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ABSTRACT. We investigates/,, conformal Toda theory with maximally symmetric boundaries
There are two types of maximally symmetric boundary coadgj due to the existence of an order
two automorphism of thél/,, >3 algebra. In one of the two cases, we find that there exist Desra
of all possible dimensiong < d < n — 1, which correspond to partly degenerate representations
of the W, algebra. We perform classical and conformal bootstrapyaaalof such D-branes, and
relate these two approaches by using the semi-classiddl digymptotic limit. In particular we
determine the bulk one-point functions. We observe rentdyksevere divergences in the annulus
partition functions, and attribute their origin to the egisce of infinite multiplicities in the fusion of
representations of th&,, >3 algebra. We also comment on the issue of the existence ofradboy
action, using the calculus of constrained functional fqoram&l derive the generating function of the
Backlund transformation fogf3 Toda classical mechanics, using the minisuperspace lintiteo
bulk one-point function.
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1. Introduction

There are good reasons for studyitg conformal Toda theories, as in principle these non-rationa
two-dimensional conformal field theories have all the usyllications of two-dimensional CFTs,
applications to quantum gravity, string theory and critigaenomena. (See [1] for more details
and references.) In particular, the simplest and wellistiidase of Liouville theoryr{ = 2) is an
essential tool in the study of non-critical string theoa@s! two-dimensional quantum gravity. And
the study of Liouville theory with a boundary plays an impmittrole in the understanding of non-
critical open strings and of the corresponding D-branedchviaccount for the non-perturbative
effects in non-critical string theory. The other casesX 3) are directly related to the so-called
W -strings andiV/-gravity theories, whose names come from ifig symmetry algebra of/,
conformal Toda theory. And the non-perturbative effectd/irstring theory are expected to be due
to D-branes, which can be technically described using cardbToda theory with a boundary. In
addition to such applications, another motivation for stigating the higher Toda theories is their
beautiful, intricate and challenging nature, which sugg#sat their study can reveal qualitatively
new structures and phenomena in two-dimensional confdiigidltheory.

The W, algebra, which is an extension of the Virasoro algebra, vigsodered [2] [3] soon
after the seminal work of Belavin, Polyakov and Zamolodotilon two-dimensional CFTs [4],
and rational CFTs with¥,, symmetries were then constructed [5] [3]. The study@fconformal
Toda theories, which are non-rational CFTs with, symmetries, is much more recent [1] [6].
The case of Liouville theory had to be studied first, aig5 Toda theory is considerably more
complicated than Liouville theory. The reasons for thegeaexomplications can be found in the
properties of théV,, algebras, as we will demonstrate.

Our most powerful tool in the study of non-rational CFTs is ttonformal bootstrap method,
which purposes to determine all correlation functions otheespectrum of the theory is given,
and thel¥,, symmetry of the theory is assumed. So far this has been athmdy in the case of
Liouville theory; however this is in principle doable alsos/, >3 Toda theories. The conformal
bootstrap equations for say the three-point functions astlyvoverdetermined, the problem is to
find closed subsystems of manageable numbers of equatiotige present article we will achieve
this in the case of the one-point function in the presence lwundary. Introducing a boundary
in the two-dimensional space on which our field theory livezaurse makes the theory more
complicated, but the advantage is that simple correlatiorctions like the one point function,
which has to vanish in the absence of a boundary, now becamredting observables.

In the case of CFTs with boundaries, the fundamental relatietween the properties of the
symmetry algebra and the physical observables of the thweery discovered by Cardy [7], and we
will refer to them as “Cardy’s ideas”. First of all, maximalymmetric D-branes are related to the
representations of the symmetry algebra which appear ibahespectrum. Then, the spectrum
of open strings with their ends on two D-branes is given byftisgon product of the two corre-
sponding representations. We will find that these propemiestly hold ins¢,, conformal Toda
theory, in the cases where we can determine the relevanttebj€here will be restrictions, some
of which were already observed in the case of Liouville tigedhere exist not only continuous
D-branes associated to the continuous representatiorehwlbi appear in the bulk spectrum, but
also discrete D-branes associated to degenerate re@sestwhich do not.



So we will begin with a study of¥,, algebras and their representations (Section 2), where
we will emphasize the features which will play an importamierin s¢,, Toda theory: the prop-
erties of the characters, the existence of an o2dmutomorphism, the existence of infinite fusion
multiplicities, the existence of a hierarchy of partly degrate representations. We hope that this
review will be enough for understanding the rest of the Ertiout we also recommend the reviews
[8][9] on W,, algebras and [10] on conformal field theory. Then, we wilvedhe classical Toda
equations on the disc (Section 3). The resulting picturé@fmoduli spaces of D-branes will turn
out to be qualitatively correct, as will be confirmed by thefoomal bootstrap analysis (Section 4).
There, the analysis of the differential equations obeyeddrtain two-point functions will result in
explicit expressions for the one-point functions, whiclaretterize how D-branes couple to bulk
operators. The calculation of annulus partition functiailsalso provide some information on the
boundary sector. The relation between the classical antstoap analyses will be made precise
thanks to the light asymptotic limit (Section 5), which vélko allow us to predict some correlation
functions which are at present out of reach of the bootstregyais. The conclusion (Section 6)
will summarize the main results and remaining puzzles. Tdoene two Appendices, which are de-
voted to interesting but peripheral topics: Appendix A te thinisuperspace limit, which will turn
out to lead to the determination of the generating functibthe Backlund transformation which
relatess/s Toda classical mechanics to a free system, and Appendix Betexistence of bound-
ary actions, which we will be able to predict or rule out basadhe properties of the boundary
conditions.

2. W, algebrasand their representations

The symmetry algebra of the,, conformal Toda theory is the so-call&d, algebra. The Virasoro
algebra coincides with th#/, algebra, and is a subalgebra of #&,.- algebra, so that/,, con-
formal Toda theory indeed has conformal symmetry. The spacof the theory decomposes into
representations of thié,, algebra, which we will therefore study.

The infinite-dimensionalV,, algebra is related to the finite-dimensioré}, algebra in a num-
ber of ways. For example, the Virasoro algebra can be olutdnoen the affine extensiosls of
the s/ algebra by a quantum Hamiltonian reduction of the Drinfélakolov type. ThdV,, al-
gebra can similarly be obtained frog/ﬂz. Moreover, a fully degenerate representatiorii¢f can
be associated to each pair of two highest-weight represemsaof s/,,. This is our motivation
for reviewing the representations of,, (more on this in [10]), as an introduction to the study of
representations dt,,.

2.1 Representation theory of s/, Liealgebras

Representations af,, are parametrized by vectors in an- 1-dimensional space spanned by the
simple rootse; - - - e, Whose scalar products; ; = (e;, e;) form the Cartan matrix, whose only
nonzero entries arf;; = 2, K; ;1 = K; ;41 = —1. The%n(n — 1) positive roots are the sums
of any numbers of consecutive simple roots, in $figcase they ar¢e > 0} = {e1,eq2,e1 + e2}.
The fundamental weights are the vectofsuch that(w;, e;) = é;;. The Weyl vector is

p=13", @1

e>0



andp® = (p,p) = & (n — 1)n(n + 1). In thes¢s case we have

2 1
w1 = 5€1+ 3€2 e1 = 2wy — wa e 9 _1
, , = (- , {e > 0} ={e1,eo,p} . 2.2
{w2=§€1+§62 {€2=2wQ—w1 (572) b=tenenph.  (22)

The Weyl group, a finite group, acts on the root space whilsgsténg the scalar product. In the
case ofs/, it is aZs group whose nontrivial element is the reflectiqm) = —v. In the case of/;
the Weyl group has six elemen{ts, r, s, rs, sr,rsr = srs} and can be identified with the group of
permutations of the three elemefis } = {w;,ws — w1, —wy} with the action

‘ 1 ‘ r ‘ S ‘ rSs ‘ sr ‘ ST ‘
e1 p —€1 —-p €2 —€2
€2 —€3 P €1 —p —e1
1% €1 €9 —E€9 —e€1 —pP (23)
w1 w1 w9y — W1 —Ww9 w9y — W1 —Ww9
w9y — W1 —Ww9 w1 w1 —Ww9 w9y — W1
—Ww9 w9y — W1 —Ww9 w9y — W1 w1 w1

In the generak/,, case, the Weyl group is generated by the 1 reflectionss; such thats;(e;) =
e; — Kjie;. The signature of an element of the group is the functisach thai(s;) = —1 and
e(ww') = e(w)e(w').

To an integral dominant weight, that is a vecfor= ). \w; € ). Nw;, we can associate
a finite-dimensional irreducible representatiBn of s¢,,. The vector is then called its highest
weight. A finite number of weightd € Hg such thatQ — h € ), Ne; are associated to the
representation. The weights are the eigenvalues of theatens of the Cartan subalgebra when
acting on a basis of the representation, so that the numbeeights, taking into account their
possible integer multiplicities, is the dimension of theresentation. For example, the fundamental
representation of¢,, has dimensiom and weightsH,,, = {hy = w; — Zle eilk=0---n—1}.
The adjoint representation ef3 has dimensio and weightsH, = {+e;, £es, £p,2 - 0} where
the weight0 appears with multiplicity2. Multiplicities higher than one appear only in the cases
anzgg.

The charactegq(p) of a representation is defined as a function of a vectoy

xap)= > e (2.4)

heHq

Given the highest weighf® of a representation, the other weights can be found thantketdveyl
formula

S wew e(w)elptw(p)

— 25
XQ(p) Zwew e(w)e(va(p)) ) ( )

whose denominator can be rewritten as
Z e(w)ePr®) = H(eé(em) —em2len)y (2.6)

weWw e>0



Characters behave nicely under tensor products of repedss, thanks to the property

Ro® Ry =Y mi R = xa@)xo®) =Y mdagxe (). 2.7)
Q Q
The hyperplane$(e, p) = 0}.~( divide thep-space into:! Weyl chambers, which are fundamental
domains for the action of the Weyl group.

Forn > 3, the algebra,, has an order two automorphism, called the Dynkin diagraro-aut
morphism, which mapg&, to Rq+, where the conjugatioft — Q* is the linear map characterized
by e = e,—;. This map is trivial in the case a¥,. We will see that this automorphism induces an
automorphism of thél/,, >3 algebra.

2.2 Representation theory of W, algebras

The algebrd¥,, is generated by, — 1 operatorsiV @, W) ... w ™ whereW® = T is the
stress-energy tensor. (See the review [8].) Let us exjplivitite Zamolodchikov'sWs algebra,
where for simplicity we denot&/(3) = W':

T(:)T(w) = C_/i)4 + (2T(Z’};2 aT( ) ~+0(1), 2.8)
T()W (w) = (iVK(Z)Q + ( Z‘g 0(1) | (2.9)
W) = - c_/f’ﬂ) + (34 - O (w ;3 + _lw)Q [ZBA(w) + 1—3062T(w)}

1

— [ﬁaA(w) + 1—158317(10)} +0(1), (2.10)

whereA(w) = (TT)(w) — 1%82T(w) andg = 22+5c The algebra depends on a central chatge
which we parametrize in terms of a real numbasc = (n — 1)(1 + n(n + 1)(b+ b~1)2). The
generators of the algebra can be decomposed into an@sasW(s (2) = D nez Wé )= 5
there is a special notatiah, for the modes of'(z) = >, .5 Lnz"""2.

A representation of th&/,, algebra can be encoded in a vertex operm()x) and the action

of the algebra is encoded in the operator proddict) (z)V (w) = 3., E’V" ‘)/(“’). A standard
assumption in conformal field theory is that the spectrum ssim of highest-weight representa-
tions, generated by primary operators such WéﬁOV(w) =0 andWés)V(w) = ¢®V(w). The
product of a generatdi’ () with a primary operator therefore contains a finite numbesindular

terms. In thelV3 case a primary operatdf(w) obeys

T(2)V(w) = (5))2 _( ) L ony, (2.11)
W (2)V(w) = (33 T‘lvuf;‘;) - W;Q_Vijw) +0(1), (2.12)

where we denoté\ = ¢(? the conformal dimension and= ¢® the W-charge, and we use the

identification of L_; with the generator of translatioris which is another standard assumption in
conformal field theory. All operators of interest are assdineebe linear combinations of opera-

tors of the typeDV (w) = (H W (s1) )V (w) whereV (w) is primary andn; > 0,N > 0. A



descendent operator of level> 0 is a linear combination of such operators wih n; = L. A
descendent which is itself primary is called a null vector.

A primary operator is in principle characterized by the eepondingWés) eigenvalueg;®),
but it is convenient to introduce a redundant parametomatf these eigenvalues and to label
operators by aiin — 1)-dimensional vectow called the momentum,

o= Zaiwi sothat «a; = (e;, ) . (2.13)
i

The corresponding conformal dimension is supposed to be
0 = Ao = (0,20~ 0), (2.14)
where we introduce the vector
Q=0b+b"p. (2.15)

In the case of the algebi#&s we also have

¢® =g, = %(al — a2)(201 + g — 3b—3b" 1) (a1 + 20 — 3b—3b"1) . (2.16)
In general,q'*) is Weyl-invariant and homogeneous of degreas a function ofx — Q. The
representations which appear in the spectrun¥gtonformal Toda theory have momenta

a € Q+i(Rwy + Rws) , (2.17)

so thatA, andg, are real numbers. We will caR,, the representation with momentum and
V. (z) the corresponding primary vertex operator. Under a Weypktiaimation of the momentum,
Va(z) is supposed to behave as

Va(2) = Ry(a) VQ—i—w(a—Q)(Z) ) (2.18)

for some reflection coefficient®,, («), and the representatioR,, is unchanged, nameli, =
Rgtw(a—q)- On the other hand, the conjugationcotioes not leave the charges invariant, but they

transform according tq&i) = (—1)Sq((f), becausex* is related t2Q) — o by a Weyl transforma-
tion. The conjugation oft therefore corresponds to the automorphigif®) — (—1)*W ) of the
algebralV,,. (This assumes that the charg&s$*=?) are defined so that they are primary operators
of dimensionss with respect tdl'(z); other definitions are in principle possible.)

