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A l m r ~ - - A  model is proposed to describe the influence of solidification shrinkage on the final shape 
of cast ingots. We regard it as a starting point towards the modelling of the phenomena producing 
thermal stresses. The model is applied to 'nearly' purely thermal solidification processes occurring in 
'long' cylindrical molds. In this instance evolution equations are greatly simplified: their solution in a 
closed form is found in some technologically interesting instances by means of a semi-inverse method. 
This solution is used to validate the numerical procedure conceived for tracking the free moving 
boundary and for determining the final shape of the ingot in a wider range of temperature and heat 
flux boundary conditions. The above mentioned procedure is based on a nonconventional space-time 
finite difference discretization of the governing field and boundary equations. A locally uniaxial 
discretization in space is worked out along either direction of an orthogonal two-dimensional grid. It is 
refined by iteratively solving the sequence of two uniaxial linear problems, each of which exhibits 
a narrowly banded coefficient matrix: thus their solutions are found via a factorization algorithm. 
Copyright ~) 1996 Elsevier Science Ltd 

1. INTRODUCTION 

In [1] the phenomenology of solidification processes is discussed: melting and solidification 
problems occur in numerous important areas of science, engineering and industry. For 
example, freezing and thawing of foods, production of ice, ice formation on a pipe surface, 
solidification of metals and chemical reactions all involve either a melting or solidification 
process. Mathematically, melting/solidification problems are special cases of free moving 
boundary problems (FMBPs). One of the most interesting classes of phenomena considered in 
[1] concerns the effects of solidification modalities upon the final shape and mechanical 
properties of cast ingots. In [2] a list of unsolved or partially solved problems arising in 
engineering applications is discussed, the aim of that paper being twofold: (i) to draw the 
reader's attention to some problems which are really relevant for their importance in applied 
sciences and technology, and (ii) to show how--if engineering answers to practical problems 
are required--the actual state-of-art makes necessary a compromise in both mathematical rigor 
and accuracy in the representation of physical reality. 

The aim of the present paper is to use the pragmatic approach defended in [2] to face one 
technologically important problem (see [1]): finding a model suitable for the description of slow 
solidification processes of cast ingots. 

This model is obtained using the results found in [3] and [4], where the methods of 
continuum theory [5, 6] are extended to describe multi-phase systems with interfaces. However, 
the complete solution of mathematical problems arising when many thermomechanical 
phenomena are considered, is far from being attained. This circumstance is related to the 
'impossibility' results found in [7]: the scope of classical analysis hardly includes FMBPs in 
more than 1D. Therefore we start a sequence of more and more particularizing hypotheses 
restricting the scope of applicability of the proposed model but trying to preserve the main 
features of the physical phenomenon to be described. 

We finally consider 2D 'nearly purely thermal' or 'thermokinetic' processes of solidification. 
Using a semi-inverse method we obtain a quantitative description of those thermokinetic 
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solidification processes occurring under some well-defined externally imposed conditions. This 
description becomes qualitative in nature when quoted conditions are not strictly controlled. 
Indeed the features of the particular class of solution which we have determined are most 
probably common to the solutions pertaining to more general cases. Hence some engineering 
answers can now be guessed using a somehow more rational argument than those available 
before. Such an approach (nowadays also implemented by means of numerical methods) was 
frequently and successfully exploited in engineering sciences: the best known case is 
represented by the intensive exploitation in the theory of structures of the Saint-Venant 
semi-inverse method. In particular our analysis allows the determination of (i) the scope of 
some classical semi-empirical rules (e.g. Chvonorinov rule about solidification time), and (ii) 
some features of the shape of cast ingot. Indeed the analytical solution we have found-- 
assuming that (i) the mold has rectangular cross-section, and (ii) latent heat is only extracted 
from its vertical sides--shows that the pipes formed in the completely solidified ingot are 
exactly as deep as the mold, even in the presence of very small differences in mass density 
between the phases. This circumstance leads us to deduce that, in general, one should expect 
the formation of deep pipes if latent heat is extracted mainly from lateral sides. Similar 
considerations have guided the development of the numerical code we use to determine the 
final shapes of cast ingots in a wide range of heat extraction modalities. It seems that it could be 
easily improved, in order to 'handle' more physically accurate evolution equations, and is tested 
upon determined analytical solution. Such a test is not always possible as there are only very 
limited exact solutions to FMBPs which are concerned with allowable initial conditions and 
boundary conditions. 

As far as front-tracking methods are concerned, finite-difference methods and the finite 
element technique have been used extensively for the numerical solution of FMB problems. 
Crank [8] examines a selection of methods for computational efficiency and accuracy, 
programming complexity, and ease of generalization to more complicated problems. These 
methods compute, at each step in time, the position of the moving boundary. If the solution is 
computed on a fixed grid in the space-time domain, the boundary will in general be between 
two grid points at any given time. Hence special formulae are needed to cope with the PDE 
and their boundary conditions, in the neighborhood of the free moving boundary (FMB). 
These formulae must allow for unequal space intervals. Implicit finite difference formulae are 
used [9] and, since the position of the FMB is not known at the new time, an iterative 
procedure is inevitable. Alternatively, the grid itself is somehow deformed, or some 
transformation of variables adopted, so that the FMB is always on a grid line or is fixed in the 
transformed domain; special averaging procedures are to be used in the element containing the 
moving boundary, if the problem is discretized via adaptive meshes. Various ways of modifying 
the grid were proposed, all aiming to avoid the complication and loss of accuracy associated 
with unequal space intervals near the moving boundary. Adopting a variable time step 
approach, rather than using a fixed time step and searching for the boundary, one can decide to 
determine, as a part of the solution, a variable time step such that the FMB coincides with a 
grid line in space at each time level. Variable space grid methods keep the number of space 
intervals between a fixed and a moving boundary constant for all time; thus, the space interval 
varies in each time step, while the FMB is always on the same grid line. The complications due 
to the unequal grid size near FMB are avoided by moving the whole uniform grid system with 
the velocity of FMBs and so transfering the unequal interval to the end of the domain, which is 
a more tractable region. The space grid is adapted at each time step to construct finite elements 
in space and time for a non-rectangular grid [10]; a weak form of the heat-flow equation is 
solved, while elements containing the FMB have special features incorporating discontinuous 
interpolation [11]. Usually, the position of the FMB is assumed to be linear in a special 
element, and fixed temperature distributions are assumed on its sides. 
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Methods which combine unconditional stability (at least up to 2D) with calculation simplicity 
are the so-called alternating-direction schemes; these are closely related to methods known as 
splitting or fractional steps methods [12, 13]. 

