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Filtrage vaste marge pour I'etiquetage
sequentiela noyaux de signaux

Rémi Flamary, Benjamin Labbé, Alain Rakotomamonjy

LITIS EA 4108, INSA-Université de Rouen
76801 Saint=tienne du Rouvray Cedex, FRANCE

Résure : Ce papier traite de I'étiquetage séquentiel de signeiest-a-dire de
discrimination pour des échantillons temporels. Dansargexte, nous propo-
sons une méthode d’apprentissage pour un filtrage vastgers@parant au mieux
les classes. Nous apprenons ainsi de maniére jointe un Sivies échantillons
et un filtrage temporel de ces échantillons. Cette métipedmet I'étiquetage en
ligne d’échantillons temporels. Un décodage de séqeibncs ligne optimal utili-
sant I'algorithme de Viterbi est également proposé. Natreduisons differents
termes de régularisation, permettant de pondérer oeléet®nner les canaux
automatiguement au sens du critere vaste-marge. Finatenare approche est
testée sur un exemple jouet de signaux non-linéaires @iressur des données
reelles d’'Interface Cerveau-Machine. Ces expérienaasnent I'intérét de I'ap-
prentissage supervisé d’un filtrage temporel pour ligiiqge de séquence.
Mots-clés: SVM, Etiquetage séquentiel, Filtrage

1 Introduction

Signal sequence labeling is a classical machine learnivigigm that typically arises
in Automatic Speech Recognition (ASR) or Brain Computeeifsices (BCI). The idea
is to assign a label for every sample of a signal while takitig account the sequentia-
lity of the samples. For instance, in speaker diarizatiba,a&im is to recognize which
speaker is talking along time. Another example is the reitmgmnof mental states from
Electro-Encephalographic (EEG) signals. This menta¢state then mapped into com-
mands for a computer (virtual keyboard, mouse) or a mobbet,chence the need for
sample labeling Blankertt al| (2004);[Millan (2004).

One widely used approach for performing sequence labeditjddden Markov Mo-
dels (HMMs), cf. [Cappet al], 00%). HMMs are probabilistic models that may be used
for sequence decoding of discrete states observationseloase of continuous obser-
vations such as signal samples or vectorial features g¢&ttdoom the signal, Conti-
nuous Density HMMs are considered. When using HMM for seqeefecoding, one
needs to have the conditional probability of the observatjmer hidden states (classes),
which is usually obtained through Gaussian Mixtures (GMag@eet al,, 00%). But
this kind of model performs poorly in high dimensional spageterms of discrimi-
nation, and recent works have shown that the decoding amcuray be improved by
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using discriminative model$ (Sloin & Burshtejn, 2008). Gimaple approach for using
discriminative classifiers in the HMM framework has beengmsed by Ganapathiraju
et al. (2004). It consists in learning SVM classifiers known foritHgetter robustness
in high dimension and to transform their outputs to prob&éd using Platt’'s method
(Lin et all, [2007), leading to better performances after Viterbi déwgpcHowever, this
approach supposes that the complete sequence of obserigatieailable, which cor-
responds to an offline decoding. In the case of BCI applinatéoreal time decision
is often needed| (Blankergt all, 2004;[Millan,[2004), which restricts the use of the
Viterbi decoding.

Another limit of HMM is that they cannot take into account mé-lag between the
labels and the discriminative features. Indeed, in this sasne of the learning observa-
tions are mislabeled, leading to a biased density estimago class. This is a problem
in BCl applications where the interesting information ap¢always synchronized with
the labels. For instanck, Pistalall (008) showed the need of applying delays to the
signal, since the neuronal activity precedes the actuaemewnt. Note that they selec-
ted the delay through validation. Another illustration loé need of time-lag automated
handling is the following. Suppose we want to interact witboanputer using multi-
modal acquisitions (EEG,EMG,...). Then, since each mbodahs its own time-lag
with respect to neural activity as shown py Salergual] ([L99$), it may be difficult to
manually synchronize all modalities and better adaptataonbe obtained by learning
the “best” time-lag to apply to each modality channel.

Furthermore, instead of using a fixed filter as a preprocgstage for signal denoi-
sing, learning the filter may help in adapting to noise chiréstics of each channel
in addition to the time-lag adjustment. In such a confexaniryet all (f01¢) propo-
sed a method to learn a large margin filtering for linear SVikslification of samples
(FilterSVM). They learn a Finite Impulse Response (FIREfifor each channel of the
signal jointly with a linear classifier. Such an approach thasflavor of the Common
Sparse-Spatio-Spectral Pattern (CSSSPP) of Dornaegk (2006) as it corresponds to
a filter which helps in discriminating classes. However, 6BSs a supervised feature
extraction method based on time-windows, whereas Filttt$/a sequential sample
classification method. Moreover, the unique temporal fijtewvided by CSSSP cannot
adapt to different channel properties, at the contrary ké8VM that learns one filter
per channel.

