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Abstract

We present a way to implement refinement relations over

transition systems, useful for incremental model develop-

ment. The extension relation, which preserves already mod-

elled functionalities, is suited for refinements. The calcu-

lability of this relation relies on the generalization of a

bisimulation relation applied on acceptance graphs. It is

formally demonstrated and illustrated through an example

whose analysis is performed by a Java prototype we have

developed. This method can be adapted to UML state ma-

chines, which lack evaluation means.

1 Introduction

Our area of interest concerns the build-up of UML be-

havioural models (state machines) according to an incre-

mental approach. Such an approach is natural as it is based

on a widely held mental process because, on the one hand,

specifying a complex system requires a hierarchical and it-

erative approach, and on the other hand, initial specification

cannot be considered as complete and must be updated all

along the modelling process. The problem we address is to

compare a model obtained at a given stage with models de-

rived from previous stages: how is it possible to guarantee

that updates do not introduce inconsistencies and preserve

already modelled functionalities?

Little work has dealt with this problem in the context of

UML modelling, despite the fact that the UML standard [1]

is increasingly used in the industry. There are some UML

simulation frameworks supporting behavioural model ob-

servation, but such intuitive and experience-based evalua-

tions cannot be considered as systematic and reliable. Our

goal is therefore to develop formal comparison techniques

and tools ensuring consistency between behavioural mod-

els, taking into account the distinctive features of incremen-

tal modelling. When we ask industrialists questions about

their experience, their know-how not to say their method-

ology in state machines modelling, answers can be summa-

rized as follows. For the most part, models are repetitively

custom-written from scratch, there is no capitalization of

modelling knowledge or customized library which could of-

fer templates of state machines to be completed, configured

and reused. Models are built up in several stages to meet

some requirements considered as the most important, other

ones being left out at the early phase of the process. When

draft models are set up, they are refined by an iterative pro-

cess until they meet requirements. During the incremental

process, indeterminism is introduced to face problems of

reasoning or to make modelling easier. Reducing or adding

indeterminism may occur at any stage of the process. It

is difficult to add new behaviours to a state machine with-

out affecting already modelled functionalities. It means that

modellers can face problems of abstraction, refinement, ver-

ification, extension and indeterminism. They are lacking

adequate tools to support the incremental modelling pro-

cess.

As these issues are not much addressed in the literature

[2, 3], our first approach is to study tried and tested solu-

tions of domains closely related to state machine modelling.

Solutions have been found in works dealing with Labelled

Transition Systems (LTS) and precisely on may, must [4]

and testing preorders, as well as conformance, extension

and reduction relations. Two of these criteria, reduction and

extension, appear to be specifically interesting in the con-

text of incremental modelling, but their calculability has not

yet been established. Our first goal is therefore to demon-

strate it. The proof is based on bisimulation relation ap-

plied on transformed graphs, as it has been done for may

and must relations [5]. Applying this result on UML state

machines [6, 7] is not trivial and requires a long-term analy-

sis, especially to deal with the complete standard. However,

we illustrate the extension relation on a case study modelled



both in LTS and its corresponding simplified UML model.

The paper is organized in three parts. At first, we present

main definitions useful to understand studied relations and

other parts of the paper. We give an overview of these re-

lations and compare them according to different criteria in

order to underline the benefits of reduction and extension

relations. The second part focuses on the reduction and ex-

tension calculability. For this purpose, we give the defini-

tion of bisimulation and acceptance graphs by reformulat-

ing existing works. In part three, we present the demon-

strator developed in JAVA allowing extension relation to be

implemented and results obtained on a case study. Lastly,

we make a conclusion and present our future works.

2 Analysis of existing relations

In this part, we give fundamental definitions about La-

belled Transition System (LTS) [8] and refusal sets [9] to

understand the relations we have studied. We present the

concept of acceptance set [10] and we demonstrate that the

inclusion of refusal sets can be expressed in terms of accep-

tance sets inclusion. We analyze existing relations allowing

models to be compared at the different stages of the mod-

elling and justify our selection for the reduction relation.

2.1 Definitions of conformance relations

A LTS [8] is a graph consisting of states linked by la-

belled transitions. It models behavioural specifications as

well as implementations.

Definition 1. A LTS P = (S, Act,→, s0) is a tuple con-

sisting of:

– a non-empty finite set S of states;

– a set Act of actions;

– a transition relation →⊆ S × Act × S;

– an initial state s0 ∈ S.