In the present work the above mentioned alternating-direction method for multidimensional 
heat-flow problem and implicit finite-difference approximations on a fixed grid are used to solve 
two-phase solidification problems in 2D. The developed procedure enables the computation of 
boundary movement in the directions of both coordinate axes. Standard finite-difference 
approximations to the heat-flow equation are used at grid points far enough from the 
solidification boundary. Near the boundary, formulae for unequal intervals are incorporated 
into the equations. Interpolation formulae of Lagrangian type can be used [14]. To avoid loss of 
accuracy associated with singularities arising if the FMB is too near a grid point, localized 
quadratic temperature profiles are used [15]. The derivation of these equations is outlined for 
the two-dimensional case, numerical experiments are reported for solidification problems when 
the casting is a long bar of rectangular cross-section with dimensions LIL2, for various 
slenderness ratios Lz/LI and fixed boundary conditions. From the thermokinetic point of view 
the problem described in this paper is a purely two-dimensional task (2D); however the 
procedure can be quite easily extended to the case of time-dependent boundary conditions, 
temperature-dependent thermophysical properties, mixed initial-boundary-value problems. The 
achieved results are in agreement with those obtained by an analytical method (Section 4.3). 
The advantage of the proposed method is its ability to track the FMB which moves along two 
coordinate axes even when any coordinate line is not assumed to cut the FMB at most once. 
We use a simple front-tracking method, i.e. a longitudinal-transversal scheme or implicit 
method with variable direction, determine the temperature field of the casting and the 
solidification progress, and calculate the total solidification time [16]. However, in numerical 
applications considered here, the FMB moves essentially along one coordinate axis, and hence 
only the associated component of its velocity is assumed nonvanishing. 

2. PHYSICAL AND ENGINEERING ASPECTS OF SOLIDIFICATION 
PHENOMENA 

In [1] is described how the solidification process influences the properties of solidified ingots. 
The importance of considered phenomena resides in the need to optimize the ingot production 
process. We consider solidification of pure metals cast in molds whose surfaces are solidification 
catalyzers, so that solidification begins exactly close to them. We aim to describe the effects of 
mass density variations determined by thermodynamic phenomena. They occur (1) in phase 
transition processes, being more relevant, and (2) in both liquid and solid phases, being not 
completely negligible. 

In case (1) the volume variation between solid and liquid phases leads to the formation of 
empty regions (cavities or pipes) in the mold. 

In case (2) in liquid phases convective motions arise, while in solid ones a thermal strain is 
induced, leading either to plasticity phenomena or to residual stresses or both (cf. p. 230 of [1]). 
In fact, if the shape of the mold does not allow uniform shrinkage of solidifying or solidified 
metal the resulting configuration of the ingot is not stress free. 

While their volume is determined by the difference of liquid and solid mass density, the 
shape of cavities and pipes depend at least on (in decreasing order of importance, el. [1]): (i) 
relative rate of heat extracted from the bottom and the sides of the mold, (ii) the 
thermoconvective motions arising in the liquid phase during the solidification, (iii) the field of 
residual stress arising in the solid phase (see [17]), and (iv) the interracial phenomena occurring 
in the considered physical system. 
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The a priori determination of the effects of these phenomena is important in engineering 
applications: to control the quality of the final product one must avoid formation of cavities, 
determine the placement of pipes, minimize residual and thermal stresses, and limit the volume 
of regions where plasticity occurs. 

We do not try to model all listed phenomena: we use the results found in [3] and [4] in view 
of the applications which, for the time being, seem possible. We model all the interfaces 
present in the system simply by means of discontinuity surfaces to which no physical properties 
are attached. In particular we will not be able to forecast the effects of surface tension on the 
mechanical properties (cf. pp. 291 ft. of [1]) of the solidified ingot. Instead (see Section 4), we 
can describe 'nearly purely thermal' or 'thermokinematic' 2D solidification. 

More particularly, we consider molds whose shape is very 'long' (i.e. a cylinder whose axis is 
much longer than the diameter of the section), so that the solidification phenomena is described 
by specifing what occurs in a 2D section of the molds. The importance of this case in the 
applications is proved by the interest paid in [18] to 2D problems in the modelization of 
continuous casting. 

3. FORMULATION OF THE MODEL 

In the first column of the following table we name the compact surfaces which model the 
placement of the interfaces specified in the second column: 

AA liquid phase--surrounding ambient 
ZA solid phase--surrounding ambient 
AK liquid phase--catalyzing inner surface of the mold 
XK solid phase---catalyzing inner surface of the mold 

All quoted compact surfaces can move during solidification. Therefore enormous mathemati- 
cal difficulties arise when a complete set of evolution equations (EE) for all the fields describing 
the state of considered systems is formulated. Indeed a FMBP for EE is to be formulated 
where five free moving boundaries appear. Let K be the whole catalyzing inner surface of the 
mold. We have 

AK t3 Y K _ K. (3.1) 

We assume that: 
(H1) K is a fixed known surface; 
(H2) there exists a fixed compact domain D (in the sense of TruesdeU [5]) in which the 

solidification process occurs whose boundary OD includes (and eventually coincides 
with) K. 

In processes occurring in the absence of gravity K is closed, in order to bound the domain D, 
while in the presence of gravity the 'upper' part of 0D includes the interface solidifying 
metal-surrounding ambient (e.g. air or supplementary refrigerating system). 