In this paper, we extend the work pf Flamaeyall (2010) to the non-linear case.
We propose algorithms that may be used to obtain large méligiring in non-linear
problems. Moreover, we study and discuss the effect ofdifferegularizers for the fil-
tering matrix. Finally, in the experimental section we t@mst approach on a toy example
for online and offline decision (with a Viterbi decoding) aindestigate the parameters
sensitivity of our method. We also benchmark our approaehadnline sequence labe-
ling situation by means of a BCI problem.

2 Sample Labeling

First we define the problem of sample labeling and the filgeofra multi-dimensionnal
signal. Then we define the SVM classifier for filtered samples.
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2.1 Problem definition

We want to obtain a sequence of labels from a multi-changelasior from multi-
channel features extracted from that signal. We supposehbaraining samples are
gathered in a matrix’ € R™*4 containingd channels ané samplesX; , is the value
of channelv for the i** sample. The vectay € {—1,1}" contains the class of each
sample.

In order to reduce noise in the samples or variability in #etdires, a usual approach
is to filter X before the classifier learning stage. In literature, allncteds are usually
filtered with the same filtef (Pistolek al] (008) used a Savisky-Golay filter) although
there is no reason for a single filter to be optimal for all aiela. Let us define the
filter applied toX by the matrixF ¢ R/*<, Each column ofF is a filter for the
corresponding channel i andf is the size of the filters.

We define the filtered data matrix by :

f
Xi,v - Z Fu,v Xi+17u+n0,v (1)
u=1

where the sum is a unidimensional convolution of each chamné¢he filter in the
appropriate column of. ng is the delay of the filter, for instance, = 0 corresponds
to a causal filter and, = f/2 corresponds to a filter centered on the current sample.

2.2 SVM for filtered samples

A good way of improving the classification rate is to filter tfennels inX in order
to reduce the impact of the noise. The simplest filter in thee @d high frequency noise
is the average filter defined by, ., = 1/f,Vi € {1,..., f}andj € {1,...,d}.no is
selected depending on the problem at hangs0 for a causal filtering ofiy > 0 for
a non-causal filtering. In the following, using an averadeffias preprocessing on the
signal and an SVM classifier will be called Avg-SVM.

Once the filtering is chosen we can learn an SVM sample clessifi the filtered
samples by solving the problem :

L, o CL >
i - — H(y;, X;,, 2
min - Slg]|* + n; (vi» Xi., 9) ()

whereC is the regularization parametel;) is the decision function an (y, =, g) =
max(0,1—y-g(x)) is the hinge loss. In practice for non-linear case, one sbleeual
form of this problem wrtg :

n,n N
max JSVM(Oé, F) = max — ZyiyjaiajKi,j + Zai (3)
i i
C N
t —>a; >0 Wi d iyi =0
s — a2 i an ;a y
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whereVi € [1,n], a; € R are the dual variables arid is the kernel matrix for filtered
samples in the gaussian case. Wherns the kernel bandwidthy is defined by :

T T e [ e = Xl
K;;=k(X; ,X;.)=exp 5,2 4)
Ok
Note that for any FIR filter, the resultin@’ matrix is always positive definite i(-, -) is
definite positive. Indeed, suppokg, -) a kernel fromX2 to R and¢ a mapping from
any X’ to X, thenk/(-,-) = k(¢(-), #(+)) is a positive definite kernel . Here, our filter
is a linear combination dR? elements, which is still ilR<. -
Once the classifier is learned, the decision function fora fileered signalXte at

samplei is :

g, Xte) = > ajy;k(Xte; , X;) (5)
j=1

We show in the experiment section that this approach lea@apgoovement over the
usual non-filtered approach. But the methods rely on thecehof a filter depending
on prior information or user knowledge. And there is no eunitkethat the user-selected
filter will be optimal in any sense for a given classificatiask.

