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Abstract 

This paper presents the results of technical and economic studies in order to evaluate, in 

the French context, the future production cost of electricity from IGCC coal power plants with 

CO2 capture and the resulting cost per tonne of CO2 avoided. The economic evaluation shows 

that the total cost of base load electricity produced in France by coal IGCC power plants with 

CO2 capture could be increased by 39% for ‘classical’ IGCC and 28% for ‘advanced’ IGCC. 

The cost per tonne of avoided CO2 is lower by 18% in ‘advanced’ IGCC relatively to 

‘classical’ IGCC. The approach aimed to be as realistic as possible for the evaluation of the 

energy penalty due to the integration of CO2 capture in IGCC power plants. Concerning the 

CO2 capture, six physical and chemical absorption processes were modeled with the Aspen 

Plus™ software. After a selection based on energy performance three processes were selected 

and studied in detail: two physical processes based on methanol and Selexol™ solvents, and a 

chemical process using activated MDEA. For ‘advanced’ IGCC operating at high-pressure, 

only one physical process is assessed: methanol. 

 

Keywords: CO2 capture, coal, slurry, methanol, MDEA, power plant, avoided CO2 
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Nomenclature 

 

IGCC:   Integrated gasification combined cycle 

ASU:   Air separation unit 

LHV:    low heating value  

MEA:   methylethanolamine 

MDEA:  methyldiethanolamine  

A-MDEA:  activated methyldiethanolamine 

NMP:   N-methyl-pyrrolidone 

AMP:   amine 2-amino-2-methyl-1-propanol 

Selexol™:  process using dimethyl ether of polyethylene glycol (DMPEG) 

Syngas:  synthetic gas produced by the gasification 
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1. Introduction  

To meet the growing world demand for energy, which will be driven increasingly by the 

developing countries, recourse to fossil fuels will remain dominant at least for the first half of 

the 21st century. The tendency for CO2 emissions to increase will therefore be considerable, 

though the objective should be to stabilize the concentration of CO2 in the atmosphere to an 

acceptable level: for example 550 ppm in 2100. This objective cannot be achieved by simply 

stabilizing the quantities of CO2 discharged into the atmosphere, but by reducing them by at 

least a factor of 2 or 3 as a world average [1]. In addition to the use of nuclear power and 

renewable energy, the need to reduce CO2 emissions substantially could therefore lead to the 

capture and storage of the CO2 emitted by large combustion plants in underground geological 

formations (depleted hydrocarbon reservoirs or deep saline aquifers) as it does not seem 

possible to envisage storage of CO2 in the ocean in the near future.  

Integrated Gasification Combined Cycles (IGCC) is the type of power technology 

particularly favorable for carbon dioxide capture as this latter can be removed at a convenient 

stage of the process where its partial pressure is high [2]. The various options analyzed in the 

literature concerning this integration are described in [3], [4] and [5]: pre-combustion with a 

modification of the power station structure; post-combustion with a low pressure separation 

before the stack in an “end of pipe” separation process; decarbonization of the fuel by 

producing hydrogen, methanol or ammonia; modified cycle as oxy-combustion O2/CO2 cycle. 

The CO2 removal requires the addition of two main units: a CO shift conversion unit 
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downstream from the gas dedusting system and a CO2 separation and compression unit 

meeting the transport conditions. 

This paper presents a summary of the results of technical and economic studies conducted 

by EDF-R&D in collaboration with various organizations: Ecole des Mines de Paris, Technip 

and UOP for the CO
2
 capture processes at the power plant, with the financial support of 

ADEME, the French agency for environment and energy management, and with Géostock and 

Tractebel for the CO2 transport and storage. The aim was to evaluate, in the French context, 

the levelized cost of electricity from coal with and without CO2 capture and storage and the 

cost per tonne of CO2 avoided. The coal option was chosen on account of the large proven 

reserves of this fossil fuel (2 to 3 centuries at present consumption rate) and oxygen blown 

IGCC was selected as it seems to be the best alternative for electricity generation from coal in 

the medium/long term [6], [7] and [8], showing some specific advantages: 

 - IGCC is a clean coal technology that today offers significant reduction in air-pollutant 

emissions,  

 - In this process, coal reacts under pressure with oxygen and steam in the gasifier 

producing a syngas which can be shifted to CO
2
/H

2
 mixture in a catalytic reactor leading 

to a high partial pressure of CO
2
 which is favorable for its capture,  

 - After CO
2
 capture, the fuel gas is essentially hydrogen which can be used to generate 

electricity in a combined cycle or, in the future, in fuel cells in order to increase the 

overall efficiency, and  
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 - IGCC may offer opportunities to produce power as well as synthetic fuels and 

chemicals.  

