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Abstract

We use the method of Signorini’s expansion to analyze the Saint-Venant problem for an isotropic and homogeneous
second-order elastic prismatic bar predeformed by an infinitesimal amount in flexure. The centroid of one end face of the bar
is rigidly clamped. The complete solution of the problem is expressed in terms of ten functions. For a general cross-section,
explicit expressions for most of these functions are given; the remaining functions are solutions of well-posed plane elliptic
problems. However, for a bar of circular cross-section, all of these functions are evaluated and a closed form solution of the
2nd-order problem is given. The solution contains six constants which characterize the second-order flexure, bending, torsion
and extension of the bar. It is found that when the total axial force vanishes, the second-order axial deformation is not zero;
it represents a generalized Poynting effect. The second-order elasticities affect only the second-order axial force.
�
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1. Introduction

Poynting [1] discovered that the elongation of a
prismatic elastic body deformed by applying equal
and opposite torques at the end faces is proportional
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to the square of the angle of twist of the bar. Since
then there have been many works to qualitatively and
quantitatively explain this phenomenon. For exam-
ple, Rivlin [2] used the second-order theory of elas-
ticity and found that the elongation of a circular bar
deformed by applying twisting moments at the end
faces depended only upon the second-order elastici-
ties. Truesdell and Noll [3] and Wang and Truesdell
[4] have summarized these and other related works.

The problem of bending, torsion, extension and flex-
ure of a prismatic bar is usually known as the Saint-
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Venant problem [5,6]. Iesan [7–10] has analyzed the
Saint-Venant problem for anisotropic and microstretch
linear elastic solids. Dell’Isola and Rosa [11] and Davi
[12] have studied the problem for piezoelectric bars.
Recently, dell’Isola et al. [13,14] used the second-
order theory of elasticity to analyze the Saint-Venant
problem for a bar predeformed by an infinitesimal
amount in either torsion or bending. They used the
method of Signorini’s expansion [15] to find a second-
order solution and employed Green and Adkins’ [16]
result that the loads for higher-order problems auto-
matically satisfy the compatibility conditions if the
centroid of one end-face of the rod is rigidly clamped.
Batra et al. [17] and Vidoli et al. [18] have extended
these results to a transversely isotropic piezoelectric
bar with the centroidal axis of the bar as the axis
of transverse isotropy. We note that Capriz and Po-
dio Guidguli [19] have characterized implications of
the Fredholm-type conditions for the existence of Sig-
norini’s expansion. They found that for an initially
stress free body these generally non-linear algebraic
conditions reduce to a sequence of linear systems.
They give an example involving infinitesimal defor-
mations superimposed upon a finitely stressed body
for which the Signorini expansion method fails.

Here we study the Saint-Venant problem for a ho-
mogeneous and isotropic second-order elastic pris-
matic bar predeformed by an infinitesimalamount in
flexure. This problem is very challenging because the
solution for the infinitesimal flexure involves twisting
and warping of a cross-section of the bar as well as
bending of the bar. It is found that for a prismatic bar
of general cross-section the second-order Poisson ef-
fect, not of the Saint-Venant type, is proportional to
z4 where z is the distance of a point from the end
face whose centroid is assumed to be clamped. The
second-order effects also depend upon the first-order
elasticities.

2. Formulation of the problem

We study quasistatic deformations of a homoge-
neous and isotropic prismatic body of uniform cross-
section A and length � occupying the domain A ×
[0, �] in the unstressed reference configuration. We as-
sume that the body is made of a second-order elastic
material. In the absence of body forces, its deforma-

tions are governed by the balance of linear momentum
and the balance of moment of momentum. That is,

DivT = 0, (1)
TFT = FTT, (2)

where

T = �
[(

�1IE + 2E + �1

2
(IHHT + 3I 2

E) + �3I
2
E

+ �4IIE

)
+ (�5 + 2)IEE − �1IEHT

− (HT)2 + �6E2
]
, (3)

H = Grad u, u = x − X, E = (H + HT)/2,

IE = trE, I IE = 1
2
(I 2
E − IE2). (4)

Here T is the first Piola-Kirchhoff stress tensor, F the
deformation gradient, u the displacement of a material
point, x the present position of the material point that
occupied place X in the reference configuration, Div
and Grad denote the three-dimensional divergence and
gradient operators with respect to coordinates in the
reference configuration,� is the shear modulus, �1 =
�/�, � is the other Lamé constant, and �3, �4, �5
and �6 are non-dimensional second-order elasticities
of the material. The reader is referred to Wang and
Truesdell [4] and Truesdell and Noll [3] for details of
deriving the constitutive relation (3) and for references
to other authors who have derived it. Following [3,4]
we use the direct notation. Within terms of O(H2),
the constitutive relation (3) identically satisfies Eq.
(2). Substitution from (3) into (1) gives a system of
coupled non-linear partial differential equations to be
solved for the three components of the displacement
u. Having found u, the balance of mass can be used to
ascertain the mass density in the present configuration.

We assume that the prismatic body is loaded by
applying tractions only to its end faces. Thus

TN = f on A0 and on A� − NC, (5)
TN = 0 on �A × [0, �], (6)
u = 0, H − HT = 0 at C. (7)

Here A0 =A×{0} and A�=A×{�} are the end faces
of the prismatic body, N is an outward unit normal at a
point on the boundary in the reference configuration,C
is the centroid of the cross-section A�, NC is a small
neighborhood of C in the plane A� and �A is the
boundary of A. Green and Adkins [16] have shown
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that under conditions (7), the method of Signorini’s ex-
pansion [15] produces loads which automatically sat-
isfy compatibility conditions for the boundary-value
problems of different orders to be well-posed. In the
Saint-Venant semi-inverse method, surface tractions f
are determined from the solution of the problem.

