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Abstract. A continuum model of a moving transition layer separating two different solid phases of a certain
micro-damaged material is proposed. An application of this model to the analysis of the propagation of this layer
in a micro-cracked solid is shown.
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1. Introduction

In the recent literature some interest is paid to the study of propagation of discontinuity surfaces
in continuous media. These surfaces are introduced as models of a large variety of phenomena
(see for instance [9]) also including various kinds of phase transitions. When these phenomena
need more detailed description the modelization is improved by endowing discontinuity
surfaces with more sophisticated structure. This is done, for instance, by introducing certain
surface fields, [6, 7, 8], describing the passage from one phase to another one. However, this
passage may not always be abrupt and hence the interface often has to be regarded as a certain
three-dimensional layer (see [8] and the review paper [11] on mushy regions arising in phase
transitions) in which we can assume to deal with a certain mixture of both phases. This also
occurs in some particular cases of solid-solid phase transitions, [10]. Thus, the question arises
how to describe of the interfacial layer properties and the conditions under which this layer
can exist and propagate.

In this paper we formulate some necessary existence and propagation conditions for a
moving transition layer separating two different solid phases of a micro-damaged medium.
These two solid phases correspond to different macroregions in which microcracks are all
open or all closed respectively, [15, 16].

Generally speaking, the term phase means here a state of a solid specified by a known
constitutive relation. Hence the differences in material behaviour for different states of a
solid are assumed to arise not only because of the structural phase transition (e.g. martensitic
transformations described at the microlevel in [2], [4] and [5]), but because of the existence
of different strain energy functions related to different classes of local deformations. Such a
situation was considered in [16] where the micro-damaged body behaviour, at the macrolevel,
was described in terms of two different strain energy functions related to two different (and
varying in time) macroregions (phases) with either all open or all closed microcracks. A phase
transition takes place where microcracks are partly closed and partly open and hence in the
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176 F. dell’Isola and Cz. Woźniak

part of the space in which a strain energy function (at a macrolevel) is not well defined.
The considerations carried out in [16] were related to situations in which the aforementioned
interfacial state can occur exclusively on certain discontinuity surfaces (which can arise
and disappear in the deformation process) separating both phases. In this contribution we
investigate the more general situation in which the interfacial state can be present in a certain
spatial layer separating the two phases or situated inside one of them and moving across the
medium.

The scope of the paper can be outlined as follows:
In Section 2 we introduce certain auxiliary concepts related to the kinematic description

of the interfacial layer moving across a solid and separating two different phases. The main
hypothesis, formulated in Section 3, is that this interfacial layer may be represented as a
certain arrangement of both phases forming a definite banded periodic structure. After scaling
down this structure we arrive at the mathematical model of the interfacial layer representing
a particular fine mixture of both phases. We adapt here the modelling procedure proposed in
[13] and [14] for composite materials. A similarity between a composite material structure
and a fine phase mixture was already noted in [2]. The considerations carried out in Sections
2 and 3 are rather general, being related to an arbitrary solid. This solid can show itself in two
different phases, each characterized by a separate analytical expression for the strain energy
function, and in which the interface is modelled as a shell-like layer moving across the region
occupied by the body in its motion. The obtained model is applied in Section 4 to the study of
interfacial layers moving across the micro-damaged medium described in [16]. The solution
to a special problem, illustrating the general considerations, is given in Section 5.

The conclusions formulated in Section 6 end the paper.
The main results of this contribution are related to a motion of interfacial layers in a

micro-cracked solid and can be summarized as follows:

(1) the material behaviour of the interfacial layer depends not only on the material properties
of both phases, but also on the propagation speed of the layer,

(2) not every propagation speed of the layer is possible,
(3) if the interfacial layer does not propagate across the medium, then its material properties

are similar to those of a micro-layered two-component laminate [1], [3], [13] and [14].

To simplify the treatment only diffusionless phase transitions and exclusively purely
mechanical motions are considered throughout the paper; the modelling of more complex
phenomena will be presented separately.

2. Preliminaries

Let BR be a known reference placement of a solid in the euclidean three-space E and
p(�; t) : BR ! E be its configuration at an arbitrary time instant t.

