
d2ρ

dt2
· n̂ = ρη2κ = μ q q̂ · n̂

(
1

q3
− 1

r3

)
,

which can be presented in the form

C
ρ

q
= 1 − q3

r3
where C =

η2κq3

μq̂ · n̂ (5)

and is referred to as the dynamical equation in the literature1. C is a non-

dimensional quantity that can be 0 when r = q or undetermined (of the form

0/0) in the case that the O(Δt2) approximation fails, i.e. the object is at an

inflection point with tangent pointing at the Sun.

Given ρ, to complete the initial conditions ρ̇ is found from (3)·v̂ =(4)·v̂

−μ
q · v̂
r3

+ μ
q · v̂
q3

= ρη̇ + 2ρ̇η . (6)

The aberration can be accurately accounted for by using as epoch of the

initial conditions the true time at the asteroid t = tobs − ρ/c, where tobs is

1It is actually the component of the equations of motion along the normal to the path.
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the central time at which the observation ρ̂ has been taken and at which the

derivatives have been interpolated [Crawford et al. 1930, page 99].

Eq. (5) is the basic formula for Laplace’s method using the solution in

terms of either ρ or r which are not independent quantities. From the triangle

formed by the vectors q, ρ, r we have the geometric equation

r2 = ρ2 + 2ρq cos ε + q2 (7)

where cos ε = q̂ · ρ̂ is fixed by the observation direction (ε = 180◦− solar

elongation). By substituting ρ from eq. (7) in (5), squaring and multiplying

by C2 r6 (C �= 0, otherwise r = q, the zero circle) we obtain

P (r) = C2r8 − q2r6(1 + 2C cos ε + C2) + 2q5r3(1 + C cos ε) − q8 = 0 . (8)

The trivial root r = q is due to a coordinate singularity. There can be other

spurious solutions of the equation (8) corresponding to ρ < 0 in eq. (5).

2.2 Charlier’s Theory

The qualitative theory of [Charlier 1910] on the number of solutions is ob-

tained by analyzing equations (5)-(8). The sign of the coefficients of eq. (8)

are known: −(1+2C cos ε+C2) < 0 and (1+C cos ε) > 0 (see [Plummer 1918]).

Thus, there are 3 changes of sign in the sequence of coefficients and ≤ 3 pos-

itive real roots. By extracting the factor (r − q) we find that

P (r) = (r − q) P1(r) ; P1(0) = q7 ; P1(q) = q7 C (C − 3 cos ε) .

The number of solutions of the polynomial equation changes where P1(q)

changes sign: at C = 0 ⇔ r = q and at C − 3 cos ε = 0. The latter condition

11
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defines the limiting curve in heliocentric polar coordinates (r, φ) by using

ρ2 = r2 + q2 − 2 r q cos φ:

4 − 3
r

q
cos φ =

q3

r3
. (9)

INSERT FIGURE 1

Following [Charlier 1910, Charlier 1911], the number of preliminary orbit

solutions can be understood using a plot of the level curves of the function

C(r, ρ) as defined by the dynamical equation, in a plane with the Sun at

(0, 0), the Earth at (q, 0) and the position in each half-plane defined by the

bipolar coordinates (r, ρ). The limiting curve and the zero circle can be used

to determine the number of solutions for an object discovered at any point of

the plane2. There is only one solution on the right of the unlimited branches

of the limiting curve near opposition. There are two solutions for every point

between the unlimited branches and the zero circle. Inside the zero circle

and outside the loop of the limiting curve there is only one solution. Inside

that loop there are always two solutions.

Charlier’s theory assumes there is always at least one preliminary orbit

solution. This results from two implicit assumptions: the value of C is

measured exactly from the observations (or at least to good accuracy), and

the observed object exists (not being the result of a false identification). Both

assumptions may fail as discussed in Sections 5 and 6.2 respectively.

2This plane does not correspond to a physical plane in that it also describes the points
outside the ecliptic plane.
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2.3 Gauss’ Method

Gauss’ method uses 3 observations corresponding to heliocentric positions

ri = ρi + qi i = 1, 2, 3 (10)

at times t1 < t2 < t3 with ti− tj = O(Δt) � period and assumes coplanarity

λ1r1 − r2 + λ3r3 = 0 . (11)

From (11)×ri · ĉ, where c = ri × ṙi, the coefficients λ1, λ3 are obtained as

triangle ratios

λ1 =
r2 × r3 · ĉ
r1 × r3 · ĉ

; λ3 =
r1 × r2 · ĉ
r1 × r3 · ĉ

.

From (10) and ρ̂1 × ρ̂3·(11):

ρ2[ρ̂1 × ρ̂3 · ρ̂2] = ρ̂1 × ρ̂3 · [λ1q1 − q2 + λ3q3]. (12)

Next, the differences ri − r2 are expanded in powers of tij = ti − tj =

O(Δt). e.g. by using the f, g series formalism ri = fir2 + giṙ2 where

fi = 1 − μ

2

t2i2
r3
2

+ O(Δt3) , gi = ti2

(
1 − μ

6

t2i2
r3
2

)
+ O(Δt4) . (13)

Then ri × r2 = −gic, r1 × r3 = (f1g3 − f3g1)c and

λ1 =
g3

f1g3 − f3g1
> 0 ; λ3 =

−g1

f1g3 − f3g1
> 0 (14)

f1g3 − f3g1 = t31

(
1 − μ

6

t231
r3
2

)
+ O(Δt4) . (15)

Using (13) and (15) in (14) we find

λ1 =
t32
t31

[
1 +

μ

6r3
2

(t231 − t232)

]
+ O(Δt3) . (16)

13
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λ3 =
t21
t31

[
1 +

μ

6r3
2

(t231 − t221)

]
+ O(Δt3) . (17)

Let V = ρ̂1× ρ̂2 · ρ̂3 be 3×volume of the pyramid with vertices q, r1, r2, r3

and substituting it and (16), (17) in (12), then using t231 − t232 = t21(t31 + t32)

and t231 − t221 = t32(t31 + t21) we find

−V ρ2t31 = ρ̂1 × ρ̂3 · (t32q1 − t31q2 + t21q3) + (18)

+ρ̂1 × ρ̂3 ·
[

μ

6r3
2

[t32t21(t31 + t32)q1 + t32t21(t31 + t21)q3]

]
+ O(Δt4) .

If the terms O(Δt4) are neglected, the coefficient of the 1/r3
2 term in (18) is

B(q1,q3) =
μ

6
t32t21ρ̂1 × ρ̂3 · [(t31 + t32)q1 + (t31 + t21)q3]. (19)

Then multiply (18) by q3
2/B(q1,q3) to obtain

− V ρ2 t31
B(q1,q3)

q3
2 =

q3
2

r3
2

+
A(q1,q2,q3)

B(q1,q3)
(20)

where

A(q1,q2,q3) = q3
2 ρ̂1 × ρ̂3 · [t32q1 − t31q2 + t21q3]. (21)

Let

C0 =
V t31 q4

2

B(q1,q3)
, h0 = −A(q1,q2,q3)

B(q1,q3)

and then, by substituting into (20),

C0
ρ2

q2
= h0 −

q3
2

r3
2

(22)

is the dynamical equation of Gauss’ method, similar (but not identical) to

eq. (5) of Laplace’s method. Using (7) at time t2 (with q2, ρ2, r2 and ε2):

P0(r) = C2
0r

8
2 − q2

2r
6
2(h

2
0 + 2C0h0 cos ε2 + C2

0) + 2q5
2r

3
2(h0 + C0 cos ε2)− q8

2 = 0

(23)

14
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where the sign of the coefficients is as for (8), apart from h0 +C0 cos ε2 whose

sign depends upon h0. Note that P0(q) �= 0 such that no root can be found

analytically. The number of positive roots is still ≤ 3 but a qualitative theory

such as the one of Section 2.2 is not available in the literature.

After the possible values for r2 have been found the corresponding ρ2

values are obtained from eq. (22) and the velocity ṙ2 can be computed, e.g.

from the classical formulae by Gibbs [Herrick 1971, Chap. 8].

3 Topocentric Gauss-Laplace Methods

There is a critical difference between the methods of Gauss and Laplace.

