Skip to Main content Skip to Navigation
Journal articles

Linear Growth of a Liquid Droplet Divided from its Vapour by a " SOAP BUBBLE"- like Fluid Interface

Abstract : The theory proposed in [1, 3] is particularized to describe the spherically symmetric growth, in the neighbourhood of an equilibrium state far from the critical temperature, of a liquid incompressible droplet surrounded by its vapour when the interface between the phases behaves as a fluid membrane which resembles a soap bubble. A free moving boundary problem for an integro-differential equation of parabolic type is deduced in which the second-order time derivative of the radius R(t) of the droplet appears, together with a volume source term which depends on the history of R.
Document type :
Journal articles
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-00498047
Contributor : Francesco Dell'Isola <>
Submitted on : Tuesday, July 6, 2010 - 3:03:36 PM
Last modification on : Wednesday, July 21, 2010 - 1:31:45 PM
Long-term archiving on: : Thursday, October 7, 2010 - 12:26:13 PM

File

dellisola.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00498047, version 1

Citation

Francesco Dell'Isola. Linear Growth of a Liquid Droplet Divided from its Vapour by a " SOAP BUBBLE"- like Fluid Interface. International Journal of Engineering Science, Elsevier, 1989, pp.15. ⟨hal-00498047⟩

Share

Metrics

Record views

185

Files downloads

215