Act = L ∪ {τ} where τ represents any internal, unob-

servable actions, and L is the set of observable actions.

Before presenting the definitions of conformance rela-

tion, we give some usual notations:

s
a
−→ s′ =def (s, a, s′) ∈→

s
a1..a2−−−−→ s′ =def ∃s0, .., sn : s = s0

a1−→ ..
an−−→ sn = s′

s
a1..a2−−−−→ =def ∃s′s

a1..an−−−−→ s′

s
ǫ

==⇒ s′ =def s = s′or s
τ..τ
−−→ s′

s
a

==⇒ s′ =def ∃s1, s2 : s
ǫ

==⇒ s1

a
−→ s2

ǫ
==⇒ s′

s
a1..a2====⇒ s′ =def ∃s0, .., sn : s = s0

a1==⇒ ..
an==⇒ sn = s′

s
σ

==⇒ =def ∃s′ : s
σ

==⇒ s′

s after σ =def {s′|s
σ

==⇒ s′}

P after σ =def s0 after σ

Traces : Tr(P ) =def {σ ∈ L∗|s0

σ
==⇒}

Out(P, σ) =def {a ∈ L|σ.a ∈ Tr(P )}

D(s, a) =def {s′|s
a
−→ s′}

Definition 2. Refusal set.

Ref (P, σ) is the refusal set of P after trace σ

Ref (P, σ) =def

{

X|∃p ∈ P after σ.p
e

6⇒,∀e ∈ X

}

The refusal set is a set Ref (P, σ) ⊂ P(L). If σ 6∈
Tr(P ), Ref (P, σ) = ∅.

The conformance relation is defined in the following

way:

Definition 3. Conformance relation conf .

Let P and Q be two LTS,

Q conf P if ∀σ ∈ Tr(P ),Ref (Q, σ) ⊆ Ref (P, σ).

By preserving the conformance, we can define the reduc-

tion and the extension.

Definition 4. Reduction relation red.

Let P and Q be two LTS,

Q red P if Tr(Q) ⊆ Tr(P ) and Q conf P .

Definition 5. Extension relation ext.

Let P and Q be two LTS,

Q ext P if Tr(P ) ⊆ Tr(Q) and Q conf P .

The relation conf is not a preorder relation: conf has

not the transitivity property. But red and ext are reflexive

and transitive.

2.2 Acceptance set

In this section we present a definition of acceptance sets

and we demonstrate that there exists an equivalence rela-

tion between refusal sets inclusion and acceptance sets in-

clusion. This notion will be used in the next section to build

up acceptance graphs associated to LTS.

Definition 6. Acceptance set:

Acc(P, σ) = {X|∃p′ ∈ P after σ.X = Out(p′, ǫ))}

The acceptance set represents the “sets of possible ac-

tions” of a process after a trace. Intuitively, the inclusion of

acceptance set allows us to check whether a process is more

deterministic than another.

Definition 7. Set of sets inclusion

Let A, B ⊆ 2Act. A ⊂⊂ B if:

∀S ∈ A. ∃S′ ∈ B. S′ ⊆ S.



Theorem 1. ∀σ ∈ Tr(Q). Acc(P, σ) ⊂⊂ Acc(Q, σ) ⇔
Ref (P, σ) ⊆ Ref (Q, σ)

Proof. Firstly, we must show the relationship between the

inclusion of refusal sets and the inclusion of acceptance

sets.

We can rewrite the definition 2 as follows:

Ref (P, σ) =def

{

X|∃p′. P
σ

==⇒ p′ ∧ p′
e

6⇒,∀e ∈ X

}

⇔ Ref (P, σ) =def

{

X|∃p′. P
σ

==⇒ p′ ∧ X ⊆ L − Out(p′, ǫ)
}

Secondly, we can reformulate the definition 7 by applying

the definition 6:

∀σ ∈ Tr(P ). Acc(P, σ) ⊂⊂ Acc(Q, σ)

⇔∀σ ∈ Tr(P ). ∀X ∈ Acc(P, σ). ∃Y ∈ Acc(Q, σ). Y ⊆ X

⇔∀σ ∈ Tr(P ). ∀X ∈ {Out(p′, ǫ)|p
σ

==⇒ p′}.