We focus in this paper on a CO2 separation in order to integrate this option into the power 

plant cycle, upstream from the gas turbine. 

2. Capturing CO2 at the power plant 

EDF-R&D has carried out an investigation, in close collaboration with the Ecole des 

Mines de Paris, in order to select the best processes for collecting CO2 to be integrated into an 

IGCC power plant and to calculate its impact on efficiency. Moreover, with the assistance of 

the Technip Company and UOP, the investment costs associated with the new equipment have 

been estimated and the total cost per kWh (with and without CO2 capture) has been evaluated.  

 

2.1. Capture technology 

Various processes may be envisaged for separating the CO2: chemical or physical 

absorption (or an association of both), adsorption onto solids, separation by membranes and 

cryogenic separation. Obviously these processes are not all equivalent, nor all at the same 

stage of development. Cryogenic separation needs too much energy and appears to be too 

expensive; separation by membranes is attractive (a principle similar to filtration) but today 

the ‘right’ membranes required are under development and do not yet exist for an industrial 

scale; adsorption onto a solid does not seem very suitable for processing huge volumes of gas. 

In the end, only physical and chemical (or mixed) absorption methods seem suitable for large 
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power plants, but the choice of the ‘best’ solvent is still a very open question. A typical 

absorption process is shown in Figure 1: the gas to be treated is injected at the bottom of the 

absorption column after it is cooled at a first step in a heat exchanger which heats the treated 

gas exiting the column and depending on the process type (e.g. for methanol, NMP and 

Selexol™ processes) in a second step using a refrigeration system. The solvent is injected at 

the top of the absorption column to absorb the CO2 from the gas. The rich solvent is then 

heated by exchanging heat with the lean solvent coming from the desorption column. The 

solvent is regenerated in the desorption column using low-pressure steam condensation in the 

reboiler. 

CO2 separation processes with chemical solvents (alkanolamines) have been industrialized 

since the seventies and licensors have been looking these last few years at specific solvent 

formulations: primary or secondary amines and anti-corrosion additives, tertiary amines with 

promoters or activators and with antifoaming additives. Mixing of chemical solvents, such as 

tertiary amines and a relatively small amount of the primary amine, aims to combine the 

advantages of the two solvents. The target of such mixed chemical solvents is to achieve a 

better absorption capacity, to avoid solvent degradation and to limit corrosion. Physical 

solvents (methanol, propylene carbonate, n-methyl-pyrrolidone (NMP), Dimethylether of 

polyethylene glycol (Selexol™)) are known for their chemical stability and for a non-induced 

corrosion effect. Moreover, their high absorption capacities make them interesting for bulk 

removal. However, methanol needs low operating temperatures because of its higher volatility. 

The high volatility is a disadvantage with regard to the potential solvent losses. Even if the 

process streams are chilled to -30°C, it is necessary, before the transport and the storage of the 
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CO2, to add to the CO2 compression unit a wash water column to capture methanol with water 

from the CO2 stream (Figure 2). For the CO2 transportation, the water content should not 

exceed 20 ppmm to avoid corrosion problems. This threshold value was specified by gas 

transportation experts of Tractebel licensed by EDF for CO2 transportation. For this purpose a 

dehydration system based on tri-ethylene-glycol (TEG) is added in the compression unit 

(Figure 2). For methanol recovery from water a distillation column is then added to the CO2 

capture unit (Figure 3). NMP also requires a refrigeration system to meet relatively low 

temperatures. The refrigeration system uses electricity for the compression of the refrigeration 

media, which means a higher energy penalty for the process than cooling water.  

Mixing the chemical and physical solvents (hybrid solvent) allows an increased CO2 

absorption capacity compared to chemical solvent alone. The solubility of carbon dioxide in 

primary or secondary amines is improved by the addition of NMP, [9]. The solubility of 

carbon dioxide is compared in a mixture of methyldiethanolamine, MDEA and methanol, and 

in methanol, [10]. The physical solvent polarity and permitivity are significant on the 

ionization of the species and on reaction kinetics. However, the kinetics of CO2 absorption by 

physical solvents and amines, in aqueous solution form or not, are still unknown.  

