Deblurring of irregularly sampled images by TV regularization in a spline space

Abstract : We present here an algorithm for restoration of irregularly sampled images with blur and noise. The good accuracy of non-quadratic regularizers in this type of problems was shown in recent articles, but their computational cost is prohibitive because the approximation space was trigonometric polynomials. Here we model the image as a cubic spline and prevent instability phenomena due to irregularity and blur by minimizing the total variation with a quadratic data-fitting term. The algorithm is the well-known Forward-Backward which is well adapted to our l1-l2 problem. We compare our method to the existing ones, including very efficient non-quadratic ones based on Fourier models. Our results are equivalent in term of SNR to the best existing method, but it is 20 to 50 times faster.
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger
Contributeur : Julien Caron <>
Soumis le : vendredi 2 juillet 2010 - 19:36:08
Dernière modification le : jeudi 11 janvier 2018 - 06:21:21
Document(s) archivé(s) le : mardi 23 octobre 2012 - 09:36:31


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00497000, version 1



Andrés Almansa, Julien Caron, Sylvain Durand. Deblurring of irregularly sampled images by TV regularization in a spline space. 8 pages. 2010. 〈hal-00497000〉



Consultations de la notice


Téléchargements de fichiers