Let us denote by � the set of all non-singular 3�3 real matrices interpreted as deformation
gradients

Ft(X) := rp(X; t) 2 �

in an arbitrary configuration of a body. Let W+
R ;W

�

R be two different convex differentiable
real-valued functions, both defined in �, satisfying for every F 2 � and for an arbitrary
rotation matrix R the conditions

W+
R (RF ) =W+

R (F);W�

R (RF ) =W�

R (F);

frac4149.tex; 9/05/1997; 14:35; v.6; p.2



On phase transition layers in certain micro-damaged two-phase solids 177

i.e. being invariant under arbitrary rotations. Let there also be known two disjoined non-empty
subsets �+ and �� of � such that

�0 := �n(�+
[ ��) 6= ;:

In the subsequent considerations we shall deal with an elastic homogeneous solid. The main
assumption is that to every substantial point of this solid a strain energy function WR is
assigned

WR(F) :=

(
W+

R (F) if F 2 �+;

W�

R (F) if F 2 ��;

while for F 2 �0 the strain energy function is not well defined. This means that for some
values of the deformation gradient (i.e. for F 2 �0) the material response of the solid under
consideration is not determined.

Under the aforementioned conditions we deal with what will be called a two-phase solid,
each phase being denoted by superscript + or �.

For an overview of the problems related to the physical meaning and the interpretation of
strain energy functions when dealing with micro-cracked materials see [16] and the references
therein.

An example of the above situation was described in [16] where a certain macro-model
of a micro-damaged body (with a continuous distribution of micro-cracks) was investigated.
In the aforementioned paper, as well as in the present one, �+ and �� are disjoined sets of
deformation gradients such that if F 2 �+ then micro-cracks are all open and if F 2 �� then
they are all closed. To these two phases of considered micro-cracked solid two different forms
of strain energy function are assignedW+

R ;W
�

R respectively, since in both cases the responses
of the material are different. At the same time in [16] the strain energy function was not well
defined on certain surfaces separating both phases.

In this paper we study those micro-cracked materials for which it is physically meaningful
to assume that certain regions exist in which not all micro-cracks are all open or all closed
and hence a strain energy in these regions is not well defined.

It is easy to see that for an arbitrary configuration p(X; t);X 2 BR; of the solid under
consideration the set BR can be partitioned into three mutually disjoined subsets

B+
R(t) := fX 2 BR : Ft(X) 2 �+

g ;

B�R(t) := fX 2 BR : Ft(X) 2 ��g ;

B0
R(t) :=

�
X 2 BR : Ft(X) 2 �0	 :

The subsetsB+
R (t) andB�R (t) are respectively occupied by the phases with strain energies

W+
R (Ft(X)) andW+

R (Ft(X)). When X 2 B0
R the strain energy is not well defined. A decom-

position similar to that given above can also be introduced in the spatial regionBt := p(BR; t)
occupied by the solid in the configuration p(�; t). Those points which belong to B0

R(t) for
every t constitute in BR (and hence in Bt := p(BR; t)) the interfacial part of the considered
solid. This interfacial part can either separate the parts B+

R (t) and B�R(t) of BR occupied by
the different phases in which the solid can present itself, or can have its boundary in common
with only one of the parts B+

R (t) and B�R (t).
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178 F. dell’Isola and Cz. Woźniak

It was shown in [16] that these interfaces (occurring there as smooth surface elements) can
appear and disappear in short time intervals and hence their motion may be not continuous.
This is a main difference between an interfacial surface separating two phases of a solid and
a moving discontinuity surface representing a wave in a material continuum.

The aim of this paper is to introduce and apply a new physical description for the moving
interfacial region B0

R(t) under the assumption that it is constituted by a system of thin layers.
Some of these layers can separate different solid phases or be situated inside one of them. We
restrict ourselves to the study of the local properties of the interface so that we consider only
one thin shell-like interfacial layer element JR(t); JR(t) � B0

R(t) with t 2 T := (to; tf ). Let
MR(t) stand for the midsurface of this element and let it be parametrized by

X = r(�; t);� = (�1; �2) 2 �;

� being a regular plane region. Let the surface MR(t) be oriented by the field of unit
normals n(�; t). We will also assume that all considered interfacial elements have, for every
t 2 T , a constant thickness 2h(t) which is small compared to the curvature radius of the
midsurface MR(t): Under these assumptions the layer JR(t) can be parametrized by means
of the well-known shell-like parametrization

X = X(�; �; t) = r(�; t) + �n(�; t); (1)

where � = (�1; �2) 2 � parametrize the midsurface MR(t) and � 2 (�h(t); h(t)). It can
be seen that the motion in BR

t 2 T ! JR(t)

of the interfacial layer element is uniquely determined by the motion of its midsurface t 2
T !MR(t) and by the mapping

t 2 T ! h(t): (2)

