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Abstract

The steady–periodic heat transfer between offshore buried pipelines for the trans-

port of hydrocarbons and their environment is investigated. This heat transfer

regime occurs for shallow water buried pipelines, as a consequence of the temper-

ature changes of the seabed during the year. First, the unsteady two dimensional

conduction problem is written in a dimensionless form; then, it is transformed into

a steady two dimensional problem and solved numerically by means of the finite–

element software package Comsol Multiphysics ( c© Comsol, Inc.). Several values of

the burying depth and of the radius of the pipeline, as well as of the thermal prop-

erties of the soil are considered. The numerical results are compared with those

obtainable by means of an approximate method employed in industrial design. The

comparison reveals that important discrepancies with respect to this approximate

method may occur.

Keywords — Offshore buried pipelines; Heat transfer; Steady–periodic boundary conditions;

Numerical methods; Industrial design
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List of symbols

A, B dimensionless coefficients

a dimensionless length

C dimensionless constant defined in Eq.(A2)

cv soil specific heat at constant volume

H burying depth of the pipeline

k soil conductivity

~n normal unit vector

q thermal power per unit area

Q̇ thermal power per unit length

Q̇const thermal power per unit length, in the constant power limit

Q̇qs thermal power per unit length, in the quasi–stationary limit

R pipeline radius

Ta pipeline wall temperature

Te seabed temperature

Teff effective temperature

TH soil temperature at a depth H

Tm mean annual seabed temperature

T0, T1, T2 temperature fields

t time

X, Y coordinates

x, y dimensionless coordinates

Greek Symbols

α soil thermal diffusivity

β, γ dimensionless quantities defined in Eq.(A4)

∆T amplitude of temperature oscillations

θ0, θ1, θ2 dimensionless temperature fields
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Λ0 dimensionless heat transfer coefficient

Ξ dimensionless parameter

ρ soil density

σ dimensionless burying depth

Σ dimensionless parameter

φ phase angle defined in Eq.(A3)

ω angular frequency

Superscripts, subscripts

∗ dimensionless quantity

max maximum value

min minimum value

1 Introduction

As is well known, offshore buried pipelines are often used for the transport of hydrocar-

bons from extraction sites to refinement plants. The design of these pipelines requires

the knowledge of the overall heat transfer coefficient from the pipe wall to the environ-

ment. In fact, a significant decrease of the fluid temperature could cause the formation

of hydrates and waxes which might stop the fluid flow. Moreover, the knowledge of the

bulk temperature of the fluid in any cross section is necessary to determine the value of

the fluid viscosity in that section and, thus, to evaluate the viscous pressure drop along

the flow direction. As a consequence, the heat transfer from buried pipelines has been

widely studied in the literature [1]–[4]. An analytical expression of the steady–state heat

transfer coefficient from an offshore buried pipeline to its environment can be found in

[5]. It refers to the boundary condition of a uniform temperature of the seabed, i.e. of

the separation surface between soil and sea water. In these conditions, the thermal power

exchanged between the pipeline and its environment, per unit length of the duct, can be
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expressed as

Q̇ = k (Ta − Te) Λ0 , (1)

where k is the thermal conductivity of the soil, Ta is the temperature of the external

surface of the duct, Te is the temperature of the seabed and Λ0 is a dimensionless heat

transfer coefficient, given by

Λ0 (σ) =
2π

arccosh (σ)
. (2)

In Eq. (2), σ is the ratio between the burying depth of the pipe axis, H , and the external

radius of the pipe, R.

Equations (1) and (2) provide reliable results in many cases, but cannot be applied, for

instance, in the following circumstance. For shallow–water pipelines, the temperature of

the seabed is affected by the season changes and varies accordingly during the year. With

reference to the Mediterranean sea, the seabed statistically reaches a minimum value of

14◦C, in winter, and a maximum value of 25◦C, in summer. Clearly, this temperature

change of the seabed may have a strong influence on the thermal power exchanged be-

tween the pipeline and its environment.