Gauss uses a truncation (to order O(Δt2)) in the motion r(t) of the asteroid

but the position of the observer (be it coincident with the center of the Earth

or not) are used with their exact values. On the other hand, Laplace uses

a truncation to the same order of the relative motion ρ(t) (see eq.(32) in

Section 5.1), thus implicitly approximating the motion of the observer. This

section discusses the consequences of the difference between the techniques.

3.1 Gauss-Laplace equivalence

To directly compare the two methods let us introduce in Gauss’ method the

same approximation to order O(Δt2) in the motion of the Earth which is

still assumed to coincide with the observer. The f , g series for the Earth are

qi =

(
1 − μ

2

t2i2
q3
2

)
q2 + ti2q̇2 +

μ

6

t3i2
q3
2

[
3(q2 · q̇2)q2

q2
2

− q̇2

]
+ O(Δt4). (24)

By using (24) in (19) we find that

B(q1,q3) =
μ

6
t32t21ρ̂1 × ρ̂3 · [3t31q2 + t31(t32 − t21)q̇2 + O(Δt3)].

15
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If t32 − t21 = t3 + t1 − 2t2 = 0 (i.e., the interpolation for d2/dt2 is done at

the central value t2) then

B(q1,q3) =
μ

2
t21t32t31ρ̂1 × ρ̂3 · q2 (1 + O(Δt2)) ;

otherwise, if t2 �= (t1 + t3)/2 the last factor is (1+O(Δt)). Using (24) in (21)

we find

A(q1,q2,q3) = −μ

2
t21t32t31 ρ̂1×ρ̂3·

{
q2 +

1

3
(t21 − t32)

[
3(q2 · q̇2)q2

q2
2

− q̇2

]}
+O(Δt5).

If, as above, t32 − t21 = t3 + t1 − 2t2 = 0 then

A(q1,q2,q3) = −μ

2
t21t32t31ρ̂1 × ρ̂3 · q2 (1 + O(Δt2))

and we can conclude that

h0 = −A

B
= 1 + O(Δt2) ;

otherwise, if t2 �= (t1 + t3)/2 the last factor is (1 + O(Δt)). For V we need

d2ρ̂

dt2
=

d ˙̂ρ

dt
=

d

dt
(ηv̂) = −η2ρ̂ + η̇v̂ + κη2n̂ (25)

to make a Taylor expansion of ρ̂i in t2

ρ̂i = ρ̂2 + ti2ηv̂2 +
t2i2
2

(−η2ρ̂2 + η̇v̂2 + κη2n̂2) + O(Δt3).

This implies that

ρ̂1 × ρ̂3 · ρ̂2 =
1

2

[
t12ηv̂2 × t232κ η2n̂2 − t32η v̂2 × t212κ η2 n̂2

]
· ρ̂2 + O(Δt5)

and the O(Δt4) term vanishes. Thus

V = −κη3

2
(t12t

2
32 − t32t

2
12) (1 + O(Δt2)) =

κη3

2
t21t32t31 (1 + O(Δt2))
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C0 =
V t31q

4
2

B
=

κη3t31q
4
2 + O(Δt3)

μρ̂1 × ρ̂3 · q2 (1 + O(Δt))
. (26)

In the denominator, ρ̂1 × ρ̂3 computed to order Δt2 is

ρ̂1 × ρ̂3 = t31 η n̂2 +
t232 − t212

2
(η̇ n̂2 − κ η2 v̂2) + O(Δt3). (27)

If t32 − t21 = t3 + t1 − 2t2 = 0 then

C0 =
κ η3 t31q

4
2 + O(Δt3)

μ t31 η q2q̂2 · n̂2 + O(Δt3)
=

κ η2 q3
2

μ q̂2 · n̂2
(1 + (OΔt2)) ,

otherwise the last factor is (1 + O(Δt)).

Thus, neglecting the difference between topocentric and geocentric obser-

vations the coefficients of the two dynamical equations (5) and (22) are the

same to zero order in Δt, to order 1 if the time t2 is the average time.

3.2 Topocentric Laplace’s Method

Now let us remove the approximation that the observer sits at the center of

the Earth and introduce topocentric observations into Laplace’s method. The

center of mass of the Earth is at q⊕ but the observer is at q = q⊕+P. Let us

derive the dynamical equation by also taking into account the acceleration

contained in the geocentric position of the observer P(t) such that

d2ρ

dt2
= −μr

r3
+

μq⊕

q3
⊕

− P̈.

Multiplying by ·n̂ and using eq. (3)

d2ρ

dt2
· n̂ = ρη2κ = μ

[
q⊕

q̂⊕ · n̂
q3
⊕

− q⊕
q̂⊕ · n̂

r3
− P

P̂ · n̂
r3

]
− P̈ · n̂

The term P P̂ · n̂/r3 can be neglected because P/q⊕ ≤ 4.3 × 10−5 which is

smaller than the planetary perturbations. Thus

C
ρ

q⊕
= (1 − Λn) − q3

⊕
r3

(28)
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where

C =
η2κq3

⊕
μq̂⊕ · n̂ , Λn =

q2
⊕P̈ · n̂

μq̂⊕ · n̂ =
P̈ · n̂

(μ/q2
⊕) q̂⊕ · n̂ . (29)

Note that Λn is singular only where C is also singular. The analog of eq. (6),

again neglecting terms of O(p/q⊕), is

ρη̇ + 2ρ̇η =
μ q̂⊕ · v̂

q2
⊕

(
1 − Λv −

q3
⊕

r3

)
, Λv =

q2
⊕ P̈ · v̂

μ q̂⊕ · v̂ . (30)

The important fact is that Λn and Λv are not small. The centripetal ac-

celeration of the observer (towards the rotation axis of the Earth) has size

|P̈| = Ω2
⊕ R⊕ cos θ where Ω⊕ is the angular velocity of the Earth’s rotation,

R⊕ is the radius of the Earth and θ is the observer’s latitude. The maximum

of |P̈| � 3.4 cm s−2 occurs for observers located at the equator. The quantity

μ/q2
⊕ in the denominator of Λn is the size of the heliocentric acceleration of

the Earth, � 0.6 cm s−2. Thus |Λn| can be > 1 and the coefficient 1 − Λn

can be very different from 1; it may even be negative. Thus, without taking

into account the geocentric acceleration of the observer Laplace’s geocentric

classical method is not a good approximation to the topocentric general case.

However, when observations from different nights are obtained from the same

station at the same sidereal time the observer’s acceleration cancels out and

the geocentric classical Laplace’s method is a good approximation.

A common technique for the implementation of Laplace’s method is to

apply a negative topocentric correction to obtain the geocentric observation

case. When applying this correction an initial value of ρ must be assumed

as a first approximation, e.g., ρ = 1 AU [Leuschner, 1913, Page 15]. If the

starting value is approximately correct then an iteration cycle will eventually
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achieve convergence. However, if the starting value is really wrong (e.g., if

the object is undergoing a close approach to the Earth) the procedure may

diverge. These reliability problems discourage the use of the classical form

of Laplace’s method when processing large datasets, containing discoveries

of different orbital classes that span a wide range of distances.

3.3 Gauss-Laplace equivalence, topocentric

When taking into account the displacement P the Taylor expansion of qi(t)

of eq. (24) is not applicable. We need to use

qi = q2 + ti2q̇2 +
t2i2
2

q̈2 + O(Δt3)

where q2(t) and its derivatives also contain P(t). By using eq. (27) and

assuming t21 = t32, eq. (19) and (21) become

B(q1,q3) =
μ η

2
t21t32t

2
31 n̂2 · q2 + O(Δt6)

A(q1,q2,q3) =
q3
2 η

2
t21t32t

2
31 n̂2 · q̈2 + O(Δt6) .

Note that q̇2 does not appear in A at this approximation level. Thus

h0 = −A

B
= −q3

2 n̂2 · q̈2 + O(Δt2)

μ n̂2 · q2 + O(Δt2)

and once again neglecting P/q⊕ terms we find that

h0 = −q3
2 n̂2 · q̈⊕2

μ n̂2 · q2
− q3

2 n̂2 · P̈2

μ n̂2 · q2
+ O(Δt2) =

=
q3
2

q3
⊕2

− q3
2 n̂2 · P̈2

μ n̂2 · q2

+ O(Δt2)

n̂2 · q2 = q2 n̂2 ·
(

q⊕2

q2
+

P2

q2

)
= q2

(
n̂2 · q̂⊕2 + O

(
P2

q2

))
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h0 = 1 − q3
⊕2 n̂2 · P̈2

μ n̂2 · q2
+ O(Δt2) + O

(
P2

q2

)
= 1 − Λn2 + O(Δt2) + O

(
P2

q2

)

where Λn2 is the same quantity as Λn of eq. (29) computed at t = t2.