In the absence of an external supply of liquid metal, XA is not empty and does not move 
anymore due to solidification. Indeed, became of mass density change occurring in phase 
transition, (i) the liquid phase in general is not covering all the boundary of S not in contact 
with K, and (ii) a flow arises in the liquid phase at least to assure mass balance. 

We call S and L the domains occupied by liquid and solid phases. These sets are time 
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dependent. We assume that the state of the considered system is determined if the following 
fields are known: 

O: temperature field defined in S and in L 
p: mass density field defined in S and in L 
v: velocity field defined in S and in L 
u: displacement field in S 

(3.2) 

We remark that a problem arises when defining the displacement field in the solid phase, as 
no global reference configuration can be introduced for a solid which before the process did not 
exist. Following what is usually assumed in the literature (for instance see [17]) we regard u as 
the displacement from the place occupied by the substantial solid particle at the instant in 
which it became solid. We can formulate for the fields (3.2) the EE local consequences of the 
corresponding global balance laws. We denote with an upper dot the material time derivative, 
with n the unit normal vector field to considered surfaces whose normal speed is c, and with 
the symbol [FL,~ ~p = s,1 the limit value of the field evaluated on the considered surface 
respectively from the solid and liquid side. 

Balance o f  mass 

iJ + p d i v v = O i n S O  L;fsp + fLp= M; (3.3) 

{[p(v.n - c.)]~ - [p(v.n - c.)],} = 0 on ZA (3.4) 

Equations (3.3) and (3.4) ensure that there is no mass production inside bulk phases and at 
the IgA interface; the total mass M of the solidifying specimen will be assumed constant. 

Balance o f  force 

pt) = div T + b in S U L (3.5) 

where T is the Cauchy stress tensor and b is the volume density of external force; 

{[pv(v.n - c,) - Tn]s - [pv(v.n - c,) - Tn],} = 0 on ~A. (3.6) 

Equation (3.6) holds because of the absence of surface tension and related phenomena. We 
then add the following boundary condition: 

c,  = 0 on ~A U ~:K; Tn assigned on AA (3.7) 

stating that (i) solid-ambient, solid-catalyzer, liquid-catalyzer interfaces do not move, and (ii) 
external ambient exerts an assigned contact force on the liquid phase. 

Balance o f  energy and entropy 

If • is the internal energy per unit mass and h is heat flux we have that: 

p~ = T:grad v + div h + r in S U L 

{[p( -~  + , ) ( v . n - c , ) - v T n - h . n ] - [ p ( - ~  + , ) ( v . n - c , ) - v T n - h . n ] , }  

(3.8) 

= 0 on YA. (3.9) 

Moreover we assume that 0 or h are assigned at every point on ~A U YK U AK. These 
u ~ m H  
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conditions determine how the solidification process is controlled. Finally we assume that on Y.A 
no entropy dissipation occurs: 

h.n h.n 
(3.10) 

Some initial conditions have to be added to the listed equations, together with all constitutive 
equations, in order to well-pose the mathematical problem representing the searched model. 

To our knowledge this problem is not solved: no general theorem of existence and 
uniqueness seems to be available and no known numerical method (see [19]) seems to be 
comprehensive enough to be applicable in the considered instance. 

4. T H E R M O K I N E M A T I C  2D-SOLIDIFICATION:  EXACT SOLUTIONS BY 
MEANS OF A SEMI- INVERSE METHOD 

We call a process thermokinematic or nearly purely thermal 2D-solidification if the following 
hypotheses are verified: 

(H1) Solid and liquid phases are incompressible and their densities are uniform and 
constant. We call PL and Ps respectively the liquid and solid phase mass densities. 

(H2.1) Some symmetry considerations reduce the problem to a two-dimensional one: the 
considered mold has the shape of a long beam with constant section. Then the 
spatial coordinates reduce to (xl,x2) and the surfaces modelling the interfaces can 
be determined by curves in the plane of the section. 

(H2.2) The section of the mold is rectangular and its sides are parallel to the (x~,x2) axes. 
Let 3' be the curve representing the union EA U YA. Latent heat is extracted 
mainly from the lateral (i.e. parallel to the x2-axis) side of the mold in such a way 
that 3' can be determined always during the solidification process as the graph of a 
function f of the variable x2. 

(H3) When phase transition occurs the total volume of the present matter varies because 
of the mass density difference between the phases. In solidification processes the 
volume decreases and because of the mass conservation law a velocity field has to 
arise in the liquid phase in order to allow such a volume change. This velocity field 
has negligible effects on all thermomechanical phenomena: it only assures the 
global balance of mass. Moreover the solidification process is slow enough to allow 
the liquid phase to flow in an equilibrium configuration once a new solid part is 
formed, and before the solidification process is able to subtract to the liquid phase 
again a relevant quantity of mass. This means that AA interface is fiat and parallel 
to xl-axis (i.e. horizontal): its level h has to be determined by the global balance of 
mass. We assume that convective velocity fields are negligible. 

(H4) The external ambient exerts a pressure Pe on the solidifying system and 

Pe >> (Ps + PL)(ll + 12)g 

SO that stress tensor inside the liquid and solid phase is equal to p¢l. 

4.1 Relation between the level h o f  liquid phase and the solidified phase profile f. The case o f  
flat Y.A 

If (H2) and (H3) are verified the global balance of mass implies: 

F(h;f(.)): = Apf(y)dy + ps f (y )dy  + hl, pL-- M : 0 (4.1) 

where Ap: = Ps - PL, l~ and 12 are the lengths of the sides of the mold parallel to the x~- and 
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x2-axes and F is a function of h E [0,/2] and a functional of the profile f o f  the solidified profile. 
As 

F(0~f) < 0; F(/2;f) > 0; OF/Oh > 0 (4.2) 

then for every profile f there exists a unique level h verifying (4.1). For a solidification process, 
a family of solidified profiles has to be considered. We then introduce a family of functions f 
depending on the time variable t describing the profile at instant t. A particular solution for EE 
is obtained assuming that: 

(1-I5) the part of 3' representing the interface Y A is, at every instant t, a vertical straight 
line. 