∃Y ∈ {Out(q′, ǫ)|q
σ

==⇒ q′}. Y ⊆ X

Let X, Y, Z be three sets, we have: X, Y ⊆ Z ∧ Y ⊆
X ⇔ Z − X ⊆ Z − Y

With Out(p′, ǫ) and Out(q′, ǫ) ⊆ L, we have therefore:

∀σ ∈ Tr(P ).

{(L − Out(p′, ǫ))|p
σ
⇒ p′} ⊆ {(L − Out(q′, ǫ))|q

σ
⇒ q′}

⇔∀σ ∈ Tr(P ). Ref (P, σ) ⊆ Ref (Q, σ))

So we have

Acc(P, σ) ⊂⊂ Acc(Q, σ) ⇔ Ref (P, σ) ⊆ (Q, σ).

2.3 State of the art of relations to compare
behavioural models

In this part, we propose a summary of existing relations

developed for analyzing LTS in order to get an informal in-

terpretation and a way to compare them and intuitively point

out how they can be used in a framework of incremental

modelling. Studied relations are conf , red, ext defined by

[11, 12] and may, must, testing, defined by [5]. Our analysis

is based on the comparison of the sets of actions on which

the relations are operating. These sets are:

• must-do, representing the set of actions that the system

has to do, and consequently cannot refuse;

• must-refuse, representing the set of actions that the sys-

tem has to refuse and consequently cannot do;

• can-do/can-refuse, representing the set of actions that

the system can do but can also refuse. Such a set exists

if the system behaves indeterministically.

Figure 1. Comparison of studied relations

Note that:

• may-do consists of must-do and can-do/can-refuse

sets, which represents the traces of the system;

• may-refuse consists of must-refuse and can-do/can-

refuse sets, which corresponds to the refusal sets.

These sets are graphically represented by separate shapes

(see figure 1). Spec represents the initial model and we

study, depending on the applied relation, how the sets

change in the new model. The change is indicated by the

direction of the arrow under every set shape and means that

the set is reduced or extended.

The relation conf (see fig. 1 – Imp 1) means that the

must-do set is extended: it allows the can-do/can-refuse and

must-refuse sets to be reduced or extended. Therefore, this

relation guarantees that the new model performs at least as

the initial one and may specify new actions. It also guaran-

tees that the new model is as deterministic as the initial one,

or more deterministic.

The red preorder (see fig. 1 – Imp 2) has the same prop-

erties as the relation conf but the set of traces is reduced.

It thus surely guarantees that the new model is more deter-

ministic that the initial one.

The ext preorder (see fig. 1 – Imp 3) has the same prop-

erties as the relation conf but the set of traces is extended.

This relation is therefore interesting for improving models

during the incremental modelling process.

The may preorder (see fig. 1 – Imp 4) guarantees that

the set of traces of the new model contains at least the set of

traces of the initial model. Unfortunately, this relation does

not verify that the new model is more deterministic since it

does not guarantee that the set can-do/can-refuse has been

reduced. Consequently, the preorder may has to be carefully

used during an incremental modelling process.

The must preorder (see fig. 1 – Imp 5) is stronger than

the relation conf since it guarantees that the sets must-do



Properties Reduction of Addition Conservation Suppression

Relation indeterminism of actions of actions of actions

conf ⊛ × × ×
red ⊛ � × ⊛

ext ⊛ ⊛ × �

may � ⊛ × �

must ⊛ � × ⊛

testing ⊛ � ⊛ �

Symbols: ×: May be supported, ⊛: Guaranteed, � : Non supported.

Table 1. Overview of studied relations

and must-refuse of the new model contain the same set of

the initial model. This relation, defined by Hennessy [5], is

very similar to the relation red, but considers also a notion

of divergence over processes.

Finally, the testing preorder (see fig. 1 – Imp 6) guaran-

tees that the set must-do can be extended without changing

the set of traces of the initial model. Consequently, as it

was the case for the relation red and the must preorder, test

surely guarantees that the new model is more deterministic

than the initial one.

Table 1 gives a summary of these relations according to

four criteria: reduction of indeterminism, extension or re-

duction of the set of actions, and conservation of traces. For

every relation, we identify three cases: it surely guarantees

the criteria, it may verify the criteria or it does not deal with

the criteria.