The conclusion is that Gauss’ method used with the heliocentric positions

of the observer, qi = q⊕i+Pi, is equivalent to the topocentric implementation

of Laplace’s method of Section 3.2 to lowest order in Δt when neglecting very

small terms O(P2/q2).

3.4 Problems in Topocentric Laplace’s Method

Contrary to common belief, Laplace’s and Gauss’ methods are not equiva-

lent. Gauss’ method is superior because it naturally accounts for topocen-

tric observations by using the observer’s position in eq. (19) and (21). The

question then arises whether we could account for topocentric observations

in Laplace’s method (without iterations) by introducing the term Λn from

eq. (29). Surprisingly, the answer is already contained in the literature in a

100 year old paper by [Poincaré 1906, pag. 177–178].

INSERT FIGURE 2

Figure 2 shows the simulated path of an approaching NEO. The apparent

motion of the asteroid from night to night cannot be approximated using

parabolic segments fit to a single night3. For the geocentric path the parabolic

approximation to ρ̂(t) as used by Laplace would be applicable.

INSERT FIGURE 3

Figure 3 shows that topocentric observations contain information beyond

what is contained in the average angles and proper motion (the attributable,

3Our translation of Poincaré: It is necessary to avoid computing these quantities by
starting from the law of rotation of the Earth.
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see Section 5). Thus, to reduce the observations to the geocenter by removing

the topocentric correction is not a good strategy.

Poincaré suggested computing what we call Λn by using a value of P̈

obtained by interpolating the values P(ti) at the times ti of the observations

(not limited to 3, one of the advantages of Laplace’s method). This method

could be used but its practical advantages have not yet been established.

When the observations are performed from an artificial satellite (such as

the Hubble Space Telescope or, in the future, from Gaia) the acceleration

P̈ � 900 cm s−2 and the Λn and Λv coefficients can be up to � 1, 500. A few

hours of observations over several orbits can produce multiple kinks (as in

[Marchi et al. 2004, Figure 1]) that contain important orbital information.

4 Topocentric Qualitative Theory

In Gauss’ method, the dynamical equation (22) describes the level lines C0 =

const in a bipolar coordinate system (r2, ρ2). In rectangular heliocentric

coordinates (x, y) where the x axis is along q̂2 (from the Sun to the observer)

we have ρ2 =
√

q2
2 + x2 + y2 − 2xq2 and r2 =

√
x2 + y2, thus we can consider

the function

C0(x, y) =
q2√

q2
2 + x2 + y2 − 2xq2

[
h0 −

q3
2

(x2 + y2)3/2

]
. (31)

For the topocentric Laplace’s method, eq. (31) can be used to describe C as

a function of (x, y), with 1 − Λn and q⊕ replacing h0 and q2 respectively.

C0 = 0 is the zero circle r = r0 = q/ 3
√

h0 for h0 > 0 and is empty

otherwise. This function tends to −∞ as (x, y) → (0, 0). There is another

21



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

singularity in (x, y) = (q2, 0); as (x, y) → (q2, 0) we have the following be-

havior: for h0 > 1, C0 → +∞; for h0 < 1, C0 → −∞; for h0 = 1 the limit

of C0 does not exist, as shown by Figure 1. The stationary points of C0 are

the pairs (x, y) with y = 0 and x such that (h0|x|3 − q3
2)x = 3q3

2(x− q2). For

h0 ≤ 0 there is only a saddle (x1, 0), with 0 < x1 < q2 (Figure 4). For h0 > 0

there is always a saddle (x1, 0) with x1 < −r0 < 0. If 0 < h0 < 1 there

are two additional solutions, x2 and x3 such that 0 < x2 < q2 < r0 < x3;

(x2, 0) is a saddle, (x3, 0) is a maximum (Figure 5). For h0 > 1 there is no

additional stationary point (Figure 6).

INSERT FIGURE 4

The number of solutions of the dynamical equation along a fixed topocen-

tric direction can be computed as follows. We evaluate the degree 8 polyno-

mial (23) on the zero circle

P (r0) = C2
0

q8

h
8/3
0

(
1 − h

2/3
0

)

and take into account that P (0) < 0. By spurious we mean a root of the

polynomial (23) corresponding to ρ2 ≤ 0 in eq. (22).

INSERT FIGURE 5 AND FIGURE 6

For h0 ≤ 0 there can be either 1 or 3 positive roots 4 of the polynomial

equation (23). By comparing with eq. (22) these roots are all spurious if

C0 ≥ 0, all lead to a preliminary orbit solution if C0 < 0.

For 0 < h0 < 1 there can be either 1 or 3 positive roots of the polynomial

equation, but one of them must be < r0 and is necessarily spurious for C0 ≥ 0.

Thus there are either 1 or 3 spurious roots for C0 ≥ 0, either 0 or 2 for C0 < 0.

4All roots are counted with multiplicity; e.g., in this case a double root can occur.
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For h0 > 1 there can be either 1 or 3 positive roots, one of which is > r0

and is necessarily spurious for C0 ≤ 0. Thus there are either 1 or 3 spurious

roots for C0 ≤ 0, either 0 or 2 for C0 > 0.

INSERT TABLE 1

In Table 1 we summarize the possible numbers of preliminary orbit solu-

tions, for a given direction of observation ε, in the different cases, depending

upon the value of h0 and the sign of C0. In this Section we are not making

the assumption of Charlier, that some solutions must exist, for the reasons

given in Section 2.2.

This qualitative theory generalizes Charlier’s, showing that the number of

solutions can be quite different, e.g., we can have 2 solutions near opposition

and up to 3 at low elongation. For a qualitative theory including the gener-

alization of the limiting curve, eq. (9), see [Gronchi, 2007, in preparation].

4.1 Examples

INSERT FIGURE 7

We would like to find examples in which the additional solutions with

respect to the classical theory by Charlier are essential, i.e. cases in which

the additional preliminary orbits are closer to the true orbit leading to con-

vergence of the least squares method, the other preliminary solutions fail.

An example in which there are two solutions when observing in a direction

close to the opposition is shown in Figure 7. The half line in the observing

direction has two intersections with the C0 = 0.4 level curve. The intersection

point closest to the Earth leads to a useful preliminary orbit and has a
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counterpart in Charlier’s theory with ρ2 = 0. The more distant intersection

point, at � 2.2 AU from the Earth, leads to a preliminary orbit with e � 10.

An interesting feature is that the preliminary orbit using the nearer solu-

tion has residuals of the 6 observations with RMS = 66 arcsec, while the one

using the farther solution has residuals with RMS = 2.5 arcsec. In this case,

if only the lowest residual preliminary solution were passed to the differential

corrections step the proper solution would be discarded.

INSERT FIGURE 8

It is not easy to find a good example with 3 solutions: in many cases the

solution nearest to the observer has ρ2 too small for the heliocentric 2-body

approximation to be applicable. A value for ρ2 ≤ 0.01 AU corresponds to the

sphere of influence of the Earth, i.e., the region where the “perturbation”

from the Earth is actually more important than the attraction from the Sun.

Thus, a solution with such a small ρ2 must be considered spurious because

the approximation used in Gauss’ and Laplace’s method is not valid.

To apply our arguments on the number of solutions to a real case we

used detections from the first three nights (9, 11 and 12 January 2002) of

observation of the asteroid 2002 AA29. The observations at an elongation of

� 111◦ yield values of C0 = 1.653 and h0 = 1.025 such that there is only one

solution with ρ2 = 0.045 (see Figure 8, left) which leads to a least squares

solution with ρ2 = 0.044. Although the value of h0 is not very far from 1 the

existence of the solution depends critically on h0 − 1 �= 0. If the value of h0

had been set to 1 there would be no solution as shown in Figure 8 (right).
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4.2 Reliability and Precision

We need to implement the algorithms discussed in this paper for the com-

putation of preliminary orbits in a way which is reliable when applied to

the large observation data sets expected in the next generation of asteroid

surveys. In doing so we need to satisfy three requirements.

