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Abstract—The use of multi-agents topical crawlers based on
the model of endogenous fitness introduces the problem of
population control. We propose to harness this point through an
energy based model to balance the reproduction/life expectency
of agents. Our goal is to ease the tuning of parameters and to
optimize the use of available ressources for the crawling. We
introduce a model based on energy designed to control the ratio
number of agents over precision of the crawling. We present some
experiments that show that the size of the population remains
under control during the crawling.

I. INTRODUCTION

The interests of population based multi-agents models for

focused crawling on the Web have already been introduced

in previous works [1]. Most systems based on artificial life

involve populations of agents which development is difficult

to harness: the consequence is mainly an increase of necessary

ressources for an efficient processing. Particularly in the topic

of web crawling, Internet offers a very wide environment to

explore: this last point drives the need of an efficient strategy

of population control.

The aim of this article is to propose automatic regulation

techniques to the endogenous fitness model applied to focused

crawling. Firstly we re-define the notion of energy in the

scope of the endogenous fitness model: We want to simplify

the parameters of the model and to automatically preserve a

viable population of agents. Secondly we introduce a notion

of conservation of the energy on crawled pages that improves

furthermore our control of the size of the population of agents

and its activity. We then present some experiments that detail

the behaviour of our model and shows its effectiveness.

II. RELATED WORKS

A. Focused crawling and artificial life

The notion of focused crawling, also known as topical

or topic-driven crawling, was first introduced by Chakrabarti

& al. [2] to refer to Web crawlers specialized in topic-

specific information discovery. Focused crawling raises many

interesting topics. For example it generally leans heavily on the

vast field of automatic text processing initiated by Salton [3]

for topical judgments. Automatic extraction of link contexts

in semi-structured documents is another recurrent problem

addressed notably by Pant & al. [4]. The study of the topology

of the topical graphs in the Web has consequences on focused

crawling and free exploration of Web pages or exploitation of

already discovered resources [5]. Interesting works attempt to

formulate the numerous variants involved in the design of this

kind of system and to propose suited evaluation frameworks

and metrics to research teams working in the field [6] [7].

Quite early, some artificial life models were studied for

developping efficient topical Web crawlers. Firstly, Menczer

& al. [8] proposed to apply the endogenous fitness artificial

life model to focused crawling. They also studied the in-

teresting association of multi-agents models with contextual

machine learning mechanisms and showed that adaptivity of

agents could scale up to the size of the environment through

cloning and deployment of the population [1]. This work

led to the projects InfoSpiders and MySpiders [9]. Other

approaches based on different models were proposed, some in

particular were built upon the ant colony paradigm [10] [11].

Kushchu [12] proposed a survey of evolutionary and adaptive

approaches applied to Information Retrieval on the Web.

B. The core of the original Endogenous Fitness model for

focused crawling

In this paper, we focus on the endogenous fitness model

applied to focused crawling as described by Filippo Menczer

[8]. The core of this model is presented in algorithm 1. In

this multi-agents model agents independently visit Web pages

and pick new links searching for relevant information. Agents

clone themselves or die according to their success that is

evaluated by converting relevant information into energy.

III. NEW STRATEGY FOR POPULATION CONTROL IN THE

ENDOGENOUS FITNESS MODEL

A. Energy balance

Control of the system through its energy parameters C and

ρ is a quite difficult task to achieve. Depending on the values

of these parameters the population of agents can undergo

important variations of size that make resource consumption

unpredictable. Excessive variations of the population of agents

can also decrease the quality of the results because too many

agents may imply a dispersed crawler that is insufficiently

selective.



Algorithm 1 Endogenous fitness based crawler

Initialize system with parameters:

- energy cost and gain rate : C and ρ
- number of agents : N
- seeds pages : S
- query Q
Initialize N agents with energy E = 1 and current document

D in S
loop

For each agent alive :

D = Pick link in D
E = E − C + Similarity(Q, D) ∗ G
Apply machine learning technique using D, Q and

Similarity(Q, D) (optional)

if E > 1 then

Clone agent and share E between clones

else if E < 0 then

Death of agent

end if

end loop

The idea we suggest is to dynamically measure relevance

values of the crawled pages and try to establish a relation

between relevance and energy to ensure a better stability of

the population of agents.

We use a simple tf*idf similarity model in order to evaluate

page relevance according to a topical request but indeed other

and richer models can be used that are not in the scope

of this paper. Independently from the used similarity model

the endogenous fitness model requires relevance values to be

converted into energy in order to control the activity of the

crawler.

The original energy model [8] can be written as an equation:

∆e = f (r) = ρ · r − C

r is the relevance of the crawled page. ∆e is the energy

update endorsed by the crawler.