A representation is called degenerate if it has one or mollevaators. Let us consider a
representation with momentum If there is a (positive or negative) roetand two strictly positive
integersr ands such that

(e,a —Q) = —rb—sb~ !, (2.19)

then our representation has a null vector at levelwhich is itself the highest-weight vector of a
representation with momentusd = « + rbe (or equivalentlye” = o + sb~'e, which is related to
o’ by a Weyl transformation). For any momentuniet us introduce the set

E(a) = {roots e such that (e, — Q) € —bN* — b~IN*} . (2.20)



By applying a Weyl tranformation ta: we can always assume thA{«) contains only positive
roots. A representatio®, is said to be multiply degenerate |ifZ(«))|] > 2, and fully degen-
erate if E(o) = {e > 0} so that|E(a)| = 3n(n — 1). The momentunu of a fully degen-
erate representation can be written in terms of a (fair, Q) of integral dominant weights of
sl, asa = —bQ+t — b~1Q~. In the case of thél; algebra, we will therefore distinguish three
types of degenerate representations: simply degenenattesentations wittE(a) = {e; }, dou-
bly degenerate representations wiitia) = {ey, p}, and fully degenerate representations with
E(a) = {e1,e2,p}.

The character of a representatifty, of the W, algebra is defined by

Ea(T) = Trpg, e2mr(lo=3;) (2.21)
This is easily computed in the case of a continuous repratent with the result

efz'7r7—(chu)2

_ 2.22
77(62z7r7)n71 ’ ( )

a(T) =
wheren is the Dedekind eta function. Let us now consider the casdufyadegenerate represen-
tation R_,o+_,-10-, WhereQ* are integral dominant weights. The corresponding charécte
sum over the Weyl group [11],

> werw €(w) e—imT(b(p+QT )+ Tw(p+07))?

Epo+—p-10-(7) = (e2imT)yn—1 (2.23)

Now we observe that this degenerate character can be eggrigsterms of the charactexg,= of
the two representations ef,, of highest weight$)*,

2imw 1
Vn _ e T 2P
§pat—p10-(T) = o d"Vp — T

XH[xQﬂzwbﬂp) [L(e2e2m) —emaleam™iny | (2.24)
+ e>0

2

where the integration measure is definedi@sp = ]_[?;11 dp; with p = . p;e;, and we used
the Weyl formula (2.5).

Notice that thd¥,, characterg, (7) keep track of the conformal dimensions(eigenvalues)
of states, and not of their chargg$>2). So ifn > 2 they contain much less information than the
st, charactersyq(p), which depend on a vectgrand not on a single numbet This will make
the modular bootstrap analysis less powerful in theorigh Wi,,~.o symmetries than in theories
with just the Virasoro symmetry.

2.3 Fusion multiplicity

We will now comment on the fusion product @f,, representations. The fusion product is a gener-
alisation to vertex operator algebras of the tensor prodiuapresentations of Lie algebras. So we
first comment on the tensor product «ff, representations. We consider generic representations,
which are not necessarily finite-dimensional, and even dmacessarily have a highest weight.



The algebras/,, can be represented in terms of differential operators gaiimfunctions of
%n(n — 1) “isospin” variables. (This is also the number of the craatiperators, the operators
which generate the highest-weight representations frain liighest-weight states.) For example,
sty is represented by the operatdis = 2, D? = 3.2 — j, DT = 222 — 2jx acting on
functions of one isospin variable, where the numbej is the spin of the representation. States
in a representation of?,, with spinj can be represented as functiob&(z), where the spiny is a
vector withn — 1 components, and the isospiris a vector With%n(n — 1) components. We wish
to analyse the possible appearances of a represenfafian the tensor produck;, ® R;,. Such
an appearance implies the existence of a nonzero invaroninR;, ® R;, ® R, whereR?,
is the contragredient representation. In the representafis/,, in terms of differential operators,
an invariant vector in?;, ® R;, ® Rj, is represented as a functidn(z;, zo, z3) of three isospin
vectors, subject todim s/,,) = n? — 1 equations. If the representations are generic and no more

assumptions are made, solutioh§ey, x2, x3) come with the number of parameters
n(n—1)

dy = 372

If n > 2thend, > 0 which implies that?;, can appear an infinite number of timesitn, ® R;,.

If however one of the three representatidRlg, R;, or R, is not generic, then extra equations

on ®(x1, z9, z3) can follow, and the number of parameters may become low¢helhumber of

parameters is zero, as happens i 2 or one of the involved representations has a highest weight

state, then multiplicities must be finite.

A similar counting of variables, and similar conclusionsfasion multiplicities, hold in the
case of the fusion product &¥,, representations. This is a consequence of the conformall War
identities for the three-point correlation functio(ﬁ[i’:1 Va, (zl-)> where the momenta; label 1V,
representations; such correlation functions are anabgwthe invariant® (1, z2, x3) of our s¢,,
reasoning (although the positiopsare not analogous to the isospiry3. The fusion multiplicity is
the minimum number of correlation functions of descendqinewraftors<]_[f:1 DZ-V%,(ZZ-)> in terms
of which all other such correlation functions can be lingapressed using the Ward identities.
Such identities are obtained by inserting the idenﬁ)tcygps(z)W“)(z) = 0 in a correlation func-
tion, Where5£OO denotes the integration along a contour which enclosedealpbsitionsz; of the
operatorsp,(z) is meromorphic with possible poles at= z;, and at infinity|p,(2)| < |z|*72.

(We assuméV (®)(z) ~ 225, which follows from thel¥’ (*)-symmetry of the vacuum.) Local

Z—00

Ward identities are obtained for functiops(z) which do have poles; the cagg(z) = (z — z;)~*
(with & € N) yields the expression of a correlation function invoIvW@f)skaai(zi) in terms of

correlation functions with descendents of the tWésgVai(zi) with1 < p < s—1, as can be seen
from the operator produdd’ ) (z)V,, (w). (See eq. (2.12) for the case= 3.) In the theory with
W,, symmetry there arén(n — 1) modes of the typéstp) with2 <s<n,1<p<s-—1,for
instance the three modés 1, W_1, W_5 in the caser = 3, and these modes are analogous to the
isospin variableg: of the s¢,, algebra. Global Ward identities are obtained for holomiaritinc-
tions,(z), that is polynomials of degrees at mast— 2. The number of global Ward identities is
therefored " ,(2s — 1) = n? — 1.

Thus, the number of modes of th&(*) symmetry generators which cannot be eliminated
from the correlation functions of the typ(e}—[?zl D;V,, (zi)> using the Ward identities i$, (2.25).

—(n*-1)= %(n—l)(n—Q). (2.25)



For exampleds = 1 means that in a theory witid’s symmetry all three-point functions can be
expressed in terms of the correlation functiqiis,, (z1)Va, (22)(W-1)*Va,(23)) whereV,, are
primary operators and € N. (Instead ofi¥_; we may have writteiV_5, but notZ._,, because
the three global Ward identities froffi(z) close among themselves and can be solved.) Notice
that a similar reasoning can be used to predict the nurBbafrindependent differential equations
obeyed by arV-point function of primary operators, some of which may bgaterate and involve
a total numbet#” of null vectors. We find® = n? —4 — N(@ —1)+V, where we subtract the
three equations from global conformal symmetry, as welhascontribution of thd._; generator
as it is identified with a derivative. Such a counting of diffatial equations has previously been
used in [12].

To conclude, infinite fusion multiplicities must appear litlaeories with aV,, >3 symmetry as
soon as continuous representations are involved, whidlba/the case in conformal Toda theories.

2.4 Lagrangian formulation

Conformals/,, Toda theory on a Riemann surface without boundary has a hgigia formulation.
The dynamical fields of the theory form a vector with- 1 components

$=> ¢iei  sothat ¢ = (wi,0), (2.26)

and the Lagrangian is

1 B n—1 )
_ = (€i,9)
Ln = 5—(0¢,0) + u; eherd) (2.27)
1=

wherey is the bulk cosmological constant, and the derivatives wadpect to the complex coor-
dinatesz, z are related to derivatives with respect to the real cootdga = Rz, y = Sz by
0 = 5(& —i%), 0 = 5(Z& +if). After the rescalings — b~'¢, the classical equations of
motion are

00¢; = wb?pele?) | (2.28)

The Lagrangian formulation permits the calculation of aerparticular correlation functions, and
of general correlation functions in certain limits, but mbgeneral correlation function [13, 1]. For
our purposes, we will only make use of the classical equatafmotion, and not of functional
integrals involving the actio§ = | L,,. We will actually solve the equations of motion in Section
3.

The W,, symmetry ofs¢,, Toda theory manifests itself by the existence of chaig&d =
T,W® ... W™ which are classically conserved in the sense 8&t(*) = 0. In the case of
Liouville theory, this is

T =—(0¢)* + 9% . (2.29)

In the case of/; Toda theory W ®) = W has the ambiguity¥ — W — £¢9T for ¢ an arbitrary
number, which we lift by assumin®/ (¢*) = —W(¢), where¢p — ¢* is the Dynkin diagram



automorphisnyp, < ¢». We then have

T = —5(0¢,00) + (p, 0°¢) = —0¢T — 03 + 0¢10¢y + 1 + ¢, (2.30)
W = (0%¢s — 20°$20¢s — 9*$2001 + 20630¢1) — (¢1 <> ¢2) , (2.31)

where we neglect a possible normalization factor in the digfimof /7. Such classically conserved
charges can alternatively be found as classical limits@ttrresponding quantum symmetry gen-
erators of thd¥V; algebra [5]. We use the same notation for the classical ehang the quantum
generator; the context should clarify which one we are dgaliith.

The momentumy, which we used as a label fé#,, representations (see (2.14,2.16)), has
a simple interpretation in the Lagrangian formulation. N&ynthe classical counterpart of the
quantum operatov,,(z) is e(®¢(=)),

3. Solutions of the Toda equations on a disc

The classicab/,, Toda equations on the Riemann sphere have been solved js§bddiso [15]. We
will now look for solutions on the disc, which are solutionsthe sphere respecting certain bound-
ary conditions. We will only consider maximally symmetrioundary conditions, that is conditions
of the typeW ®) = f({W()}) wheref is an automorphism of th#,, algebra. The known au-
tomorphisms are the identity, and in th,>3 algebra the automorphisi¥’ (*) — (—1)W ).
There will therefore be two possible types of boundary coma if » > 3, and only one ifr = 2.
We will study the cases of thB; and W3 algebras. The sphere will be identified with the com-
plex plane and parametrized by the coordinates and the disc will be identified with the upper
half-plane{Sz > 0}.

In this Section, we will study the solutions of the Toda eturat and in particular their in-
variants, which we call the boundary parameters. The quresthether our boundary conditions
follow from boundary actions is postponed to Appendix B. W# wonsider the classical Toda
equations (2.28) with the value

1

— (3.1)

B==

for the cosmological constant. The choice of a negativeevidy: will allow real, globally defined,
regular solutions to exist.
3.1 Caseof Liouville theory

In order to solve the Liouville equatio®¢ = —e?? together with the boundary conditidhn = T
whereT = —(9¢)? + 8¢, we introduce the variabl& = e~ which is such thal’ = — %X and
the Liouville equation amounts t,(X) = X90X — 0X0X = 1. The solutions of this equation
are of the form

2
X = Zai(z)bi(é) , Wrlay,as] = Wrlby, bo] =1, (3.2)
i=1
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whereWr[ay, as] = a1al, — asa) is the Wronskian. (By settingVr|ay, as] = Wr[by,bs] = 1 we
have eliminated the ambiguity — £a;, b; — £ 1b;.) The stress-energy tensbrassociated with

such a solution i§" = — 2L = —22. The condition]’ = T'is solved by assuming
2
a;(z) = ZNijbj(z) , detN=1. (3.3)
j=1

The condition thaf\ be real and positive will now be solved by assuming tifaj = b(z) is real,
and that the constant matriX is Hermitian and positive. To summarize, our solutions are

2
X =) bi(2)Nijbj(2) , Wrlby,bo] =1, det N =1, N >0. (3.4)
ij=1

There remain some ambiguities in the solutions, becauserelit choices forV;;, b;(z) can lead
to the sameX. In particular, the following action o$ L(2, R) leavesX invariant:

b— A1
A L(2,R 35
{N—>ATNA , AeSL(2,R), (3.5)

whereA” denotes the transpose of the matkix
Let us define a boundary parametgrassociated to a given solution. We assume this parame-
ter to be a-independent function of the solutioXi. Independence fromimplies being a function
of the matrix/V. Being a function ofX implies being invariant under the action (3.5)%£(2, R).
The only such invariant function a¥ is

1
)\LE2_iTrNP , P=(9h) . (3.6)

Notice that the matrix? obeysVA € SL(2,R), APAT = P. The role of\; as a boundary
parameter can be demonstrated by rewriting the boundaxjitocmmin terms of the fieldY = e,
At the boundary: = z we find:

(@—0)X =2\, , (0—09)p=—2ire?. (3.7)

This implies that the boundary conditions could be derivgddiding a boundary ternf Lgdy to
the action, with

LA — Ape? (3.8)

and ), would be the boundary cosmological constant.