The first requirement is to obtain the solutions to the polynomial equa-

tions (e.g. Equation 23) in a way which is fast and reliable in providing

the number of distinct real solutions. In this way we can fully exploit our

understanding of the number of solutions (with topocentric observations) as

described above. This is made possible using algorithms that compute the

set of roots of a polynomial equation (as a complex vector), with rigorous

upper bounds for the errors including roundoff. We use the algorithm by

[Bini 1996] and the corresponding public domain software5.

The second requirement is to improve the preliminary orbit as obtained

from the solutions of the degree 8 polynomial equations in such a way that

it is as close as possible to the least squares solution to be later obtained

by differential corrections. There is such an immense literature on this topic

that we will not even attempt to provide a set of references.

Conceptually, as shown by [Celletti and Pinzari 2005], each step in the

iterative procedures used to improve the preliminary orbits (which they call

Gauss map6) can be shown to increase the order in Δt of the approxima-

5For the Fortran 77 version visit http://www.netlib.org/numeralgo/na10 while the
Fortran 90 version is available at http://users.bigpond.net.au/amiller/pzeros.f90.

6The classical treatises, such as [Crawford et al. 1930], use the term differential cor-
rections for algorithms of the same class as Gauss map in [Celletti and Pinzari 2005]. We
follow the terminology of the recent papers because, in modern usage, differential correc-
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tion to the exact solutions of the 2-body equations of motion. However,

[Celletti and Pinzari 2006] have also shown that iteration of a Gauss map

can diverge when the solution of the degree 8 equation is far from the fixed

point of the iterative procedure, outside of its convergence domain.

The same results apply to algorithms, such as those of [Leuschner, 1913]

and [Crawford et al. 1930], that improve Laplace’s preliminary orbit. The

difference is that in Laplace’s method the first approximation is with the

observations treated as geocentric (or possibly corrected with an assumed

distance, [Leuschner, 1913, page 15]), while in Gauss’ method (Merton’s ver-

sion) the first approximation properly handles topocentric observations. As

mentioned earlier, this leads us to prefer Gauss’ method.

We have implemented an iterative improvement algorithm for Gauss’

method and found that in most cases it provides a preliminary orbit much

closer to the least squares solution which is therefore a more reliable first

guess for the least squares algorithms. We have found that the Gauss map di-

verges in a small fraction of test cases, but this behavior occurs often enough

to significantly decrease the efficiency of the algorithm (see Section 6.1). In

some cases the number of orbits to which the Gauss map converges is less

than the number of solutions of the degree 8 equations. It can happen that

one of the lost degree 8 solutions was the only one leading to a least squares

solution. One method to obtain the highest efficiency without an inordinate

increase in the computational cost is to run two iterations, with and without

the Gauss map. In the second iteration we also accept preliminary orbits

tions refers to the iterative method to solve the least squares problem.
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with comparatively large residuals (up to a RMS of 100 arcsec) to allow for

significant perturbations by a third body.

The third requirement is to use modified differential corrections algo-

rithms, with larger convergence domains, in such a way that even when the

geodetic curvature and the coefficients C and C0 of the two methods are

poorly constrained by the available observations (because the arc length on

the celestial sphere is too short) the rough preliminary orbit can lead to a

least squares solution. This possibility is discussed in the next section.

5 Weak preliminary orbits

An essential difference between the classical works on preliminary orbits and

the modern approach to the same problem is that the effects of the astromet-

ric errors cannot be neglected. Since the next generation of all-sky asteroid

surveys will acquire fewer observations of the objects the deviations of the

observed path from a great circle may not be significant.

5.1 Uncertainty of Curvature

The explicit computation of the two components of curvature of interest

for orbit determination, geodesic curvature κ and along track acceleration

η̇, can be performed by using the properties of the orthonormal frame (1)

in straightforward computation using the Riemannian structure of the unit

sphere [Milani et al. 2007a, Section 6.4]. The results are

κ =
1

η3

{
(δ̈ α̇ − α̈ δ̇) cos δ + α̇

[
η2 + (δ̇)2

]
sin δ

}
= κ(α, δ, α̇, δ̇, α̈, δ̈)(32)

η̇ =
1

η

[
α̈ α̇ cos2 δ + δ̈ δ̇ − (α̇)2 δ̇ cos δ sin δ

]
= η̇(α, δ, α̇, δ̇, α̈, δ̈) . (33)
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Given these explicit formulae it is possible to compute the covariance matrix

of the quantities (κ, η̇) by propagation of the covariance matrix of the angles

and their derivatives with the matrix of partial derivatives for κ and η̇

Γκ,η̇ =
∂(κ, η̇)

∂(α, δ, α̇, δ̇, α̈, δ̈)
Γα,δ

[
∂(κ, η̇)

∂(α, δ, α̇, δ̇, α̈, δ̈)

]T

. (34)

The covariance matrix Γα,δ for the angles and their first and second deriva-

tives is obtained by the procedure of least squares in a fit to the individual

observations as a quadratic function of time. The partials of κ and η̇ are

given below (note that the partials with respect to α are zero).

∂κ

∂δ
= − 1

η5

[
−2 α̇3 cos2 δ sin δ δ̈ + sin δ δ̈ α̇ δ̇2 + 2 α̇2 cos2 δ sin δ α̈ δ̇ −

− sin δ α̈ δ̇3 − α̇5 cos3 δ − 4 α̇3 cos δ δ̇2 + α̇3 cos3 δ δ̇2 − 2 α̇ cos δ δ̇4
]

∂η̇

∂δ
= − α̇

2 η3

[
sin(2δ)

(
α̇2 α̈ cos2 δ + 2 δ̇2 α̈ − α̇ δ̇ δ̈

)
+2 α̇ δ̇3 cos(2δ)+2 α̇3δ̇ cos4 δ

]

∂κ

∂α̇
=

1

η5

[
−α̇ cos3 δ

(
2 α̇ δ̈ − 3 δ̇ α̈

)
+ δ̇2

(
δ̈ cos δ − α̇2 cos2 δ sin δ + 2 δ̇2 sin δ

)]

∂η̇

∂α̇
= −cos δ δ̇

η3

[
− cos δ α̈ δ̇ + α̇3 sin δ cos2 δ + 2 α̇ sin δ δ̇2 + cos δ δ̈ α̇

]

∂κ

∂δ̇
= − 1

η5

[
cos δ

(
α̇2 α̈ cos2 δ − 2 δ̇2 α̈ + 3 α̇ δ̇ δ̈

)
− α̇ δ̇ sin δ

(
α̇2 cos2 δ − 2 δ̇2

)]

∂η̇

∂δ̇
= − α̇ cos2 δ

η3

[
−δ̈ α̇ + α̇3 cos δ sin δ + α̈ δ̇

]

∂κ

∂α̈
= − δ̇ cos δ

η3
;

∂κ

∂δ̈
=

α̇ cos δ

η3
;

∂η̇

∂α̈
=

α̇ cos2 δ

η
;

∂η̇

∂δ̈
=

δ̇

η
. (35)

The last four of these partials, the 2 × 2 matrix ∂(κ, η̇)/∂(α̈, δ̈), contribute

to the principal part of the covariance of (κ, η̇) for short arcs (see below).

We use a full computation of the covariance matrix without approxi-

mations to assess the significance of curvature by using the formula from
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[Milani et al. 2007a] providing

χ2 =

[
κ
η̇

]T

Γ−1
κ,η̇

[
κ
η̇

]
(36)

and we assume that the curvature is significant if χ2 > χ2
min = 9.

5.2 The Infinite Distance Limit

The problem of low values of C can occur in two ways: near the zero circle

and for large values of both ρ and r. On the other hand, the uncertainty

in the estimates of the deviations from a great circle will depend upon the

length of the observed arc (both in time Δt and in arc length ∼ η Δt). For

short observed arcs it may be the case that the curvature is not significant.

Then the preliminary orbit algorithms will yield orbits which may fail as

starting guesses for differential corrections.

We will now focus on the case of distant objects. We would like to esti-

mate the magnitude of the uncertainty in the computed orbit with respect

to the small parameters ν, τ, b where ν is the astrometric accuracy of the

individual observations (in radians) and τ = n⊕Δt, b = q⊕/ρ are small for

short observed arcs and for distant objects respectively. Note that the proper

motion η for b → 0 has principal part n⊕ b – the effect of the motion of the

Earth. The uncertainty in the angles (α, δ) and their derivatives can be

estimated as follows (see [Crawford et al. 1930, page 68])

Γα,δ = O(ν) , Γα̇,δ̇ = O(ντ−1) , Γα̈,δ̈ = O(ντ−2) .