The ext relation is adequate for incremental develop-

ments since it supports refinement approaches. It has the

following interesting property:

S2 ext S1 ⇒ (∀I. I conf S2 ⇒ I conf S1)

If we consider conf like an implementation relation, it

means that all implementations of a refined model is an im-

plementation of the former.

In the next section, we focus on implemetation tech-

niques for this extension relation.

3 Calculability of extension and reduction re-

lations

After having selected the more appropriated relations to

compare models and introduced main definitions of the do-

main, we outline the problem of calculability of the rela-

tions ext and red. As far as we know, these relations

have not been implemented yet. Nevertheless, Cleaveland

and Hennessy [5] have introduced the concept of accep-

tance graphs to implement may and must relations. We

will follow the same approach to demonstrate the extension

and reduction relations. At first, we introduce main defi-

nitions about bisimulation and acceptance graphs and next,

we present our demonstration.

3.1 Bisimulation

We give a generalisation of the definition of bisimulation

given by Milner [8].

Definition 8. Bisimulation relation.

Let Π ⊆ S × S and Ψ1,Ψ2 ⊆ S × Act. The relation R
〈Π,Ψ1,Ψ2〉 is a bisimulation if R ⊆ Π and, for all p, q ∈
S, pRq imply:

1. 〈p, a〉 ∈ Ψ1 ⇒ (p
a
−→ p′ ⇒ ∃q′.q

a
−→ q′ ∧ p′Rq′)

2. 〈q, a〉 ∈ Ψ2 ⇒ (q
a
−→ q′ ⇒ ∃p′.p

a
−→ p′ ∧ p′Rq′)

When Π = S × S and Ψ1,Ψ2 = S × Act, the formula

is the same as the bisimulation defined by Milner.

Definition 9. Largest bisimulation.

P ⊂
≈

Π

〈Ψ1,Ψ2〉
Q if it exists a bisimulation R 〈Π,Ψ1,Ψ2〉

with pRq.

In this definition, if Ψ2 is replaced by ∅, the bisimula-

tion becomes the simulation preorder. The advantage of this

definition is to encapsulate the bisimulation and the binary

relation Π.

3.2 Acceptance graphs

Before presenting acceptance graphs, we recall the defi-

nition of ǫ-closure.

Definition 10. ǫ-closure of a set of states Q :

Qǫ = {p|∃q ∈ Q.q
ǫ

==⇒ p}

Definition 11. Acceptance graph.

A(P ) = 〈T, Act,→T , t0〉 of LTS P is a tuple where:

1. T is the set of states. T = {Q ∈ 2S |Q = Qǫ};

2. →T is the set of transitions;

3. For t ∈ T , we define the acceptance set t.acc =
{X|X = Out(q, ǫ) ∧ q ∈ Qǫ};

4. For A ∈ t1.acc, a ∈ A ⇒ ∃t2 ∈ T such that t1
a
−→ t2;

5. t0 = ({p0})
ǫ.

This definition is similar to acceptance graphs of [5], but

the definition of acceptance sets does not take into account

divergence states.

Definition 12. min(A) = {S ∈ A| 6 ∃S′ ∈ A. S′ ⊂ S}.

Lemma 1. A ⊂⊂ B ⇔ min(A) ⊂⊂ min(B).

The algorithm of acceptance graphs construction intro-

duced by [5] can be adapted to the construction of accep-

tance graphs as defined in this paper.



3.3 Demonstration of the extension and
reduction calculability

Theorem 2. Let P be a LTS and A(P ) its acceptance

graph: Tr(A(P )) = Tr(P ).

Proof. We can prove it by induction with each trace σ ∈
Tr(P )

Theorem 3. Let Π = {〈t, u〉|u.acc ⊂⊂ t.acc} and P,Q

be two LTS:

1. Q red P ⇔ A(P ) ⊂≈
Π

〈∅,Ψ2〉
A(Q)

2. Q ext P ⇔ A(P ) ⊂≈
Π

〈Ψ1,∅〉 A(Q)

Proof. We are going to prove (2.). (1.) is similar and will

not be expressed in this article.