3 Large Margin Filtering for non-linear problems (KF-
SVM)

We propose in this section to jointly learn the filtering matf’ and the classifier,
this method will be named KF-SVM in the following. It leadsadilter maximizing the
margin between the classes in the feature space. The preldesant to solve is :

Ll e O =
min  Slgl* 4+ > H(yi X, 9) + A(F) 6)

i=1

with A\ a regularization parameter af){-) a differentiable regularization function &f.
We can recognize in the left part of Equati([h (6) a SVM probfendiltered samples
X butwith F' as a variable. This objective function is non-convex. Hosvefor a fixed
F, the optimization problem wr(-) is convex and boils down to a SVM problem. So
we propose to solve Equatioﬂ (6) by a coordinate-wise amproa

min J (F) = min J'(F) + XQ(F) (7)

with :
7w =min Sl + €3 v %) ®
max ;:'slvM(a, F) (9)

C/n>a>0,3; aiyi=0
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whereJgy s is defined in Equatior[k3) ang-) is defined in EquatiorﬂS). Due to the
strong duality of the SVM problem]’(-) can be expressed in his primal or dual form
(see KB) and|(9)). The objective functiondefined in Equatiorﬂ?) is hon-convex. But
according td Bonnans & Shapjirp (1998) for a givéh, .J'(-) is differentiable wrt.F.
At the pointF™*, the gradient off (-) can be computed. Finally we can solve the problem
in Equation [[7) by doing a gradient descent.t{F) alongF.

Note that due to the non-convexity of the objective fundlmroblemsﬂG) anc[k?) are
not strictly equivalent. But its advantageous to soﬂe @Hause it can be solved using
SVM solvers and our method would benefit from any improvenetitis domain.

3.1 KF-SVM Solver and complexity

For solving the optimization problem, we propose a conjegaadient (CG) descent
algorithm alongF’ with a line search method for finding the optimal step. Thehoet
is detailed in AIgorithnﬂl, wherg is the CG update parameter aiy. the descent
direction for theith iteration. For the experimental results we useddhgoposed by
Fletcher and Reeves, sde (Hager & Zhang, P006) for morenmation. The iterations
in the algorithm may be stopped by two stopping criteria :raghold on the relative
variation of J(F') or on the norm of the variation df.

Algorithm 1 KF-SVM solver
SetF,, =1/fforv=1---dandu=1---f
Set =0, SetD%. = 0
repeat
i=i+1
G%. + gradientofJ'(F) + AQ(F) wrt. F

. H”Gcfifl”‘; (Fletcher and Reeves)
F

Dy, « —G% + 8D ! 4
(F", o) « Line-Search alon@?
until  Stopping criterion is reached

Note that for each computation diF') in the line search, the optimal* is found
by solving an SVM. A similar approach, has been used to sdleeMultiple-Kernel
problem in (Rakotomamonijgt all, P008) where the weights of the kernels are learned
by gradient descent and the SVM is solved iteratively.

At each iteration of the algorithm the gradient®Bf F) + \Q(F') has to be computed.
With a Gaussian kernel the gradientBf-) wrt. F'is :

n,n

1 e ' 7 * ok
= 5oy izj(XiH_u’U = Xjr1-uw) Xiw — Xj,0) Kijyiyiei o  (10)
wherea™* is the SVM solution for a fixed”. We can see that the complexity of this
gradientisO(n?.f?) but in practice, SVM have a sparse support vector repreti@mta

So in fact the gradient computationdn? f2) with n, the number of support vector
selected.



CAp 2010

Due to the non-convexity of the objective function, it isfidifilt to provide an exact
evaluation of the solution complexity. However, we knowtttie gradient computation
is O(n2.f?) and that when/(F) is computed in the line search, a SVM of sizés
solved and a(n.f.d) filtering is applied. Note that a warm-start trick is used whe
using iteratively the SVM solver in order to speed up the méth

3.2 Filter regularization

In this section we discuss the choice of the filter regulgidraterm. This choice
is important due to the complexity of the KF-SVM model. Indekearning the FIR
filters adds parameters to the problem and regularizatiesgential in order to avoid
over-fitting.