The uncertainty of the curvature components (κ, η̇) should be estimated by

the propagation formula (34) but it can be shown that the uncertainty of
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(δ, α̇, δ̇) contributes with lower order terms. Thus we use the estimates based

upon the partials in the last line of (35)

∂(κ, η̇)

∂(α̈, δ̈)
=

[
O(b−2) n−2

⊕ O(b−2) n−2
⊕

O(1) O(1)

]

and obtain

Γκ,η̇ = ν

[
O(b−4τ−2) O(b−2τ−2)n2

⊕
O(b−2τ−2)n2

⊕ O(τ−2)n4
⊕

]
.

To propagate the covariance to the variables (ρ, ρ̇) we use the implicit

equation connecting C and ρ obtained by eliminating r from (7) and (22):

F (C, ρ) = C
ρ

q⊕
+

q3
⊕

(q2
⊕ + ρ2 + 2q⊕ρ cos ε)3/2

− 1 + Λn = 0 . (37)

For b → 0 we have C b−1 → 1; thus C → 0 and is of the same order as b.

Although C depends upon all the variables (α, δ, α̇, δ̇, α̈, δ̈), its uncertainty

mostly depends upon the uncertainty of κ and thus, ultimately, upon the

difficulty in estimating the second derivatives of the angles.

Next, we compute the dependence of Γρ,ρ̇ upon Γκ,η̇. From the derivatives

of the implicit function ρ(κ), assuming cos ε, η, n̂ to be constant and keeping

only the term of lowest order in q/ρ, we find

∂ρ

∂κ
= − η2 q4

μ q̂⊕ · n̂
ρ

q⊕ C
+ O

(
q3

ρ3

)
= q⊕ O(1) .

In the same way from (30) we deduce η̇ = n2
⊕ O(b) and obtain the estimates

∂ρ̇

∂κ
= n⊕ q⊕ O(1) ,

∂ρ̇

∂η̇
=

q⊕
n⊕

O(b−2) .

For the covariance matrix,

Γρ,ρ̇ =
∂(ρ, ρ̇)

∂(κ, η̇)
Γκ,η̇

[
∂(ρ, ρ̇)

∂(κ, η̇)

]T

,
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we compute the main terms of highest order in b−1, τ−1 as

Γρ,ρ̇ = ν b−3 τ−2

[
q2
⊕ O(1) q2

⊕ n⊕ O(1)
q2
⊕ n⊕ O(1) q2

⊕ n2
⊕ O(1)

]
. (38)

In conclusion, if (ρ, ρ̇) are measured in the appropriate units (AU for ρ and

n⊕ AU for ρ̇) their uncertainties are of the same order.

This conclusion appears different from [Bernstein and Khushalani 2000]

who claim that for a TNO arc with low curvature the inverse distance 1/ρ can

be determined in a robust way while the other variable ρ̇/ρ remains essentially

undetermined. In fact, by propagating the covariance from eq. (38) to the

variables (1/ρ, ρ̇/ρ) and expressing them in the natural units 1/q⊕, n⊕ we

find that the RMS of ρ̇/ρ is larger by a factor 1/b than the one of 1/ρ; thus

there is no disagreement.

The coordinates (ρ, ρ̇) together with (α, δ, α̇, δ̇) form a set of Attributable

Orbital Elements with the special property that the confidence region of

solutions with low residuals is a very thin neighborhood of a portion of the

(ρ, ρ̇) plane [Milani et al. 2005b, Section 3]. A similar property, but with a

different plane, is shared by the Cartesian Elements. Thus these coordinates

are very suitable for differential corrections when performed under conditions

of quasi-linearity even for large corrections. A set of coordinates containing

(1/ρ, ρ̇/ρ) results in a much larger nonlinearity with corresponding increased

risk of divergence.

We do agree with [Bernstein and Khushalani 2000] that for a TNO ob-

served over an arc shorter than one month there is very often an approx-

imate degeneracy forcing the use of a constrained orbit (with only 5 free

parameters). The weak direction, along which an arbitrary choice needs
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to be made, is in the (ρ, ρ̇) plane, may vary and is generally not close to

the ρ̇ axis [Milani et al. 2005b, Figures 3-6]. In the context of the tests

with TNO orbits described in Section 6.1, for simulated discoveries around

opposition we found that the weak direction forms an angle with the ρ

axis (computed with the scaling indicated by eq. (38)) between −31◦ and

+17◦ while near quadrature it forms an angle with the ρ̇ axis between −54◦

and +36◦. Thus, the weak direction depends strongly upon the elongation

([Bernstein and Khushalani 2000] warn that their arguments are not appli-

cable exactly at opposition).

5.3 From Preliminary to Least Square Orbits

The procedure to compute an orbit given an observed arc with ≥ 3 nights of

data (believed to belong to the same object) begins with the solution of the

degree 8 equation (23) and ends with the differential corrections to achieve

a least squares orbit with 6 solved parameters. For algorithms more efficient

than the classical ones we consider up to four intermediate steps:

1. an iterative Gauss map to improve the solution of the degree 8 equation

as discussed in Section 4.2;

2. adding to the preliminary orbit(s) another one, obtained from the At-

tributable and a value for (ρ, ρ̇) selected inside the Admissible Region;

3. a fit of the available observations to a 4-parameter attributable; the

values of ρ and ρ̇ are kept fixed at the previous values;

4. a fit of the available observations constrained to the Line Of Varia-
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tions (LOV), a smooth curve defined by minimization on hyperplanes

orthogonal to the weak direction of the normal matrix.

Intermediate step 1 has been discussed in Section 4.2.

By Attributable we mean the set of 4 variables (α, δ, α̇, δ̇) estimated at

some reference time by a fit to the observations [Milani et al. 2001]. It is

possible to complete an attributable to a set of orbital elements by adding the

values of range and range rate (ρ, ρ̇) at the same time. For each attributable

we can determine an Admissible Region which is a compact set in the (ρ, ρ̇)

plane compatible with Solar System orbits [Milani et al. 2004].

For intermediate step 2 we distinguish two cases depending upon the

topology of the Admissible Region. If it has two connected components (this

occurs for distant objects observed near opposition) we select the center of

symmetry of the component far from the observer. This corresponds to

an orbit with 0 ≤ e < 1; note that, sometimes, a circular orbit may be

incompatible with the Attributable.

If the Admissible Region is connected then we select the point along the

symmetry line ρ̇ = const at 0.8 times the maximum distance ρ compatible

with e ≤ 1. This case always occurs near quadrature; if the object is distant,

thus has a low proper motion η, the selected point is also far.

The selected point (ρ, ρ̇) in the Admissible Region completed with the

Attributable provides a compatible orbit belonging to the Solar System; this

is called a Virtual Asteroid (VA) [Milani 2005]. This VA method provides an

additional preliminary orbit. We shall see in Section 6.1 that for TNOs this

additional preliminary orbit is often required, in most cases near quadrature,
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because the curvature is hardly significant.

Intermediate step 3 is essentially the method proposed by D. Tholen,

available in his public domain software KNOBS. It has already been tested in

the context of a simulation of a next generation survey in [Milani et al. 2006].

Intermediate step 4 is fully described in [Milani et al. 2005a]. Our pre-

ferred options are to use either Cartesian or Attributable Elements scaled as

described in [Milani et al. 2005a, Table 1], that is, consistently with eq. (38).

The steps listed above are all optional and indeed it is possible to com-

pute good orbits in many cases without some of them. However, the steps

must be linked in a suitable manner, to provide a reliable algorithm and a

least squares orbit. As an example, step 1 may be used in a first iteration

but omitted in a second one. Step 2 is essential for distant objects while step

3 is used whenever the curvature is insignificant (i.e., when the observed arc

is of type 1 [Milani et al. 2007a]), as determined with eq. (36). Step 4 is im-

portant for weakly determined orbits where the differential corrections may

diverge when starting from an initial guess with comparatively large residu-

als. Even step 4 may fail and cause the differential corrections to diverge. In

this case the differential corrections are restarted using the outcome of the

previous step. This connecting logic is an extension of the one presented in

[Milani et al. 2005a, Figure 5].