At present, an approximate method is employed in industrial design to take into account

this effect. The soil is considered as a semi–infinite solid medium whose surface temper-

ature varies in time according to the law

T = Tm + ∆T sin (ω t) , (3)

where Tm is the mean annual temperature of the seabed, ∆T is the amplitude of the

temperature oscillation and ω is the angular frequency which corresponds to the period

of one year, namely

ω = 0.1991 · 10−6 s−1 . (4)

Thus, by assuming that the pipeline does not modify considerably the temperature dis-

tribution in the soil, at a depth H one has [6]

TH = Tm − ∆T exp

(

−

√

ω

2α
H

)

sin

(
√

ω

2α
H − ω t

)

, (5)
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where α is the thermal diffusivity of the soil. In the approximate method, the thermal

power is evaluated as

Q̇ = k (Ta − TH) Λ0 , (6)

i.e. by replacing Te with TH in Eq. (1).

The approximate method does not seem reliable because it is not based on a rigorous

mathematical model. To check the reliability of the method, one can apply it to eval-

uate the heat transfer between a plane isothermal surface buried at a depth H and the

surrounding soil, when the temperature of the ground surface varies in time according

to Eq.(3). In fact, for this case, an analytical expression of the soil temperature field is

available in the literature [7]. This analysis has been performed with reference to standard

properties of the soil and is reported in Appendix. The comparison between the analyti-

cal solution and the approximate method shows that the latter yields acceptable results

only when very small values of H are considered. Therefore, a more reliable method to

evaluate the steady–periodic heat transfer from buried pipelines to the environment is

needed.

The aim of this investigation is to find out an accurate method to determine the heat

transfer between an offshore buried pipeline and its environment in steady–periodic con-

ditions. First, by introducing suitable auxiliary variables, the unsteady two dimensional

conduction problem is transformed into a steady two dimensional problem in the new vari-

ables. Then, the steady problem is solved numerically by means of the software package

COMSOL Multiphysics ( c© Comsol, Inc.). The results show that the empirical method

given by Eqs. (6), (5) and (2) may yield a too rough approximation in some cases.

2 Mathematical model

Let us assume that the temperature of the seabed varies in time according to Eqs. (3) and

(4). The computational domain and the boundary conditions are sketched in Figure 1. As

is shown in the figure, the vertical and bottom boundaries of the computational domain
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are considered as adiabatic. The differential equation to be solved is Fourier equation

∂T

∂t
= α∇2 T , (7)

with the following boundary conditions:

T = Ta on the pipe surface; (8)

T = Tm + ∆T sin (ωt) on the seabed; (9)

~n · ~∇T = 0 on the vertical and bottom boundaries. (10)

In steady–periodic regime, the temperature field can be expressed as

T (X, Y, t) = T0 (X, Y )

+ [T1 (X, Y ) − Tm] sin (ω t) + [T2 (X, Y ) − Tm] cos (ω t) . (11)

By substituting Eq. (11) in Eq. (7), one obtains

ω (T1 − Tm) cos (ω t) − ω (T2 − Tm) sin (ω t) =

α
[

∇2T0 + ∇2T1 sin (ω t) + ∇2T2 cos (ω t)
]

. (12)

Equation (12) implies

∇2T0 = 0 , (13)

α∇2T1 = −ω (T2 − Tm) , (14)

α∇2T2 = ω (T1 − Tm) . (15)

The boundary conditions for T0, T1 and T2 are:

T0 = Ta , T1 = T2 = Tm on the pipe surface; (16)

T0 = Tm , T1 = Tm + ∆T , T2 = Tm on the seabed; (17)

~n · ~∇T0 = 0 , ~n · ~∇T1 = 0 , ~n · ~∇T2 = 0

on the vertical and bottom boundaries. (18)
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The thermal power exchanged between the pipeline and the environment can be evaluated

by means of the expression

Q̇ = k





∫

∂L

~n · ~∇T0 dl +





∫

∂L

~n · ~∇T1 dl



 sin (ω t)

+





∫

∂L

~n · ~∇T2 dl



 cos (ω t)



 , (19)

where ∂L is the circular boundary of the duct, dl is the infinitesimal arc of this boundary

and ~n is the unit vector orthogonal to ∂L, as illustrated in Figure 1.