We conclude this Subsection with a remark. Given the saiubibthe Liouville equation, it
is easy to write the Backlund transformation from Liouwwitheory to a free field theory. The free
field can be defined ag = — log % where(uq, us) and(vq, v2) are constant vectors, and
the stress-energy tensors dre- —(é¢)2 + 0%, T = —(0v)% — 0%). The fieldy obeys the free
equations of motio®dw) = 0, as well as Dirichlet boundary conditiori§ + 0)y = 0, and the
value ofy at the boundary is related £q..
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3.2 Caseof s¢3 Todatheory
00, = —e2b1—¢2

996 269, - INtErMs ofX; = e~%, thests Toda
2 = —¢

Let us solve thes/3 Toda equations{

, =X N . .
equations amount t{ 2 whereA,(X) was defined in the previous Subsection, and

_ X 9X 99X i .
is such thatAy(Aq (X)) = X det ( 9X 90X 000X ) The solutions of the/s Toda equations
are 90X 000X 99HOX

X1 =320 ai(2)bi(2) B B
{Xz = Zi<; Wrla;, a;](z)Wr[b;, b](2) Wrlar, @z, as] = Welbr, b bs] =1, (39)

whereWr[ay, as, ag] = eijkaia;ag is the cubic Wronskian. In this solution, the Dynkin diagram
a; & %eijkWr[aj,ak]
bz‘ <~ %eijkWr[bj, bk]
the fully antisymmetric tensay;;, such thak oz = 1.

Let us rewrite the symmetry charg@s(2.30) andi?V (2.31) in terms of the variable¥, X,
ora;, bj:

automorphismp; < ¢o manifests itself a . In these formulas we used

82X1 82X2 8X1 8X2 83X15X1 - X1635X1 aga/{/ — alag’

T = — = = 3.10
X1 X2 + X1 X2 X2 WI‘[CLl,CL3] ’ ( )

0Xs 00Xy FPX, 93Xy , alay — asay’
W=T — — =7 4+2—= = 3.11
( Xo X > X * X * Wrlay,a3] (3:11)

where we could use any pair of functionsinstead of(a1, a3), and the result would not change
due to the identityWr|a1, as, az]’ = 0. The antiholomorphic chargés W are similarly written in
terms ofb,.

We now consider/s Toda theory on the half-plane, and the possible boundargitons on
the real line. We must imposg = T for conformal symmetry to be preserved. For the spin
currentW” we have the two choiced” = £, where the minus sign corresponds to using the
nontrivial automorphism of th&/’; algebra.

3.3 Boundary condition W — W = 0

Now that we wrote the solutions of the bulk equations of nmoiioterms of the functions;, b;,
let us write boundary conditions for these functions. TheditionsT = T, W = W are obeyed
provided we assume

3
a; = ZNZ]bJ s det N =1. (312)
j=1

This impliese;;,Wra;, ax] = (N~'7);€1;4Wr[bjr, bys], whereN ~'7 s the inverse of the trans-
pose of N. Furthermore, in order foX, X, to be positive, we assuntg = b; and that\V is a
positive Hermitian matrix. To summarize,

X1 = ?7]»:1 bZ(Z)NZ]bj(Z)
Xo =300 i wi(Z) (N ) jwi(z)

Wr[bl,bz,b:;] =1,detN=1, N >0, (3.13)
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where we introduced the notatian, = ¢;;,b;b). for the quadratic Wronskians, whose quadratic
Wronskians are themselv&®rw;, w;] = €0y

As in the case of Liouville theory, our parametrization af golutions is ambiguous, because
X1, X9 are invariant under the action of &1(3, R) symmetry group, namely

b— A1
w— ATw , Ae SL(3,R). (3.14)
N — ATNA
The boundary parameters are t#i&(3, R)-invariant functions ofV. Such invariants can be con-
structed aslr (N'N~1)" m = 1,2---. Givendet N = 1, all such invariants are functions
of
Ao = det 2(N + NT). (3.15)

In the s/, case the number of invariants is the integer pa# of
We may wish to express the boundary conditions in terms ofiéhés X; = e~ %:. To this
end, we may compute at the boundary

{ (8 — g)Xl = %eijkNijwk

~ 3.16
(0—0)Xq = %eijkNingbk ( )

The right hand sides of these expressions are in generalnatidns ofX;, X,. There is an ex-

ception in the special case whé = N, which corresponds to the free boundary conditions

(0 — 0)X; = 0, in which case the boundary parametekis= 1. Another exception occurs when

Nij = U;Uj+e€;5Ag, With A;U; = 1 so thatdet N = 1. (We drop the assumption that be hermi-

tian.) In this case the boundary parametexgjs= —1. Noticing N7 = A;Aj + €Uy, we find

{ (0 - (?)Xl = Ay = VXo . Such boundary conditions derive from the boundary Lageang
(0—0)X2 = Upbp = VX,

ngdy _ 2i <e¢>1*%¢>2 + e¢>2*%¢>1) ) (3.17)
(3

One may be tempted to generalize this Lagrangian Il = v1e® 29> + 15~ 2%1, which
would depend on two boundary parametersiv,. However, it turns out that for general values
of vy, v, the W3 symmetry would then be broken, in the sense that the bourcdargition W =

W would not be obeyed. Only the values mf, v, which we wrote in eq. (3.17) are therefore
permitted.

3.4 Boundary condition W + W = 0

Boundary conditions for the functions, b; which imply W + W = 0 are now
3
a;i =Y Nyw; , detN=1. (3.18)
j=1

This can be deduced from the cade — W = 0 by using the Dynkin diagram automorphism,
which exchanges the functiohswith their Wronskiansu; = €;;,b;b}.. Itis however not clear how
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to guarantee the positivity o, X5. We refrain from making further assumptions on the matrix
N, and we write the solutions of the classical Toda equatiens a

Xl = Zz 1 ( ) ( ) . .
{XQ = Z?j 111)@(2)]\7] %bj(z) ’ Wl"[bl,bz,b:s] =1 ’ det N=1. (3'19)

As we do not impose reality conditions épand N we find thatX;, X5 are invariant under the
action of anSL(3, C) group of symmetries, instead of &1(3, R) group in the cas®/ — W = 0:

b— A1
w— ATw , Ae SL(3,0C). (3.20)
N — ATNATIT

The group acts by conjugation on the matix and there are two invariants, which we interpret as
boundary parameters:

M=TrN , M=TrN'. (3.21)

In the s/,, case the number of invariants is of course- 1. This corresponds to the number of
conserved charged (@ ... W ("), This already suggests that the boundary conditior- W = 0
realizes Cardy’s ideas on the correspondence betweersegpadions of the symmetry algebra
and boundary parameters. We will demonstrate this furtheur conformal bootstrap analysis in
Section 4.

An interesting case happens when the mal¥ixobeys a second-order polynomial equation,
that is when two of its eigenvalues coincide. Then we havel = uN + oI whereI is the
identity matrix andu, v are two complex numbers, and it follows from eq. (3.19) that- ¢-
obeys Dirichlet boundary conditions ang + ¢- obeys Neumann boundary conditions,

pr—da=c , (0—0)(¢1+¢2) =0, (3.22)

wherec is an arbitrary constant. These conditions can be derivad the s/3 Toda action with
no boundary terms. Due to the Dirichlet condition, the spame interpretation of this case is a
one-dimensional D-brane, whereas the other cases desexdbdimensional D-branes. The one-
dimensional D-branes extend along the direction of the Wegtor p, which is consistent with the
existence of a linear dilaton in that direction. (This linddaton can be seen in the expression for
the stress-energy tensor(2.30).)

We conclude this Subsection with a remark. Given the saluibthe Toda equations, it is
easy to write the Backlund transformation from Toda fielgaty to a free field theory. The free

fields can be defined a§ = —log M whereu;; andv;; are constant matrices. The free

fields obey free equations of motigidy; = 0, and Dirichlet boundary conditions far; imply
relations of the type; = Zj N;jw; (3.18) at the boundary. Thus, we can interpret the boundary
parameters., A\» encoded in the matrid/ as the boundary values of the free fields. (See Appendix
A for more details on the Backlund transformation.)
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4. Conformal bootstrap study of s¢5 Todatheory with W + W =0

The conformal bootstrap method is the systematic expioitaif symmetry and consistency con-
straints on correlation functions in two-dimensional avnial field theories [4]. We will apply this
method to the correlation functions f3 primary operatord/, (z). Such operators are defined
up to normalizations by their operator products (2.11) #&hd2) with the symmetry generators
T(2),W(z2),T(z),W(2). ! In order to define correlation functions on the upper haifagl, the
properties of the boundary must be characterized. Thidvasdirst of all imposing boundary con-
ditions for the symmetry generatdf¥z), W (z). Moreover, we saw in Section 3 that for each of

. T=T . - . .
the two boundary condition W — 47 there exist families of possible D-branes, parametrized

by A\g or A1, \o. These parameters appeared in the classical analysis bbthredary conditions
for the basic Toda fields;, but such fields are not present in the conformal bootstrapdtism.
Nevertheless, the equivalents)qfor A, Ao will appear when we will parametrize the solutions of
the conformal bootstrap equations; a given solution wiltakked a D-brane or boundary state.

In the case of Liouville theory there is only one possiblermtary conditiorl” = T, and there
exist two types of D-branes: the continuous D-branes [1[ vlith a continuous parameter, and the
discrete D-branes [18], which are parametrized by two #ntegThese two types of D-branes are
associated to the two types of representations of the \finaalgebra: the continuous and discrete
representations. By analogy, we expect that in confowfialToda theory there exists a hierarchy
of D-branes, which would correspond to the hierarchy ofe@sentations of th&/,, algebra which
we discussed in Subsection 2.2. The dimension of a D-branddwmen — 1 — k, wherek is
the number of algebraically independent null vectors indbeesponding representation. In the
case ofsf3 Toda theory, we would have three types of D-branes: two-dgiomal continuous
D-branes, one-dimensional “simply degenerate” D-braaed,zero-dimensional discrete or fully-
degenerate D-branes. We will see that these expectatierislited when the boundary condition
isW +W = 0.

An important difference between the two boundary cond#itii = +1¥ manifests itself
when analyzing the consequences ofltiesymmetry on the correlation functions. We introduced
the Ward identities which follow from th#/; symmetry in Subsection 2.3, let us now sketch how
such identities constrain the correlation functionfoperatorsV,,, (z;) (with Sz; > 0) in the
presence of a boundary at= z. It turns out that the Ward identities for such &npoint function
are identical to the Ward identities forav-point function in the absence of a boundary, where the
extra N operators are “reflected” operators located;afThe reflected operators avg, (z;) if the
boundary condition i$V — W = 0, andV,: (z;) if the boundary condition i$V" + W = 0. As far
as the Ward identities are concerned, we thus have theordati

(Va(2)w_w=o ~ (Va(2)Va(2)) , (4.1)
(Va(2)wyw=o ~ (Va(2)Var (2)) - (4.2)

!Due to the existence of tHB, automorphism of théV; algebra, there are two possible definitionsiBf which
differ by a sign. Our definition is such that the vertex opemrav, (z) have the same charge with respect toV and
W. Then the untwisted (or Cardy) boundary conditioriiis = —W. We thank Gor Sarkissian for correspondence
which led to this clarification.
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The Ward identities for a bulk two-point functiofi’,, (z1)Va,(22)) are known to imply that it
vanishes unlesa,, = A,, andq,, + ¢o, = 0. Now egs. (2.14) and (2.16) implx, = A,~ and

Ga = —Qa+- Therefore, whilgV,,(2)) . yi-—o May be nonzero for all values of (Vo (2))y,_y—o
must vanish unlesg, = 0. This restricts the momentumto a one-dimensional space, which may
be related to the fact that there is only one boundary pasmegtin the caséV — W = 0. We
will however not analyze this case further, and instead eotrate on the casé” + W = 0 from
now on.