In this work, six processes are evaluated as stand alone units, fed with the same synthesis 

gas (50 kg/s and 24 bar): three physical processes, methanol, n-methyl-pyrrolidone (NMP), 

Selexol, and three chemical processes, a sterically hindered amine 2-amino-2-methyl-1-

propanol (AMP), activated methyldiethanolamine (A-MDEA) and a mixture of 

methyldiethanolamine and monoethanolamine in aqueous solution (MDEA 25 mol % /MEA 5 
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mol %). We considered the electrical and thermal consumption for the CO2 capture. The 

electrical consumption is similar for the six processes, while thermal consumption is rather 

high for chemical processes as can be seen in Figure 4. Then three processes are selected for 

the integration in the global IGCC system. These processes are: methanol, Selexol and 

activated MDEA. The activated MDEA process was integrated into the IGCC and added to the 

comparison study in order to evaluate a chemical process relative to the two physical ones.  

Particular attention was paid to thermodynamic models. A simple equation of state, 

Redlich Kwong Soave, is chosen for the synthesis gas and the flue gas, but the thermodynamic 

model Steamnbs [11] (based on the 1984 NBS/NRC steam table correlation for 

thermodynamic properties and International Association for Properties of Steam IAPS for the 

transport properties) is used for pure water and steam, and the Electrolyte Non Random Two 

Liquid model for the aqueous electrolyte system. The Redlich Kwong Soave equation of state, 

with the Holderbaum and Gmehling mixing rule [12] is chosen for the CO2 capture process. 

The calculation of the activity coefficient model is done by Uniquac for which the interaction 

parameters are fitted on measured data from the literature [13]. The CO2 methanol 

equilibrium, [13] and [14], was studied and modeled to optimize the methanol loss calculation 

in the CO2 stream leaving the desorption column. The simulation of the absorption and 

desorption is performed with a rigorous distillation model. 

Moreover, an optimized case has been studied, which consists in the adjustment of the 

thermodynamic parameters and in improvement of the capture process. Hydrogen co-

absorption in methanol has been studied in order to improve the calculation of the hydrogen 
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losses by absorption in the solvent. The hydrogen/methanol binary interactions were measured 

and the interaction parameters of the thermodynamic model (Uniquac) were calculated. The 

methanol flow rate is slightly reduced when the H2-methanol binary interaction parameter is 

taken into account, leading to a reduced consumption of steam in the thermal regeneration. 

The separation process flow diagram has been improved by the addition of two flash drums in 

order to reduce the CO2 compression power.  

Finally, the solvent flow rate is optimized to perform the CO2 separation with a minimum 

of steam consumption in the thermal regeneration. The solvent regeneration column is 

calculated for each case, as a residual CO2 concentration is determined in the lean solvent in 

order to be compatible with the required CO2 purity in the top of the absorption column. A 

low operating temperature of –30 °C is chosen for the methanol in order to minimize the 

solvent losses and to maximize the carbon dioxide solubility. 

2.2. Integration to IGCC systems 

For a ‘classical’ IGCC power plant, the study was based on the Puertollano [15] scheme 

operating at 27 bars and where 100% of air feeding the air separation unit (ASU) producing 

oxygen and nitrogen is extracted from the gas turbine (full integration). As the coal is injected 

in dry form using pure nitrogen (given by the ASU) as the transportation medium from coal 

grinder to the gasifier, the necessary steam for the gasification is extracted from the combined 

cycle. The CO2 separation unit was integrated downstream from the existing desulphuration 

unit, and after a CO shift conversion unit (Figure 5). The integration of the three selected 
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processes was performed as realistically as possible: avoiding great modifications of the 

existing IGCC, conserving the existing sulphur removal unit, adding a shift conversion in the 

appropriate part of the system to conserve equilibrated H2S/CO2 acid gas for the Claus plant 