If hypothesis (H5) is verified and if T is the solidification time, then f(x2, T) is easily obtained 
using equation (4.1) and the condition f(12,T)= 0. Indeed we have: 

f(x2,T)=I,(I-(~Y~ 
\12] ] 

(4.3) 

with a = p2/Ap. 
The proof of (4.3) is easily obtained as follows. Consider for every a E [0,12] the function 

go(x2) defined in the interval [0,12] as follows: 

~f(x2,T) if x2 > a (4.4) 
go(X2): = tf(a, T) if x2 < a. 

REMARK. When (H5) is verified, the function go represents the solidified profile when the level 
of liquid phase is equal to a. Equation (4.4)~ means that once one part of the solidified profile is 
no more in contact with the liquid phase it will not evolve. 

Then, using M = pLlll2 and (4.1) we have: 

p,{ J~2f(x2,T)dx2 + af(a,T) } = pL{af(a,T) + l,(12--a)}. (4.5) 

REMARK. Equation (4.5) can be interpreted as follows: the mass of solidified phase is equal to 
the mass of the 'disappeared' liquid. 

Deriving equation (4.5) with respect to the variable a we obtain the ODE whose solution, 
verifying the condition f(12,T)= 0, is given by (4.3). 

4.2 Modalities of extraction of latent heat 
The balance of energy and hypotheses (H1), (H3) and (H4) imply that latent heat is 

extracted only because of heat conduction and that the derived FMBP is the classical Stefan 
problem. We report here the Neumann solution for one-dimensional solidification (cf. [8]). 
Indeed in Section 5 we find numerical solutions for a wide class of 2D thermokinetic 
solidification processes to be tested on analytical solutions. Such a solution is found in Section 
4.3 by means of a semi-inverse method in which the Neumann solution is needed. 

Let x and t be the space and time variables. We consider at t = 0 the liquid phase occupying 
the [0,~] space interval with uniform temperature Or (melting temperature). Moreover we 
assume that for every t > 0 the temperature at x = 0 is OR < Or. Then a solidification process 
takes place and 

(i) the solid-liquid interface moves following the law 

~(t) = aV~ (4.6) 

where a is the solution of the following transcendent equation: 

(OR - OF)Klexp( - a2/4al) L a V ~  = (4.7) 
X/~alerf(a/2X/~al) 
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in which L is volume latent heat, K~ is heat conductivity of the solid phase, and 
al: = K~/c~ with c~ denoting volume specific heat; 

2. (ii) the temperature field O~ in solid phase is given by 

(OR - -  Op) 
O,=OR erf-~a ~ a  ~) erf(x/2V~a ~ t). (4.8) 

4.3 A n  exact solution by means o f  a semi-inverse method 

We determine a class of thermokinematic processes assigning some of the necessary 
boundary conditions and assuming some particular properties of the temperature fields. 
Analytical expressions for these fields and for the position of the free moving boundaries can 
be thus determined. We assume that (cf. Fig. 3): 

1. at the initial instant to the interface ZA is formed on the lateral walls (LWs: i.e. two 
parallel sides of the rectangular section of the mold) and that the liquid temperature is 
equal to Or; moreover heat extraction occurs only through LWs, while the remaining 
contact interface of the liquid with the mold (on the basis) does not allow any heat flux; 

2. at every instant t, during solidification at the ZA and AA interfaces the temperature has 
the constant value Or; the AA interface--which is flat and parallel to basis of the 
section of the mold----does not allow any heat flux; 

3. also the ZA interface is flat and parallel to the LWs of the mold and its distance ~ from 
the LWs is given by equation (4.6); and 

4. at every instant t, the solid phase in contact with one of the LWs occupies the region 
whose intersection with the plane of the section of the mold is bounded by the LWs and 
the graph of the function defined by equation (4.4) [with a = ~(t) as given by (4.6)]; 
moreover the temperature field O~ in the solid phase does not depend on the coordinate 
x2 along the direction of the LWs but only on the coordinate x t along the direction 
parallel to the mold basis. Thus we obtain equation (4.8) when replacing the variable x 
with the variable x~. 

REMARKS. (i) AS a result of (4.8), the Stefan condition is verified at the Y.A interface. 
(ii) the boundary condition at the Z,A interface can no longer be assigned, as it is specified by 

the expression for the temperature field determined in point (4) of the list above. In particular 
we observe that the temperature field on the interface solid-external ambient is equal to OR on 
LWs and to Or at its intersection with the YA interface. 

In conclusion we have found a particular solution to the solidification problem formulated in 
the previous sections. The most striking feature of this solution is implied by the shape of the 
function f defined by equation (4.3): also a very small mass density difference between the 
phases--when heat extraction occurs only through the LWs---implies the solidification of two 
different ingots inside the mold. This can be regarded as a property common to all slow 
thermokinetic solidification processes: in these processes the shrinkage pipes are very deep. 

5. F I N I T E  D I F F E R E N C E  M E T H O D  F O R  T H E  2 D  P R O B L E M  

5.1 Generalities 

Let G '~UG'~ be a two-dimensional domaint in the (x~,x2)-plane, F ~ UI",~ be its outer 
~0 ~o 

boundary, and • be the FMB between two homogeneous phases: a solid phase (phase s or 

tWe adopt a usual index notation in which Greek minuscules have the values 1,2 and repeated indices do not mean 
summation. 
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cp = 1) and a liquid phase (phase ! or ~p = 2); these phases are characterized by specific heat c, ,  
thermal conductivity k, ,  and mass density p ,  constant in either phase. In either of the above 
mentioned phases the temperature O(x;t) is governed by the thermal conduction equation 
together with the initial and boundary conditions respectively given in the form 

() (;) , , ,a ,  x = { x l , x 2 I ~ G . , O < t < - T , O . = O . ( x ; t ) ; O O - ~ - a ~ a p  u .  a~. = . 
Ot - 

l a p ( t g . ) = A O . = ~ O 2 t g * - ~ _ ~ D s t g . ;  
c)x~ - 

O , (x ) ,  x E ¢~0, t = 0, tg, lr,. ' = O,(x;t), x E F~,, 0 < t -< T; O~(x;0) = o 