6 Tests

We have performed a series of tests of our algorithms using a realistic Solar

System Model (a catalog of orbits for synthetic objects [Milani et al. 2006])
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and a simulation of the performance of one of the next generation sur-

veys: Pan-STARRS [Hodapp et al.(2004)]. We employ a realistic observation

scheduler and instrument performance and identify which of the synthetic ob-

jects have detections above a threshold signal to noise ratio. We then add

S/N-dependent astrometric error to the detections at the level expected for

the Pan-STARRS survey (about 0.1 arcsec). We have not included false

detections (corresponding to no synthetic object).

Then we assemble detections from the same observing night which could

belong to the same object into tracklets (based on the angular separation

and morphology of the detections). Tracklets from at least three distinct

nights are then assembled into tracks. For these simulations we have used

the algorithms of [Kubica et al. 2007] to assemble both tracklets and tracks.

When the number density of detections per unit area is low both tracklets

and tracks are (almost always) true, i.e., they contain only detections of

one and the same synthetic object. When the number density is large, as

expected for the next generation surveys, both tracklets and tracks can be

false, i.e., containing detections belonging to different objects and/or false

detections. This is why tracks need to be confirmed by computing an orbit:

first a preliminary orbit, then by differential corrections another orbit which

fits all the observations in the least squares sense. The structure containing

the track and the derived orbit with the accessory data for quality control

(covariance, weights and residuals, statistical tests) is called identification

[Milani et al. 2007b].

It is important to note that we are not testing the performance of any
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particular next generation survey (e.g. Pan-STARRS or LSST). Instead,

the purpose of these tests is to measure the performance of the algorithms

described in this paper according to the following criteria:

• Efficiency E: the fraction of true tracks for which good preliminary and

least squares orbits were calculated.

• Accuracy A: the fraction of returned orbits that correspond to true

tracks. I.e., the orbit computation should fail on false tracks (either

no preliminary orbit or no least squares orbit or the residuals for the

derived orbit are too large).

• Goodness G: the fraction of least squares orbits close enough to the

ground truth orbits to allow later recovery (e.g., in another lunation).

A speed criterion (based on CPU time) is less important because comput-

ing power grows as fast as the astrometric data 7. Still, we need to confirm

that the very large data sets expected from the next generation surveys can

be processed with existing and reasonable computational resources.

6.1 Small targeted tests

Since the orbits of MBAs and Jupiter Trojans are easier to compute than

those of NEOs and more distant objects [Milani et al. 2006] we have prepared

four targeted simulations: two containing only observations of NEOs and two

with TNOs only. In both cases, one of the simulations covers the area near

opposition and the other covers the so called sweet spots at solar elongations

7Moore’s law tells us that the number of elements on a chip grows exponentially with
time: this applies equally to the number of pixels on a CCD and CPU speed.
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between 60◦ and 90◦. We will see that the most relevant metric is Efficiency.

Accuracy is not an issue because the number density per unit area on the

sky is small (indeed, Accuracy is 100% in all tests within this Subsection).

INSERT TABLE 2

In the NEO simulations (Table 2) we have obtained very high Efficiency.

It could be improved with increased computational intensity but this could

impair the Accuracy for larger data sets.

All of the cases for which an orbit was not returned, even though a true

track was proposed, resulted from a failure of the preliminary orbit determi-

nation, in most cases because the degree 8 equation had only spurious roots

(in the sense of Section 4.1). In other cases, some useful preliminary orbits

were discarded because the RMS of the fit was large, often as high as 200

to 300 arcsec. The VA method was not of any help, as expected, since it is

intended for low curvature cases.

INSERT TABLE 3

Table 3 provides the same information as Table 2 but for TNOs. For the

distant objects the preliminary orbit algorithms did not suffer a single case

of failure. The very few true tracks without orbit are due to failure in quality

control (described in Section 6.2).

To assess the proportion of this success that is due to the Virtual Asteroid

method (which is expected to be especially effective for the low curvatures

typical of TNOs) we have rerun the simulation without the VA method. The

results are provided in the “No VA” column of Table 4 where it is clear that

giving up the VA method would result in a significant loss of TNO discoveries
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at opposition and even more so in the sweet spots. The conclusion is that

the VA method is essential for TNOs while it is almost irrelevant for NEOs.

INSERT TABLE 4

Did the effort in reliably handling double (even triple) preliminary orbit

solutions significantly improve the performance in the NEO case? We have

rerun the simulations with only one preliminary orbit passed to differential

corrections - the one with the lowest RMS residuals. The results (Table 4,

column “1 Pre”) clearly show that for NEOs near quadrature passing all

the possible preliminary orbits to the differential corrections procedure is

essential for maximum Efficiency.

Another test has been to truncate the algorithm after the first of the two

iterations (see Section 5.3), the one with a tighter control in the RMS of the

residuals for the 2-body preliminary orbit (set at 10 arcsec in these tests) and

using the Gauss map. The results (column “1st It.”) are that the second

iteration has no effect on TNOs but is relevant for NEOs especially in the

sweet spots.

We also assess how much the improved differential corrections (discussed

in Section 5.3) have contributed to the success of these simulations of orbit

determination. The “No 4fit” column of Table 4 provides the results when

the the 4-parameter fit step was not used. The results, essentially identical

to the “No VA” case, indicate that the two algorithms must be used together

for TNOs. Similarly, the “No LOV” columns indicates that the step with

the 5-parameter least squares fit to obtain a LOV solution has a very large

effect for TNOs. We get the worst results (“LSQ” column) if neither the
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4-fit algorithm nor the LOV solutions are used and the preliminary orbits

are passed directly to a full 6-parameters differential corrections.

The column labeled “Best” in Table 4 refers to the best combination of

innovative and improved algorithms that we have identified. A comparison

of the “Best” column with the other columns indicates that all the steps

discussed in Sections 4 and 5 are essential to achieve the best results for both

NEOs and TNOs.

6.2 Large scale tests

The main purpose of a large scale simulation is to measure the Accuracy.

However, Efficency and Accuracy are not independent. When there are Dis-

cordant Identifications (with some tracklets in common between different

derived objects) and the orbits cannot be merged into one with all the track-

lets of both (i.e. the same object has been identified twice), there is no

way to choose which of the two is true. In this case we might discard both

identifications which results in losing true identifications and decreasing the

Efficiency. By keeping both we would decrease Accuracy while maintaining

the Efficiency. Regardless of our choice, each false identification introduces

permanent damage to the quality of the results8.

Thus, with the aim of measuring the Accuracy of our algorithms we have

prepared simulations for one lunation of a next generation survey both near

opposition and the sweet spots. The assumed limiting magnitude was V=24

and the Solar System model was used at full density, including the over-

8False facts are highly injurious to the progress of science, for they often endure long...,
C. Darwin, The Origin of Man, 1871.
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whelming majority of MBAs (11 million synthetic objects, 10 M MBAs,

269 K NEOs, 28 K TNOs). Table 5 gives the size of the realized synthetic

dataset after the simulation. While the focus of this paper is those objects

that have tracklets available on three nights, those that are observed for

less nights are part of the problem because their tracklets can be incorrectly

linked to other objects [Milani et al. 2006, figure 3].

INSERT TABLE 5

The first Accuracy problem occurs at the tracklet composition stage as

shown in Table 5. Some tracklets are false because they are composed of de-

tections belonging to different objects, but detections may appear in different

tracklets so the true tracklet has probably been identified. The question is

then whether the false tracklets are incorporated into the final accepted or-

bits. We expect that introducing false detections into the simulation will not

cause an explosion of false tracklets because the noise is random in location

and therefore unlikely to be spatially correlated on an image.

The second Accuracy problem occurs at the track composition stage. A

track is just a hypothesis of identification to be checked by computing an

orbit: at a high tracklet number density most of the tracks are false. The

Overhead is the ratio between the total number of proposed and true tracks

In our simulations the Overhead was large as shown in Table 5. In the

sweet spots the Overhead exceeded what was found in previous simulations

[Kubica et al. 2007, Table 3].

The question is whether the orbit determination stage can produce true

orbits with high Efficiency and still reject almost all the false tracks (high
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Accuracy). To achieve this goal the residuals of the best fit orbits need to

be submitted to a rigorous statistical quality control. Our residuals quality

control algorithm uses the following 10 metrics (control values in square

brackets):

• RMS of astrometric residuals divided by the assumed RMS of the ob-

servation errors (=0.1 arcsec in these simulations) [1.0]

• RMS of photometric residuals in magnitudes [0.5]

• bias of the residuals in RA and in DEC [1.5]

• first derivatives of the residuals in RA and DEC [1.5]

• second derivatives of the residuals in RA and DEC [1.5]

• third derivatives of the residuals in RA and DEC [1.5]

To compute the bias and derivatives of the residuals we fit them to a poly-

nomial of degree 3 and divide the coefficients by their standard deviation as

obtained from the covariance matrix of the fit9.