(pure sulphur production), fully integrating the combined cycle and the shift conversion (this 

latter produces a smaller amount of Medium Pressure steam than it consumes), bleeding steam 

from the appropriate part of the combined cycle, thermal balancing of the feed water flash 

tank, using saturated steam instead of superheated steam for the solvent regeneration column, 

adjusting thermodynamic parameters of gas/solvent binary interactions (the 

hydrogen/methanol binary interactions are measured, others are taken from published 

experimental data), adding steam to the gas turbine in order to ensure low NOx emission as 

the synthetic gas now has hydrogen as its major component, conserving the design parameters 

of both gas turbine and steam turbine. The design parameters of the gas turbine (the turbine 

inlet temperature and the equivalent weight flow) and of the steam turbine (Stodola criteria) 

are taken into account, and the reduction of the NOx production in the combustion chamber is 

considered. Thus the choice is made to feed the gas turbine of the combined cycle with a 

diluted synthesis gas, having a low heating value similar to that produced without the CO2 

capture. As a consequence, a significant amount of steam is injected into the combustion 

chamber. We focus on the energy consumption of CO2 capture and on the energy penalty of 

optimised retrofit IGCC.  

Concerning the ‘advanced’ IGCC system (Figure 6) which is fed with a mixture of coal 

and water (slurry), the shift conversion is inserted immediately downstream from the 

gasification system as the synthetic gas contains enough water to convert CO into CO2. The 
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coal feed in slurry form enables the gasifier to operate at high pressure, 64 bars which permits 

an economy in the process volume and this high pressure is also favorable to physical 

absorption (Henry law). After a gas treatment where heat is recovered to produce medium and 

low-pressure steams, the CO2 and H2S are captured in the same unit. The acid gas containing 

more than 25% H2S is sent to a Claus unit for sulphur recovery and the CO2 is sent to a 

compression unit. The clean gas is expanded in order to recover electrical power and heated 

before dilution with waste nitrogen coming from the air separation unit. 

We could notice that here (see figure 6) only 50% of the air needed by the ASU is 

extracted from the gas turbine; the remaining 50% is taken from ambient air using an ASU 

dedicated compressor. In fact, the optimum of integration depends on the type of gas turbine 

and specific studies should be performed for each gas turbine considered. Moreover, as the 

gasification is fed with slurry, the synthetic gas contains a relatively high amount of CO2 

compared to dry gasification. Therefore there is no more need of gas saturation with water or 

steam injection in the combustion chamber to meet low level of NOx pollutant, the low 

heating value (LHV) of the diluted syngas being sufficiently low. 

2.3. Performance in terms of energy of CO2 capture 

We have based our evaluation on the IGCC unit of Puertollano [8 ], [15] revaluated under 

ISO conditions (1.013 bar, 15°C, 60% relative humidity) and using an international coal (16 % 

ash, 2 % moisture and 1 % sulfur) instead of the mixture of Puertollano local coal + petroleum 

coke. Under these ‘standard’ conditions, the net power of the plant is 326 MW and the LHV 
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efficiency is 44 %. Several physical and chemical absorption processes have been modeled 

with Aspen Plus™ software to compare their energy performance. However, to avoid too 

many power plant design modifications, the gasification pressure has been kept equal to 27 

bars, although for physical solvents a higher pressure would have been more favorable. That is 

why after an initial selection, three processes were finally adopted and studied in detail: a 

physical absorption process by methanol, another physical absorption process, the Selexol 

process, in which the solvent is based on dimethylether polyethylene glycol (DMPEG), and a 

process using an activated amine-based chemical solvent, methyl-diethanolamine (MDEA). 

In addition to the equipment required for CO2 separation (absorption and desorption 

columns, pumps, heat exchangers, pressure reduction tanks, etc.), we also included in the 

process:  

- a catalytic device for conversion of the CO into CO2 ("shift conversion") upstream of the 

separation in order to increase the CO2 content and thus improve the efficiency of the capture; 

- a refrigeration system for the methanol process to maintain an optimum temperature of  

-30°C in the absorption column and a downstream recovery system to limit losses of the 

absorbent; 

- a device to reduce the water content in the CO2 produced to less than 20 ppmm to prevent 

acid corrosion in the transport pipes; 
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- a 150 bar CO2 compression station linked to a gas cooling system (final temperature < 

40°C) in order to comply with the specifications of the CO2 transport network. 