Let us take into acount the inverse of the relation 1 setting

� = �(X; t);X 2 JR(t); t 2 T: (3)

We remark that once the motion of the interface layer is known, the function �(�) is also
known. Treating now X and t as independent variables we can define

c(X; t) :=
@�(X; t)
@t

; X 2 JR; t 2 T (4)

as the local propagation speed of the interfacial layer at X 2 JR; t 2 T .
In the sequel we will tacitly assume that at least one interfacial layer element (either

disjoining two phases or included into one of them) exists and its motion in BR

t 2 T ! JR(t) � BR

is described by (1) and (2) which are representing a non-material shell-like element with
time-varying thickness moving across BR.
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On phase transition layers in certain micro-damaged two-phase solids 179

3. Modelling procedure

The aim of the subsequent analysis is to propose a physical description for the moving
interfacial layer whose kinematics was described at the end of the previous section. The idea
of the approach proposed is based on the heuristic hypothesis that the interfacial layer can
be modelled, at a macrolevel, as a certain fine mixture of both phases. This fine mixture will
be obtained performing a limit passage under the modelling assumption that the interface is
constituted by a banded heterogeneous structure in which both phases occupy non-intersecting
systems of very thin sublayers.

For an example of the limit passage leading from a microdescription to a macrodescription
for certain micro-cracked solids the reader is referred to [16].

Let us separate a layer JR(t) into a large number n of sublayers with equal thickness
" = "(t) := h(t)=n separated by the surfaces

� = 0; � = �"; � = �2"; : : : ; � = �n" = �h(t):

Define by h"(�); � 2 (�h(t); h(t)) a continuous function such that

h"(�) = +1
2" for � = �";�3"; : : :

h"(�) = �
1
2" for � = 0;�2";�4"; : : :

and linear in every interval between aforementioned values of �. Setting

I� := (0; ") [ (2"; 3") [ � � � [ (�2";�") [ (�4";�3") [ � � �

I+ := ("; 2") [ (3"; 4") [ � � � [ (�"; 0) [ (�3";�2") [ � � �

we obtain

@h"

@�
(�) =

(
+1 if � 2 I�

�1 if � 2 I+
:

The above saw-like function was used in modelling periodic-laminates, [13], [14], [15],
and will be applied here under the assumption that sublayers for which the gradient of h"

is equal to +1 are occupied by – phase and those for which it is equal to �1 by + phase.
Hence in the first step of modelling it is assumed that the interfacial element is an aggregate of
both phases which occupy thin sublayers of thickness ". Thus, we deal with a certain banded
structure inside every JR(t) whose motion (in the three-space E) can be assumed to have a
similar form to that used for laminated materials [15] and given by

p(X; t) = P(X; t) + h"(�)Q(X; t); X 2 JR(t); t 2 T; (5)

where P(X; t);Q(X; t) are functions which in every ball of radius " can be treated as constants
[15] and � is given by (3). The second term in (5) describes the disturbances in the motion
t! JR(t) caused by the heterogeneity of the material filling the adjacent sublayers [14].
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180 F. dell’Isola and Cz. Woźniak

In the second step of modelling we take into account (3) and (4), treating X and t as
independent variables (i.e. using the Lagrangean description of motion). After passing to the
limit for "! 0 we obtain

F(X; t) := rp(X; t) = rP(X; t) +

(
+1

�1

)
r�(X; t)
Q(X; t)

_p(X; t) = _P (X; t) +

(
+1

�1

)
c(X; t)Q(X; t) (6)

for X 2 JR(t); t 2 T , where the signs + and� are related to the situation in which X belongs
to � or + phase respectively.

Thus, we have arrived at the description of a certain fine mixture: the deformation gradients
in X at the instant t of the phase + and � have to satisfy respectively the conditions

rP(X; t) +r�(X; t)
Q(X; t) 2 ��;

rP(X; t)�r�(X; t)
Q(X; t) 2 �+:
(7)

The last conditions have to be verified for every X 2 JR(t) at every instant t and constitute
existence conditions for the proposed model of interfacial layer.

Equation (7) imposes restrictions both on the motion of the interfacial layer t 2 T ! JR(t)
across BR (because r�(X; t) depends on this motion) as well as on the motion of this layer
in E, described by the fields P and Q. The aforementioned vector fields, following [13], will
be called macrodeformation and corrector fields respectively, while rP will be referred to as
macrodeformation gradient field.