4.1 Continuous D-branes

Due to conformal symmetry, a one-point function on the ugadf-plane must take the form

Vol = o «3

whereU («) is the bulk one-point structure constant, which we now warddtermine. We will
find constraints o/ («)) by considering the two-point functioV_s,,, (y)Va(z)), which can be
factorized in two possible ways:

(Voo @)Va(2)) = > Cr(@)U(a = bh)Gr(ely, 2) , (4.4)
h€H,,
= Y R;Sj(a)Fj(aly,2) . (4.5)
J

Let us explain these formulas. The first formula follows fridma operator product expansion

V,MV@ — Z Ch(a)Va,bh . (46)
he€H,

This OPE is a sum of three terms labelled by thefégt = {w1,ws — wy, —w2} of the weights of
the fundamental representationsdf; this is analogous to the tensor produck6f representations
R,, ® Rq = ZhGle Rq+n. We choose to study the correlation functign. ., (v)Va(z)) pre-
cisely because the fully degenerate oper#toy,, has such simple OPEs; we could in principle use
arbitrary operators instead, but the resulting conssaintl/ («) could not necessarily be written
explicitly. The OPE coefficient€', («) are [1]

Cu (@) =1, (4.7)
_ . A(b(er, = Q))
Corman @) = 5 3 0fer, )
o mu \ylblea,a = Q) y(blp,a — Q)
Creal) = <7(—62)> Volena))  A0lpa) (4.9

where we recall that is the bulk cosmological constarit,parametrizes the central charge, and
Q = (b+b~1)p (see Subsection 2.2). We also introduce the functiarn) = F(Fl(fl) wherel'(z)
is Euler's Gamma function. The last factor in eq. (4.4) is tbaformal blockGy, (aly, z). From

our remark thatV-point functions on the upper half-plane are equivalerepoint functions on

(4.8)
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the plane as far as Ward identities are concerned, it folkhasg;, (a|y, z) coincides with a bulk
four-point¢-channel conformal block

V_por (9) Va(2)
o — bh
Grlaly,z) = V-bue (D) Var (2) (4.10)

Explicit expressions for such conformal blocks can be deddmom [1], where more general con-
formal blocks were computed. Up to simple common prefacthesthree conformal blocks are

_,|2b(h,a=Q) —b%, blen,a— Q) — b2 ble,,a—Q)—b*|,_,|2

y_,i ’ I I h» Yy ’f 11

Gu(aly, =) o | 1= . 2< AP RS = I CER

where for a given weight € H,,, we calley, e), the two roots such thdh, e;) = (h,e},) = 1, for

instancee_,,, = —ey, €', = —p. Similarly, the quantityF; (a|y, z) in eq. (4.5) is ars-channel
conformal block,

V—bw1 (y) Va(z)
J
Filaly,z) = V-ba(D) Var (2) (412)

wherej labels the operator which propagates in thehannel. There is a subtlety here: the
channel analysis predicts the existence of three indepeibttcks, but only two primary operators
can appear inthe OPE_,,, V_s.,, namelyly andV_;,. The point is that a descendentlaf;,, can
appear independently &, itself; we will label asj = o’ the corresponding-channel operator.
In the presence of a boundary, we thus have the bulk-bour@BEy

Vi, = >, RjBy, (4.13)
7€{0,p,0'}

where the coefficient®; are unknown functions df, and B_,; are boundary operators, with the
convention that3_;,, is some descendent &f_;,. We will not dwell longer on this subtlety, as
we are presently only interested in thehannel operatof = 0. In this case, the bulk-boundary
structure constarf; («) reduces to

So(a) =U(a) . (4.14)

We can now obtain an equation foi{«) from the equality of (4.4) with (4.5) by using the fusion
tranformation

gh(a‘:% Z) = ZFh,j(a)fj(a’yvz) ) (415)
J

2In our notation for conformal blocks, all external legs aircbming”. “Incoming” and “outgoing” legs are related
by the conjugatiomx — o™ of the momentum.
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and extracting theéy term in eq. (4.4). The result is

> Cula)Fho(a)U(a = bh) = RoU(av) . (4.16)
h€H,

In order to make this equation explicit, let us compute trséfy matrix element$), o(«) defined
in eq. (4.15). Determining’, ;(«) can be done by taking the limixz — 0 in that equation. By
definition the blocksF; («a|y, z) are power-like functions d&z in the limit 3z — 0, and we have

%y%z

2
%y%z 2+3b

Grlaly,z) ~ Fp,la)+ ——3
Fz—0

As the blockGy, (aly, z) is as F» hypergeometric function (4.11), let us study such functjetart-
ing with their integral representation

Ay Ay Azl | I'(Bo) /1 As—1 Bo—As—1
3F2< Z) == F(A3)F(B2—A3) o dtt (1 t)

Bi By
X 2F1(A1,A2,B1,tz) . (418)

We wish to study the — 1 limit, where the critical exponents abel andB; + By — A1 — Ay — As,
and to focus on the last one of those three exponents. Cotls&leegiont — 1, z — 1, where we

can use the approximatiorFy (A1, Az, By, t2) o~ (1— tz)BI*AI*AZ‘F(Blr)(rf(x’l“;;zﬁi)_’gl). Then
zZ—r

we obtain the term with critical expone®; + By — A1 — Ay — Ag,

F2 Al A2 A3 . 5 P(Bl)F(BQ)F(Al + A2 + Ag — B1 — Bg)
3 251 T(A)T(A2)[(As)

By Bs
x (1 — z)BitBeAi—Ae—ds (4 19)

. . A Ay A . -
This term may or may not be the leading term g¢f% IB 2B 31 2] in the limit = — 1,
1 2
depending on the values df;, B;. In the case of, (a|y, z) (4.11), itis actually subleading, as we
assume > 0 and thereforéB; + By — A; — Ay — A3 = 2+ 3b% > 2. What we are interested in

is the coefficient of 1 — 2)2+3* which is

(=2 - 3b) T(blep,a — Q) +1) T(b(e},,a— Q) +1)

ol = ") Telena—Q) - Tblha-q —) +20
Combining this formula with the formulas fary, («), eq. (4.7)-(4.9), we obtain
~ T(—2-3b?) mu | A(a — bh)

Fh,O(a)Ch(a) - F(_bg) |:_ (_bg):| A(Oé) ) (421)
where we introduced the function
(e:=Q)

Aa) = [mpr( b2 . HF e, — Q) M1 +bHe,a—Q))7L. (4.22)

e>0
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This function already appeared in conformal Toda theory, [d9a building block for the reflection
coefficientR,, (o) = W defined in eq. (2.18). From that equation and the definition
(4.3) of U(«), it follows that A(«)U (o) must be invariant under the reflections— Q+w(a—@Q).
The equation fol/ («) (4.16) can now be rewritten as

RoA = Y Ala—bh)U(a—0bh), (4.23)
h€H.,,,

where Ry is still an unknown function ob, in which we actually absorbed the-independent
prefactors ofF}, o(a)Ch () in eq. (4.21). Three more equations fé(a)U(«) can similarly be
obtained, by replacing the fully degenerate operatay,, in egs. (4.4) and (4.5) with one of the
similar operatord/_y,,, V_,-1,, or V_,-1,,. The resulting equations fot(«)U(«) are obtained
from eq. (4.23) by replacingf,,, with H,, and/orb by b—!. The coefficient?, can also change,
and we rename i§; + depending on the case. So we obtain the four equations

Xt Ao = Y Ala-bvTh)U(a—b*'h). (4.24)
heH.,

The smooth, reflection-invariant solutions of these equatared(a)U (a) = Y, oy e@()2=@)
whereW is the Weyl group and the arbitary vectors the boundary parameter. The coefficients
i+ might be called the boundary cosmological constants, agidhlues are

Nit = X (—bFLs) (4.25)

where we recall that the fundamental characteyjs(p) = e“1?) 4+ ew2—w1.p) L o=(w2.0) The
full formula for the solutionUs(«) is

Us(a) = [mpry( b2 HF e, —QNT(1+ b7 (e,a—Q)) Z ew(s):2=Q) 1 (4.26)
e>0 weW

Our equations (4.24) being linear, this formula holds uprtaxdndependent factor. We will say
thatUs,(«) defines a continuous D-brane wheis such that/;(«) does not diverge exponentially

in the limit of large momentunn — Q| — oo. As the operators in the spectrumsgf, Toda theory
have purely imaginary values of — @) (see eq. (2.17)), the continuous D-branes must have real
values ofs.

Notice that we wrote the one-point structure constér() in a form which makes sense in
s¢, Toda theory for arbitrary:, and even in conformal Toda theories based on arbitrarylgimp
laced Lie algebras. We conjecture that this result, and ofdke results in the rest of this Section,
are valid in the general case and not onlyig Toda theory.

4.2 Degenerate D-branes

In the previous Subsection we found continuous D-branesswiparameter space has the same
dimension as the space of continuous representations.rdingato the classical analysis of Sub-
section 3.4, such D-branes should be interpreted as coviiagrtwo-dimensional Toda space whose
coordinates are1, ¢, because the boundary conditions for the fieldsp, are of the Neumann
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type. We will now investigate degenerate D-branes, whasedsions and parameter spaces should
be smaller. We will argue in Subsection 4.3 that the dimenmsioa D-brane is related to the di-
vergence of its one-point function in the limit— ¢ — 0: the higher the dimension, the more
severe the divergence. So let us look for solutibiia) to the equations (4.24) whose divergences
ata — @ — 0 would be less severe than the divergenc&din) (4.26). Cancelling some of the
divergences from the poles of thgb(e, « — Q)) factor can be achieved by taking a linear com-
bination of several solutionS;(«) with different values ok. However, the resulting combination
will still be a solution of eq. (4.24) only provided the fousqameters\; . are the same for all the
involved values of.

In order to find two different values, s" which have the same parametess;, we make two
observations: first, the parameteYsy = x.,(—bs) (4.25) are Weyl-invariant, second, they are
invariant under shifts — s + 2wib™!(Ze; + Zes). Thus, there must exist two elements. of
the Weyl group such that — w. (s') € 2mibT!(Zey + Zey). Assuming the value of? to be
non-rational, this restricts to a one-dimensional space. For example, the pair

5= rw +mi(lb+mb ey , ' =rw) +wi(lb—mb ey , (k,f,m) € R x N 4.27)
is such that — s’ = 2mimb~ ey ands — r(s’) = 2milbes. Therefore,

U/@|€,m(a) = Unw1+7ri(fb+mb_1)eg (Oé) - Uliw1+7ri(£b7mb_1)62 (Oé) (4.28)

is a solution of eq. (4.24), and an explicit calculation gl

Ugle,m(ar) = ﬁ Z e a=Q) in 97lb(e, o« — Q) sin 2rmb (e, 0 — Q) |, (4.29)
e>0

where to a positive root we associate the weighit. € H,, such that(e,h.) = 0. In this
expression the sine factors compensate some af th&) — 0 divergences of the prefactot(«)
(4.22). We hold thaU,, ,, (o) with v € R and/, m € N define the family of simply degenerate
D-branes. The boundary parameters of such D-branes are

Mg = e 3br 4 2e%b””(—1)m coslb® | A Lt Qe%bil””(—l)g cos mmb 2 (4.30)

and\, 1 are obtained by, — —«x.

We expect that in the more generdl, case this construction generalizes to a hierarchy of
partly degenerate D-branes. The difference of two termgyin(4.28) should be interpreted as a
sum over theZ, subgroup of the Weyl group which leaves invariant, weighted by the signatures
of the elements of that subgroup. #4,, there is a hierarchy of subgroups of the Weyl group
which leave certain hyperplanes invariant, and summing eueh subgroups should yield the
partly degenerate D-branes. The case of fully degenerdimabes corresponds to a sum over the
full Weyl group, which we now study in the/s case.

Given two integral dominant weighf3, Q' € Nw; + Nw, we consider the combination

Ugjor () = Z (W) Uariv(24p)+b—1w(er+p)) (@) - (4.31)
weW
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This can be rewritten as

1 o
Vair (@) = 75 3 e(w) e2mtn(@0emQ) N () 2T @ H0)0-Q) | (4.32)
weWw w'eW

This can be shown to have a finite limit as— @ — 0, by first using the Weyl formula (2.5) in
order to reduce the problem to the casé/gh(«),

xo(2mib(a — Q) xor (27ib (o — Q) , (4.33)

and then the formula (2.6) in order to prove the regularityUgf(«). We interpretUqo/(a)
as defining localized (zero-dimensional) D-branes, whiehwill call discrete D-branes or fully
degenerate D-branes. But first we should check that the $isesafs which are involved in
the sum (4.31) do have the same boundary parameaters(4.25). This is actually true, as a
consequence of the fact that the weights H,,, differ from one another by elements®é; +Ze,.
And we find

Ay = e 2@y (Comib?Q) A = e Wy (—omibT2Q) . (4.34)

In the case of discrete D-branes, these boundary cosmalaginstants are expected to be directly
related to the value&,(—b*'w) of the one-point structure constant, as was argued in the cas
of Liouville theory in [18]. For example); . originally appeared as the bulk-boundary structure
constantRy in the bulk-boundary OPE of_;,, (4.13). If the one-point structure constant was
normalized so thali o/ (0) = 1, then); | would coincide withUg o (—b*'w:). Therefore we
expect
Ugjor (—b'w;)

Nig=——1—12——=.
’ Uqjar (0)
And indeed the expressions (4.32) and (4.34) obey suchamsatas can be shown with the help of
the Weyl formula (2.5). (For this to be completely true we Vdduave to reinstate the simple factor
F(F_({;Z’T) [— W(TZQ)} in \; +; such a factor was present in eq. (4.21) but we neglectedwhiat
followed.) It is amusing to note that we did already apply eyl formula toUq o (a) before,
but in a different, “dual” way, in order to prove eq. (4.33).

Our expression for the bulk one-point function can be usatitev that the equations of motion
derived from the Lagrangiaf,, (2.27) of Toda theory are obeyed in the presence of discrete D
branes. If we identifye(¢) with the operatort/,, and therefore; with a%i‘ Vs, then the
guantum version of the equations of motion is o0

0
804@ a=0

(4.35)

09 (Va(2)) = 7bj1 (Viey (2)) - (4.36)

Using the form(V,(z)) = Ule) _ (4.3) of the one-point function, this reduces to the follogi

IZ Z|2AO‘

identity for the structure constabt(«):
Ulbe;)  2(b+b71)
Uuo)y  wbp
It can be checked that this identity is obeyed by the onettincture constarito/ («) (4.32) of
a discrete D-brane.