= = (i,(x;t)'nr,~, x E r.~, 0 < t <-- T. (5.1b) 
- [kgrad(O)l,o.nr,.  - k~o-~n r.~ 

In equations (5.1b), F~, and F ~  denote the outer boundary regions where temperature 0 r 
and heat flux ~ are respectively assigned; nr,~ denotes the outer normal to the contour line 

a = l .  F,q. For simplicity's sake, in the following we will assume a ,  
On the FMB • between liquid and solid phases the temperature ag(~:;t)= O * , ~ r ~ ,  is 

constant and equal to the melting temperature O*; the heat fluxes are discontinuous and their 
difference is c*~,,,, where c* is the latent heat at melting temperature and ~,. is the FMB speed 
in the direction normal n .  to the FMB itself; the normal pointing from solid to liquid phase is 
taken positively oriented. On the FMB 4) between liquid and solid phases the following 
boundary conditions do hold: 

~ ~,, ~.  = ~ ( t ) ,  ~ a~o, = at O(~:;t)= O*, (5.2a) 

{[kgrad(O)]. - [kgrad(O)],}.n. = c * d ~ n .  = c*~.®, 
dt 

[grad(O)lo = [V(O)]~ = oO, O(x;t) < O*,x ~ G~; O(x;t ) > O*,x E C,,. 
Oxa 

(5.2b) 

5.2 Discretization in the space- t ime domain  

Let the space-time mesh llTh,h2 r (closure of mh,h2~) be generated in ¢3 = G + F and denoted 

mh,h2~ = mh, × mh2 × mr = {(X~.i~ = i~h~, tj =j r ) ;  i~ = 0,1,N~, j = 0,1 ..... No}. 

This mesh is uniform in each of the variables (xl,x2;t). The  mesh mh,h2~ is comprised, 
obviously, of the meet point of the planes xo=x~.~.( is=O,1 ..... N,,) and of the planes 
t = tj(j =0,1 ..... No). The sets of all the inner and boundary nodes of the mesh mh,h2~ are 
respectively denoted 

0Jhth2 r = ~0h, X ~Ok2 X 0) r = {(Xl .i, ,X2,il;tj), 0 < i~ < N~, 0 < j  <- No} 

Yh,h2r = {(X1.,,, X2.,2; tj), i = 0, 0 --<j -- No; is = Ns, 0 <- j <- No; j = O, 0 <- is <- N~}. 

The index a is omitted for the sake of brevity; dividing the range [0,L] into N steps by points 
xl <x2 < ... <xN-1 < L yields the mesh mh = {xi,i = 0,1,2 ..... N, Xo = 0, xN = L}, having step 
hi = x~ - x,._~ which depends upon the index i of the node x~. If h~ # ha+~ for at least one index i, 
then the mesh mh = m~' is called non-uniform. If h~ = constant = h = L / N  for all i = 1,2 ..... N, 
we have a uniform mesh. In the irregular nodes of mh,h~ the difference operator applies to a 
non-uniform mesh [14]. The following differential operators should be approximated for the 
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Od 
problem at hand: the temperature time rate -~-, the temperature space Laplacian operator AO, 

the temperature space gradient Vd, the FMB time rate ~ the normal to the FMB n~. 

So far, a numerical procedure has been developed in order to solve the governing equations 
with both continuous and discontinuous coefficients. The total number of required calculations, 
i.e. the total number of arithmetical operations needed to solve the problem at the desired 
degree of accuracy, turns out to be a crucial point in the multi-dimensional mesh methods. The 
discretization schemes which combine the better features of the explicit algorithm (total 
amount of operations proportional to the total number of mesh nodes (N~ - 1) * ( N  2 - 1)) with 
those of the implicit algorithm (unconditional stability, i.e. for any ~ and h~,h2) are called 
economical schemes. This basic idea is embodied in the so-called longitudinal-transversal 
scheme or implicit method with variable direction. This locally unidimensional method is 
suitable for use in a broad range of circumstances, namely thermal conduction equation with 
constant, variable and discontinuous coetficients in an arbitary domain G having any dimension p. 

6. PROBLEM DISCRETIZATION 

6.1 Discretization o f  the thermal conduction equation 

OO 
The temperature time rate - -  and the temperature space Laplacian operator Ad are to be 

Ot 
approximated in the difference scheme discretizing the thermal conduction equation. 

An approximated solution v/+t for t = tj+l is generated for equation (5.1a) by successively 
involving (for ot = 1, 2) the unidimensional equations of thermal conduction with the 
space-time continuity conditions between discretization directions: 

(a = 1, 2), ti<-t<-d ÷1 

2 

Ov(~)= ~ DaY(m, (6.1a) 
8t ~=l 

via+l-,) = vi~ ) (a = 2) 

v{1 ) = v j, (6.1b) 

and the boundary and initial conditions (5.1b). The solution of such a problem is v/+1= "/+~ v ( 2 )  • 

Assigning v °=  d°(x)gives v/÷1. 
In either equation (6.1) having index a we substitute the differential operators ~, and D with 

the difference operators A. and A,.  [20]: 

A: "j+tv.,) = (k)[A,,~,v{+j + a,,_, ,,_,v{,,_,, l 
\ p c / ~  

a = 1 , 2  ( a = 1 ~ a - l = 2 )  

= 1,2. (6.2) 

In equation (6.2), ~p = 1 and ~ = 2 denote solid and liquid phase respectively. The operator 
A ~  is substituted by the difference operator L ~  in the neighborhood of the moving boundary 
[14]. 