The CO2 absorption rate in the IGCC integrated methanol process has been varied from 

77 to 88 mol %, with a CO conversion rate fixed at 90 mol %. Figure 7 shows that 85% CO2 

recovery seems to be a good compromise: above this recovery rate, the energy penalty grows 

quite steeply, while below 85% recovery rate the energy penalty decreases almost linearly. In 

fact, 85% was then chosen to compare the three processes integrated into the global IGCC 

system. This takes into account the efficiency of conversion of CO into CO2 (90 %) and that of 

the separation of the CO2 itself (approximately 95%). The efficiency loss shown in Figure 8 is 

calculated by the difference in efficiency of IGCC with and without capture divided by the 

efficiency of IGCC without capture. 

The power output of the gas turbine was maintained nearly constant with the CO2 capture 

operation by adding enough coal flow rate to the gasifier. The auxiliary electric consumption 

takes into account all the electric power needed by pumps and compressors, including the CO2 

inter-cooling compressor which delivers a CO2 flux at 150 bar and 37°C, the solvent recycling 

pump, and the compressor for methanol refrigeration (see Figure 9). As can be seen in Figure 

9, all the solvents have almost similar consumption for the CO2 compression and for the 

standard auxiliaries (such as Air Separation Units and pumps and compressors of the units 

other than the CO2 capture one). However, the chemical solvent shows a higher consumption 

due to the steam bleeding for solvent regeneration. This consumption was calculated by 

disconnecting the steam flux going from the combined cycle to the solvent regeneration 

column and calculating the difference in the power output when this flux is fully integrated. 
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Figure 8 shows the performance of the three solvents integrated into the IGCC, compared 

to the IGCC without capture. The comparison of the different energy balances is presented for 

85% recovery of CO2. The best energy performance is obtained with the methanol process 

although the performance of the other two systems is close. The efficiency of ‘classical’ IGCC 

with CO2 capture using methanol is 33.5% and is therefore 10.5 points lower than that of the 

reference IGCC power plant, which represents a relative reduction of 24 %. The fact that 

physical and chemical processes show similar energy performance was expected as the 

‘classical’ IGCC operates at relatively low pressure (27 bars) which delivers CO2 to the 

capture system at a partial pressure around 8 bars. This is the starting point of chemical 

absorption saturation and the lower limit of physical absorption efficiency. With ‘advanced’ 

IGCC operating at a higher pressure (64 bars instead of 27 bars for ‘classical’ IGCC), the CO2 

capture using a physical solvent like methanol seems to be more interesting than the same 

operation in ‘classical’ IGCC because of high partial pressure of CO2 in the former case. The 

efficiency loss is only 9.3 points (see Table 1) in ‘advanced’ IGCC whereas in ‘classical’ 

IGCC the efficiency drop is above 10 points. However, in the cases without CO2 capture 

‘advanced’ IGCC has lower efficiency than ‘classical’ IGCC. This is because ‘advanced’ 

IGCC uses feedstock in slurry form which should contain a maximum of 64% solids otherwise 

the compression operation to 64 bars could be risky because of increasing viscosity with solid 

contents. Therefore there is a high amount of water to evaporate in the slurry gasifier, which 

leads to higher production of oxygen by the ASU, leading to higher electrical consumption by 

this latter compared to the ASU of ‘classical’ IGCC. This consumption by the ASU in 

‘advanced’ IGCC is greater than the lack of electricity production due to the steam 
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consumption needed in ‘classical’ IGCC. However the benefit of high-pressure gasification 

remains in capital cost of equipment as can be seen in the next section. 

3. The cost of CO2 capture  

The cost of construction of the ‘classical’ IGCC (without capture) was established on the 

basis of the economic data of Puertollano, eliminating the redundant equipment and 

redimensioning the devices on the basis of ISO conditions and the use of an international 

standard coal. The following are included: the costs of supply, erection and commissioning of 

the different devices and ancillary infrastructure (roads, offices, parking area, lighting, etc.) 

and a provision for contingencies and project management charges (owner’s cost).  

The construction costs of the devices associated with CO2 capture were calculated on the 

basis of an investigation entrusted to Technip concerning the processes with methanol and 

activated MDEA, including the system for dehydration of the flow of CO2 produced, the 

methanol recovery system and the 150 bars CO2 compression station. The construction cost of 

the Selexol process was calculated from information supplied by UOP, the licensor for this 

type of process. 