(4.37)
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4.3 Modular bootstrap analysis

The factorization constraint (4.4)-(4.5) whose solutiarese our one-point structure constants is
only one of the many equations of the conformal bootstram#dism. Another one of these equa-
tions is relatively tractable: the modular bootstrap ca@ist, which relates two different decom-

positions of the annulus partition function

Zs13s5(T) = é/dzp Us, (Q +ip)Us, (Q — ip) fQ—f—ip(T) ) (4.38)
= Try,,,, e+ (Lom3i) (4.39)

Let us explain these formulas. We consider an annulus, thplest Riemann surface with two
boundaries. The two boundaries are characterized by tloeindary parameters;, s, which
may each correspond to any type of D-brane: continuous, Igioggenerate, or discrete; and
the geometry of the annulus is characterized by the modalempeterr. The annulus partition
function (or zero-point correlation functiors, ., (7) first has a “bulk channel” decomposition,
which describes the exchange of bulk operators betweemwthbdundaries. The resulting formula
(4.38) for Zs, ., (1) therefore involves a sum over the bulk spectrum. This suremgoses into
an integral over the physical values (2.17) of the momenta ) + ip which characterize the
highest-weight representations of the algeldra (with the factor% due to the Weyl symmetry)

, and sums over the descendent states in each representétioh are encoded in the characters
&a (7). The one-point structure constaits (Q+ip) andUs, (Q—ip) involve ingoing and outgoing
momenta respectively, and no normalization factors apg@ato the normalization assumption of
[, (Votip (21)Vo—ips (22)) = % (where we write only one of the six terms of a sum

|z12|

over the Weyl group).

The annulus partition function also has a “boundary chdrdedomposition, which describes
a one-loop partition function of open strings. The resglfiormula (4.39) forZ;, ., (7) is the trace
over the boundary spectruff,, ., of the propagatoefﬁ (Lo=3%). This propagator is the operator
which appears in the definition (2.21) of the charactgrs); in the boundary channel it appears
with the dual vaIueu% of the modular parameter. Although we do not know the bounslaectrum
Hy, .s,, the modular bootstrap method will produce tests of thefwiat structure constants,(«).
This is because for some choicessef s the spectrum is discrete, and the requirement that each
representation should appear with a positive integer pliditly is a nontrivial constraint.

Let us computeZ;, .., (7) by using the bulk channel decomposition (4.38) with the Istitkic-
ture constant#/; (a)) which we found in the previous two Subsections. We start thighcase when
both D-branes are discrete, and use eq. (4.33):

1
291\93;92\9'2 (1) == /d2p EQtip(T) UO\O(Q + Z‘19)U0|0(Q —ip)

6
X Xa; (27bp) X0, (270bp) Xqy= (27~ ' p) Xy (270~ 'p) ,  (4.40)

where we used the properyn(—p) = xa+(p). Now let us decompose the products of characters
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using eq. (2.7), while computing the produig,(Q + ip)Upo(Q — ip) using eq. (2.6),

27Tb 2
me/l;mmg( = Z mox.a, me Q) /d P &Q+ip(T)

X xa(2mbp)xar (2~ p) H H(e%(e’%bilp) - 67%(8’2”#11’)) . (4.41)
e>0 =+

The value of the (Gaussian) integral is given by eq. (2.24),

(2mb—!
Zay a0 (T) = T Z mQ’{,Qngf* y §-b0—b- 1o (—1) . (4.42)
Q.0

This is a sum of characters with positive integer coeffiemgi%mgfl*,%, up to a factor which
could be absorbed in a renormalization of the one-pointgira constant/oq/ (). The charac-
ters are those of fully degenerate representations. As wégaoout in Subsection 2.2, characters
X« (7) do not fully characterize representations of thig algebra, nevertheless we conjecture that
the boundary spectrum Eo,|or.0,10;, = @Q,Q/mgimmgﬁﬁ% R_y_p-1qr. If we associate
the representatiof®_,, ;-1 to the discrete D-brane of parameter= Q|(Y, fusing the repre-
sentations associated to the two involved D-branes (aftejugating one of them) produces the
boundary spectrum, which agrees with Cardy’s ideas.

In particular, thed|0 D-brane corresponds to the identity representation, andrfp D-brane
of parametes, the spectrunti,., should be the single representation which is associateuhto t
D-brane. In the case of a continuous D-brane,

2mb~1)6 w(s (2mb~1)6
CO D [ epsauntn) 3 et = B0 Ly 1), sy

Z010:6(T) = ——
O\O,s( ) 6 =, \/g

so that the continuous representation of momengums”- is associated to the continuous D-brane
of parameter. This immediately generalizes to simply degenerate Ddsansing the formula
(4.28) for their one-point structure constants. Anotharegalization is to replace the identity D-
brane with an arbitrary discrete D-brane,

27Tb_1 6 - i(w(s
Zojars(T) = % / d*p EQrip(T) Xa+ (2mbp) xa+ (27 'p) D € IP) (4.44)
weW
(2mb~! 1
V3 Z Z €@ —bh—b-11w (—7) 5 (4.45)
h€Hq b €Hgy

which lends support to the conjecture that the boundarytgpads obtained by fusing the repre-
sentations which correspond to the two D-branes. (Notigeahveighth may appear several times
in Hq, as happened in the definition of the charagte(tp) (2.4).)

4.4 Continuousboundary spectra

Let us investigate the boundary spectrumséf Toda theory in the presence of two continuous
D-branes using the modular bootstrap approach. Up to naaidectors, the annulus partition
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function is formally written as

Z oW etwi(s1)—w2(s2),p)
Zs ;S - dn_l L i )
) = ey farl?)

(4.46)

This expression suffers from infrared divergences neat 0. In the case of Liouville theory
(n = 2), the divergence is of the typﬁ% and therefore linear in a long distance cutbff This
is attributed to the geometry of the continuous D-braneschvare supposed to extend up to in-
finity in the Liouville space of coordinat¢. One may therefore naively expect that for general
the divergence should b&"~!. However, it is actuaIIyL("—1>2, so there is an extra divergence
L(n=1)(=2) heyond what is expected on geometrical grounds.

We observe that this extra divergence is governed by the aufil), = (n — 1)(n — 2)
of parameters which are necessary to account for the infimien multiplicities of continuous
representations, where the facton 2d,, is meant to take into account the antiholomorphic multi-
plicities. (See Subsection 2.3.) Combining this obseovatvith Cardy’s ideas suggests a heuristic
explanation of the divergence. Indeed, if the boundary tspecis obtained by fusing the rep-
resentations associated to the two D-branes, and fusiotplity is infinite, then the boundary
spectrum is a sum of representations with infinite multipéis. This must then lead to divergences
in the annulus partition function, in addition to the ordinéggeometrical” divergences. Therefore,
we conjecture that the boundary spectrum in the presenesafdntinuous D-branes is the sum of
all continuous representations of thg, algebra, each one appearing with an infinite multiplicity.

It is not obvious to us how these considerations generalizhulus partition functions in-
volving arbitrary D-branes. For example, in the case@fToda theory with one continuous and
one simply degenerate D-brane, the annulus partition ifomativerges ad.?. The fusion mul-
tiplicity is finite in this case, and we conjecture that theapum is the sum of all continuous
representations, each one appearing a finite number of.times

5. Light asymptotic limits of some correlation functions

The main purpose of this Section is to establish a link betmtbe classical analysis of Section 3,
and the conformal bootstrap analysis of Section 4, in the o&&/s Toda theory with the boundary
condition W + W = 0. We will use the classical solutions of the Toda equatiomspfedicting
the bulk one-point function in a certain limit, and we will dinhat the classical predictions agree
with the bootstrap results up to unimportant details. Initamid we will also predict the light
asymptotic limits of the boundary two-point function in tbaselW’ + W = 0, and of bulk one-
point and boundary two-point functions in the cad&e— W = 0, for which we did not perform the
conformal bootstrap analysis. For pedagogical purposesyilwbegin with the computation of the
analogous correlation functions in the much simpler cadeamfville theory.

The light semi-classical asymptotic limit, or light asymgit limit, of a correlation function
(I'; Ve, (1)) in the presence of a boundary with parametewhereV,, (z;) may be a bulk or a
boundary operator, is defined by

b—0 , 1 =b'a;and o = bs fixed . (5.1)
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If the correlation function is formally represented as actional integral over the Toda field) with
the weighte—5¢! whereS|¢] is the action, then the light asymptotic limit reduces thatctional
integral to a finite-dimensional integral over field configions such thatV(®) = W) = o
for all spinss [1]. In s¢, Toda theory, such field configurations are those wh¥je= e~ %
are polynomials of degree — 1 as functions of the coordinatesz. These polynomials must
obey further constraints like the boundary conditions drdreality ofg;. The functional integral
reasoning therefore predicts that the quantity

light
<H€(m,¢(zi))> E/ doi He(m,aﬁ(%))’ (5.2)
My

where, is a finite-dimensional space of field configurations, shdaddelated to the limit (5.1)
of (IT; Vo, (20)) 5.

light

AL Vo i)y 1 _ (T 20),
=0 (Vo(0))y-1, (1)

o

(5.3)

Here we normalize the correlation functions by dividingrthiey the partition function. This elimi-
nates the dependences on the overall undetermined fadter integration measure di,,, and on
the valueS|¢| of the action for the polynomial field configurations, whishdifficult to compute.
As a result, nothing in eq. (5.3) depends on the action, andomgecture that that equation holds
whether a boundary action exists or not. (See Appendix B fiiseussion of that point.)

5.1 Caseof Liouville theory

Let us consider the solutions (3.4) of the Liouville equatiwhich obey the “light asymptotic
condition” 92X = 92X = 0, whereX = e~?. Such solutions are built from two functiohs, by
which are polynomials of degrees at most one. Given the émeetb choose the matriy/, we
can fix these functions without loss of generality, and weoskd; (z) = 1, ba(z) = 2. So we
haveX (z) = (1,z)N (L) whereN is a positive Hermitian matrix of determinant one. Accogdin
to equation (5.2), the one-point function of a bulk operatothe presence of a boundary with
parametet\;, (3.6) is of the type

light
<e77¢><z)>;’ - / dN § (A, — £Tr (NP)) X(2)7", (5.4)
L
wheredN is an integration measure, and we expect the boundary paesig ando to be related.
Assuming that the integration measutd is invariant under th&'L(2,R) symmetryN —
ATNA (3.5), let us show that this symmetry determines dkiependence of the one-point func-
tion. The subgroup ofL(2,R) which survives our fixing oby, b, is the set of matrices of the
typeA(x,y) = <_\/; ;),which are such thak(z,y) (,1s, ) = ¥ (}). By using this residual
Yy Yy
subgroup in eq. (5.4) we Obta(mn‘?(z)yfzht = (Jz)7" <e”¢(i)>l;i’ " which agrees with what we
would expect from conformal symmetry.
There is a simple method for computing the integral in egt)(3vhich unfortunately does not

i i izatinh— [ Yo—Y1 Ya+iYs
easily generalize te/,,~.» Toda theory. It uses the parametrizatidh= (Yriys Yoy, ) where
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the constraintlet N = 1 still has to be imposed. We have

-\ light 3
<e’7¢<2>>: - / <| | dY;) S +V3) (Y2 — Y2 — Y2 — Y2 1) (2¥ — 2Y3) " .(5.5)
L
=0

Integrating overyY; thenY; andY,, we 0btain<e77¢’(")>fiht =z \O/OA2—+1dY0(Y0 + Ap)~" from
. L
which we deduce
2 1=n
; A+ 43 1)
<e"¢(z)>l " (@I (ot : (5.6)
AL 21 n—1

Let us now present another calculation of the integral (5aich can more easily be general-
ized to the case of¢,, Toda theory withn > 3. We adopt the parametrizatiod = M7 M =

-2 2 sa — . .
PHal P ) \where M = Pal 9 ) is a function of a real parametprand a complex parameter

pa  p
a. The integral (5.4) becomes
light 2 2 2\ =17
<e"¢’(z)>)\ = /pdp d*a d(Ar + pSa) (p~% +la+pz?) " . (5.7)
L
It is possible, but tedious, to compute this integral disedhstead, let us introduce the notation
AL =icosho . (5.8)

For the moment this is a rather awkward notation, as we haasgome thate” is real (and we
further take it to be positive). In addition we perform thenbe of variables — a — pz, and we
obtain

light _ A _
<e”¢(z)>gg = /pdp d*a (27 4+ 2e™7 4 pSa — ,0232) (p_2 + |a|2) " (5.9)
In the limit
{Ze T e (5.10)
z— &z
the integral greatly simplifies,
light 1 5 - o (i€e?)"!
né(2) ~ 2, (282 A S/ A S
<e >U = /d a (232 +al*) (€32) o o1 (5.11)

This agrees with the result (5.6), in spite of the limit (5.Mbich we have taken. This is because the
result (5.6) has a very simple behaviour under the resclmgplved in the definition of the limit.
The behaviour under the rescalingz0f of course a consequence of conformal symmetry, but we
have no a priori reason for the behaviour under the rescalirigf to be simple. We will assume
that a similar behaviour persists $,, Toda theory with arbitrary,, and this will allow us to take
limits analogous to (5.10) before performing integralsaithivould otherwise seem intractable.