The integrability conditions for the boundary-value
problem defined by Eqs. (1)–(7) are

(∫
A
f dA

)′
= 0,(∫

A
x ∧ f dA

)′
+ x

∣∣∣∣′r=0 ∧
∫
A
f dA = 0, (8)

where a prime denotes differentiation with respect to
the axial coordinate z, a ∧ b = b ⊗ a − a ⊗ b, a ∨
b = a⊗ b + b ⊗ a, (a⊗ b)d = (b · d)a for arbitrary
vectors a, b and d. With the origin at the centroid of
the cross-section A0, we set

X = r + ze, u = we+ v, (9)

where e is a unit vector along the centroidal axis of
the prismatic body, r the in-plane position vector of
a point, and w and v equal the axial and the in-plane
components, respectively, of the displacement u of a
point.

3. Signorini’s expansion

In Signorini’s method, the displacement u and the
surface traction f are assumed to have a series expan-
sion

u = �u̇ + �2ü + · · · , f = �ḟ + �2 f̈ + · · · , (10)

where �, a small parameter in the expansion, is asso-
ciated with the curvature of the bar predeformed in
flexure. Note that u̇ is a solution of the linear problem
corresponding to Eqs. (1)–(7) and ü is a correction
because of the consideration of second-order effects.
Thus a superimposed dot indicates the order of the
solution rather than the time derivative. Substitution
from (10)1 into (4) and the result into (3) yields

T = �Ṫ + �2T̈ + · · · , (11)

where

Ṫ = 2�Ė + �(tr Ė)1, T̈ = ¨̄T + T̈s ,

¨̄T = 2�Ë + �(tr Ë)1,

T̈s = �
[�1

2
IḢ Ḣ

T + (2 + �3)I
2
Ė

+ �4II Ė1

+ (�5 + 2)IĖĖ − �1IĖḢ
T

−(ḢT)2 + �6Ė2
]
. (12)

Note that Ṫ and ¨̄T are symmetric tensors, expressions
(12)1 and (12)3 for them are alike, and T̈ is not sym-
metric. Eq. (12)1 is Hooke’s law for a linear elastic
isotropic body. From (1), (5), (6), (7), (10)2 and (11)
we conclude that

Div T̈ = 0 in A × [0, �],
T̈N = 0 on �A × [0, �],
T̈N = f̈ on A0 and A� − NC,

ẅ = 0, v̈ = 0, Ḧ − ḦT = 0 on NC. (13)

In a way analogous to (9)2 we write

u̇ = ẇe+ v̇,

Ė = �̇e⊗ e+ ġ⊗ e+ e⊗ ġ+ ˙̂E,

Ṫ = �̇e⊗ e+ ṫ ⊗ e+ e⊗ ṫ + ˙̂T,

¨̄T = ¨̄�e⊗ e+ ¨̄t ⊗ e+ e⊗ ¨̄t + ¨̄̂
T, (14)

where

˙̂E = (grad v̇)s ≡ (grad v̇ + (grad v̇)T)/2,

�̇ = ẇ′ ≡ �ẇ/�z, ġ= (v̇′ + grad ẇ), (15)

and grad (div) is the two-dimensional gradient (di-
vergence) operator with respect to coordinates in the
cross-section A. In (14) � is the axial strain, � the
axial stress, t the shear stress vector on a plane per-
pendicular to the axis of the bar, g the corresponding
shear strain vector, Ê the two-dimensional in-plane
symmetric strain tensor appropriate for infinitesimal
deformations, and T̂ the corresponding in-plane two-
dimensional stress tensor. We decompose ü and Ë
in a way similar to that for u̇ and Ė given in (14)1
and (14)2.
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We assume that initial deformations of the bar cor-
respond to the Saint-Venant flexure [20,21]. Thus

u̇ =
{

zv̇′
0 + z3

6
ċ′ + z�̇F (∗r ) + zKċ′

+
[
ẇ0 −

(
z2

2
ċ′ + v̇′

0

)
· r

+�̇F � + ċ′ · h
]
e

}
, (16)

where

K = 	
2
(r ⊗ r − (∗r ) ⊗ (∗r )),

ẇ0 = �̇F �(r ) + 
̇(r ), 
̇ = ċ′ · h,

v̇′
0 = grad(�̇F � + 
̇),

�̇F = 	(∗ċ′) ·
∫
P

�̂r dA

/∫
P

�̂ dA, (17)

	 = �/2(� + �) is Poisson’s ratio, �̂ the continuous
continuation of the Prandtl function from A to the
entire plane P containing A, c′ the curvature of the
deformed bar, K is the anticlastic curvature tensor, ∗r
is defined by∗r =e×r , � is the Saint-Venant warping
function, and h the solution of

�Rh = 2r in A, (grad h)N = −KN on �A. (18)

Here �R is the two-dimensional Laplace operator and
N is the outward unit normal to �A. In (16) with �̇F

given by (17)5 we have used Trefftz’s [20] solution for
flexure. With definitions

� = ċ′ · r , 
 = 	(∗ċ′) · r + �̇F ,

ġ= [�̇F (∗r + grad �) + (grad h + K )Tċ′], (19)

we obtain the following relations from the displace-
ment field (16):

Ḣ = − z�e⊗ e+ e∧
(
v̇′

0 + z2

2
ċ′
)

+ (�̇F (∗r ) + Kċ′) ⊗ e

+ e⊗ (�̇F grad � + (grad h)Tċ′)