The first regularization term that we consider and use in dehX/M framework is
the Frobenius norm :

f,d
Oo(F)=> F2, (11)

This regularization term is differentiable and the gratlisneasy to compute. Mini-
mizing this regularization term corresponds to minimizthg filter energy. In terms
of classification, the filter matrix can be seen as a kernalrpater weighting delayed
samples. For a given column, such a sequential weightingléded to a phase/delay
and cut-off frequency of the filter. Moreover the Gaussiam&edefined in Equatioﬂ 4
shows that the per column convolution can be seen as a stdilihg channels prior to
kernel computation. The intuition of how this regularipatiterm influences the filter
learning is the following. Suppose we learn our decisiorcfiom g(-) by minimizing
only J'(.), the learned filter matrix will maximize the margin betwedasses. Adding
the Frobenius regularizer will force non-discriminatideefi coefficients to vanish thus
yielding to reduced impact on the kernel of some delayed &snp

Using this regularizer, all filter coefficients are treatadépendently, and even if it
tends to down-weight some non-relevant channels, filteffic@nts are not sparse. If
we want to perform a channel selection while learning therfilt, we have to force
some columns of’ to be zero. For that, we can uséa— /> mixed-norm as a regula-
rizer:

da /7 f i q
D o(F) =) ( Fi,v) => h(IF . (12)

with h(z) = 22 the square root function. Such a mixed-norm acts/asnerm on each
single channel filter while th& norm on each channel filter energy will tend to vanish
all coefficients related to a channel. As this regularizatierm is not differentiable,
the solver proposed in Algorithlﬂ 1 can not be used. We addnesgroblem through

a Majorization-Minimization algorithm] (Hunter & Lange, @4) that enables us to take
advantage of the KF-SVM solver proposed above. The ideaihieréteratively replace
h(-) by a majorization and to minimize the resulting objectivadtion. Sinceh(-) is
concave in its positive orthant, we consider the followimgar majorization ofu(-) at
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a given pointcyg > 0:

1

L1 _1
Va > 0, hz) <@ + 2% 2(x — xp)

The main advantage of a linear majorization is that we camseKF-SVM algorithm.

Indeed, at iteratiok + 1, for F(¥) the solution at iteratiok, applying this linear majori-
zation ofh(|| F._,||), around a| || yields to a Majorization-Minimization algorithm
for sparse filter learning which consists in iterativelysog :

: 1
Join J(F) + XQa(F) (13)
d f 1
with Qd(F) = Zd] ZFiU andd, = m
v u , F-,U

Qg4 is a weighted Frobenius norm, this regularization termfietintiable and the KF-
SVM solver can be used. We call this method Sparse KF-SVM (SKM) and we use
here similar stopping criteria as in AIgoritHfh 1.

3.3 Online and Viterbi decoding

In this section, we discuss the decoding complexity of outhmein two cases : when
using only the sample classification score for decision aneinwsing an offline Viterbi
decoding of the complete sequence.

First we discuss the online decoding complexity. The nulliss case is handled by
One-Against-One strategy. So in order to decide the labalgifen sample, the score
for each class has to be computed with the decision funcﬁ))th(at isO(ns) with ng
the number of support vectors. Finally the decoding of asrqge of size: is O(ns.c.n)
with ¢ the number of classes.

The offline Viterbi decoding relies on the work pf Ganapathiret al} (2004) who
proposed to transform the output of SVM classifiers into philities with a sigmoid

function (Lin et al], 2007). The estimated probability for claisss :

1
1+ exp(A.gr(z) + B)

Ply == ko) =

(14)

where g, is the One-Against-All decision function for clagsand x the observed
sample.A and B coefficients are learned by maximizing the log-likelihoad a va-
lidation set. The inter-class transition matfix is estimated on the learning set. Finally
the Viterbi algorithm is used to obtain the maximum likeliltbsequence. The com-
plexity for a sequence of size is thenO(ns.c.n) to obtain the pseudo-probabilities
andO(n.c?) to decode the sequence.

3.4 Related works

To the best of our knowledge, there has been few works deaithghe joint learning
of a temporal filter and a decision function. The first one adsing such a problem is
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our work (Flamaryet al], P010) that solves the problem for linear decision funcion
Here, we have extended this approach to the non-linear case/@ have also inves-
tigated the utility of different regularizers on the filtevefficients. Notably, we have
introduced regularizers that help in performing channielcton.

Works on Common Sparse Spatio-Spectral Patferns Dorréteaje(006) are pro-
bably those that are the most similar to ours. Indeed, they tedearn a linear combi-
nation of channels and samples that optimize a separadbiligrion. But the criterion
optimized by the two algorithms are different : CSSSP ainmsaatimizing the variance
of the samples for the positive class while minimizing theiarece for the negative
class, whereas KF-SVM aims at maximizing the margin betvetesses in the feature
space. Furthermore, CSSSP is a feature extraction algotitat is independent to the
used classifier whereas in our case, we learn a filter thailased to the (non-linear)
classification algorithm criterion. Furthermore, the filtsed in KF-SVM is not res-
tricted to signal time samples but can also be applied to éexrgequential features
extracted from the signaé(gPSD). An application of this latter statement is provided
in the experimental section.