6.2 Discretization o f  the evolutional equation of  FMB 

&P and the outward normal n to the The space gradient operator VO, the FMB time rate at' 

FMB are to be approximated in the finite difference scheme discretizing the evolutional 
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a) Direction a=l b) Direction ct=2 

Fig. 1. Approximation of the normal to the moving boundary. 

equation of the FMB. We denote by v, sty) and nt~ ) the approximated solutions of temperature 
O, FMB ~, and FMB normal n¢, respectively. Solving a unidimensional problem on each row 
(column) yields the following form of the boundary conditions on the FMB (Fig. 1). 

In more detail, the position and velocity vectors of a moving boundary point, and the vector 
normal to the FMB and pointing from solid to liquid phase have components 

a,8 = 1,2, ~st~)~ = s<~)8 = , 
a 1 t x~-i J' 

= a  1 ~ n ¢ , ) ~ =  -Of , , /Ox ,_ t  ; ( a = l ~ a - l = 2 ) .  (6.4) 

The transition temperature and the evolutional equation of the moving boundary are 
approximated by 

a = 1,2: vt~)(st,,);t ) = 0% a = 1 =), a - 1 = 2; (6.5) 

[/.0v,.,, [(k ( ]1-,o,o-, - - - , o , o .  
0£ 

/k---x-~/ - / k  / / n ~ ) ~  + - k t~-l~ = c* (6.6) 
\ 0xa / ,  \ Ox,,/i-I L\ Ox,,-t /s dx,,-i /if Ot 

The space-time continuity equations between discretization directions read as follows: 

• j+l Cj _ ¢1+1 ~ " " " v~) = vt~_o, j t ~ - Y t ~ - I )  (a = 2); v~l)= v ' , f l  m = f L  (6.7) 

Finally, knowledge of fo = 0 yields if+'. In equations (6.3)-(6.7) and in the following, lower 
indices within round parentheses denote differentiation direction, whereas Cartesian com- 
ponents are without parentheses. 

In each equation (6.5)-(6.7) having index a the differential operator a is substituted by the 
difference operators L~ and As [14, 20]: 

. / + 1  -" j + l  0 j 0 j b r - - +  j + l  0 j 0 j = - - A ~ _ , v t , ~ _ t ) A ~ _ t f ~  =c*A;-f~ +l. (6.8) ~,(~) O * ; k , [ L o v ( ~ )  -A~- tv~ - lA~- t f~ ]  ~ntn..,~v(~) 

The normal to the moving boundary is explicitly approximated by means of the weighted 
central difference (weighted average of left and right differences, the weight being the layer 
thickness): 

3 h i  - h i + l  hi - hi+t 3hi+l -- h i  

AW~'Yi  = - 2 h i ( h i  + hi+t) yl-t + 2hihi+"""~ y i  + 2 h , + , ( h i  + h i + l )  y i + t '  

instead of the difference operator A°. [20] at the 'comer' point where the slope of the moving 
boundary is abruptly varying near the liquid head. 
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6.3 Discretization o f  the initial and boundary  conditions 

In order to formulate the boundary conditions for v(~), we consider an inner point x E ¢bh,h2 
and we trace through it the straight line Ca parallel to the axis Ox~. We study the simpler case 
where Co meets F through two points P~, and P~+. We denote by Yh. (a = 1,2) the set of all 
points P~ and P+. If G = Go = 0 -< x~ <- L~, a = 1,2 is a rectangle, hence Yh° is comprised of 
nodes (ilhl, i2h2) lying on the sides x ~ = 0 ( i ~ = 0 )  and x ~ = L ~ , ( i ~ , = N ~ ) ,  a = 1,2. The 
alternative boundary conditions for v(~) are obviously assigned only on Yha: 

v~,,~ = O(x;t) for x E yh,, a = 1,2 (6.9a) 

{-kgrad[v¢,o]} . . [  ~:e( . , ]= [k O--v-~] Ox. J~, = gt(x;t)'e¢.) = 0~,(x;t) fo rx  E Yh., a = 1,2 (6.9b) 

where e¢,.~ denotes the unit vector in the a-coordinate direction, and the minus/plus sign refers 
respectively to side x .  = 0 or x .  = L . .  

At the initial time t = 0 the following condition is given: 

v¢~)(x;0) = g°(x) fo rx  E tOh,h~. (6.10) 

Equations (6.9) and (6.10) uniquely define v / for any i~ = 1,2,...,N~ and x E tOh,h~. More 
explicitly, equations (6.9b) take the form 

+ [kA+Lo = ~ ( x ; t )  fo rx  ~ Th°, a = 1,2 (6.11) 

where the differential operator  0~ has been approximated by means of the difference operator  
A 2 [201. 

7. I T E R A T I V E  M E T H O D  OF S O L U T I O N  

7.1 Time discretization 

The jump from time j to time j + 1 is performed in two steps. First, equations (6.2) and (6.8) 
are solved for ot = 1 implicitly in the xl-direction and explicitly in the x2-direction, and then the 
same equations are solved for a = 2 explicitly in the x~-direction and implicitly in the 
x2-direction. We thus obtain a sequence of locally unidimensional schemes. Typically for the 
FDM approach this leads to a linear system of equations, which has a general band form; an 
effective algorithm based on the Gauss elimination which uses certain properties of general 
band matrices and computer  data type architecture can be found in [21, 22]. In the locally 
unidimensional scheme not all the discretization directions exhibit the same 'weight'. Numerical 
experiments allowed to find out the following optimal ratios: 

1 ' 
h , -~ ~ L , , h 2 -~ Z ~- \-~l / . 

We write down the locally unidimensional (longitudinal-transversal) scheme ('variable 
direction' implicit scheme) at the (j + 1)th time and for the rth iteration in the following 
iterative form. Time discretization is given by j = 0,1 ..... No. 