The cost of ‘advanced’ IGCC was taken from a detailed study published by the Green House 

Gas division of the International Energy Agency [16]. 

The investment costs for all cases with and without capture were obtained by adding to the 

construction costs the interest during construction (calculated for a construction period of four 

years), the preproduction costs and a contingency fund. Table 1 shows the relative investment 
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costs, taken ‘classical’ IGCC as reference, for an IGCC power plant with and without a CO
2
 

capture device. We note that the ‘advanced’ IGCC shows lower specific cost relatively to 

‘classical’ IGCC thanks to higher pressure of the process and probably also thanks to bigger 

scale. The transport and storage costs are detailed in reference [16]. 

In the end (see Table 1), the absolute investment cost of a ‘classical’ IGCC power plant 

would increase by 33% if a CO2 capture device were to be included (methanol or MDEA), 

however the specific investment cost is increased by higher value, 53%, due to efficiency 

decrease induced by CO2 capture option. For ‘advanced’ IGCC without capture the specific 

investment cost is lower by 14% than the one of ‘classical’ IGCC without capture, and for 

‘advanced’ IGCC with capture one should add approximately 28% to ‘classical’ IGCC without 

capture and 49% to the case of ‘advanced’ IGCC without capture. 

If we consider only the construction costs, Figure 10 shows that in the case of the process 

with methanol the CO2 separation system represents 15% of the total cost of the equipment 

and that the shift conversion and the CO2 compression each represent 4% of the total, which 

brings the proportion of the cost of capture to 23% of the construction cost of the power plant.  

Recent work [18] compared the estimate of the cost obtained by the authors with estimate 

available in the literature. The different cost estimates were updated and levelled to late 2004 

US$ levels and the technologies studied are coal-fired power plant, IGCC, and GTCC using 

amine scrubbing technology for CO2 capture. Their results show a good agreement of the 

newly developed model with the previous studies. Analysis of the data series provided three 

power plant capacity ranges (2000–1500, 1500–900 and 900–300 MWe) in which the patterns 
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of CO2 avoidance costs become steeper. Our results are in agreement with those provided in 

[18] in particular with regard to the new IGCC. 

4. Conclusion 

The integration of CO2 capture in a complete and detailed IGCC power station simulation 

model has been studied in order to calculate the final efficiency. We chose for this study a 

detailed representation of the process and the related thermodynamic parameters in order to 

represent the processes as realistically as possible. An important aspect of CO2 capture is the 

auxiliary amount of energy required by using such systems. This energy consumption reduces 

the overall efficiency of power generation, typically by 24%, which is a substantial price to 

pay for capturing CO2. One attraction of the methanol process is that the required energy 

consumption is moderate for this operation compared to chemical absorption. There is 

continuous research to reduce energy consumption for the overall process. The use of the new 

technologies such as gasification under high pressure can lead to better performance for 

physical solvents even if the consumption induced by high water content of the slurry leads to 

a higher energy penalty even for the case without CO2 capture. Also using gas turbines 

operating with high turbine inlet temperature and therefore presenting a higher efficiency 

(60% in a combined cycle instead of 53% used in ‘classical’ IGCC) will increase the power 

production and the electric net efficiency, which is a complimentary way to reduce fossil fuel 

consumption and therefore the CO2 emission. 

This investigation into the overall cost per kWh generated by a coal-fired IGCC power plant 

with CO2 capture shows that the integration of the CO2 capture system must be optimized 
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carefully (choice of the absorbent, operating pressure, etc.) to limit the loss of efficiency, 

which has a severe impact on the generating cost per kWh. 

Having stated these reservations, the results show that the basic generating cost from 

‘classical’ IGCC with capture would increase by 39% relatively to ‘classical’ IGCC without 

capture. The incremental production cost induced by CO2 capture for ‘advanced’ IGCC is only 

28% which leads to a relatively lower cost per tonne of CO2 avoided which is 82% lower in 

the case of ‘advanced’ IGCC than in ‘classical’ IGCC.  

Even though the incremental costs are substantial, they do not appear to constitute in 

themselves an obstacle to the development of the capture / storage of CO2 if financial 

mechanisms are established to combat global warming. For example, in 1996 Statoil created a 

storage facility in the Sleipner field in order to avoid a Norwegian tax of about $ 50 / tonne on 

offshore releases of CO2 [19]. 