KF-SVM can also be seen as a kernel learning method. Indesfiltér coefficients
can be interpreted as kernel parameters despite the fadaimples are non-iid. Lear-
ning such a kernel parameters is now a common approach irttedchy[ Chapellet al]
(2002). While[Chapellet al] minimize a bound on generalization error by gradient
descent, in our case we simply minimize the SVM objectivefiom and the influence
on the parameters differ. More precisely, if we focus on thieims of F' we see that
the coefficients of these columns act as a scaling of the @&isrifor a filter of sizd,
our approach would correspond to adaptive scaling as peajdmgGrandvalet & Canu
(R003). In their work, they jointly learn the classifier ahe tGaussian kernel parame-
ter o, with a sparsity constraint on the dimensionsgfleading to automated feature
selection. KF-SVM can thus be seen as a generalization ofapproach which takes
into account samples sequentiality.

4 Numerical experiments

4.1 Toy Example

In this section we present the toy example used for numegiqadriments. Then we
discuss the performances and the parameter sensitivityrohethod.

We use a toy example that consists of a 2D non-linear probléimhican be seen
on Figure{]L. Each class contains 2 modes}, —1) and(1, 1) for class 1 and—1,1)
and (1, —1) for class 2, and their value is corrupted by a Gaussian ndidedation
on. Moreover, the length of the regions with constant labdbfes a uniform distribu-
tion betweer{30, 40] samples. A time-lag drawn from a uniform distribution beéwe
[—lag, lag] is applied to the channels leading to mislabeled sampld=iterning and
test set.

We illustrate the behavior of the large margin filtering onrape example ¢, =
1,lag = 5). The bivariate histogram of the projection of the sampleshe channels
can be seen on Figufg 2. We can see on Fifjurg 2(a) that due toiteeand time-lag
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Toy signal along time Sample projection on channels

Channel 1
——— Channel 2
TR
Toy signal labels along time 0
Channel 1
.
1
0 200 400 600 800 1000

FIGURE 1 — Toy example for,, = 0.5,lag = 0. The plots on the left show the evolu-
tion of both channels and labels along time ; the right plowghthe non-linear problem
by projecting the samples on the channels.

Bivariate histogram for class 1 Bivariate histogram for class 2 Bivariate histogram for filtered class 1 Bivariate histogram for filtered class 2

1000 1000

2

- 0 0
ch2 e ch2 -
2 ch1 2 ch1

(a) Without filtering (err=0.404) (b) With KF-SVM filtering (err=0.044)

FIGURE 2 — Bivariate histograms for a non filtered, (= 1,lag = 5) and KF-SVM
filtered signal (left for class 1 and right for class 2)

there is an important overlap between the bivariate histmgrof both classes, but when
the large margin filter is applied, the classes are bettearagg (Figur)) and the
overlap is reduced leading to better classification rate édi%r vs 40%).

Test error with different noise Test error with different
value 9, (nbtot=10, lag=5) nbtot (anzl, lag=5)

swM
—¥— Avg-SVM

0.4 -~ KF-SVM
0.35] —— SKF-SVWM

SVM-Vit

- ¥~ Avg-SVM-Vit
0.25[ @O~ KF-SVM-Vit
= X = SKF-SVM-Vi{

(a) varying noise value, (b) varying sizenbtot of the problem

FIGURE 3 — Test error for different problem size and noise for thedrgmple (plain
lines : sample classification , dashed lines : Viterbi delcgyi

SVM, Avg-SVM (signal filtered by average filter), KF-SVM an&B-SVM are com-
pared with and without Viterbi decoding. In order to testhijmensional problems,
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some channels containing only gaussian noise are addeé @ discriminative ones
leading to a toy signal ofbtot channels. The size of the signal is1df00 samples for
the learning and the validation sets andl6600 samples for the test set. In order to
compare fairly with Avg-SVM, we selectefl = 11 andng = 6 corresponding to a
good average filtering centered on the current sample. Tddaezation parameters
are selected by a validation method. All the processes areenitimes, the test error is
then the average over the runs.