+ 	�Î + [z
∗],

Ė = − z�e⊗ e+ 1
2
e∨ ġ+ z	�Î ,

ḢḢT = (z2�2 + ‖grad ẇ‖2)e⊗ e

+ z�(	 grad ẇ − v̇′) ∨ e
+ z
(∗grad ẇ) ∨ e+ v̇′ ⊗ v̇′

+ z2(	2�2 + 
2)Î ,

Ė2 =
(

z2�2 + 1
4
‖ġ‖2

)
e⊗ e+ z�

2
(	 − 1)ġ∨ e

+ 1
4
ġ⊗ ġ+ z2	2�2 Î ,

(ḢT)2 = (z2�2 + v̇ · grad ẇ)e⊗ e+ z�(	 − 1)(e⊗ v̇′

+ grad ẇ ⊗ e) + grad ẇ ⊗ v̇′

+ z
(e⊗ ∗v̇′ − ∗grad ẇ ⊗ e)

+ z2(	2�2 − 
2)Î − 2	z2
� ∗ . (20)

Here Î is the two-dimensional identity tensor, and ‖a‖
equals the length of vector a. The two-dimensional
identity matrix Î is extended to a three-dimensional
matrix by adding zeroes in the third row and the third
column, and the rotation operator ∗ is also similarly
extended. In a rectangular Cartesian coordinate system
with e pointing along the 3-axis, elements of the first,
the second and the third rows of the 3×3 matrix corre-
sponding to the ∗ operator are 0, −1, 0; 1, 0, 0; 0, 0, 0
respectively. Substitution from (20) into (12) and some
simplificationgives

T̈s = [�z2(�1�
2 + 
2) − (� + �)v̇′ · gradẇ + (�2‖ġ‖2

+��1z
2�2)]e⊗ e+ 1

4
��6ġ⊗ ġ+ 1

2
��2z�ġ∨e

− �grad ẇ ⊗ v̇′ + 1
2
z�E(e⊗ v̇′ + grad ẇ ⊗ e)

− z
�(e⊗ ∗v̇′ − ∗grad ẇ ⊗ e) + �Î , (21)

where E = �(3� + 2�)/(� + �) is Young’s modulus
for the material of the body, and

� =
[
�
((

3 − 6	 + 6	2

2

)
z2�2 − v̇′ · grad ẇ

)

+ (� + �)z2
2 + 1
4
(2� − ��4)‖ġ‖2 + ��3z

2�2
]

,
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�1 = (1 − 4	 + 10	2)/2,

�2 = (2� − �(�6 + �4))/4,

�1 = 1 − 4	 + �3(2	 − 1)2 + �4	(	 − 2)

+ �5(1 − 2	) + �6,

2�2 = (�5 + 2)(−2	 + 1) + �6(−	 + 1),

�3 = �1 − (�5 + 2)(1 − 	 − 2	2)

+ (�6 − 1)(1 + 	2) (22)

Eqs. (13) can now be written as

�̈′ + div ẗ = �2
{
(� + �)(v̇′ · grad ẇ)′

− 2(��1 + ��1)z�
2

− 2�z
2 + �zdiv(∗v̇′
)

− E

2
z div(v̇′�)

−��2
2

z div(ġ�)

}
in A × [0, �],

ẗ ′ + div(
¨̄̂
T) = �2

{
− E

2
�(z grad ẇ)′ − ���2

2
ġ

+ � div(grad ẇ ⊗ v̇′)

− ��6

4
div (ġ⊗ ġ) + grad �

− �
(z ∗ grad ẇ)′
}

in A × [0, �],

ẗ · N = �2�
(
�
 ∗ v̇′ − E�

2
v̇′
)

· N on �A × [0, �],

¨̄̂
TN = �2[� grad ẇ ⊗ v̇′ − �Î ]N on �A × [0, �].

(23)

The integrability conditions (8) imply that

∫
A

�̈ dA + �2
{
z2(��1 + ��1)(J ∗ ċ′) · (∗ċ′)

+ �z2(�̇F A + 	2(Jċ′) · ċ′)

− (� + �)

∫
A

(v̇′ · grad ẇ) dA + �2(�̇
F )2(J0 − D)

+ 2�̇F ċ′ · p+ ċ′ · Zċ′)
}

= const.,

∫
A
ẗ dA + �2

{
z

[
E

2

∫
A

(grad ẇ ⊗ r )ċ′dA

+ �
∫
A


(∗ grad ẇ) dA

+ ��2
2

∫
A

(ġ⊗ r )ċ′dA

]}
= const.,∫

A
[(r + ze) ∧ T̈e+ (u̇ ∧ Ṫe)] dA = const., (24)

where

J =
∫
A
r ⊗ r dA, J0 = tr J,

D =
∫
A

(∗ grad �) · r dA,

p=
∫
A
K grad � dA − 	

2

∫
A

‖r‖2(∗r ) dA,

Z =
∫
A

(grad h + K )(grad h + K )T dA. (25)

Note that even though z appears explicitly in some
of the terms on the left-hand sides of (24), values of
expressions are independent of z. In (24) and (25) A
is the area of cross-section of the bar, J the inertia
tensor, J0 the polar moment of inertia, and �(J0 −D)

the torsional rigidity of the first-order Saint-Venant
torsional problem.

Eqs. (23)–(25) define the second-order Saint-Venant
problem for an elastic prismatic bar predeformed by
an infinitesimal amount in flexure.