C is the cost in energy for the visit of a single page by an

agent. It contributes to determine how selective the crawler is

related to the success of its agents and how tolerant it is to

the traversal of minimal relevance pages.

ρ is the energy gain rate used to convert relevant information

in energy. The range of ρ depends on the order of the similarity

metric used, and on the concrete relevance of collected pages.

In order to better regulate the population of agents we wish

to control the reproduction rate and we choose to introduce

a constant gain parameter that defines the energy gain of

top relevant pages. Sigmoidal functions are often used in

artificial life systems to model state transitions. An energy

variation function inspired by sigmoid allows both cost and

gain normalization for extreme values. Figure 1 shows how

the energy varies according to our sigmoidal model.

∆e = f (r, R) =

(

(G + C) ·
1

1 + e−λ(r+R)

)

− C

R R

Fig. 1. Sigmoidal function between textual relevance of the documents and
energy variations

Energy balance in the system when n pages have been

collected is ensured if the following constraint is satisfied :

n
∑

i=0

f (ri, R) = 0

where ri is the relevance of the ith visited page and R is

to be determined.

To calculate a satisfying R we use an approximation of

f (r, R).
We define g (r, R) as :

r ≤ R → g (r, R) = −C

r > R → g (r, R) = G

For a high value of λ the slope in the intermediate state

of the sigmoid function is greater and over a large number of

values g (r, R) is a satisfying approximation of f (r, R).
We can use a probabilistic interpretation to get the expected

value of ∆e.

E(∆e) =

∫

r≤R

f(r, R) · p(r) · dr +

∫

r>R

f(r, R) · p(r) · dr

Where p(r) is the probability density that the collected page

has a relevance of r.

When approximating f by g we get:

E(∆e) ≃

∫

r≤R

−|C| · p(r) · dr +

∫

r>R

G · p(r) · dr

E(∆e) ≃ −|C| · Prob(r ≤ R) + G · Prob(r > R)

Where Prob is the distribution associated to p. Prob(r >
R) is the probability that a page’s relevance is higher than R.

We seek a null mathematical expectation for ∆e:

E(∆e) ≃ 0

Therefore:
Prob(r > R)

Prob(r ≤ R)
=

G

|C|

To estimate a satisfying value for R we sort the previously

visited pages by their relevance values. Let n be the total

number of pages and n∗ be the rank of the page whose

relevance is the closest to the ideal R.



We can use n∗ and n to estimate Prob(r ≤ R) and

Prob(r > R):

Prob(r ≤ R) ≃
n∗

n

Prob(r > R) ≃
n − n∗

n

Prob(r > R)

Prob(r ≤ R)
≃

n∗

n − n∗

n∗

n − n∗
≃

G

|C|

n∗ ≃
n

C/G + 1

In practice, we calculate n∗, on the basis of the history of

the n collected pages, then we set R = rn∗

In order for the approximation of f (r, R) by g (r, R) to

make sense we need to maintain a sufficiently large value for

λ.

Through experience we defined h (rm, rM , R), where rm is

the smallest and rM the greatest relevance values respectively,

such as :

8

R − rm

≤ rM − R → h (rm, rM , R) =
8

R − rm

8

R − rm

> rM − R → h (rm, rM , R) =
8

rM − R

We use λ = h (rm, rM , R).
The user’s parameters at this point are C and G. They tune

the tolerance of the crawler to the traversal of low relevance

zones, the reactivity of the agents to highly relevant pages

and indirectly the selectivity of the crawler. In practice, a

value of C close to 0 means that the crawler tolerates that its

agents traverse many low relevance pages before dying. On

the contrary, a value of C greater than 1 ensures that every

agent who visited a low relevance page dies instantly. If G is

set to 10 then an agent visiting a very relevant page creates

about ten clones of himself. If C is set to 0.5 and G to 10

then about one page in twenty is considered relevant by the

system and rewarded by an energy gain.

Through experimenting with the crawler, studying the graph

of the Web, and more specifically topical sub-graphs of the

Web, it is possible to define static values for these parameters

that should offer satisfying results in all use cases. This would

provide an auto-adaptive system and let the crawling process

in an unsupervised way.

B. Energy conservation

In order for the crawler to be highly selective and reactive

to the discovery of relevant information it is necessary to use

quite high values of the energy parameter G. Even if our global

energy balance computation provides the main stability of the

system, it doesn’t prevent coarse variations of the population

of agents. We want to dissociate in time energy discovery

variations and population variations by implementing an en-

ergy buffer on the pages. If the number of agents is too high

the energy of relevant pages is not used and is left behind

for future use. Conversely when the number of agents is low,

dying agents are ”teleported” at no cost on pages with energy

remnants. In order not to let behind for too long some pages

with energy remnants the stochastic process is modified and

includes random walk toward these pages. The modified model

is described in algorithm 2.