We can see in Figurlg 3 the test error for different noise valend problem size
nbtot. Both proposed methods outperform SVM and Avg-SVM with adon signed-
rank test p-value 0.01. Note that results obtained with KF-SVM without Viterbi aec
ding are even better than those observed with SVM and Viterboding. This is proba-
bly because as we said previously, HMM can not adapt to teme-‘because the learned
density estimation are biased. Surprisingly, the use ofplagse regularization does not
statistically improve the results despite the intrinsiarsity of the problem. This comes
from the fact that the learned filters of both methods aresgpdue to a numerical pre-
cision thresholding for KF-SVM with Frobenius regularizerdeed the\ coefficient
selected by the validation is large, leading to a shrinkafgh@ non-discriminative
channels.

We discuss the importance of the choice of our model paramdtefact KF-SVM
has 4 important parameters that have to be tuned C, A and f. Those parameters
have to be tuned in order to fit the problem at hand. NotedhandC' are parame-
ters linked to the SVM approach and that the remaining oneslae to the filtering
approach. In the results presented below, a validation éas done to selectandC.

Test error with g\ffevenj filter size f Test error with different kernel parametero,
(nbtot=10,0, =1) (nbtot=10,0, =1)

SVM

oas; $ Avg-SVM
\ KF-SVM

SVM-Vit

osr\ -3~ Avg-SVM-Vit
-©- KF-SVM-vit
0.25]

(a) varying f (b) varying sigma

FIGURE 4 — Test error for different parameters on the toy exampksrgines : sample
classification , dashed lines : Viterbi decoding)

We can see on the left of Figuﬂa 4 the performances of therdiftemodels for a
varying f. Note thatf has a big impact on the performances when using Avg-SVM. On
the contrary, KF-SVM shows good performances for a suffibidang filter, due to the
learning of the filtering. Our approach is then far less s&msio the size of the filter
than Avg-SVM. Finally we discuss the sensitivity to the kadparametes .. Test errors
for different values of this parameters are shown on Fiﬂ(r&ght). Itis interesting to
note that KF-SVM is far less sensitive to this parameter tharother methods. Simply
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METHOD SuB 1 SuB 2 SuB 3 AVG
BCI Comp. | 0.2040| 0.2969 | 0.4398| 0.3135
SVM 0.2368 | 0.4207 | 0.5265| 0.3947
KF-SVM

f=2 0.2140| 0.3732| 0.4978| 0.3617
f=5 0.1840| 0.3444 | 0.4677| 0.3320
f=10 0.1598 | 0.2450| 0.4562| 0.2870

TABLE 1 — Test Error for BCI Dataset

because the learning of the filtering corresponds to an aatemhscaling of the channels
which means that if the, is small enough the scaling of the channels will be done
automatically. In conclusion to these results, we can saydhbspite the fact that our
method has more parameters to tune than a simple SVM appiibadar less sensitive

to two of these parameters than SVM.

4.2 BCI Dataset

We test our method on the BCI Dataset fr&@| Competition I1l(Blankertzet all,
). The problem is to obtain a sequence of labels out a@f lctivity signals for 3
human subjects. The data consists in 96 channels contd#8yfeatures (3 training
sessions, 1 test sessionz 3000 per session) and the problem has 3 labels (left arm,
right arm or a word).

For computational reasons, we decided to decimate theldigriy doing an avera-
ging on the samples. We focus on online sample labetigg< 0) and we test KF-SVM
for filter length f corresponding to those used jn (Flamatyl), 2010). The regulariza-
tion parameters are tuned using a grid search validatiohadein the third training set.
Our method is compared to the best BCI competition resultistartthe SVM without
filtering. Test error for different filter siz¢ can be seen on Tabjg 1. We can see that
we improve the BCI Competition results by using longer fittgr We obtain similar
results than those reported[in Flamatyall (P010) but slightly worst. This probably
comes from the fact that the features used in this DataseP@eand are known to
work well in the linear case. But we still obtain competitiesults which is promising
in the case of non-linear features.

5 Conclusions

We have proposed a framework for learning large-marginrifilte for non-linear
multi-channel sample labeling. Depending on the reguddion term used, we can do
either an adaptive scaling of the channels or a channelgtiggleWe proposed a conju-
gate gradient algorithm to solve the minimization problerd eampirical results showed
that despite the non-convexity of the objective functiom approach performs better
than classical SVM methods. We tested our approach on ainearltoy example and
on a real life BCI dataset and we showed that sample clagificate and precision af-
ter Viterbi decoding can be drastically improved. Furtherewe studied the sensitivity
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of our method to the regularization parameters.

In future work, we will study the use of prior information omet classification task.
For instance when we know that the noise is in high frequerttien we could force
the filtering to be a low-pass filter. In addition, we will adds the problem of compu-
tational learning complexity as our approach is not sugabllarge-scale problems.
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