4. Saint-Venant solutions

Assuming that ü(r , z) is a polynomial in z, we write
it as

ü(r , z) = u0(r ) + zu1(r ) + z2

2! u2(r )

+ z3

3! u3(r ) + · · · , (26)

where, to simplify the notation, we have dropped the
superimposed double dots on u0, u1, u2 etc. appearing
on the right-hand side of (26). There is no implica-
tion that z is small. The solution (26) will not capture
well the boundary layer effects, if any, near the end
faces z = 0 and z = �. However, the solution should
be quite good away from the end faces. The preceding
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statements tacitly presume that Saint-Venant’s princi-
ple holds for a second-order elastic prismatic bar; how-
ever, to the best of our knowledge, this has not been
proved. Noting that the right-hand sides of (23)1–(23)4
are polynomials of degree at most four in z, we obtain
for u6, u7 . . . etc. equations analogous to those in lin-
ear elasticity with zero body force and zero traction
boundary conditions. Because of the clamping con-
ditions (7) or (13)4–(13)6 at the centroid of one end
face, and the uniqueness of solutions in linear elastic-
ity, u6 = u7 = · · · = 0, and for u5 we obtain

u5 = w0
5e+ v0

5 + �0
5(∗r ). (27)

Throughout this paper, quantities with superscript zero
denote constants; w0

5 represents the axial elongation
of points of the bar, v0

5 the in-plane displacements, and
�0

5 the angular twist. Note that each of these quantities
is to be multiplied with z5/5!. Eqs. (26), (9)2 and (27)
yield

ẅ(r , z) = z5

5! w
0
5 + z4

4! w4(r ) + z3

3! w3(r )

+ z2

2! w2(r ) + zw1(r ) + w0(r ),

v̈(r , z) = z5

5! (v
0
5 + �0

5(∗r )) + z4

4! v4(r )

+ z3

3! v3(r ) + z2

2! v2(r ) + zv1(r ) + v0(r ).

(28)

Equations for the determination of w4 and v4 are

�Rw4 = 0 in A,

��Rv4 + (� + �)grad div v4 = 0 in A,

(grad w4) · N = −(v0
5 + �0

5(∗r )) · N on A,

[2�(grad v4)s + �(div v4)Î ]N
= −6�2[�ċ′ ⊗ ċ′ + �‖ċ′‖2 Î ]N on �A, (29)

and have the solution

w4(r ) = w0
4 − v0

5 · r + �0
5�(r ),

v4(r ) = v0
4 + �0

4(∗r ) − 3�2[(ċ′ ⊗ ċ′)r
+ 	‖ċ′‖2r ]. (30)

The integrability conditions (24) require that

w0
5 = −3�2E‖ċ′‖2/(� + 2�), �0

5 = 0. (31)

Thus

w5 = − 3E

(� + 2�)
�2‖ċ′‖2, v5 = v0

5,

w4 = w0
4 − v0

5 · r ,
v4(r ) = v0

4 + �0
4(∗r ) − 3�2(ċ′ ⊗ ċ′ + 	‖ċ‖2 Î )r . (32)

Governing equations for w3 and v3 are

�Rw3 = 6	�2‖ċ′‖2 in A,

��Rv3 + (� + �)grad div v3 = �v0
5 in A,

(grad w3) · N = [−v0
4 − �0

4(∗r )
+ 3�2(�̇F ∗ ċ′

+ 2	(∗ċ′ ⊗ ∗ċ′)r ] · N on �A,

[2�(grad v3)s + �(div v3)Î ]N
= �(v0

5 · r − w0
4)N on �A. (33)

The solution of Eqs. (33) is

w3(r ) = w0
3 − v0

4 · r + �0
4�(r ) + 3�2(∗ċ′ · r )
,

v3(r ) = v0
3 + �0

3(∗r ) − 	w0
4r + Kv 0

5, (34)

and the integrability conditions (24) give

�0
4 = 3�2q̇ · (∗ċ′)

�(J0 − D)
, w0

4 = 0, (35)

where q̇ is the first-order resultant shear force. Even
though the elongation, w0

4, multiplying z4/4! equals
zero, the twist multiplying z4/4! will not vanish unless
q̇ is orthogonal to ∗ċ′, and the total second-order twist
can be large for a long bar.

The boundary-value problem for the determination
of v2 and w2 is

�Rw2 = 2v0
5 · r in A,

(� + �)grad div v2 + ��Rv2

= �(v0
4 − �0

4 grad �) − ��0
4((∗r )

+ grad �) + �2
{

3�	‖ċ′‖2r

+ (� + �)H(�̇F � + 
)ċ′
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+ (�(6 + 	 − 4�3) − 4��3)�ċ
′

− 3
2
�(∗ċ′ ⊗ ∗ċ′) − 4�
 ∗ ċ′

}
in A,

(grad w2) · N = −(v0
3 + �0

3(∗r ) + Kv 0
5) · N on �A,

[�(grad v2)s + �(div v2)Î ]N
= {�(v0

4 · r − w0
3 − �0

4�)Î
+ �2[�2(�̇F grad � + grad 
) ⊗ ċ′

− �ċ′ ⊗ (�̇F ∗ r + Kċ′)
− �ċ′ ∨ v′

0 − 3�
(∗ċ′ · r )Î
− 2[(��3 + ��3)�

2 + (� + �)
2]Î
+ �[ċ′ · (�̇F grad � + grad 

− 2v′

0 − �̇F (∗r )
− Kċ′)]Î }N on �A, (36)

where �3 = (3 − 6	 + 6	2)/2 and H is the Hessian
operator.