Absolute values of cost estimate are not given here and those given elsewhere [17] should be 

viewed with caution as they are made to an accuracy of ±30%. Moreover, metal market and 

contract prices have been rising for two years and this will probably lead to a much higher cost 

for the power plant if based on 2007euro values but will probably not lead to significant 

change in differential comparisons between the different options. In the other hand, these 

values could also fall in the medium / long term as a function of technical progress on process 

efficiency and capture technologies. 

 



ACCEPTED MANUSCRIPT 
 

� � �20 

Acknowledgments 

The authors wish to thank the ADEME ‘Agence de l’Environnement et de la Maîtrise de 

l’Energie’ the French public environmental agency 



ACCEPTED MANUSCRIPT 
 

� � �21 

References 

[1] C. Philibert, J. Pershing, Beyond Kyoto: energy dynamics and climate stabilisation, IEA 

(International Energy Agency) Publications, 9, rue de la Fédération, 75739 Paris Cedex 15, 

France (2002). 

[2] P. Chiesa, S. Consonni, Shift reactors and physical absorption for Low-CO2 emission 

IGCCs, Journal of Engineering for Gas Turbines and Power 121 (2) (1999) 295-305. 

[3] R. Pruschek, G. Oeljeklaus, V. Brand, G. Haupt, G. Zimmermann, J.S. Ribberink, 

Combined cycle power plant with integrated coal gasification, CO shift and CO2 washing, 

Energy Conversion and Management 36 (6-9) (1995) 797-800. 

[4] P. Chiesa, G. Lozza, CO2 emission abatement in IGCC power plants by semi closed 

cycles: Part A-with oxygen-blown combustion, Journal of Engineering for Gas Turbines and 

Power 121(4) (1999) 635–641. 

[5] P. Chiesa, G. Lozza, CO2 emissions abatement in IGCC power plants : Part B with air 

blown combustion and CO2 physical absorption, Journal of Engineering for Gas Turbines and 

Power 121(4) (1999) 642-648. 

[6] G. Ordorica-Garcia, P. Douglas, E. Croiset, L. Zheng, Technoeconomic evaluation of 

IGCC power plants for CO2 avoidance, Energy Conversion and Management 47 (2006) 2250–

2259. 

[7] R. C. Sekar, J. E. Parsons, H. J. Herzog, H. D. Jacoby, Future carbon regulations and 

current investments in alternative coal-fired power plant technologies, Energy Policy 35 

(2007) 1064–1074. 

[8] M. Aineto , A. Acosta, J. Ma. Rincon , M. Romero, Thermal expansion of slag and fly ash 



ACCEPTED MANUSCRIPT 
 

� � �22 

from coal gasification in IGCC power plant, Fuel 85 (2006) 2352–2358. 

[9] F. Murietta-Guevara, E. Rebolledo-Libreros, A. Trejo, Solubility of carbon dioxide in 

binary mixtures of N-Methyl- Pyrrolidone with alkanolamines, Journal of  Chemical 

Engineering Data 37 (1992) 4-7. 

[10] A. Henni, A. Mather, Solubility of carbon dioxide in methyldiethanolamine methanol and 

water, Journal of  Chemical Engineering Data 40 (1995) 493-495. 

[11] C. Descamps, Etude de la captation du CO2 par absorption physique dans les systèmes de 

production d’électricité basés sur la gazéification du charbon intégrée à un cycle combiné, 

PhD thesis, Ecole des Mines, Paris, 2004. 

[12] T. Holderbaum, J. Gmehling, PSRK: A contribution equation of state based on unifac, 

Fluid Phase Equilibria 70 (1991) 251-265. 

[13] J. H. Hong, R. Kobayashi, Vapor liquid equilibrium studies for the carbon dioxide-

methanol system, Fluid Phase Equilibria 41 (1988) 269-276. 

[14] K. Suzuki, H. Sue, M. Itou, R. Smith, H. Inomata, K. Arai, S. Saito, Isothermal vapor-

liquid equilibrium data for binary systems at high pressures, Journal of  Chemical Engineering 

Data 35 (1990) 63-66. 