Algorithm 2 New model with energy conservation

The crawler:

Initialize system with parameters:

- maximal energy cost and gain : C and G
- initial number of agents : N
- upper and lower boundaries of the number of agents : UB
and LB
- seeds pages : S
- query Q
Initialize documents base DB (empty or from precedent

execution)

Initialize N agents with energy E = 1 and current document

D in S
loop

For each agent alive :

Pick link in D or in DB {only documents with energy

remnants can be picked in DB}
Fetch D from the Web or from DB
update energy()

reproduce()

end loop

———————————————————————–

Agent.update energy():

r ⇐ content relevance(D,Q)

if D not in DB then

DB.set document(D,r)

R ⇐ DB.get R()

DB.set doc energy(D,energy function(G,C,R,r))

end if

if System.number of agents() > UB then

E ⇐ E − ‖C‖
else

E ⇐ E + DB.get document energy()

DB.set doc energy(D, 0)

end if

———————————————————————–

Agent.reproduce():

if E > 1 then

Create ⌊E⌋ clones with E ÷ ⌈E⌉ energy

E ⇐ E ÷ ⌈E⌉
else if E < 0 then

if System.number of agents() < LB then

Force to pick D in DB at next iteration

else

die()

end if

end if



IV. EXPERIMENTS

A. Experimental settings

In order to validate the regulating effect of the sigmoidal

model and the energy buffer and to study the influence of the

parameters, we executed the crawler many times, with varying

models, topics and parameters values. The target topics are

described as simple text queries and our prototype uses the

tf*idf metric to evaluate the relevance of crawled pages and

of links contexts. Links contexts are extracted according to the

recommendation of Pant & al. [4]. The idf values are estimated

before initialization by using the number of results returned

by google queries on the keywords of the topic. All crawlers

are initialized with two hundred agents and one, two or three

manually selected highly relevant pages as seeds.

B. Impact of the new energy function

Figure 2 shows the variations of population during time

of three crawlers based on the original energy model. Those

crawlers were executed five times each and only differ on the

energy gain rate parameter. The curves clearly illustrate that

depending on this parameter the population of agent can either

die very quickly, increase brutally or remain usable.
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Fig. 2. Variations of population for various parameters of the original model

Figure 3 shows the variations of population during time of

three other crawlers based on the new sigmoidal energy model.

These crawlers were also executed five times with different

values of C and G. In the three cases the population of agents

increase in time because of the corresponding increase of

precision of the system, however, unlike in figure 2 the evolu-

tion of the population doesn’t variate as drastically depending

on user’s parameters. Therefore population variations remain

controllable and coherent with the activity of the crawler and

the energy buffer will be able to erase local variations of the

population.

Figure 4 shows the precision results of two crawlers already

used in figures 2 and 3. The first one is based on the simple

original energy model while the other one uses the new

sigmoidal energy model. Values of C are identical but the

crawler based on the new model uses a value of G set to

8. Figures 2 and 3 show that the two crawlers have a quite

similar evolution of their population in time but the difference
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Fig. 3. Variations of population for various parameters of the sigmoidal
model

of precision seen in figure 4 clearly illustrates the positive

impact of the introduction of the parameter G.

C. Impact of energy conservation

We have implemented and tested the energy buffer described

in section III.C. The variations of the size of the populations

of agents for two crawlers with or without the energy conser-

vation buffer are shown in figure 5.

To illustrate the effectiveness of the energy buffer those

crawlers were initialized with a high value for G set to 30,

implying brutal variations of the population over long crawls

of 25000 pages. The energy conservation buffer is effective

and the size of the population is clearly bounded by the values

given by the user. We can see that the size of the population

tends to be equal most of the time to the upper boundary (250

here), that is because the precision of the system increases

in time. In the case of longer or more difficult crawlings

where the whole accessible topical graph has been visited,

the precision decreases and the size of the population tends to

be equal to the lower boundary.

Figure 6 shows the precision for the same crawlers as those

presented in figure 5. We can see that the precision of the

crawler with energy conservation is a little lower than its

counterpart. The use of the energy buffer introduces a delay

in the scanning of relevant pages: the difference of precision

is progressively reduced to zero.

V. CONCLUSION

We have introduced some improvements of the endogenous

fitness model for focused crawling to gain a better control of

the size and activity of the agents-based crawler. Experimental

results show that we indeed regulate the crawler and improve

its efficiency thanks to the proposed energy management

strategy. The previous results are encouraging as a preliminary

step toward an efficient and practical crawler for Internet

information retrieval.
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