The boundary-value problem (36)1 and (36)3 is the
standard Saint-Venant problem in linear elasticity for
warping induced by flexure, and has the solution

w2 = w0
2 − v0

3 · r + �0
3� + v0

5 · h. (37)

The integrability condition (24) yields

v0
5 = 0. (38)

A general solution of (36)2 and (36)4 is

v2 = v0
2 + �0

2(∗r ) − 	w0
3r + Kv 0

4 + �0
4ṽ2 + v̂2, (39)

where (�0
4ṽ2 + v̂2) is a solution of (36)2 and (36)4

with v0
4 = 0 and w0

3 = 0. The integrability condition
(24)3 and Eq. (39) imply that

�0
3 = �2

(J0 − D)

[
2(J(∗ċ′)) · c′

−�2(∗ċ′) ·
∫
A

(∗r ⊗ ∗r )gdA

]
. (40)

The integrability condition (24)1 gives

w0
3 = − �2

EA

[
(� + 2�)

3q̇ · (∗ċ′)
�(J0 − D)

∫
A

�dA

+ 3(� + 2�)(Jċ′) · ċ′

+ 2(��1 + ��1)(J ∗ ċ′) · (∗ċ′)

+ 2�(�̇FA + 	2(Jċ′) · ċ′)

+ �
(
�0

4

∫
A

div ṽ2dA

+
∫
A

div v̂2dA

)]
. (41)

Even though the differential operators on the left-hand
sides of (36)2 and (36)4 are those of plane linear elas-
ticity, the source terms on the right-hand sides with
v0

4 = 0 and w0
4 = 0 involve the in-plane flexural dis-

placements and the Saint-Venant warping function �.
Therefore, ṽ2 and v̂2 cannot, in general, be expressed
in closed form. Note that �0

3 depends upon the inertia
tensor J, the curvature of the preflexured bar, the first-
order transverse shear strains ġ and the second-order
elasticity �2.

We have following Eqs. (42) for the determination
of w1 and v1:

��Rw1 = − (� + �)div v2 − (� + 2�)w3

+ �2

{
(� + �)ċ′ · [�̇F (grad � − (∗r ))

+ grad 
 − Kċ′ − 2v′
0] − 2(� + �)
2

− [��1 + �(�1 + �2(1 + 	))

+ E	]�2 − �ċ′ · (v′
0 + �̇F (∗r ) + Kċ′)

− ��2
2

ċ′ · [�̇F (grad � + ∗r )

+ grad 
 + Kċ′]
}

in A,

��Rv1 + (� + �)grad div v1

= −�v3 − (� + �)grad w2

− ��2
 ∗ (�̇F grad � + ∇


− v′
0) in A,

(grad w1) · N = {−v2 + �2[
(∗v′
0 − �̇F r

+ ∗Kċ′) − (1 + 	)�(v′
0 + �̇F (∗r )

+ Kċ′)]} · N on �A,

[�(grad v1)s + �(div v1)Î ]N = −�w2N on A. (42)
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The structure of Eqs. (42)1 and (42)3 is the same as
that of (36)1 and (36)3. Proceeding in the same way
as was done to obtain the solution (37) of (36)1 and
(36)3, we can find the following solution of (42)1
and (42)3:

v1 = v0
1 + �0

1(∗r ) − 	w0
2r + Kv 0

3 + �0
3ṽ1 + v̂1, (43)

w1 = w0
1 − v0

2 · r + �0
2� + v0

4 · r
− w0

3h − �0
4w̃1 + ŵ1. (44)

Here (�0
3ṽ1 + v̂1) is a solution of (42)2 and (42)4 with

v0
3=0 and �0

3=0, and −w0
3h−�0

4w̃1+ŵ1 is a solution
of (42)1 and (42)3 with v0

2 =0 and �0
2 =0. We now use

compatibility conditions (24) to derive the following
equations for the determination of v0

4, w
0
2 and �0

2 in
terms of known quantities:

2(1 + 	) ∗ J ∗ v0
4 +

∫
A

{
�2
2

�ġ

− w0
3grad h + �0

4(ṽ2 − grad w̃1)

+ (v̂2 + grad ŵ1) + [(1 + 	)�I

+
∗](�̇F grad � + grad 
)

}
= 0, (45)

�(J0 − D)�0
2 = v̇′

0 · (∗q̇)

− �
∫
A

(∗r ) · [(K + gradT h)v0
4

− w0
3grad h + �0

4(ṽ2 − grad w̃1)

+ (v̂2 + grad ŵ1)], (46)

EAw0
2 = − �0

3

∫
A

[(� + 2�)� + �div ṽ1]

− �
∫
A

div ṽ1. (47)

We have following equations for the determination
of w0 and v0:

��Rw0 = −(� + �)div v1 − (� + 2�)w2 in A,

��Rv0 + (� + �)grad div v0

= −(� + �)grad w1 − �v2

− �2
{
�(1 − 	)�(grad(�̇F � + 
)

− v′
0) + ��2

2
�ġ+ ��6

4
div(ġ⊗ ġ)

− (� + �)H(�̇� + 
)(�̇F ∗ r
+ Kċ′ + v′

0) +
(

�
2

− ��4

4

)
grad‖ġ‖2

−�(	�Î − 
∗)(grad(�̇F � + 
) − v′
0)
}

in A,

(grad w0) · N = −v1 · N on �A,

[�(grad v0)s + �(div v0)Î ]N
= −�w1N + �2

{
�(grad(�̇F � + 
) − v′

0)

⊗ (v′
0 + �̇F ∗ r + Kċ′)

+
[(

�
2

− ��4

4

)
‖ġ‖2(v′

0 + �̇F ∗ r
+ Kċ′) · (grad(�̇F � + 
)

−v′
0)

]
Î
}
N on �A. (48)

Eqs. (48) are treated in the same way as (42) with the
difference that the constants of integration v0

0, w0
0

and �0
0, and the constant v0

1 are evaluated from the
clamping conditions (7). Thus the only unknowns
left in the solution of the problem are the six con-
stants v0

3, v0
2, w0

1 and �0
1 which characterize the

second-order flexure, bending, extension and torsion
respectively.