1.) We must prove A(P ) ⊂≈
Π

〈Ψ1,∅〉 A(Q) ⇒ Q ext P

First, we establish the relation R〈Π,Ψ1, ∅〉 as follows:

R = {∀t′ ∈ A(P ).t
a
−→ t′ ⇒ (∃u′ ∈ A(Q).u

a
−→ u′ ∧ t′Ru′)

∧ ( u′.acc ⊂⊂ t′.acc)}

By using the theorem (2), the first part of the definition

above can be written:

a ∈ Tr(A(P )) ⇒ a ∈ Tr(A(Q))

⇒Tr(A(P )) ⊆ Tr(A(Q)) ⇒ Tr(P ) ⊆ Tr(Q).

This is the first condition of the definition of the relation

ext.

By using the definition of acceptance graph u′.acc =
Acc(Q, s) and theorem 1 , the second part of the relation R
can be written:

∀s ∈ Tr(P ). Acc(Q, s) ⊂⊂ Acc(P, s)

⇒∀s ∈ Tr(P ). Ref (Q, s) ⊆ Ref (P, s)

We have therefore the conformance.

2.) We prove (⇒)

Suppose that Q ext P . We must prove the relation

R〈Π,Ψ1, ∅〉 as defined above.

Q ext P ⇒ Q conf P

By using theorem 1

Q conf P

⇔∀s ∈ Tr(P ). Ref (Q, s) ⊆ Ref (P, s)

⇔∀s ∈ Tr(P ). Acc(Q, s) ⊂⊂ Acc(P, s)

⇒∀s ∈ Tr(A(P )). ∀u′ ∈ A(Q). ∃t′ ∈ A(P ).

u′.acc ⊂⊂ t′.acc. (1)

We must also prove that t(p)Rt(q) :

Since s ∈ Tr(A(P )), there exist t1, u1 such that t
s
−→

t1, u
s
−→ u1. Suppose that t1Ru1:

{∀t′
1
∈ A(P ).t1

a
−→ t′

1
⇒

∃u′
1
∈ A(Q).u1

a
−→ u′

1
∧ u′

1
.acc ⊂⊂ t′

1
.acc}

Let us prove t′
1
Ru′

1
.

Let a be as (t′
1

a
−→ t′′

1
∧ Tr(P ) ⊆ Tr(Q)) ⇒ s.a ∈

Tr(Q).
A(Q) is deterministic. So u′′

1
= D(u′

1
, a) is such that

u′
1

a
−→ u′′

1
.

By using result (1), u′′
1
.acc ⊂⊂ t′′

1
.acc.

So t′
1
Ru′

1
.

Finally, we have Q ext P ⇔ A(P ) ⊂≈
Π

〈Ψ1,∅〉 A(Q)

The proof of the reduction relation red is similar except

that the simulation is expressed in the opposite way. i.e

A(P ) ⊂≈
Π

〈∅,Ψ〉 A(Q) means that A(Q) simulates A(P ).
This theorem allows extension and reduction relations

to be calculated like simulation relations on transformed

graphs, although a direct implementation of their initial def-

initions, based on a trace set inclusion, would have been

P-space complete.

4 Implementation and results

This part gives an overview of the Java prototype that has

been developed to implement the reduction and extension

relations. In order to illustrate obtained results, we present

a case study modelling a phone and the different models that

may be set up during the incremental modelling approach.

The relations being demonstrated on LTS, computation is

obviously performed on LTS. Nevertheless, for every step

of modelling, we present the UML state machine associ-

ated with LTS for two reasons: using UML model is more

widespread than LTS and this approach gives a quick out-

line of our future work consisting in applying results of LTS

comparison on UML models.

4.1 Implementation of extension and re-
duction relations

The Java prototype we have developed follows the com-

putation approach of theorem 3. Consequently, the main

implemented classes are LTS and AGraph (cf. figure 2):

• LTS class implements a LTS as a set of states derived

from the State class and transitions derived from the

Transition class. States are identified by a name (name

attribute) and transitions are labelled by actions (la-

bel attribute). Operations to set up a LTS are search-

State, addState and addTransition. In order to im-

plement theorem 3, the function isStrongSimulatedBy



Figure 2. The class diagram of the prototype

have been implemented to check the simulation rela-

tion between two LTS.

• AGraph class implements the acceptance graph associ-

ated with a LTS. It is itself a LTS, the state of which be-

longs to the AState class defined as a subclass of State

class. A AState state has the states attribute defining

the list of its associated states in the LTS. This attribute

allows the correspondences between acceptance graph

nodes and LTS nodes to be established. Another fun-

damental attribute associated with a AState node is acc

which is its acceptance set defined has a set of sets of

actions.