Now let us investigate whether the relation (5.3) betweencthssical and quantum calcula-
tions of the one-point function holds. According to eq. (§,lhe normalized classical one-point
function is

<en¢>(Z)>“9ht (ie” )"
A S (1 T A
e (232) "= . (5.12)
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The behaviour of the exact Liouville one-point function2@). in the light asymptotic limit is

lo|(1=m)
- -2 \—2Z —2\ |o|p=2 €
(Vi ()15~ (232) (b ™2) 20 (n — b ) el T (5.13)
(Von(2)) -1 - 2 \—1 el
AT e o (292)T(—1) (wb 5.14
n=b"% _ (_p-2 i .
where we assume to be real, and we useg(_biﬂ) ot (—=b—*)". The classical and quantum re

sults agree, provided the cosmological constant takestiney = —# (3.1) which was assumed
in the classical analysis, and the classical boundary peteam defined in eq. (5.8) is identified
with the quantum boundary parametewhich appears in eq. (5.13). Howevéts is assumed to
be real in the classical analysis, whereds assumed to be real in the calculation of the limit of the
exact one-point function. Thus, the comparison betweetwbanethods must involve an analytic
continuation of the results. This problem ultimately corfrem the fact that the bulk cosmological
constantu is assumed to be negative in the classical analysis, antiveoisi the conformal boot-
strap analysis. And the known relation [16] between the dawnhcosmological constany, and

2
o is in our notations(%) = =t cosh? o, which agrees with eq. (5.8) in tlie— 0 limit if
= —#. This confirms our earlier identification of;, as the boundary cosmological constant,
see eqg. (3.8).

Finally, let us compute the light asymptotic limit of the Imolary two-point function:
2

= /pdp d?a 6(\p, + pSa) H (;f2 + |a+ ,0:6@-|2)_m . (5.15)
i=1

<e771 p(21) gn2(22) >light

AL

Let us use conformal invariance, and fix = 0, zo = oo. This makes the computation elementary,
and the result is

light NG 1
m¢(0) gn2¢(oo) — §(ny — 27002 4 ) 5.16
<e e >>\L (m —n2) T(m) (A +1)2 ( )
This agrees with the expectations from the conformal bagistnalysis [16], provided our relation
(5.8) between the classical and quantum boundary parasrist@ssumed.

5.2 Caseof s/3 Todatheory with W — W =0

Let us consider the solutions (3.13) of th& Toda equations which obey the “light asymptotic
condition” 93X, = 03X; = 0. Such solutions are built from three functiohs b2, b3 which are
polynomials of degrees at most two. Given the freedom to sddle matrixV, we can fix these
functions without loss of generality, and we chod€:) = (b1(2),b2(2),b3(2)) = (322,2,1).
The corresponding Wronskians afe (), ws(z), w3(z)) = (1,—z,32?) and they obeyw; =
P;jb; with P = <8 O 5) This leads to

100

X, =B(Z)NB(z)T , X,=B(Z) PN TPB(>)T. (5.17)

According to equation (5.2), the one-point function of akboperatore(1¢(2)) = ¢m¢1(2)+n2¢2(2)
in the presence of a boundary with parameig(3.15) is of the type

light
G / AN 6 (Mo — det J(N + NT)) XX, ™ (5.18)
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We may use theSL(3,R) symmetryN — ANAT (3.14) in order to determine the depen-
dence of the one-point function on= z + iy. Introducing the family of matriced (z,y) =

“1 =1 142,-1
<y0 1 20 ), we haveA(z, y)T PA(z,y) = P andA(z,y)B(z + iy)T = yB()T. To-

0 0 Y
gether with the assumption that the measdilé in eq. (5.18) is invariant under the symmetry,
this implies <e("’¢’(z))>l;fht = (Qz)"2m—2m <e(777¢’("))>itht. The power ofSz thus obtained is
—2(p,m) = ;in%(—zAbn) whereA,, given by eq. (2.14), as expected from conformal symmetry.
—

Now it turns out that theS'L(3,R) symmetry can yield further information on the one-pointdun

tion. This is because after assuming- i there still is a residual subgroup of matricegl, e, ) =
f —2d 2f—2e
( d e f?d > whered, e, f are real parameters constrained dwyt A(d, e, f) = (e? +

1 1
gf-3e d

4d?)(2f — e) = 1, and such matrices obey the relatioh§l, e, /)~ B(i)" = —-B(i)T and
A(d,e, f)PB(i)" = (e + 2id)PB(i)". Thus, under transformation§ — A~'NA~'", we have
X1(i) = e X1 (1) and Xy (i) — (e +4d®) X5 (i). This shows tha(e("’¢(i>)>;l§ht must vanish

unlessn; = 7. The consequences of td.(3, R) symmetry may be summarized as

light light
(n,¢(2)) — _ )4 [ o m(psd(2))
(elre0) = ol = me) (92) 7 (e ) (5.19)

Let us now introduce a parametrization = M” M in terms of a triangular matrix/ =
b .
g C) which depends on three real parameters, = such thatprr = 1, and three complex

T

(]}

< |

P> pa pb
parameters, b, c. ThenN = <pa vi4[a2  abtve > and
pb ab+ve |b|%2+|c|2+72

dN = Lpdp vdv d*a d*b d*c, (5.20)
X1 =7+ c+vzP+|b+az+ 3p2, (5.21)
Xo=p 2+ |ra+v 2 + |ac — vb+ pez + 771222 (5.22)

In terms of such variables, the boundary parameter is
Ao = det (N + NT) = p? [(vSb — ReSa)? + (V2 + Sa?) (72 + 3¢?)] . (5.23)
We consider the one-point function (5.18) and perform thauftaneous shifts
a—a—pz b—>b—az+%pz2 , Cc—Cc—VZ, (5.24)

thereby obtaining

light N
(cme) 7 [ (2 b +162) 7 (572 7l + e = vbf2)
0

0 <% — b — ReSa + Iz(pRe — vRa)]? — 2 + (Sa — pS2)?][r? + (Sc — y%z)2]> )

In the limit
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the integral simplifies and reduces to

light 1 nitna=2

<e<na¢<z>>>xg ~ 6—4(%)—2"1—2”% ? / W omn Ly s » (5.27)
0 14

I = 2 [ @adhae (L4 B +[c) (14 Jaf + ac — ) ™ . (5.28)

The integrall,, ,,, can be computed for arbitrary values:gf 1, by making repeated use of the
formulad [ d%z (|22 + A)™" = é]:",with the result

1 1
T = G Dm0 L en (5:29)

Using this result in the particular case = 72, we obtain the expression for the one-point function
in the limit (5.26),
light m—1

¢ <6("’¢(z))>; ~ 6(m — ) (%Z)4n1(77)1\0f1)3 :
By analogy with the case of Liouville theory, we conjectunattthis is the light asymptotic limit
of the one-point function for all values of; andz (up to a possible redefinition afy), and not
just in the limit (5.26). What we have rigorously establidghie however only the presence of the
§(m —n2) (Sz)~*m factor, which follows from the5 (3, R) symmetry. This is already significant
evidence that our classical and conformal bootstrap aeslykthelV — W = 0 boundary condition
actually describe the same D-branes. ‘

We conclude with a few words on the boundary two-point fmthe(mWC))e(W(y))>l;fht.
The SL(3,R) symmetry determines its dependence on the boundary catedin y, and implies
that it must vanish unless the momenta of the two boundaryatqrs are conjugate to each other,
n = p*. This relation between the two momenta can be confirmed byeatdialculation using the
parametrization (5.20)-(5.22), which yields

(5.30)

<e<n,¢<o>>e<u,¢<oo>>>i"9’“ 5O (5 — 1) / d%a d?b d%

0

5 (Ao — (Sa® + 1)(I¢® + 1) — (Sb— ReSa)?) (L+ [b]* +[e[*) ™™ (1 + |a|* + Jac — b[*) ™.
(5.31)

This integral is the same ds, ,,, (5.28) with an additional delta-function, and at this moinea
do not know how to compute it. Also, we have no conformal bioapsresults to compare it with.
In the special casg; = —1 when the boundary action is local (3.17), the exact resikh@vn
[19], but does not have a light asymptotic limit. Corresgagly, our light asymptotic calculation
is meaningful only if\; > 1, because iy < 1 the argument of thé function in eq. (5.31) cannot
vanish.

5.3 Case of s/3 Todatheory with W + W = 0

Let us consider the solutions (3.19) of th& Toda equations which obey the “light asymptotic
condition” #3X; = 93X; = 0. We will write them in terms of the same functio(z) =

— 29 —



(32%,2,1) asin theW — W = 0 case, together with the same matfix= (% %1 é) which relates
them to their Wronskians,

X, = B(Z)NPB(2)T , Xy =B(z)PN T'B(2)T. (5.32)
Now that we choose these particular functid®&), it is possible to ensure that = — log X; are

real by imposing the simple condition thatP be a positive Hermitian matrix. This restricts the
SL(3,C) symmetry group (3.20) to it§ L(3, R) subgroup, which still acts a& — AT NA~T,
(Beware that the matri® transforms nontrivially under this symmetry.) In additidghis implies
that the eigenvalues df must be real, because there is a maddxsuch thatN P = M7 M, and
N is thus conjugate to the Hermitian matfix PM 7.

According to eq. (5.2), the one-point function of a bulk agier e(¢(2)) = ¢m@1(2)+n2¢2(2)
in the presence of a boundary with parameters\s (3.21) is of the type

light
<e<77v¢><Z>>>A“”’A — / ANS(AM —TrN) 6 (A —Tr N X7MX, ™, (5.33)
1,72

The consequences of thel(3,R) symmetry on this integral can be evaluated using the same
particular symmetry transformations as in the ddse W = 0. UsingA(z, y) we similarly obtain
the expected dependence enUsing A(d, e, f) however teaches us nothing new, because such
transformations now leav&;, X, invariant.

Let us now use the parametrizatioh = M7 M P in terms of an upper-triangular matrix

M = § % lc)) which depends on three real paramejets 7 such thapr = 1, and three complex
parameteré, b, c. The expressions (5.20)-(5.22) f@N, X1, X, still hold, and we find

A = Tr N =2pRb—v? — |a|?, (5.34)
Ay = Tr N7t = 2puR(ac) — 2p0*Rb — p?|c|? — p*r2 . (5.35)

We perform the shifts (5.24) in the expression (5.33) fordhe-point function, and obtain

light _ _
<e(”’¢(z))>)\g)\ = /dN (T2 + b+ [e*) ™™ (p2 + 72a]* + [vb — cal?) ™"
1,172
x & (A1 + 17+ |a]? — 2pRb + 297 (S2)? — 413a32)

x & (A2 + %A + v+ v 4 |pe —va — 2ipr3z|*) . (5.36)

We do not know how to perform this integral, except by takingagticular limit of the variables
2z, A1, A2. To this end, we parametrize the eigenvaluedais{e ("7} = {e=71 71792 ¢%2} for
a vectoro = oie; + og9es in the Cartan subalgebra ef;. Then the parameters coincide with
values of the fundamental and antifundamental characfetrgp

AL = Xwa (U) , Ay = Xw1 (U) . (5.37)

Notice however that the matri¥ is not positive, andr;, oo are not expected to be real numbers.
Rather, we assume thefit ande?? are negative real numbers. We now introduce the limit

z— &z
5.38
{eai%%gi L€, (5.38)
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so that\; — £2¢%. In this limit, the delta-functions in the integral (5.36) the variables, v, 7 to
values proportional to the eigenvalues/éf namely

1 g g1 —0: —0
p* = _%(32)26 2 = %e 17022 = 4(Sz)%er (5.39)

And we find that the integral takes the value

light
<€(n,¢(z))> ot é(gz)%n?m(_em)m1(_602)7721[7717172 , (5.40)
<6<n,¢<z>>>“9ht _9 1
/o — _ 01\ (__ ,02)\72 - 41
<1>£nght (gz)Q(p,n)( ) (=e”) g(€7U—P)7 (41

where we used the definition (5.28) and value (5.29) of tregnat ,,, ,,,. We derived this result in
the case of/3 Toda theory, but it is not very difficult to generalize it teetbase ok/,, Toda theory
with arbitraryn. By analogy with Liouville theory, we conjecture that thésult holds for general
values ofz ando, and not just in the limit (5.38).

Let us investigate the light asymptotic limit (5.1) of thenéormal bootstrap result (4.26). The
behaviour of the factoy_, ;- e“(*):2~?) depends on which Weyl chamber= b~ belongs to;
there is a Weyl chamber such that

(ﬂ.lu’biz)i(p’n) —b=2(p,0) ,(n—p,0) P(l + (67 Ul P) B biz(ev P))
(Von(2))p-1, b—0  (252)2(en) ¢ ¢ e>1_[O (e,n—p) ©-42)
(Von(2)) -1 (rpb®)~(e:m) 2 1
- 7700 o 9~ (-1 (o,m) p(n,0) 5.43
(Vo(4))p-1, b0 (Sz)2(em) (=1) € 61:[() (e,n—p)’ ( )

which generalizes the Liouville result (5.13). Checking #tgreement (5.3) between the classical
calculation (5.41) and the conformal bootstrap result3pidvolves assuming that the boundary
parameters:’ which we introduced in both analyses coincide. Then the 8agncosmologi-
cal constants\; ; (4.25) agree with the classical boundary parameters (5.37). However, as
in Liouville theory, we must analytically continue the opeint function, because the boundary
parameters’: take positive values in the bootstrap analysis and negsadltes in the classical
calculation.