We note that all of the in-plane boundary-value
problems formulated above are well-posed. Eqs. (42)1
and (42)3 exhibit that the source terms on their right-
hand sides involve v2, �, 
 and w3; a similar re-
mark applies to (48)1 and (48)3. Whereas warping
functions w2 and w3 are determined by the warping
function �, w1 and w0 are solutions of new in-plane
elliptic boundary-value problems. Also in-plane dis-
placements v0, v1 and v2 are solutions of new in-
plane elliptic boundary-value problems. Expressions
(40), (41), (35) and (31) for �0

3, w0
3, �0

4 and w0
5 indi-

cate that these constants, in general, need not vanish.
Thus expressions for the second-order torsion and ax-
ial elongation involve terms proportional to z3 and z4,
and z3 and z5 respectively. This should not be very sur-
prising since solution (16) for the infinitesimal flexure
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has axial elongation proportional to z2 and in-plane
displacements proportional to z3 which make the right-
hand sides of equations (23)1–(23)4 polynomials in z
of degree four.

The non-zero constant w0
5 depends on the defor-

mations caused by the infinitesimal preflexure; thus
the axial displacement of a point is proportional to
z5 where z is the axial distance of the point from the
end face with the clamped centroid. When the flexu-
ral vector ċ′ is not parallel to the resultant first-order
shear force q̇, the second-order twist varies as z4
and thus can be significantfor a long bar. Functions
w2 and w3 giving the second-order axial elongations
proportional to z2 and z3, respectively, are determined
by the classical Saint-Venant warping function �.
Well-posed elliptic boundary-value problems for the
determination of axial and in-plane displacement func-
tions w0, w1, . . . , w5, v0, v1, . . . , v5 have been formu-
lated and most of these functions have been explicitly
determined.

For a circular cross-section, closed-form expres-
sions for functions ṽ2, v̂2, ṽ1, v̂1, w̃1, ŵ1, v0 and w0
can be determined and are given below.

5. Results for a circular bar

Let the origin of the rectangular Cartesian coordi-
nate system be located at the center of the circular
cross-section of radius R, z-axis along the centroidal
axis of the cylinder, and x- and y-axes along c and ∗c
where c is a unit vector in a cross-section such that

c′ = �c. (49)

For a circular cylinder

�F = 0,� = 0 (50)

in (16). Eq. (18) can be solved for h and Eq. (16)
simplifies to

u̇ =
(‖r‖2

4
−
(

3 + 2	
8

R2 + z2

2

))
(c · r )e

+
[
z

(
K − 3 + 2	

8
R2 Î

)
+ z3

6
Î
]
c. (51)

Omitting details, the complete polynomial solution
for a second-order elastic circular bar predeformed

infinitesimally in flexure is given by

ẅ(r , z) = − z5

40
+ z3

6

[
w0

3 + 3
2
	(y2 − x2)

]

− z2

2
(v0

3 · r ) + z[w0
1 − (v0

2 · r ) + w̃1(r )]

+
(

2‖r‖2 − (3 + 2	)R2

8

)
(v0

3 · r ),

v̈(r , z) = − z4

8
(c⊗c)r+ z3

6
v0

3+ z2

2
[v0

2−	w0
3r+ṽ2(r )]

+ z
[
−a

2
v0

3 + �1(∗r ) + Kv 0
3

]
− 	w0

1r + Kv 0
2 + ṽ0(r ). (52)

It depends on the undetermined kinematic constants
w0

1, v0
2, v0

3, �1 definingsecond-order extension, bend-
ing, flexure and torsion superimposed on the first-
order extension, bending, flexure and torsion respec-
tively. Functions ṽ2(r), �̃1(r) and ṽ0(r) are parts of
v2(r), �1(r) and v0(r) that do not represent a rigid
body motion and do not depend upon constants �0

3,
v0

4 and v0
2. With the rectangular Cartesian coordinates

(x, y, z) aligned along (c, ∗c, e), these functions ex-
hibit following symmetries.

ṽ21(x, y)=−ṽ21(−x, y), ṽ22(x, y) =−ṽ22(−x, y),

ṽ21(x, y) = ṽ21(x,−y), ṽ22(x, y) = −ṽ22(x, −y),

w̃1(x, y) = w̃1(−x, y), w̃1(x, y) = w1(x, −y),

ṽ01(x, y) = −ṽ01(−x, y), ṽ02(x, y) = ṽ02(−x, y),

ṽ01(x, y) = ṽ01(x, −y), ṽ02(x, y) = −ṽ02(x, −y).

(53)
With the notations
P(v) = ��v + (� + �)grad(div v) in A,

B(v) = [�(grad v)s + (� div v)Î ]N on �A,

ġ= v̇′ + grad ẇ (54)

field equations for the determination of ṽ2, w̃1 and ṽ0
are:
P(ṽ2) = {[5(� + �) + 2�(2 − 	)]c⊗ c

+ [� − 2�(1 + 	)] ∗ c⊗ ∗c} r
2

in A,

B(ṽ2) = �[c⊗ (Ac) − (Kc) ⊗ c]n
+
{
�
[

3 + 4	
4

− 2(��3 + ��3)

]
�2

+1 − 8	
4	2 �
2

}
× N in �A, (55)
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P(w̃1) = 0 in A,

B(w̃1) = 0 on �A, (56)

P(ṽ0)=
− �v2(r ) − (� + �)grad w1(r ) − �

�2
2

�ġ

− �
�6

4
div(ġ⊗ ġ) + �4 div (‖ġ‖2 Î )

+ �div
{
(Kc) ⊗ (Ac) − a

2
[c⊗ (Ac) + (Kc) ⊗ c]

}
− �

8
grad

{
a

[
(3 + 2	)�2 + 1 − 2	

	2 
2
]

−	‖r‖2

(
3�2 − 
2

	2

)}
in A, (57)