Let us introduce the following dimensionless variables:

θ0 =
T0 − Tm

∆T
, θ1 =

T1 − Tm

∆T
, θ2 =

T2 − Tm

∆T
,

x =
X

R
, y =

Y

R
, ~∇∗ = R ~∇ ,

Ω =
ω R2

α
, Ξ =

∆T

Ta − Tm

. (20)

Equations (13)–(18) can be written in the dimensionless form

∇∗2θ0 = 0 ; (21)

∇∗2θ1 = −Ω θ2 ; (22)

∇∗2θ2 = Ω θ1 ; (23)

θ0 =
1

Ξ
, θ1 = 0 , θ2 = 0 on the pipe surface; (24)

θ0 = 0 , θ1 = 1 , θ2 = 0 on the seabed; (25)

~n · ~∇∗θ0 = 0 , ~n · ~∇∗θ1 = 0 , ~n · ~∇∗θ2 = 0 on vertical and bottom sides. (26)

By means of Eq. (20), one can write Eq. (19) in the form

Q̇ = k (Ta − Tm) Ξ





∫

∂L∗

~n · ~∇∗θ0 dl∗
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+





∫

∂L∗

~n · ~∇∗θ1 dl∗



 sin (ω t) +





∫

∂L∗

~n · ~∇∗θ2 dl∗



 cos (ω t)



 . (27)

The boundary value problem for the dimensionless temperature field θ0 is the steady

conduction problem already solved in [5]. Therefore, the first integral in Eq. (27) is such

that

Ξ

∫

∂L∗

~n · ~∇∗θ0 dl∗ = Λ0 (σ) =
2π

arccosh (σ)
. (28)

In order to determine the dimensionless fields θ1 and θ2, one can solve numerically the

coupled differential equations (22) and (23), with the boundary conditions prescribed in

Eqs. (24)–(26). The solution depends on the dimensionless parameters σ and Ω.

By employing the dimensionless heat transfer coefficient Λ0 and the dimensionless quan-

tities

A =
1

Λ0

∫

∂L∗

~n · ~∇∗θ1 dl∗ , B =
1

Λ0

∫

∂L∗

~n · ~∇∗θ2 dl∗ , (29)

one can rewrite Eq. (27) in the form

Q̇ = k (Ta − Tm) Λ0 {1 + Ξ [A sin (ω t) + B cos (ω t)]} . (30)

Since Λ0 is known, Eq. (30) allows one to evaluate the time–dependent thermal power

exchanged between the pipeline and its environment by employing tables of A and B,

which are functions of the dimensionless parameters σ and Ω.

2.1 Values of the dimensionless parameters

In technical applications, the depth H of the pipeline axis can range from the duct radius

R to about ten times R. Indeed, the following values of σ have been considered: 1.2; 1.5;

2.0; 4.0; 10.0 .

The period of the temperature oscillation is one year; thus, ω is given by Eq. (4). The

thermal properties of the soil vary in the ranges:

kmin = 1
W

m K
, kmax = 3

W

m K
, (31)

ρmin = 1.2 · 103 kg

m3
, ρmax = 2.5 · 103 kg

m3
, (32)
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cv min = 1 · 103 J

kg K
, cv max = 2 · 103 J

kg K
. (33)

Therefore, one has

αmin =
kmin

ρmax cv max
= 2.0 · 10−7 m2

s
, αmax =

kmax

ρmin cv min
= 2.5 · 10−6 m2

s
. (34)

In offshore buried pipelines for the transport of hydrocarbons, the duct diameter varies

from six to forty inches, i.e. the radius varies in the range

Rmin = 7.6 cm , Rmax = 0.51 m . (35)

From these data, one obtains

Ωmin =
ω R2

min

αmax

= 4.6 · 10−4 , Ωmax =
ω R2

max

αmin

= 0.26 . (36)

The following values of Ω have been considered: 0.0003; 0.001; 0.01; 0.05; 0.1; 0.3 .

As for the dimensionless parameter Ξ, which does not appear in numerical computations,

let us point out that its minimum absolute value occurs when Ta − Tm is maximum.

Since in practical cases Ta max ≈ 50 ◦C, with reference to the Mediterranean sea, where

Tm = 19.5 ◦C and ∆T = 5.5 ◦C, one has

|Ξ|min =
5.5

30.5
= 0.18 . (37)

Clearly, Eq. (30) allows one to evaluate the thermal power Q̇ for every value of Ξ.