INSERT TABLE 6

The results are summarized in Tables 6 and 7. Notwithstanding the tight

quality controls on residuals, while processing tens of millions of proposed

tracks a few thousand false tracks are found to fit all their observations well

(“False” columns). The numbers are small with respect to the total number

of tracks but they are not negligible as a fraction of the true tracks (“%”

9When these algorithms are used on real data additional metrics should assess the
outcome of outlier removal [Carpino et al., 2003]. For simulations this does not apply.

41



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

columns). A much smaller number of false tracks contain false tracklets

(“F.Tr.” columns), that is, even the presence of a significant fraction of false

tracklets affects neither Efficiency nor Accuracy.

The false identifications result from combining tracklets from 2 (or 3)

distinct simulated objects. With a fit passing all the quality controls we

cannot a priori discard any of them: only by consulting the ground truth we

know they are false. By further tightening the quality control parameters

we may remove many false but also some true identifications. The values of

the metric controls that we used are the result of adjustment suggested by

experiments to find an acceptable balance between Accuracy and Efficiency

for real survey operations.

The most effective method to remove false tracks is a global consideration

of all identifications (derived orbits). We have previously defined the nor-

malization of lists of identifications in [Milani et al. 2005b, Section 7] and

[Milani et al. 2006, Section 6]. The process removes duplications and infe-

rior identifications but also rejects all the Discordant Identifications. This

is not because they are all presumed false, indeed very often one true and

one false identification are Discordant, but we do not know which is which

unless one of the two has a significantly better fit. If the difference in the

normalized RMS of the astrometric residuals is more than 0.25 we keep the

best; otherwise we remove both and sacrifice Efficiency for Accuracy.

INSERT TABLE 7

The results of the normalization procedure are shown on the right hand

side of Table 6. The false tracks can be reduced to a negligible number
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but the Efficiency decreases as a result of the normalization as shown in the

difference between the columns labeled “Eff.%” and “Eff.No.%” in Table 7.

Table 7 provides the efficiency of our algorithms as a function of orbital

class. The Efficiency for NEOs and TNOs is not affected by normalization

because of the lower sky-plane density of objects with their characteristic

rates of motion even when embedded in a full-scale solar system population.

On the other hand, the confusion among objects with main belt rates of mo-

tion can be high and this causes our algorithm to lose a few percent of MBAs.

Nevertheless, even this problem can be solved together with recovering the

few lost NEOs and comets as described below.

An analysis of the Efficiency for each of the three separate steps (track

composition, orbit computation, normalization) reveals that the algorithm to

generate tracks is 97.6% and 98.7% efficient at opposition and at the sweet

spots, respectively, the orbit computation procedure on the proposed true

tracks achieves 99.8% and 99.3% efficiency, and the normalization procedure

is 98.6% and 99.4% efficient. Thus, the performance of each of the three

steps is well balanced and there is not much room for improvement10. The

solution is to use a two iteration procedure.

The normalization procedure generates two outputs: the new list of iden-

tifications and the list of leftover tracklets which have not been used in the

confirmed identifications. When two tracklets have detections in common, if

one of the tracklets is included in a confirmed identification then the other can

be ignored. Thus the set of tracklets is sharply reduced after normalization

10Loosening the controls for track composition would improve the Efficiency at the
expense of increasing the false identifications and the losses at the normalization stage.

43



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

which simplifies further processing. Table 8 shows that the normalization is

effective in discarding false tracklets confirming with a full scale simulation

what had been found with the small simulation of [Milani et al. 2006].

INSERT TABLE 8

The remaining tracklets after normalization can be used as input to an-

other iteration with different controls, perhaps using tighter requirements

on residuals combined with looser thresholds on forming tracks in an ef-

fort to identify objects on hyperbolic trajectories. In subsequent iterations

Accuracy should be less of a problem because of the reduced sky-plane den-

sity of tracklets. Of course, new algorithms could be implemented in suc-

cessive iterations over the tracklet data set. e.g., [Milani et al. 2005b] and

[Boattini et al. 2007]. There are only practical limits to how clever an al-

gorithm might be and how many iterations could take place. However, to

show that the normalized Efficiency values from Table 7 are not a problem

we have run an improved version of the recursive attribution algorithms of

[Milani et al. 2005b] on the leftover tracklets. To control the false identifi-

cations we have used even tighter quality controls. The results are provided

in Table 9 showing an almost complete recovery of the orbits that were not

identified in the previous iteration.

INSERT TABLE 9

A byproduct of the procedure outlined above is the computation of nor-

malized identifications for tracks composed of tracklets in only two nights

(recall that the entire discussion above involved only tracks containing three

nights of tracklets). The Efficiency and Accuracy for the 2-night linking and
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orbit determination procedure is provided in Table 10. After this step the

tracklets remaining are mostly from objects observed in just one night.

INSERT TABLE 10

Up to this point we have not assessed the quality or Goodness (Section

6) of the orbits obtained by our procedures. It is not a simple quantity to

parameterize but one practical measure is to determine whether the results

from one lunation can be used to attribute detections in the next (or pre-

vious) lunation. Towards this end we have run two simulations of surveys

at opposition for consecutive lunations. Given the 3-night identifications for

the first month we attempt to attribute to them the corresponding tracklets

in the next month. The process was 99.6%, 99.7% and 99.9% efficient for

objects with 1, 2 and 3 tracklets in the second lunation, respectively. There

were no NEOs among the few cases of failed/incomplete attribution!

7 Conclusions and Future Work

The purpose of this paper is to identify efficient algorithms to compute pre-

liminary and least squares orbits given a set of detections in a “track” (or

proposed identification).

We have developed efficient and accurate algorithms by revising the clas-

sical preliminary orbit methods. The most important improvements are pro-

visions to keep alternate solutions under control. The existence of double

solutions has been known for a long time and we have shown that even triple

solutions can occur. Still there is no reason this should impair the orbit

determination performance.

45



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

For the differential corrections stage that provides a least squares fit of

the orbit to the detections using the preliminary orbit as the first step in the

iteration, we adopted algorithms available from previous work (by ourselves

and others). When the algorithms are combined with suitable control logic

they significantly improve the efficiency of differential corrections even when

the preliminary orbits are not close to the nominal solutions.

The third stage of orbit determination process is quality control based

upon statistical analysis of the residuals. When there are only a small number

of objects this may be unnecessary but, with the high detection density

expected with the next generation surveys, quality control will be critical

because tracklets belonging to different objects may be incorrectly identified.

Removing false identifications is not easy. We have found the method of

normalization to be very effective for this purpose but, unavoidably, some

true identifications are sacrificed to remove the discordant false ones. We

need to select options and details of the algorithms such that the number of

false identifications is kept low while the true identifications are not lost.

Although our mathematically rigorous theoretical results do not need con-

firmation it has been useful to test their practical performance on simulations

of the next generation surveys. In this way we have shown that orbits can be

computed even for the most difficult classes of orbits. We have also shown,

with full density simulations including an overwhelming majority of MBAs,

that the large number of objects does not result in a “false identification

catastrophe”. On the contrary, a large number density is compatible with a

low number of lost objects provided the quality control on the residuals is
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tight enough and the sequence of algorithms is suitably chosen.

The performance for identification and orbit determination critically de-

pends upon the individual algorithms and upon the pipeline design – the

sequence of algorithms operating one upon the output of the last. We have

used the algorithms from [Kubica et al. 2007] as the first step or tracklet and

track identification followed by the techniques introduced in this paper as the

second step. We have mentioned the possibility of using the algorithms of

[Milani et al. 2005b] as the third step. Even more complicated pipelines can

be conceived but the discussion of pipeline design is beyond the scope of this

paper and will be the subject of future work.

In a series of three papers ([Milani et al. 2005b], [Kubica et al. 2007] and

the present one) we have defined a set of algorithms that may be used to

process astrometric data for Solar System objects when the sky-plane density

is much larger than it is for contemporary surveys. This will very soon be the

case with Pan-STARRS [Hodapp et al.(2004)] and LSST [Ivezić et al. 2007].