The initial conditions at t = 0 and at the beginning of the current time step (r = 0 iteration) 
are respectively expressed by 

vto),,i2o _- O(ilh~,i2h2;O), ij = 0,1 ..... N,, i2 = 0,1 ..... N2 (7.1) 

j + l , 0  j ,e j+ 1,0 _ /rj i t /+  1,0 
(2)ili 2 : V (2)ili2, J l . i  2 - -  J I.i2, J2 . i ,  = f i2 . i , .  (7.2) 

Space discretization in the coordinate direction a = 1 (longitudinal scheme) is given by 

i2 = 1,2 ..... N 2 -  1, il =0,1  ..... N1. 
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The equation of thermal conduction in either the solid (tp = 1) and liquid (tp = 2) phase and 
the evolution equation of moving boundary between solid and liquid phases are respectively 

A-,,j+I,, / k \  j+l ,  - /+1.,-i, (7.3) l 

k f l - l . , j+ l , r  _ A O ~ , j + l , r - l A O p j + l . r - l l  __ b [ l + l v l  + l . r  A O 4 , j + l . r - l A O f j + l . r - I 1  , A - p j + l . r  
s L Z - , ( l ) ¢ ( l ~ l i a  z x 2 ¢ ( 2 ) m l i  a z L 2 J l , i 2  j n, lLZ-~(1)sli 2 - -  z x 2 v ( 2 ) m l i  2 z L 2 J I , i 2  j = C A t f ' l , i2  

__ p j + l , r - 1  m l h l  < < sl -:1.i2 , -- sl -- (ml + 1)hi, vo)~,i 2j+l,r = 0" .  (7.4) 

7.2 Space discretization 

Space discretization in the coordinate direction a = 2 (transversal scheme) is given by 

il = 1,2,...,N1 - 1, i2 = 0,1,...,N2. 

The equation of thermal conduction in either the solid (,p = 1) or liquid (~p = 2) phase and the 
evolution equation of moving boundary between solid and liquid phases are respectively 

t V(2)ili2 - -  I V ( I ) i l l  2 + - /~221/(2) i l i2]  

k f A O v j + l , r  A 0 t C / + l , r - I  I -  j + l . r l  kl[ - -  A O  j + l . r  A O f j + l .  r - I  -1- I + / + l , r l  , A - p j + l , r  
sLZLI ( I ) i l m  2 - -  L L 1 J 2 , i l  "~ / " 2  'V(2)i lszJ  - -  L t l V ( i ) i l m  2 - -  Z X l j 2 , i l  - -  z-~ 2 ~"(2) i ls2j  ~-" C '/~t f 2 , i  I 

__  ~ j +  1 . r - -  1 
$2--f2.i .  m2h2 <s2<(m2-- -- + 1)h2, vJ+~"t2)i.s2-- 0". (7.6) 

The solution at the rth iteration and the convergence condition of the longitudinal- 
transversal scheme for a = 1,2 respectively read as follows: 

~/~ rr~+"°' :/÷,.~,-,: 
j + l . r  , , + , . r .  i.=~/. [ fJa:i l j  r l ' - I  ] 

v ~,~)~,i2, . , . , i .  , fll~ - I~I= + 1 <- ~' 

where E is a suitable tolerance, and ~/~,~/~ are defined as follows: 

• " p j + l , r  l . . l j+l ,r  -- ,£ j+l , r  iL l j+l . r  1¢I2 = 1, H i ; ) ' " -  h2 <- h j ~ :  <_ Hi~'.'; 0 <-j2.~, <- h2, , , ~ )  - h2 < - : 2 : ,  <- rt<2) . 

When convergence is attained (roth iteration) we have 

j + l  . j + l  __ j+l ,r l l  f j + . l  _ _ ~ j + l , r o  
Vii i2 = Y ( 2 ) i l i 2 -  V(2) i l i2 '  J ~a,,-I - - J a , i o - I "  

The current height of liquid head H{~+~ '" has been evaluated by discretizing equation (3.3), 
which expresses mass conservation. The trapezoidal rule has been applied in order to calculate 
the current volume of solid phase. 

8. N U M E R I C A L  D E T E R M I N A T I O N  O F  I N G O T  S H A P E  F O R  B O U N D A R Y  
C O N D I T I O N S  E N C O U N T E R E D  IN E N G I N E E R I N G  A P P L I C A T I O N S  

8.1 Generalit ies 

A two-dimensional cast of rectangular shape has been considered which is initially filled with 
liquid aluminium (pure metal); thermophysical properties of the material have been shown in 
Table 1, while phase change data are given in Table 2. 

Table 1. Thermophysical properties of aluminium [23] 

Mass density Specific heat Thermal conductivity 
[Kgm 3] [J°K" Kg "l ] [W°K"m ' '  ] 

Liquid phase 2385 1080 100 
Solid phase 2700 1080 230 
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Table 2. Change of phase [23] 

Melting temperature [*K] 
Formula weight (Wf) 
Latent heat [JKg-atom "l] 
Volume change during melting 
a V  m = [(Vliquid -- Vsolid)lVsolid] (°/o) 

933.5 
26.9815 (see [24]) 

10.47/W C I0 +t' 
6.5 

A uniform mesh has been adopted with N1 = 5, and N2 = 60. The initial temperature and the 
boundary condition at the FMB (below the liquid head) are respectively 

v ° = ~(ilhl,izh2;O) = 0" ,  il = 0,1 .... ,Nl, iz = 0,1 ..... N2 (~t)ill  2 

l / J + l  ~,,) = 0" ,  a = 1,2. 

Adiabatic boundary conditions have been assumed on the symmetry axis, liquid head and 
bottom respectively: 

[} ] _ ",'z" A-v~+,1 (I)N,i~J'r = q Li , izhz;( j  + 1)r "nr(~,=L,r2) = O, nr~,=t.,a) = {1,0} 

_ktAi- s + , . , _  [.  /+1:-1. • ] ={0,1} v(2) i ,h-  q qhl ,Ht2) ,(I + 1)z "nr(~-h~ = 0, nr(~:h~ 

/ /  A +  j + t , r  
- -  ~-,,oz'l V(2)i,0 : q[i lhl ,0;( j  + 1)z]'nr(~:o) = 0, nr(~:o) = {0, - 1}. 