Main steps of the prototype consist in building (func-

tion build) acceptance AGraphs associated with the two to

be compared LTS. Then, the extension or reduction rela-

tion are computed (functions ext and red) by checking the

simulation relation between the two AGraphs (function is-

StrongSimulatedBy) and the inclusion of acceptance sets

(function setOfset) for every state of the AGraphs.

4.2 Case study: modelling a phone into
three steps

This case study illustrates how to check the extension re-

lation on a telephone model. Let us suppose that, at first,

the modeller builds up a simple model outlining the main

functionalities of a phone from a user point of view (see

class Telephone, figure 3). Figure 4 represents the state ma-

chine SM 0 associated with this simple view. There are two

functionalities:

Figure 3. The class diagram of telephone

Figure 4. SM 0, the initial state machine of

telephone

• The user is calling (left part of SM 0). In this case,

the user picks-up and dials. The connection is thus re-

quested and two cases may occur: the number is wrong

or the called line is busy, and the called person picks-

up. In the first case, the user can only hangs-up (tran-

sition hang-up). The second case leads to a connection

(transition with a guard ack) that ends when the user

hangs-up or when the calling person decides to stop

the call.

• The user is called (right part of SM 0). If he picks-up,

the connection is established and end as mentioned in

the previous case. If he does not pick-up, the call ends

when the calling person decides to stop the call.

Figure 5 shows the LTS, named LTS 0, associated with

the state machine SM 0. Let us note that events that are

not under the user control are labelled τ as internal tran-

sitions. Complete events, time events and change events

in UML become LTS internal transitions. For instance,



Figure 5. LTS 0

Figure 6. SM 1, the state machine with com-
munication activity

the when(called) transition going out from the Idle state

of SM 0 becomes a τ transition going out from state s0 in

LTS 0. Activities inside states may be observable or not.

Now, let us assume that the modeller wants to modify

model SM 0 in order to highlight the communication activ-

ity of the phone, which is the most important. Model SM 0

is thus transformed into model SM 1 by adding an activity in

state Connected named communicate (see figure 6). LTS 1

associated with SM 1 is the same as LTS 0 except the loop

transition labelled c on state s2 (cf. figure 7)

At last, the modeller wants to extend the functionalities

of the phone and assume that a second call may be answered

by the user while he is connected. Model SM 2 (figure 8)

represents this new functionality by adding a when(called)

transition to state Connected. Two cases may occur: the

user does not accept the second call and stops it (transition

Figure 7. LTS 1

Figure 8. SM 2, the state machine with second
call

stop of state Beeping) or the user accepts the second call and

interrupts the first one (transition accept of state Beeping).

In this last case, when the second call ends (transitions stop

of state Connected2), the phone comes back in state Con-

nected, except if the user hangs-up (transition hang-up of

state Connected2). Figure 9 represents LTS 2 correspond-

ing to SM 2.

4.3 Analysis of phone models by extension
relation

In this part, we analyze if there is an extension relation

from model SM 0 to SM 1, and from model SM 1 to SM 2.

In the case where the model does not pass the checking, it



Figure 9. LTS 2

Figure 10. AGraph0, the acceptance graph of
LTS 0

Figure 11. AGraph1, the acceptance graph of

LTS 1

has to be analyzed and modified.

4.3.1 Does SM 1 extend SM 0?

Let us consider LTS 0 and LTS 1 (figure 5 and 7). Figure 10

(resp. figure 11) represents AGraph0 (resp. AGraph1), the

acceptance graph associated with LTS 0 (resp. LTS 1). In

AState Associated states Acceptance set

y0 s5, s0 {{p}}

y1 s1, s3, s4 {{h, d}, {h}, {h, c}}

y2 s2, s3, s4 {{h}, {h, c}}

y3 s3, s4 {{h}, {h, c}}

Table 2. Associated states and acceptance

sets in AGraph1

Figure 12. AGraph2, the acceptance graph of
LTS 2

these graphs, transitions are labelled by actions and nodes

are labelled by their name and their acceptance set, and their

associated states are indicated, as in table 2.

The computed set of simulation relation is

{(x0, y0), (x1, y1), (x2, y2)}, meaning that each node

of LTS 0 is simulated by a node of LTS 1. The simulation

relation is thus verified. Furthermore, the inclusion of

acceptance sets is verified for each node. For example

Acc(y2) = {{h}, {h, c}} ⊂⊂ {{h}} = Acc(x2). LTS 1

extends LTS 0 is computed by our tool.