Our work on algorithm definition is a necessary step to exploit their superior

survey performance and provide orbits for most observed objects.
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Table 1: Number of preliminary orbit solutions for different ranges of h0 and
C0. Prelim: the number of preliminary orbit solutions. Roots: the number
of positive roots of the polynomial equation (23). Spurious: the number of
spurious roots.

Prelim. Roots Spurious
h0 ≤ 0 C0 < 0 1 or 3 1 or 3 0

C0 ≥ 0 0 1 or 3 1 or 3
0 < h0 < 1 C0 < 0 1 or 3 1 or 3 0 or 2

C0 ≥ 0 0 or 2 1 or 3 1 or 3
h0 > 1 C0 ≤ 0 0 or 2 1 or 3 1 or 3

C0 > 0 1 or 3 1 or 3 0 or 2

Table 2: Performance characteristics for the NEO simulations. For each
of the NEO simulations, and separately for objects observed on a different
number of nights, the columns give the: [1] Total number of objects, [2]
Number of Complete Identifications (containing all the tracklets belonging
to the object), [3] Efficiency (defined as [2]/[1], in %), [4] Number of incom-
plete Identifications, [5] Fraction [4]/[1] in % of incomplete Identifications,
[6] Number of objects lost (no confirmed Identification), [7] Fraction [6]/[1]
in % lost.

[1] [2] [3] [4] [5] [6] [7]

Observed Inc. Lost

Arc Total Compl. Effic. Inc. Fraction Lost Fraction

Opposition
3-nighters 1123 1119 99.6% 0 0.0% 4 0.4%
Sweet Spots
3-nighters 397 389 98.0% 0 0.0% 8 2.0%
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Table 3: Performance characteristics for the TNO simulations. See Table 2
for column definitions.

[1] [2] [3] [4] [5] [6] [7]

Observed Inc. Lost

Arc Total Compl. Effic. Inc. Fraction Lost Fraction

Opposition
3-nighters 2005 2001 99.8% 3 0.15% 1 0.05%
Sweet Spots
3-nighters 2493 2491 99.9% 0 0.00% 2 0.08%

Table 4: Fraction of lost 3-nighters using different algorithms. The methods
used for each column are detailed in the text.

Simulation Best 1 Pre 1st It. No VA No 4fit No LOV LSQ

NEO Opp. 0.40% 0.50% 3.2% 0.4% 0.4% 0.4% 0.4%
NEO Sw. 2.00% 13.4% 18.1% 2.3% 2.3% 2.8% 2.8%
TNO Opp. 0.05% 0.05% 0.05% 38.3% 38.4% 45.7% 47.7%
TNO Sw. 0.10% 0.10% 0.10% 75.3% 75.3% 82.6% 82.8%

Table 5: Characteristics of the data sets for the full solar system model sim-
ulations. The columns provide the [1] survey region, [2] number of tracklets,
[3] number of false tracklets, [4] number of simulated objects with observed
tracklets, [5] number of simulated objects with observed tracklets on 3 differ-
ent nights, [6] overhead (see text, the ratio of false to real tracks), [7] number
of objects with tracklets in 2 different nights, [8]number of tracklets in only
1 night.

[1] [2] [3] [4] [5] [6] [7] [8]

Region Tracklets False Objects 3-night Overhead 2-night 1-night

Oppos. 654315 26006 253289 164333 222.8 41244 47712
Sweet sp. 695067 59253 283831 144903 501.3 62177 76751

54



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

Table 6: Accuracy results. Performance of our alogrithms before (columns
2-4) and after (columns 5-7) normalization. For each case we provide the
total number of false identifications that passed our quality checks, the per-
centage of identifications that are false (with respect to the total number of
identifications), and the number of identifications containing false tracklets.

Region All Identifications Normalized
False % F.Tr. False % F.Tr.

Oppos. 7093 4.31 4 80 0.05 1
Sweet sp. 1869 1.30 10 29 0.02 0

Table 7: Efficiency Results. For both the opposition (columns 2-4) and sweet
spot (columns 5-7) full sky-plane density simulations as a function of the solar
system model sub-populations we provide the total number of objects, the
Efficiency, and the Efficiency after Normalization. The “Com” row includes
Centaurs, long and short period comets. The sweet spots simulation did not
include Jupiter Trojans because the Trojan swarms were not near quadrature
at the time of the simulation.

Obj.Type Opposition Sweet Spots
Total Eff.% Eff.No.% Total Eff.% Eff.No.%

All 161146 97.3 95.9 144903 98.0 97.4
MBA 154700 97.3 95.8 135911 98.0 97.4
NEO 353 90.4 90.4 271 80.1 80.1
Tro 6894 97.9 97.8
Com 665 98.6 97.6 253 98.0 97.6
TNO 5428 97.7 97.7 1574 98.7 98.7
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Table 8: Leftover tracklets. The number of tracklets not included in con-
firmed (true) identifications and the fractional reduction of the tracklets
dataset after their removal (columns 2-3). Columns 4-5 provide the same
data for False tracklets.

Survey region Leftover tracklets Reduction % Leftover False Reduction %

Opposition 168122 74.3% 5363 79.4%
Sweet spots 232101 66.6% 17033 71.2%

Table 9: Overall and NEO-only identifications recovered with recursive at-
tribution. Column 1: The fraction of the objects that were lost in the first
iteration which were then recovered in a second iteration. Column 2: The
combined Efficiency from both iterations. Column 3: The fraction of false
identifications remaining after both iterations of the orbit determination pro-
cedure.

Recovered Objects Efficiency False Identifications
Opposition 75.4% 99.0% 0.06%
NEOs 85.3% 97.1% 0
Sweet Spots 75.0% 99.4% 0.02%
NEOs 85.2% 97.1% 0

Table 10: Orbit determination efficiency (normalized) and false identification
rate for tracks containing only 2-nights of tracklets.

Survey region Efficiency False Identifications

Opposition 83.4% 2.1%
Sweet spots 89.2% 1.3%
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Figure 1: Level curves of C in rectangular coordinates (solid lines) including
the limiting curve (labeled) and the zero circle (dashed). For a given value of
C and an observation direction (dotted) there can be either 1 or 2 solutions,
e.g., for C = 0.3 there are 2.
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Figure 2: The path in the sky of the NEO (101955) 1999 RQ36 as it would
have been seen in July 2005 from Mauna Kea. The solid portions of the curve
indicate when observations were possible (when the object was at an altitude
> 15◦). The continuous thin solid curve gives simulated observations from
the geocenter. Coordinates are RA and DEC in radians.
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Figure 3: The same data as in the previous figure after removing the best
fitting linear functions of time in both coordinates. In this case the curves
represent the content of information beyond the attributable. The larger
dotted loop is from Mauna Kea with the dense portions of the curve in
the lower part of the figure corresponding to possible observations when the
object was at an altitude > 15◦. The small curl near (0, 0) is for a geocentric
observer. Coordinates are differences in RA and DEC in radians.

59



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

−0.5 0 0.5 1 1.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

AU

A
U

−40

−40

−15

−15

−10

−7.5

−5

Sun Earth

Level curves of C
0
 with h

0
≤ 0

Figure 4: Level curves of C0(x, y) for h0 = −0.5. Note that there is no zero
circle. The saddle point is labeled with X.
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Figure 5: Level curves of C0(x, y) for h0 = 0.5 including the zero circle
(dashed). The two saddle points are labeled with X, the maximum with O.
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Figure 6: Level curves of C0(x, y) for h0 = 1.5 including the zero circle
(dashed). The saddle point is labeled with X.
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Figure 7: A preliminary orbit example with two solutions near opposition.
For h0 = 0.613 the direction of observation (solid and dotted straight line)
has two intersections with the level curve C0(x, y) = 0.4 (solid curve). The
solid portion of the line corresponds to solutions with e < 1. The zero circle
is dashed.
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Figure 8: For the preliminary orbit of 2002 AA29 the relevant level curve
(C0 = 1.653) is shown (solid curve) in rectangular coordinates. The zero
circle (dashed) and the observation direction (dotted) are also shown. Units
are AU for both axes. Left: using the actual value h0 = 1.025. Right: using
a value of h0 = 1 that does not account for the topocentric correction. [Note
for the page editor: please place the two figures in a row.]
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