B(ṽ0)=
{
�

a2

4
(c⊗ c)−�

[
w1(r )+ a2

4
+�4‖ġ‖2

]
Î
}
N

+ �
2
{(Kc)⊗(Ac)−a[c⊗(Ac)+(Kc) ⊗ c]}N

− �
8

{
a

[
(3 + 2	)�2 + 1 − 2	

	2 
2
]

−	‖r‖2

(
3�2 − 
2

	2

)}
N in �A, (58)

where

A = 3r ⊗ r + ∗r ⊗ ∗r
4

, 
 = 	(∗c) · r . (59)

Note that ġdefined by (54)3 equals the first-ordershear
strain; henceforth this definition of ġ rather than that
given by (19)2 is used. Each of these boundary value
problems defined by Eqs. (55)–(58) are well posed.
Their solutions are

ṽ21 = b1x + b2xy2 + b3x
3,

ṽ22 = b4y + b5x
2y + b6y

3, (60)

Dw̃1(x, y)

= x2R2[144�6 + 942�5� + 2726�4�2

+ 4486�3�3 + 4124�2�4 + 1814��5 + 260�6

+ 16�(� + �)3(� + 2�)(9� + 7�)�1
+ 2�(� + �)2(28� + 19�)(3�2 + 8��

+ 4�2)�2 + (48�5� + 384�4�2 + 1136�3�3

+ 1568�2�4 + 1024��5 + 256�6)�3]
+ y2R2[30�5� + 82�4�2 + 74�3�3

+ 76�2�4 + 70��5 + 4�6

− 16�(� + �)3(3� + �)(� + 2�)�1
− 2�(� + �)2(4� + �)(3�2 + 8�� + 4�2)�2

+ (48�5� + 288�4�2 + 688�3�3 + 832�2�4

+ 512��5 + 128�6)�3]
+ x2y2[−54�6 − 270�5� − 552�4�2

− 660�3�3 − 462�2�4 − 150��5 − 12�6

− 24�(� + �)3(� + 2�)(3� + 2�)�1
+ [�(� + �)2(4� + �)

− �(� + �)2(28� + 19�)](3�2 + 8��
+ 4�2)�2 + x4[−27�6 − 51�5� + 104�4�2

+ 270�3�3 + 169�2�4 + 21��5 − 6�6

− 28�(� + �)3(� + 2�)(3� + 2�)�1

− �(� + �)2(28� + 19�)(3�2 + 8��
+ 4�2)�2 + (48�5� + 272�4�2 + 592�3�3

+ 624�2�4 + 320��5 + 64�6)�3]
+ y4[−27�6 − 219�5� − 656�4�2 − 930�3�3

− 631�2�4 − 171��5 − 6�6

+ 4�(� + �)3(� + 2�)(3� + 2�)�1
+ �(� + �)2(4� + �)(3�2 + 8�� + 4�2)�2

− (48�5� + 272�4�2 + 592�3�3 + 624�2�4

+ 320��5 + 64�6)�3]. (61)

ṽ01(x, y) = d1x + d2xy2 + d3x
3

+ d4xy4 + d5x
3y2 + d6x

5,

ṽ22(x, y) = d7y + d8x
2y + d9y

3

+ d10x
4y + d11x

2y3 + d12y
5, (62)

where

D = 192�(� + �)3(� + 2�)(3� + 2�),

b1 = − R2

32�(� + �)(� + 2�)
[2�3(19 + 	)

+ 2�3(17 − 34	 + 24	2)

+ 3��2(51 − 74	 + 64	2)

+ 2�2�(67 − 124	 + 96	2)

+ 16�(� + 2�)2�3],
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b2 = 1
32�(� + �)(� + 2�)

[2�3(13 − 5	)

+ 2�3(17 − 34	 + 24	2)

+ ��2(153 − 296	 + 192	2)

+ �2�(137 − 282	 + 192	2)

+ 16�(� + 2�)2�3],

b3 = 1
96�(� + �)(� + 2�)

[2�3(31 − 7	)

+ 2�3(17 − 34	 + 24	2)

+ ��2(107 − 16	) + �2�(103 − 142	 + 96	2)

+ 16��(� + 2�)�3],

b4 = R2

32�(� + �)(� + 2�)
[2�3(1 − 	)

+ 2�3(17 − 34	 + 24	2)

+ ��2(43 − 50	) + 2�2�(45 − 80	 + 48	2)

+ 16��(� + 2�)�3],

b5 = 1
32�(� + �)(� + 2�)

[6�3(−1 + 	)

− 2�3(17 − 34	 + 24	2)

+ �2�(−131 + 278	 − 192	2)

+ ��2(−127 + 288	 − 192	2)

− 16�(� + 2�)2�3],

b6 = 1
96�(� + �)(� + 2�)

[2�3(−1 + 	)

− 2�3(17 − 34	 + 24	2)

− ��2(29 + 8	) + �2�(−85 + 130	 − 96	2)

− 16��(� + 2�)�3]. (63)

Lengthy expressions for constants d1, d2, . . . , d12 ob-
tained with Mathematica are omitted for the sake of
brevity. Functions ṽ0, w̃1 and ṽ2 represent generalized
Poynting effects.