[15] O. Font, X. Querol , F. Plana , P. Coca, S. Burgos , F. Garcıa-Pena, Condensing species 

from flue gas in Puertollano gasification power plant, Spain, Fuel 85 (2006) 2229–2242. 

[16] IEA (International Energy Agency)-GHG, Potential improvement in gasification 

combined cycle power generation with CO2 capture, report number PH4/19, May 2003. 

[17] P. Jaud, R. Gros-Bonnivard, M. Kanniche, E. Amantini, T. Manai, C. Bouallou, C. 

Descamps, Technico-economic feasibility study of CO2 capture, transport and geo-



ACCEPTED MANUSCRIPT 
 

� � �23 

sequestration: a case study for France, Proceedings of the Seventh Greenhouse Gas Control 

Technologies (GHGT-7) Conference, Vancouver, Canada. International Energy Association 

(IEA), Greenhouse Gas R&D Programme, 2004. 

[18] J. Klemeš, I. Bulatov, T. Cockerill, Techno-economic modelling and cost functions of 

CO2 capture processes ,�Computers & Chemical Engineering, In Press, Available online 20 

July 2006. 

[19] B. McKee, Solutions for the 21st century: Zero emissions technologies for fossil fuels, 

IEA (International Energy Agency) Publications, Paris, France, 2002. 



ACCEPTED MANUSCRIPT 
 

� � �24 

Figure captions 

Fig. 1. : Typical absorption process 

Fig. 2. : Compression unit including methanol recovery and TEG dehydration system 

Fig. 3. : Methanol process for CO2 capture including distillation column for methanol recovery 

Fig. 4. : Reboiler duty for six solvents 

Fig. 5. : ‘Classical’ dry coal IGCC system with CO2 capture 

Fig. 6. : ‘Advanced’ coal IGCC system with CO2 capture 

Fig. 7. : Efficiency loss versus capture rate 

Fig. 8. : ‘Classical’ IGCC net efficiency with and w/o capture 

Fig. 9. : Auxiliaries consumption relative to the gross power plant output 

Fig. 10. : Breakdown of the construction costs of the IGCC with capture by methanol  
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Fig. 1. : Typical absorption process 



ACCEPTED MANUSCRIPT 
 

� � �26 

 

CO2  @ 150 bar ; 37°C
to

transport

gas
to
atmosphere

CO2
coming
from capture unit

Condensate (water + methanol)
to distillation column

water wash
column

water

Tri-
Ethylene-

Glycol
TEG

dehydration
column

TEG
regeneration
column

12 bar 28 bar 63 bar

150 bar

 

Fig. 2. : Compression unit including methanol recovery and TEG dehydration system 
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Fig. 3. : Methanol process for CO2 capture including distillation column for methanol recovery 
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Fig. 4. : Reboiler duty for six solvents 
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Fig. 5. : ‘Classical’ dry coal IGCC system with CO2 capture 
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Fig. 6. : ‘Advanced’ coal IGCC system with CO2 capture 
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Fig. 7. : Efficiency loss versus capture rate 
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Fig. 8. : ‘Classical’ IGCC net efficiency with and w/o capture 
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Fig. 9. : Auxiliaries consumption relative to the gross power plant output 
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Fig. 10. : Breakdown of the construction costs of the IGCC with capture by methanol 
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Table 1: Comparison between ‘classical’ and ‘advanced’ IGCC with and without capture (methanol process for 

85% of CO2 capture – 8% interest rate for economic evaluation) 

 ‘Classical’ IGCC 

without capture 

‘Classical’ 

IGCC with 

capture 

‘Advanced’ 

IGCC without 

capture 

‘Advanced’ 

IGCC with 

capture 

Input thermal power (MWth) 98 112 349 378 

Gross power output (MWe) 353 347 1223 1184 

Net power output (MWe) 326 285 1057 893 

Net efficiency (%) 43.9 33.5 42.3 33 

Emitted CO2 (kg/kWh) 0.735 0.141 0.777 0.149 

Avoided CO2 (kg/kWh)  0.594  0.586 

Relative equipment cost * 100 133 280 351 

Relative specific investment cost* 100 153 86 128 

Relative production cost* 100 139 96 128 

Relative cost of avoided CO2*  100  82 

* all the costs are expressed relatively to ‘classical’ IGCC without capture which is taken as reference 

 
 
 