3 Results

The dimensionless boundary value problem for the unknown functions θ1 and θ2, given by

Eqs. (22)–(26), has been solved numerically by means of the finite–element computational

code COMSOL Multiphysics ( c© Comsol, Inc.). Since the dimensionless computational

domain and the boundary conditions are symmetric with respect to the plane x = 0, only

half domain has been considered in the computations and the adiabatic condition on the

symmetry axis has been imposed, as sketched in Figure 2. The final computations have

been performed with a = 100, where a is both the dimensionless depth (starting from the
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pipeline axis) and the dimensionless width of the actual computational domain, as shown

in Figure 2. Indeed, preliminary calculations revealed that this value of a is sufficiently

high to ensure accurate results.

Unstructured grids with triangular elements have been used. The grids have been refined

close to the boundaries 1, 6 and 5, and in a square region around the duct (see Figure

3). After some checks to ensure the grid–independence, the final computations have been

performed with about 5 · 104 grid elements.

The values of the coefficients A and B given by Eq. (29) are determined by COMSOL

Multiphysics as follows. The x–component and the y–component of the gradient of θ1 and

θ2 are multiplied by the x–component and y–component of the unit vector normal to the

boundary surface 5 (see Figure 2). The latter components are built–in variables denoted

as nx and ny. Then, A and B are evaluated in postprocessing through the Boundary

Integration option.

The results obtained for the coefficients A and B are reported in Table 1 for σ = 1.2 and

σ = 1.5, in Table 2 for σ = 2 and σ = 4, in Table 3 for σ = 6 and σ = 10.

In order to illustrate the effects of the temperature oscillations at the seabed on the heat

transfer rate between the pipe and its environment, let us compare the thermal power

exchanged in steady–periodic regime, given by Eq. (30), with two limiting cases. In the

limit of very high values of H and very low values of α, i.e. for very high values of both

σ and Ω, the effect of the temperature oscillations at the seabed on the heat transfer

rate becomes negligible. In this limit, which will be called constant power limit, the sea

temperature oscillations affect only a thin soil layer close to the seabed, far from the pipe,

so that the thermal power exchanged between the pipeline and its environment is constant

and is given by

Q̇const = k (Ta − Tm) Λ0 . (38)

On the other hand, in the limit of σ very close to 1 and of very low values of Ω, one

can assume that the temperature oscillations have a uniform phase. In this limit, which

will be called quasi–stationary limit, the thermal power exchanged between pipeline and

environment can be evaluated, at any time instant, by considering steady–state conditions
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with a temperature at the seabed given by the temperature at that instant. Thus, in the

quasi–stationary limit, one has

Q̇qs = k (Ta − Tm) Λ0 [1 − Ξ sin (ω t)] . (39)

A comparison between Eqs. (30) and (38) reveals that the general expression for the

steady–periodic thermal power coincides with Q̇const (constant power limit) when A =

B = 0. A comparison between Eqs. (30) and (39) reveals that the general expression

for the steady–periodic thermal power coincides with Q̇qs (quasi-stationary limit) when

A = −1 and B = 0. Indeed, the results reported in Table 3 point out that, for σ = 10

and Ω = 0.3, the values of A and B are very close to zero, i.e. the constant power limit

is approached. On the other hand, the results reported in Table 1 point out that, for

σ = 1.2 and Ω = 0.0003, A ≈ −1 and B ≈ 0, so that the quasi–stationary limit is nearly

reached.

The amplitude of the dimensionless temperature oscillations
√

θ2
1 + θ2

2 is illustrated in

Figure 4 for σ = 10 and Ω = 0.3. The figure shows that the temperature oscillations are

negligible at the depth of the pipe, so that a nearly constant heat flux from the duct wall

occurs (constant power limit).

The amplitude
√

θ2
1 + θ2

2 and the phase arctan (θ2 /θ1) of the dimensionless temperature

oscillations, for σ = 1.2 and Ω = 0.0003, are illustrated in Figures 5 and 6 respectively.

Figure 5 shows that important temperature oscillations take place in the soil even at

depths greater than that of the pipe, except very close to the pipe boundary, where a

constant temperature boundary condition has been imposed.