The following expressions for the second-order re-
sultant forces and couples on the cross-section A re-
veal that the resultant second-order shear force and the
resultant second-order moments are linear in v0

2, v0
3

and �1, while the resultant second-order axial force is

an affine function of w0
1.∫

A
�̈ = 2�(1 + 	)Aw0

1

+ �R6

384(� + �)3(� + 2�)
[52�5 + 372�4�

+ 978�3�2 + 1279�2�3 + 874��4 + 240�5

+ 16�3(5�2 + 18�� + 16�2)�3

− 4��(7�3 + 55�2� + 115��2 + 66�3)�4

+ (32�3�2 + 114�2�3 + 144��4 + 88�5)�5

+ (24�4� + 167�3�2 + 360�2�3288��4

+ 88�5)�6],∫
A
ẗ = 2�(1 + 	)(∗J∗)v0

3,∫
A

(∗r ) · ẗ = �J0�1,∫
A

(−�̈ ∗ r ) = 2�(1 + 	)J(∗v0
2). (64)

We note the resultant second-order shear force and
the total torque do not depend on second-order elas-
ticities but only on the pertinent kinematical parame-
ters. However, the second-order axial force is strongly
influenced by all of the second-order elasticities. Eq.
(64)1 implies that even when the second-order and
hence the total axial force vanishes, the second-order
axial deformation w0

1 is not zero; its value is deter-
mined by the first- and second-order elasticities. It
generalizes Rivlin’s result for the axial deformation in
a pretwisted bar to that in a preflexured bar.

The complete solution of the problem is obtained
by substituting from (51) and (52) into (10)1. It can be
used to design experiments for determining second-
order elasticities for homogeneous and isotropic ma-
terials. Indeed, consider extension superimposed on
flexure, i.e., let v0

2, v
0
3,�1 = 0. Then by measuring

the resultant second-order traction and the elongation
at different sections, it should be possible to evalu-
ate the non-dimensional elasticities �3, �4, �5, �6 from
Eqs. (52) and (64).

6. Conclusions

We have analyzed Saint-Venant’s problem for an
isotropic and homogeneous second-order elastic pris-
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matic bar predeformed in flexure. For a general cross-
section, the solution has been expressed in terms of
well-posed boundary value problems. For a circular
bar, these boundary value problems have been solved
and a complete solution in terms of six constants
characterizing second-order extension, bending, flex-
ure and torsion superimposed on first-order flexure
is given. The second-order displacement is a polyno-
mial in both the axial and the inplane coordinates.
It depends on the first- and the second-order elastic-
ities. Expressions for the resultant tractions and mo-
ments provide means for experimentally evaluating the
second-order elasticities. Only the second-order axial
force depends upon second-order elasticities; this re-
lation can be used to experimentally find second-order
elasticities. Eq. (64)1 generalizes Rivlin’s result for
the axial deformation in a pretwisted bar to that in a
preflexured bar; it thus represents a generalized Poynt-
ing effect. It is clear from Eqs. (51) and (52) that the
first-order and the second-order inplane displacements
involve terms multiplying z3 and z4 respectively; the
corresponding axial displacement has terms multiply-
ing z2 and z5. Thus the first-orderand the second-order
Poisson effects are quite different.
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Meḿoires des Savants étrangers 14 (1856) 233.

[6] A.-J.-C.B. Saint-Venant, Memóire sur la flexion des prismes,
J. de Mathématiques de Liouville, Ser. II 1 (1856) 89.

[7] D. Iesan, Saint-Venant’s problem for inhomogeneous and
anisotropic elastic bodies, J. Elasticity 6 (1976) 277–294.

[8] D. Iesan, On Saint-Venant’s problem for elastic dielectrics,
J. Elasticity 21 (1989) 101.

[9] D. Iesan, Saint-Venant Problem, Springer, New York NY,
1987.

[10] D. Iesan, L. Nappa, Saint-Venant’s problem for microstretch
elastic solids, Int. J. Engng. Sci. 32 (1994) 229–236.

[11] F. dell’Isola, L. Rosa, Saint-Venant Problem in Linear
Piezoelectricity, in: V.V. Varadhan (Ed.), Mathematics and
Control in Smart Structures, SPIE, Vol. 2715, February 1996,
pp. 399–409.

[12] F. Daví, Saint Venant’s problem for linear piezoelectric bodies,
J. Elasticity 43 (1996) 227–245.

[13] F. dell’Isola, G.C. Ruta, R.C. Batra, Generalized Poynting
effects in predeformed-prismatic bars, J. Elasticity 50 (1998)
181–196.

[14] F. dell’Isola, G.C. Ruta, R.C. Batra, A second-order solution
of Saint-Venant’s problem for an elastic pretwisted bar
using Signorini’s perturbation method, J. Elasticity 49 (1998)
113–127.

[15] A. Signorini, Sulle deformazioni termoelastiche finite, Proc.
3rd Int. Congr. Appl. Mechs. 2 (1930) 80–89.

[16] A.E. Green, J.E. Adkins, Large Elastic Deformations and
Nonlinear Continuum Mechanics, Claredon Press, Oxford,
1960.

[17] R.C. Batra, F. dell’Isola, S. Vidoli, A second-order solution
of Saint-Venant’s problem for a piezoelectric circular bar
using Signorini’s perturbation method, J. Elasticity 52 (1998)
75–90.

[18] S. Vidoli, R.C. Batra, F. dell’Isola, Saint-Venant problem for
a second-order piezoelectric prismatic bar, Int. J. Engng. Sci.
38 (1999) 21–45.

[19] G. Capriz, P. Podio Guidugli, The role of Fredholm conditions
in Signorini’s perturbation method, Archive for Rational
Mechanics and Analysis 70 (1979) 261–288.

[20] E. Trefftz, Über den Schubmittelpunkt in einem durch eine
Einzellast gebogenen Balken, ZAMM 15 (1935) 220–226.

[21] G.C. Ruta, Il Problema di Saint-Venant, Studi e Ricerche
del Dipartimento di Ingegneria Strutturale e Geotecnica
dell’Università “La Sapienza” di Roma 7 (1995).


	Second-order solution of Saint-Venant's problem for an elastic bar predeformed in flexure62626262
	Introduction
	Formulation of the problem
	Signorini's expansion
	Saint-Venant solutions
	Results for a circular bar
	Conclusions
	Acknowledgements
	References