This agreement between the classical and bootstrap amalysd the identification of their
respective boundary parameters, have interesting coesegsl in the case whenbelongs to the
boundary of a Weyl chamber, that(s,o) = 0 for e some positive root. This is the case when
two of the eigenvaluege=71,¢e71 772 ¢?2} of the matrixV coincide; in the classical analysis of
Subsection 3.4 this corresponded to the D-brane being inmnerdional. In the conformal bootstrap
analysis, this case corresponds to the simply degenerhtaii®s, as is clear from eq. (4.30) for the
boundary cosmological constants, where two of the threeg@oincide. In the limib — 0 with

2 —
c= —%bn fixed andm odd, the boundary cosmological constants bec ni o+ i 6_626_ 2e Z .
o4 =€ ““—12e¢
This allows us to identifye with the position of the D-brane, as given by the Dirichlehditions
eg. (3.22) from the classical analysis. '

We conclude with a few words on the boundary two-point fmlzje(""?(x))e(“@(y))>lllgf;t2.

The SL(3,R) symmetry determines its dependence on the boundary catedin y, and implies
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that it must vanish unless the momenta ofey; — 1) = 0. This condition can be interpreted as the
conformal invariance of the boundary theory; however, mmsg the momenta to be related to the
W®) charges as in eq. (2.16), we would expect a stronger comisfram the full W5 symmetry,
namelyn = u*. And indeed this is the constraint we found in the— W = 0 case. But we can
confirm the absence of this constraint in the present casecbhgplicit calculation

<e<n,¢<o>> o (1:6(9)) >“9’“

v

d
= 5((p7 [/ N)) / d2a d2b d2c _V V2(771*P«2)
A1,A2

x 0 (M — 207 IR+ 0 + V2|CL|2) § (A2 + 2vRb+ v 2 + v ?|c|? — 20R(ac))
X (L bl + [ef*) 7" (1 + |af* + ac = BI*) ™™ . (5.44)

Curiously, the limit in which we are able to compute this grd is different from the limit (5.38)
which we used in the case of the one-point function, and itiquéar no longer forbids the co-
incidence of two eigenvalues @f. This limit is chosen so that a rescaling mfcan match the
behaviours of\; and )\ in the delta-functions:

o1 -1 _01
{6 BT S (5.45)
€72 — £e%?
We obtain in this limit
- light 1 D(m +m—32)
34+2m2—2u1 [/ o (n,6(0)) (1, $(0)) ~&((p,m — 2
¢ < ), ~ e = ) T T T =)

X \602_(’1\‘“_”2_% |sinh %(01 + 02)‘—2n1—2n2+3 . (5.46)

This result is invariant under the exchange of the two opesat <+ ;.. On the other hand there
is no invariance undeny — n*,u — p*. This is because our limit (5.45) treats the boundary
parameters\i, Ao in an asymmetric way; in particulay; and )\, do not go to infinity at the same
rate.

6. Conclusion

Combining classical and conformal bootstrap analyseslyial consistent picture of the moduli
space of maximally symmetric D-branessif), conformal Toda theory. Our results and conjectures
on these moduli spaces and on the existence of a boundaoy actihes/, andsls cases can be
summarized in the following table:

Theory Type of Brane | d | Parameters |Classical parametefs Action |
. Continuous 1 R A1, =icoshb A [e?
Liouville . S,e 9 L= 1COSADS Lfe
Discrete 0 0 eN n. a. n. a.
- Continuous 2 ? Ao nonlocal
b3, W =W
ot Degenerate ? ? ? ?
Continuous 2 s € R? i = Xuw, (b8) inexistent
sl3, W = —W | Simply degenerate1 | s|[¢,m € R x N? c=—1br 0
Discrete 0] &,mll';m' € N* n. a. n. a.
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In the case of the boundary conditiolis®) — T (*) = 0, the dimension of the moduli space
is the integer part of; (Subsection 3.3). This coincides with the number of nonzdrarges
{q(5>}2§8§n_1‘5 oven TOI bulk operators whose one-point functions do not vanBéction 4), in
accordance with a generalization of Cardy’s idea. Insthecase, we provide predictions for certain
correlation functions in the light asymptotic limit, napehe bulk one-point function (5.30) and
boundary two-point function (5.31).

We examined the case of the boundary conditidig) — (—1)*W () = 0 in more detail. We
propose that there exists a hierarchy of D-branes of dimasdi= 0---n — 1, which correspond
to representations of thié’,, algebra with%d(d + 1) null vectors. In particular, there are contin-
uous D-branes of dimension— 1, and discrete D-branes of dimensién The moduli space of
d-dimensional D-branes is itseffdimensional, although there are also discrete parametdris
was the result of classical (Subsection 3.4) and boots8aption 4) analyses, which were shown
to agree in detail (Subsection 5.3). In particular, we foarplicit formulas for the bulk one-point
functions of continuous (4.26) and discrete (4.32) D-bsahe thes/s case, we also computed the
bulk one-point functions of the simply degenerate D-bra@e29). As our D-branes conform to
Cardy’s ideas by corresponding to representations ofithealgebra, they also correspond to the
topological defects of the very interesting article [20h@ve such defects are related to certain op-
erators in four-dimensional gauge theories). And a D-bsamee-point function is closely related
to the corresponding defect operator’s coefficients.

The calculation of annulus partition functions leads taureltconjectures for the spectra of
open strings with one end on a discrete D-brane (SubsectB)n Zhese spectra coincide with
what can be obtained by fusing the two representations wdvatespond to the two involved D-
branes. If this structural property persists in the casdl@-#ranes, then it can help explain the
divergences of the annulus partition functions (Subseetid). Infinite fusion multiplicities indeed
appear in the fusion of two continuous representations g&etton 2.3), so that we expect infinite
multiplicities in the spectra of continuous D-branes. Thight also explain the apparent violation
of the W3 symmetry in the minisuperspace prediction (5.46) for thenglary two-point function.
A boundary spectrum with infinite multiplicities can certlgi not be adequately parametrized by
momentax = bn, and an operator with a given momentum might correspond tréation of
states belonging to different representations ofiffigalgebra.

Thus, the moduli space of D-branes may now be well-undedstmat the boundary operators
and their correlation functions remain problematic, areytbertainly have new and complicated
features.
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A. Minisuperspace limits of some correlation functions

In addition to the light asymptotic limit which we studied 8ection 5, there is another semi-
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classical limit in which Toda correlation functions sinfpliand can in certain cases be indepen-
dently predicted: the minisuperspace limit, where our tirmensional field theory reduces to a
one-dimensional system. In this limit, a bulk primary operd/.;,(z) corresponds to a wave-
function¥,,(¢), which is a solution of the Schrodinger equation of Todanfuiam mechanics [1],

2 n—1
[— (55) +2m0 >l (o) = p05(0). (A1)
(Compare with thes?,, Toda Lagrangiar.,, (2.27), and notice the rescalingg— b~'¢.) Here
the variable¢ can be interpreted as theindependent zero-mode of the Toda fiel(t). The
Schrodinger equation is deduced from the Hamiltonianupécof the dynamics of, which is
associated to radial quantization in th@lane.

In the minisuperspace limit, a boundary with parameteorresponds to a boundary wave-
function \I/f’,dy(¢), which can be interpreted as the density of the correspgnBibrane. If a
boundary Lagrangiai’®[¢] is known, then the boundary wavefunction can be obtainechy-c
puting this Lagrangian for constant values of the fig{d), namely

W () = e O (A.2)

In any case, the minisuperspace one-point function is dibfise

i = [ o wy(0) wi(o) . (A3)
and we expect that it is related tda- 0 limit of the one-point functionV,(z)).,

lin (32)20407 (Voip(2)) 1, = (Bp)5 ™ (A4)
(Compare with the light asymptotic limit (5.3).)

Inthe case of Liouville theory, a boundary Lagrangian isknoThen it is possible to compute
the minisuperspace one-point function (A.3) and to comjiaséth the conformal bootstrap one-
point function. Itturns out that eq. (A.4) is obeyed, whichyides a test of the conformal bootstrap
one-point function [16]. In the case ef5 Toda theory withiV + W = 0, no boundary action
exists, as we will see in Appendix B. We will reason in the agf@direction, and deduce the
minisuperspace boundary Wavefunct'rbﬁfly(@ from the conformal bootstrap one-point function.
We will do this first in Liouville theory, as a preparation fire case ofs/3 Toda theory. The
boundary wavefunction will turn out to have interesting gedies; in particular it provides the
generating function of the Backlund transformation whicaps the Toda classical mechanicgof
to the free classical mechanicsaf As we saw in Section 3, there is a good reason why the Toda
boundary parametercan be interpreted as a free field: there exists a Backlamdformation from
conformal Toda theory to a free field theory, such thatlfier W = 0 boundary conditions in
Toda theory are mapped to Dirichlet boundary conditionté@iftee theory, and the Toda boundary
parameter is mapped to the free field boundary parameter, which is thmdary value of the
free field.
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A.1 Caseof Liouvilletheory
In this case the Schrodinger equation (A.1) becovﬁqe%a%f2 + 27wb—262¢} U,(¢p) = %pQ\IIp(qb).
The solution is [16]
i 2
U, (p) = “Hmar_— K, (2 —2¢¢ A.

whereK, (z) is a Bessel function, andl,, is normalized so that

[ 46 %1,(6)1,(6) = 25501 + ) ».6)
The minisuperspace limit (A.4) of the Liouville one-pointniction (4.26) is

(W)™t — Q(Wub_Q)_%pF(z‘p) cos(po) . (A.7)

g

According to eq. (A.2) and eq. (A.3) we can deduce the boyndarefunction from the knowl-
edge of(w,)"™",

ez

\Ifgdy(@ = i/alp <\I/_p>2”m U,(¢) = %/dp cos(po) Kip <2 7wb‘26¢> . (A.8)

o

The calculation is performed using the formqlé‘?ﬁ dp cos(ap) Kip(z) = ge*“’”h“, with the
result

U () = e L2 , Lgdy = /4mpub=2 cosh(o) e? . (A.9)

The functionLgdy(qﬁ, o) generates a canonical transformation between Toda andl&ssical me-
chanics, as follows from the identity

bdy \ 2 bdy \ 2
<8L2 ) —<8§2 ) = dnxpb2 27 (A.10)
g

99

whose right hand-side is the bulk Liouville potential, ske Lagrangian (2.27). Considering in-

. bdy bdy
deed¢, o as time-dependent variables with associated momgnrta— 85@)/ andg = aLa—i’ the

Liouville equation of motionp = 47ub~2 ¢2¢ amounts to the)-derivative of eq. (A.10), and the
free equation of motior = 0 amounts to the-derivative of eq. (A.10).

A.2 Caseof sls Todatheory with W +TW =0
The solution of the Schrodinger equation (A.1) in the cds&gToda theory is [21] [1]

e>0 B ’

dt
0

(A.11)

\ij((b) -
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and it is normalized such that

/ &> Wy, (), (¢) = (27)61) (p1 + p2) . (A.12)
The minisuperspace limit (A.4) of the¢s Toda one-point function (4.26) is
<\I’p>?im = (rpb=2)"Hep) HF e,p)) Z eiw@)p) (A.13)
e>0 weW
According to eq. (A.2) and eq. (A.3) we can deduce the boyndarefunction from the knowl-
edge of(¥ >m“”,
1
bdy — 2 ming
V() = oy [ (W) ) (A14)
The calculation can be performed using the formula
& s
/ dp cos(po) Kip(21)Kip(22) = §K0 <\/z% + 22 4 2bc cosh O'> . (A.15)
0
The result is
b () = Ko (Léo)) : (A.16)
where we define
L) = Vamph 2\ felc19) 4 ele26) 4 )y, (0%) + 2Oy, (0%) . (ALT)
= Va2 ] \/ es(e1:®) 4 (—1)(ph)es(e2:9)g(ho”) | (A.18)
h€Hy,

In the strong coupling region where is large, we havelfbdy(qb) ~ e—L:(aO) as follows from
Ky(2) T Vaze ®. And Lg ) generates the canonical transformation from Toda cldssiea
chanics to the free classical mechanics. (The transfooméself is written in [22].) As in the case
of Liouville theory, this follows from the identity

oL ON®  [or0\>
) %) = Ampb2 [e@w) + 6(62’¢)] , (A.19)
which can be proved with the help of the formulas
OXw (0 2
X#()) = %szl (o) — %XOJQ(O_) xil = X2w; T Xwo (A.20)
78X§;(0) , Lxgi(o)) = %Xp(a) — % ’ Xwi Xawo = Xp T 1

To conclude, let us come back to the interpretation of thenaty wavefunctlonIfbdy(ng)
as the density of the continuous D-brane of parameteas suggested by eq. (A.3). In the

weak coupling region wheré(o) is small, we havelfbdy(qb) ( ¢)~ —(p, ¢) as follows from
Pyp)—>—
Ky(2) ~o log . Thus, the density of the D-brane grows linearly withThe minisuperspace
z—r

annulus partition functiow"""! = [ d?¢ W, (¢)¥,,(¢) therefore has ah* infrared divergence,
where L is a large distance cutoff. This confirms the divergence Wwhias found by modular

bootstrap methods in Subsection 4.3. This contrasts wilcése of Liouville theory, where the
density of a continuous D-brane is constant in the weak dogipkgion, and correspondingly the

annulus partition function diverges &swhich is the volume of the-space in that case.