Figure 6 shows that the phase is nearly uniform and next to zero even at depths higher

than that of the pipe. Thus, the quasi–stationary limit can be applied with an excellent

approximation in this case. In most cases, neither the constant power limit not the

quasi–stationary limit can be applied, and the power exchanged between the pipe and its

environment must be calculated by means of Eq. (30) and of Tables 1, 2 and 3.

In order to compare the results presented in this paper with the approximate results

11



 

 

 

ACCEPTED MANUSCRIPT 

 
obtainable by means of Eq. (6), let us rewrite Eq. (30) in the form

Q̇ = k (Ta − Teff ) Λ0 , (40)

where the effective temperature Teff is given by

Teff = Tm − ∆T [A sin (ω t) + B cos (ω t)] . (41)

Clearly, Eq. (6) agrees with Eq. (40) if TH coincides with Teff . From Eqs. (5) and (20),

one obtains

TH = Tm − ∆T exp

(

−σ

√

Ω

2

) [

− cos

(

σ

√

Ω

2

)

sin (ω t)

+ sin

(

σ

√

Ω

2

)

cos (ω t)

]

. (42)

Equations (41) and (42) show that TH coincides with Teff if

A = − cos

(

σ

√

Ω

2

)

exp

(

−σ

√

Ω

2

)

, (43)

B = sin

(

σ

√

Ω

2

)

exp

(

−σ

√

Ω

2

)

. (44)

A comparison between the values of A and B obtained numerically in this paper and

the approximate values given by Eqs. (43) and (44) is illustrated in Figures 7 and 8,

where A and B are plotted versus the logarithm base 10 of Ω, for σ = 2, in the range

0.0003 ≤ Ω ≤ 0.3. The figures show that a strong disagreement between the correct and

the approximate values of A and B occurs, for high values of Ω. Therefore, the naive

method employed in industrial design may yield a too rough approximation, except for

very low values of Ω.

A check has been made on the steady–periodic numerical solution, namely a comparison

with the fully transient numerical solution of Eqs.(7)–(10). The latter numerical solution

has been also performed by Comsol Multiphysics by means of the Time Dependent solver.

The initial condition considered is a uniform temperature distribution in the soil with

value Tm. The solution has been obtained in the dimensionless domain by using the
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values Ω = 3× 10−4, Ξ = 0.18, σ = 1.5. In Figure 9, Q̇/[k (Ta − Tm)] versus ωt is plotted

in this case either using Eqs. (29) and (30) (solid line) or using the fully transient solution

(dots). Figure 9 shows that the numerical solutions are in perfect agreement. In fact, the

effect of the initial condition decays very rapidly and becomes negligible when ωt > 100.

4 Conclusions

The steady–periodic heat transfer between buried offshore pipelines and their environ-

ment has been studied. The unsteady two dimensional conduction problem has been

transformed into a steady two dimensional problem and solved numerically by means

of the finite–element software package COMSOL Multiphysics ( c© Comsol Inc.). The

results, reported through tables containing the values of two dimensionless parameters,

can be employed for a wide range of values of the burying depth and of the radius of

the pipeline, as well as of the thermal properties of the soil. The results obtained have

been compared with those predicted by an approximate method employed in industrial

design. The comparison revealed that the approximate method may be unreliable in some

design conditions corresponding to a large diameter of the pipeline and to a low thermal

diffusivity of the soil.
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Appendix

Let us consider an isothermal horizontal plane, kept at the constant temperature Ta,

which is buried at a depth H from the ground surface, whose temperature varies in time

according to Eq.(3) (see Figure 10).

In steady–periodic regime, the temperature distribution in the soil is given by [7]

T (X, t) = Tm +
Ta − Tm

H
X + ∆T C sin(ωt + φ) , (A1)

C =

[

cosh(2β) − cos(2β)

cosh(2γ) − cos(2γ)

]
1

2

, (A2)

φ = arctan

(

cosh β sinh γ sin β cos γ − sinh β cosh γ cos β sin γ

sinh β sinh γ cos β cos γ + cosh β cosh γ sin β sin γ

)

, (A3)

β =

√

ω

2α
(H − X) , γ =

√

ω

2α
H . (A4)

The thermal power per unit area which flows from the isothermal surface to the ground

can be evaluated as

q = k
∂T

∂X

∣

∣

∣

∣

X=H

. (A5)

According to the approximate method, the thermal power exchanged per unit area is

q =
k

H
(Ta − TH) , (A6)
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where TH is given by Eq.(5).