4.3.2 Does SM 2 extend SM 1?

Let us consider LTS 1 and LTS 2 (figure 7 and 9). Figure 12

represents AGraph2, associated with LTS 2, whose accep-

tance sets are represented in table 3.

AState Associated states Acceptance set

z0 s5, s0 {{p}}

z1 s1, s3, s6, s4 {{h, d}, {h}, {s, a}, {h, c}}

z2 s2, s3, s6, s4 {{h}, {s, a}, {h, c}}

z3 s3, s6, s4 {{h}, {s, a}, {h, c}}

z4 s3, s6, s4, s7 {{h}, {s, a}, {h, c}, {c, s}}

Table 3. Associated states and acceptance

sets in AGraph2



Figure 13. LTS∗
2
, the corrected LTS 2

The computed set of simulation relation is

{(y0, z0), (y1, z1), (y2, z2), (y3, z3)} meaning that each

node of LTS 1 is simulated by a node of LTS 2. The

simulation relation is thus verified. However, the inclusion

of acceptance sets is not verified for node z3 (cf. table 3:

Acc(z3) 6⊂⊂ Acc(y3)). So LTS 2 does not extend LTS 1.

The reason of failure has to be analyzed in order to improve

model SM 2.

4.3.3 SM ∗
2
, the corrected SM 2

Analysis of AGraph2 points out that acceptance set of

node z3 is {{h}, {s, a}, {h, c}} while the one of node y3

in AGraph1 is {{h}, {h, c}}. The reason is that after the

trace pick-up;dial (transitions p and d of LTS 2 in figure 9),

the phone may refuse the action hang-up while in previ-

ous model LTS 1, this action cannot be refused. It means

that the modeller made a mistake in model SM 2. He for-

got that transition from state Beeping to Connected may

be controlled by the user who made the second call (see

model SM ∗
2

in Figure 14). The corresponding LTS∗
2

is rep-

resented in figure 13: an internal transition from s6 to s4

has been added. The acceptance AGraph∗
2

graph of LTS∗
2
,

is the same as AGraph2. Only acceptance sets are mod-

ified as shown in table 4. The new acceptance set associ-

ated with node s6 is now {{h}, {h, c, s, a}} and the prop-

erty {{h}, {h, c, s, a}} ⊂⊂ {{h}, {h, c}} is verified. As

LTS∗
2

simulates LTS 1, and the property of acceptance set

inclusion is verified, SM ∗
2

extends SM 1.

Figure 14. SM ∗
2
, the corrected LTS 2

AState Associated states Acceptance set

z0 s5, s0 {{p}}

z1 s1, s3, s6, s4 {{h, d}, {h}, {h, c, s, a}}

z2 s2, s3, s6, s4 {{h}, {s, a, h, c}}

z3 s3, s6, s4 {{h}, {h, c, s, a}}

z4 s3, s6, s4, s7 {{h}, {s, h, c, a}, {c, s}}

Table 4. Associated states and acceptance

sets in AGraph∗
2

5 Conclusions and future works

Whereas the construction of programs following an in-

cremental approach is a usual and encouraged means of de-

velopment, the same kind of process for model development

is rarely possible. In particular, UML behavioural models

lack evaluation means, which are necessary to assess inter-

mediate development steps.

Our goal was to propose evaluation techniques and tools

for state machines, applicable during the development pro-

cess. In the Labelled Transition System theory, compari-

son relations between systems have been defined. They can

be used to compare a model of an implementation with a

model of its specification, to check whether requirements

are fulfilled or not. Hence, such relations can also be used

to follow refinement approaches: a development step S2 is

said to refine a step S1 if all implementations of S2 are im-

plementations of S1. The extension relation defined over



LTS respects this property.

However, the complexity of the extension relation is such

that no LTS tool implement it. In this paper, we propose a

way to implement this extension relation, through a trans-

formation into acceptance graphs. This is also suitable to

implement the reduction relation.

We illustrate on a simple example how to use such an

extension relation for an incremental development.

These works can lead us in a short future to propose an

implementation of the central conformance relation. Fu-

ture works concern also the adaptation of these relations and

techniques to the full UML state machines, combined with

UML sequence diagrams.
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