— 36 —



B. On theexistence of a boundary action in s/3 Toda theory

The functional integral formalism is often useful in thedstwof conformal field theories, although
in general it permits the calculation of only a subset of thealation functions. In this formalism,
correlation functions are expressed as functional integneer the fieldsp;, where field configura-
tions come with weights—°. HereS is the action, which may or may not be written as the integral
of a certain Lagrangiad, namelyS = [ d?z L(z). If the Lagrangian exists and is local, that is
if L(z) is a function of the fieldg; and finitely many of their derivatives at the pointthen the
action is also called local. If the space has a boundagy z, the boundary action or boundary
terms of the action are the terms which depend only on theegaifithe fields at the boundary, and
local boundary actions are those of the type= [ __dx L(x) whereL(z) is a local boundary
Lagrangian.

The choice of an actiol§ is constrained by the classical theory. Namely, the saistiaf the
classical equations of motion and boundary conditions Ishbe functional critical points of the
action. This constraint does not fully determiighere we will however only be concerned with
the question of the existence of at least one action whickiotheés constraint.

In s¢3 conformal Toda theory on surfaces with no boundaries, trgrdrayianLs (2.27) is
known [1]. In Liouville theory on surfaces with boundariege have the boundary Lagrangian
Lgdy (3.8), see [16]. In the case of3 Toda theory, we could so far derive our boundary conditions
from boundary Lagrangians only in particular subcases etwo case$V = +£1. We will now
investigate systematically for which boundary conditigiis = +1/) and boundary parameters
(Ao Or A1, A2) boundary actions can exist.

B.1 Boundary conditions as functional one-forms

Let us assume the existence of a boundary acsf#i[¢;], that is a functional of the values of the
Toda fieldsg;, - at the boundary. We however do not assume fi4t[4;] is local. In particular
we do not forbid introducing auxiliary boundary fields in &duh to ¢;, so long as these auxiliary
fields can be eliminated using their equations of motion. Vg exclude the possibility for fields
to obey Dirichlet boundary conditions, which excludes thdipular case (3.22) from the analysis.
Let us derive the Neumann-type boundary conditions fronathii®ns = [ d%%(&q&, 0¢) +

Sgdy[gb@-], where the interaction terms in the bulk action (2.27) carobtted as they will not
contribute. We find

1 - 5.5bdy 1 - 5.5bdy
— (0= 8) (201 — ¢y) = — (= 8) (209 — &) = B.1
510020 —00) =5 (0= 0)(262 - ) = o ®.)
In terms of theX; = e %, this becomes
_ 9 A bdy A A bdy
00X (D-0)Xs 08 (0-0)%, (0-0)%1 65" oo

X2 X1X, 5 X1 X2 XX 5Xo

The existence of the boundary acti§f”” can now be interpreted as the condition that the func-
tional one-form

0-0)X1 (0-0)X 0-0)Xy (0-0)X
g:<2( X2) 1 X1X)2 2>5X1+<2( X2) 2| XlX)z 1>5X2 (B.3)
1 2
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be exact, namely = §(2i5°%). It follows thatg must be closedjg = 0. In order to be able to
work with this condition, we will study functional calculuis the next Subsection.

Before that, let us point out that the natural variables tokweith are notX;, X, but the
functions by, be, b3 in terms of which we wrote the solutions of the Toda equati$143) and
(3.19). These variables are subject to the constRirjb, , b, bs] = 1, so that we must include the
possibility of such constraints in our study of functionalaulus.

B.2 Technical interlude; functional calculus

We wish to study functional forms which depend on functiégns:). A zero-form is a func-
tional S[b;]. A one-form is an objecy = [dz )", gi(x)db;(z), whereg;(z) are z-dependent
functionals ofb;. An example of a one-form is the differential of a zero-formamelydS =

[dz Y, Mf(sx dbi(x). Atwo-form is an objeck = [ dxdy Y-, kij(x,y)dbi(z) A db;(y), where
kij(x,y) arex,y-dependent functionals &f. The basic two- forméb () N 6bj(y) = —ob;(y) A

db;(x) are antisymmetric, which however does not imply the vanigtof 0b;(z) A db;(y) =

—0bi(y) A ob;(x). So the differential of a one-form is

<Z / dz gi(x)b;( ) 3 / dmdy( z (;iﬂ((g)) ) 5bi () A 6b; ()

1<J
0 i\
+ Z / dady 6‘Zigy))5bi(x) ASbi(y) . (B.4)

As an exercise, we can compute the differential of an actioctfonalS = [ dx L(b(z), V' (x)),

o5 = [ dedy | G000 =)+ G0 = | ovia) = [ dz |G - 555 (mleres)

and we can check th&ts = 0.

Now we will be interested in variablds, b2, bs which are not independent, as they obey the
constraintWr([by, be, b3] = 1. If these were ordinary variables instead of functions,dbedition
for the formg = > g;db; to be closed modulo a constrai@t(b, b2, b3) = 1 would simply be
dg N dC = 0, and the integrab' of the one-formy would be characterized lylS — g) A dC = 0.
Let us generalize these notions to the case of functionatdorLetg = [ dz 2;.11 gi(x)0b; ()
be a one-form, let us study the condition that it is closed mmdthe constrainbVr. We denote
0g = [ dady 3=,; kij(x,y)dbi(x) A dbj(y) with kij(z,y) = —kji(y, ).

We assume for a moment that the constraint can be invertedesriten ashs = ¢[b1, ba].
Then it is straightforward to rewritg = [ dx Zle gi(x)db;(x) and to computég in terms of¢
andk;;. We find that the vanishing @y modulo the constrairiVr[b;, b2, b3] = 1 is equivalent to

Ky — K13 — K3o + K33 = K11 — K13 — K31 + K33 = Koy — Koz — K32 + K33 =0, (B.6)
SWr\ SWr\
where K;; = (_r) kij <Wr> . (B.7)
J

ob;
In the definition ofK;; we have used new notations for functions of two variafigs, y) such

as 5;2?(%) or k;j(x,y). Namely, the products and inverses of such functions areetkfiith re-

spect to the product lawf; f2)(z,y) = [dz fi(z,z)f2(z,y), and the transposition is defined
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as the exchange of the two variablgd(z,y) = f(y,z). In the case when the functioms are
z-independent, the product law becomes commutative, theetsdj;; and K;; vanish, and the con-
ditions (B.6) boil down td, + Ko3 + K31 = 0 which is equivalent talg A dWr = 0 as we found
by the direct analysis of that case. Notice that the conuti@.6) on the matri¥(;; are equivalent
to°,;; viKi;v; = 0 for any two vectors), v’ such thady >, v; = 3=, v; = 0.

Then the conditions for an “action” function&lto be the integral of the functional one-form
g modulo the constrairfivr is:

88 N (OWr\T_ (85 N (SWR\TI_ (88 _ N oW\ g g
T AN R O A Y A T AT S

Now the Wronskian constraint is not invertible, iascannot be fully determined in terms of

—1
b1,bs. So the quantities(‘sé‘g‘f) are ambiguous. We indeed find tr@ggr has several inverses,
parametrized by numbers,,

1
(i;;jr) (z,y) = % O(y — x)eijub; (2)br(y) + Y Kibi (@)be(y) | (B.9)
! ¢ gk

where®(z) is a step function such th&’'(z) = d(z), and we recall the notations; = €;;b;b,
andWr = eijkbib;.b’k’. Then fordg to vanish modulo the constraint, the condition (B.6) mudtiho
for all values ofn; - Similarly, integrating the functional one-forgmodulo the constraint requires
the equation (B.8) to be satisfied for all valuesn%.

B.3 Existence of the boundary action if W — W =0

We have found that the boundary conditidis— W = 0 lead to the expressions (3.13) for the
Toda fieldsX7, X5 in terms of functions; subject to the Wronskian constraint. The expressions
(3.16) for (0 — 9)X; are also known. These expressions depend on a constant iNatiof size
3 and determinant; it will be convenient to decompose boffi and N7 into symmetric and
antisymmetric parts, according 16;; = S;; + €;;1 A andN 1T = Tij + €ijk 0.

So we can compute the one-folgr(B.3) and its differentiak = dg in terms of the functions
b;. Taking the ambiguitiex;ﬂk to vanish in the inversion (B.9) of the Wronskian constrathe
quantitiesk;; (B.7) turn out to be of the form

Kij(x,y) = 2€itm € pqbe(%)bp (y) /dz Oz — 2)0(y — 2) A%q(z) , (B.10)

w (z)w}(y)

where we sum over repeated indices exéeptand the tensoA%q, which is defined foy; # j and
m # i and obeys\i,, = —AlL,, is

” 20 grwyw;b 20 mrwyrw;b
A;jlq = W(aisuv - OCuSiv)bubv - %(ajsuv — Oéqu )bubv
2 2
2Sirbyw;b 25;,brw;b
W(Augqv - Aqguv)wuwv - %;(I(Augmv — A Oy )Wy Wy
1 1
brbmbq W; W5 Wy

+ (aiSjr - ajSir) + (Amo'qr - Aqgmr) (B.11)

X1X2 X1X2
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In the special case of the free boundary conditions we Bye= a,, = 0 thusA%q = 0. In
the special case when the boundary Lagrangian given by ed7)(&e haveS;; = U,;U; thus
Qi Suy — Sy = Ay0gw — Agouy = 0 thus again\y, = 0.

For a quantityk;; of the form (B.10), the condition (B.6) amounts to

Ym # i / g Vi, k by () /y y
A =0 and a2 [N =
{ vq 7& ] ) mq an { Vi 7& m ) E]pq wJQ (y) mq Ekpq

where [Y A is the primitive of the functionA. Curiously, taking into account the ambiguities
parametrized bye;'.k does not yield extra equations.

We wish to find out whether the equation (B.12) holds for aiplds (b;, b2, b3) obeying the
Wronskian constraint. We do not know how to do this exceptdsyinng the equation for a number
of triples. Large families of solutions of the Wronskian straint can be built from functions of
the typez” or ¢”*. This raises the questions of the admissible behaviody(ej atz = oo and at
generic pointg, and of the appropriate contours of integration in our dqungB.12). We have no
satisfactory answers to these questions. So we will tegttbel purely algebraic consequences of
our equation.

b (y) Y ik
w% ® / ALy (B.12)

Consider an equation of the typg(y) = 0 whereuy(y) = Y., u;(y) [Y v;. Let us build
the matrix of sizen + 1 formed byw; and their firstn derivatives,M = [ul(j)]i,jzo...n. Then
det M = 0 is a purely algebraic consequence of the original equatiothe sense that the terms
involving primitives [ v; cancel. Applying this treatment to eq. (B.12) removes thedrte deal
with integrals and to worry about the regularity i9f2). For all the numerous cases which we
tested, we found that the conditielet A/ = 0 held. This is strong evidence that the fofim is
closed. Thisis strong evidence that it is in fact exact, aaad@njecture that there exists a boundary
action from which the boundary condition (3.12) can be astiv

This action is expected to be a functior#f”? of the values of the Toda fields;, ¢, at the
boundaryz = Zz. In addition,S*% is expected to depend on the boundary paramete€omparing
its definition (B.2) with the formulas (3.13) fox; and (3.16) fo(0—0) X;, we see thas®*® cannot
be local, that is of the typg L™ [¢1, ¢o] whereL*¥ is a function ofe; and finitely many of their
derivatives, except in the two special casgs= +1 which we considered in Subsection 3.3. It
is possible that the nonlocal boundary action has a simpgleesgion as a local functional 6f.
Even so, it would not be very easy to use such an action infiedsb-computations of correlation
functions.

B.4 Noboundary action if W +W =0

We have found that the boundary condititii + 17 = 0 led to the expressions (3.19) for the
Toda fieldsX, X5 in terms of functions; subject to the Wronskian constraint. Expressions for
(0 — 0)X; can easily be derived. These expressions depend on a domstaix N;; of size3 and
determinantl; it is not restrictive to assume that is diagonal with eigenvaluesg, v, 3.

The rest of the reasoning is similar to the c&Be— W = 0, with a different formula for the
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objectAiﬁ;q which appears in eq. (B.10):

ij 2 2vpv, Vp — Uy
= vy~ [ (- B ) it - it

2 vy, vy — 1 _ , "
<X12 X7 XX ) wibm(0jba = wst%)
-1, ((0-0)X1 (0-09)Xz
- bowib,| . (B.13
* X1 X2 < X1 Xo Wiom st ( )

where the indicep and/ are such that;,,, ande;,, do not vanish. With such an expression
for Aiﬁ;q, we find that eq. (B.12) no longer holds, by numerically tagtit in various examples
of values ofb;. This proves that there is no boundary action from which thenblary condition
W 4+ W = 0 can be derived.

Remember however that this proof of the non-existence obthumdary action relies on our
assumption that only Neumann-type boundary conditionslés@ed, and Dirichlet-type boundary
conditions do not occur. So there is no contradiction withgpecial case (3.22) when Dirichlet-
type conditions could be derived by varying an action (whosendary term was actually zero).
But we saw in Section 4 that in the generic case the boundamition 1V + W = 0 corresponds
to two-dimensional D-branes, and we do not expect Dirictdetditions to apply.
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