Here,  H = ,,(i)uJ+l"-- height of liquid head at ts÷t = (j  + 1)z at the (r - 1)th iteration. 
Two cases have been investigated which differ for the boundary conditions assumed along 

the side: (1) given temperature uniform in the fit = 2 direction, and (2) assigned heat flux. In 
both cases the FMB velocity has been restricted to have only one nonzero component ,  namely 
in the fit = 1 direction. Such an assumption is exactly fulfilled in the first of the following study 
cases, on the basis of the boundary conditions and of the analytical solution given in Section 
4.3, wheras it seems to be reasonable in the second example, and it has been validated by 
means of a suitable numerical test. 

8.2 Given temperature at mold sides 

In the first sample, the rectangle sizes are LI = 0.2 m and L 2 = 0.1 m (Lz /L t  = 2). 
The boundary condition at the mold sides is 

v ( l ~  2j+t = ~[O, i2h2;(j + 1)z] = 0 = 5&K( < 0") ,  Vi2. 

The boundary condition at the solidified frontier (above the liquid head) is 

v},)i,, 2 = ~,[gt,i2h2;(j + 1)T] = ~ -  ( 0 -  1 9 " ) ~ ,  5 - s,.,2, J >]i2, 

]i2:i2h2 > 14J',"-' / tJ'2 " ' ( I )  , 7. = fit - ~ t / +  I 

where t ~ is the solidification 

(8.1) 

time of the xz = izh2 mesh line, it is the xl-ordinate of the 
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(a) 

1.20E-O1 

solidified frontier at the x2 = i2h2 mesh line, and ~'~Ji2"r-I is the height of liquid head at time --(]) 
t/'2 = ]~2~" at the ( r -  1)th iteration; 

v}2)~ ~ = 02[i,h,,$2;(] + 1)~] = 0 - (0  - 0")  , s-2 +¢7,,j2,,.,, J >~, ,  

-- -- r 1]q , r - - |  t ~  
/i~:s2>r~t2) , z = a ~ t j + ,  

where t/', is the solidification time of the x, = i~h, mesh line, ~2 is the x2-0rdinate of the 
solidified frontier at the x~ -- i,h~ mesh line, and H;.~:" is the height of the liquid head at time 
t/', = ]~,~" at the ( r -  1)th iteration. 
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Fig. 2. (a) Solidification progress: (b) intermediate shapes for given temperature at mold sides at t = 20 sec. 
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Fig. 3. (a) Final shapes for given temperature  at mold sides; (b) time-histories of FMB average speed for given 
temperature  at mold sides. 

Introducing data of Table 1 and equation (8.1) in equation (4.7) and solving in respect to the 
solidification coefficient a gives the relevant value 0.0146623. The total solidification time is 
equal to 41.8 sec, whereas its analytical forecast, obtained by equation (4.6) at ~ = LI, is 46.5 
see. Comparison between analytical, equation (4.6), and numerical solidification progresses is 
made in Fig. 2(a). Figures 2(b) and 3(a) show the comparisons between (i) intermediate shapes 
(at t = 20 see) and (ii) final shapes obtained in an analytical [equation (4.3)] (solid line) and 
numerical (thin line) way. Figure 3(b) shows the comparison between the time-histories of 
FMB average speed obtained in analytical, [equation (4.6) divided by t], (thick line) and 
numerical (thin line) way. 

It is of value to note that the FMB does remain parallel to the x2-axis throughout the 
solidification process (see Fig. 2(b)), as predicted by the analytical solution (see Section 4.3). 
Furthermore, temperature of the liquid phase is kept constant at melting value and 
temperature distribution in x2-direction in solid phase does remain uniform. 
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Fig. 4. (a) Heat flux given at mold sides; (b) time-history Of liquid head level for given heat flux at mold sides. 

8.3 Given heat flux at mold sides 

In the second sample,  the rectangle sizes are L] = 0.0125 m and L2 = 0.1 m, L2/2L1 = 4. 
T h e  boundary  condi t ions at the mold sides are (Fig. 4(a)): 

- - + -  j+l,r 
-- r~oA1 lV(I)o/2 = q[O, i2h2;(j + 1)v]'nrtx,.o) = q~2, nr(x,-o) = { - 1,0}, nr(x,=2L,) = {1,0}. 

The  boundary  condi t ion at the solidified f ront ier  above the liquid head  is 

eft(----z ] 
- -  t J ,  z v~,)~,,= 01(g~,i2h2;(j+ 1)'r) = O* \ 2 a J  sl -y l . , , ,  j > ~ , ,  

- • ~ , - i  Y,  21 
j,,: ,2h2 > H(~'; , z = ~t~t i , a = ~ ;  
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Fig. 5. (a) Time-history of liquid head average speed for given heat flux at mold sides; (b) final shape for given heat 

flux at mold sides. 

where tJ'2 is the solidification time of the x2 = i2h2_ mesh line, ~1 is the xl-ordinate of the 
/4s'2'r-I is the height of liquid head at time solidified frontier at the x2 = i2h2 mesh line, and " '0 )  

t z, =]~2v at the ( r -  1)th iteration; 

v~2},j2 = 02(ilhl,sz;(j + 1)l') = O* a ' s'2 +¢/" 

- . ~  ~ j . , ,  ~2 k-2 

where t 7', is sol idi f icat ion t ime of the x, --i~h~ mesh line, ~z is the x2-ordinate of the sol idif ied 
": - 7  f ront ier  at the x l  = i~h~ mesh line, and .us'"'. (2) is the height of  l iqu id  head at t ime t s', =j~,v at the 

(r  - 1)th i terat ion. 
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The total solidification time is 16.9 sec. Figures 4(b) and 5(a) illustrate time-histories of level 
and average speed of liquid head respectively; Fig. 5(b) shows the final shape obtained in the 
numerical approach. 

A simple test has been successfully performed in order to validate the assumption of null 
2-component of FMB velocity: the maximum value of the ratio between heat flux components 
through the FMB has been numerically evaluated at each time according to 

00 

where the temperature space rate has been approximated by Li- [14] and A ° [20], operators in 
the 1- and 2-directions respectively. This maximum ratio remained less than a few percent. 
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