Let us assume Ta = 50 ◦C , Tm = 19.5 ◦C , ∆T = 5.5 ◦C and consider a soil with the

following thermal properties: k = 2 W/(m K) , α = 5 · 10−7 m2/s. A comparison of the

thermal power per unit area given by Eq.(A5) and that given by Eq.(A6) is illustrated in

Figure 11 for H = 1 m and in Figure 12 for H = 6 m. In both Figures, the thin line refers

to Eq.(A6) (approximate method), while the thick line refers to the analytical solution,

given by Eq.(A5). The Figures show that while for H = 1 m the results of the approx-

imate method can be considered as acceptable, for H = 6 m the approximate method

underestimates the amplitude of the fluctuations of the thermal power and predicts a

wrong phase of these oscillations.
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Figure captions

Figure 1 – Computational domain and boundary conditions.

Figure 2 – Dimensionless computational domain and boundary conditions.

Figure 3 – The unstructured grid adopted together with a magnification of the refinement

made near the pipeline

Figure 4 – Amplitude of the dimensionless temperature oscillations for σ = 10 and

Ω = 0.3.

Figure 5 – Amplitude of the dimensionless temperature oscillations for σ = 1.2 and

Ω = 0.0003.

Figure 6 – Phase of the dimensionless temperature oscillations for σ = 1.2 and Ω =

0.0003.

Figure 7 – Plots of A versus log10 Ω for σ = 2, according to Eq.(29) (thick line) and to

Eq. (44) (thin line).

Figure 8 – Plots of B versus log10 Ω for σ = 2, according to Eq.(29) (thick line) and to

Eq. (44) (thin line).

Figure 9 – Values of Q̇/[k (Ta −Tm)] versus ωt. Comparison between the steady–periodic

numerical solution and the fully transient numerical solution.

Figure 10 – Isothermal horizontal plane buried at a depth H. The temperature of the

ground surface in X = 0 varies according to Eq.(3).

Figure 11 – Plots of the thermal power q exchanged per unit area versus time t, for

H = 1m, according to the analytical solution given by Eq.(A5) (thick line) and to the

approximate method given by Eq.(A6) (thin line).

Figure 12 – Plots of the thermal power q exchanged per unit area versus time t, for

H = 6m, according to the analytical solution given by Eq.(A5) (thick line) and to the

approximate method given by Eq.(A6) (thin line).
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Table 1: Values of A and B for σ = 1.2 and σ = 1.5.

σ = 1.2 σ = 1.5

Ω A B A B

0.0003 −0.9920 0.009141 −0.9863 0.01526

0.001 −0.9855 0.01186 −0.9754 0.01971

0.01 −0.9592 0.02889 −0.9321 0.04738

0.05 −0.9224 0.04590 −0.8722 0.07501

0.1 −0.9010 0.05424 −0.8376 0.08915

0.2 −0.8762 0.06358 −0.7973 0.1058

0.3 −0.8599 0.06984 −0.7707 0.1175
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Table 2: Values of A and B for σ = 2 and σ = 4.

σ = 2 σ = 4

Ω A B A B

0.0003 −0.9789 0.02329 −0.9530 0.04930

0.001 −0.9623 0.02986 −0.9182 0.06188

0.01 −0.8970 0.07042 −0.7857 0.1382

0.05 −0.8090 0.1112 −0.6145 0.2174

0.1 −0.7584 0.1333 −0.5098 0.2616

0.2 −0.6986 0.1607 −0.3728 0.3056

0.3 −0.6580 0.1803 −0.2730 0.3214
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Table 3: Values of A and B for σ = 6 and σ = 10.

σ = 6 σ = 10

Ω A B A B

0.0003 −0.9287 0.07171 −0.8816 0.1105

0.001 −0.8784 0.08875 −0.8050 0.1345

0.01 −0.6906 0.1908 −0.5193 0.2696

0.05 −0.4435 0.2895 −0.1389 0.3095

0.1 −0.2833 0.3210 0.03150 0.2136

0.2 −0.09150 0.2974 0.08847 0.06089

0.3 0.01094 0.2381 0.06136 −0.001761
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