In order to obtain field equations for P(�) and Q(�) we apply a procedure similar to that
used in micromodelling some composite materials, [13], [14], [15]. Let us define the mean
value hWRi of the strain energy

hWRi(rP;Q) := 1
2 [W

+
R (rp) +W�

R (rp)]; (8)

where

W+
R (rp) =W+

R (rP�r� 
Q);

W�

R (rp) =W�

R (rP+r� 
Q)
(9)

and the mean value of the kinetic energy

1
2h�R _p2

i( _P;Q) := 1
2�R(

_P
2
+ c2Q2) (10)

where �R is the mass density in the reference configuration (constant in both phases).
If b is external body force, TR is the first Piola–Kirchhof stress tensor in the vicinity of

the layer and nR is the unit outward normal to @JR(t), we obtain the action functional for the
considered system as follows:

A(rP; _P ;Q) =

Z tf

t0

(A1(t) +A2(t)) dt;
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On phase transition layers in certain micro-damaged two-phase solids 181

A1(t) :=
Z
JR(t)

[1
2�R(

_P 2 + c2Q2)� hWRi(rP;Q)� �Rb � P] dv(X);

A2(t) :=
Z
@JR(t)

(TR � nR) � P da(X): (11)

The principle of stationary action leads to the following system of equations

Div SR � �R �P + �b = 0;

HR + �Rc
2Q = 0;

(12)

where

SR :=
@hWRi

@rP
; HR :=

@hWRi

@Q
: (13)

Equations (12) and (13) have to be satisfied in JR(t) for every t 2 T . The above equations,
together with the boundary condition

(SR � TR) � nR = 0;

describe the behaviour of the interfacial layer element when it is possible to model it as a
continuous fine mixture of the phases + and �, i.e. when the existence conditions (7) hold
and hence hWRi is well defined by means of (8) and (9). Hence (12) and (13) represent the
mathematical model for the interfacial layers under consideration.

Equation (13) defines a system of internal forces SR and HR in the interfacial layer; SR

represents the first Piola–Kirchhoff total stress tensor and HR can be called propagational
forces, as they are equal to zero if the local propagation speed c = c(X; t) is zero.

The interfacial layer was modelled above as a two-phase fine mixture with equal phase con-
centrations. However, physically motivated situations may exist in which such concentrations
are different and which can also depend on the variable � . In order to describe these situations
denote by �+ and �

�

(both belonging to [0; 1] and such that �++�
�

= 1) the concentrations
respectively of + and � phases inside the interfacial layer JR(t). We will assume that their
distribution

�+ = �+(�); �
�

= �
�

(�); � 2 (�h(t); h(t))

is known. For the sake of simplicity we have assumed that both fields �+ and �
�

are indepen-
dent of � 2 � and t 2 T .

Following the approach used above we define

�i := 0;�2";�4"; : : : ;�h(t) 6 �i 6 h(t)

and partition every part of the layer JR(t); bounded by the coordinate surfaces � = �i � ";
� = �i + " (" being previously determinated), into the two sublayers

(�i � "; �i � "+ 2"�
�

(�i)); (�i � "+ 2"�
�

(�i); �i + ")
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182 F. dell’Isola and Cz. Woźniak

occupied respectively by the + and � phases. Let h"(�); � 2 (�h(t) + 2"; h(t)) be a
continuous function, linear inside each of the aforementioned sublayers, which on the surfaces
separating sublayers attains the values

h"(�i + ") = h"(�i � ") = " minf�+(�i); ��(�i)g;

h"(�i � "+ 2"�
�

(�i)) = �" minf�+(�i); ��(�i)g:

Denoting

'+(�) :=
min f�+(�); ��(�)g

�+(�)
;

'
�

(�) := �
minf�+(�); ��(�)g

�
�

(�)
;

� 2 (�h(t); h(t))

we see that

@h"

@�
(�) =

(
'+(�) if � 2 (�i � "+ 2"�

�

(�i); �i + ");

'
�

(�) if � 2 (�i � "; �i � "+ 2"�
�

(�i)):

Passing to the limit "! 0; instead of (6) we now obtain

F(X; t) := rp(X; t) = rP(X; t) +

(
'+(�)

'
�

(�)

)
r�(X; t)
Q(X; t);

_p(X; t) = _P (X; t) +

(
'+(�)

'
�

(�)

)
c(X; t)Q(X; t) (14)

where � = �(X; t).
The interfacial layer existence conditions become

rP(X; t) + '+(�(X; t)) r�(X; t)
Q(X; t) 2 ��;

rP(X; t) + '
�

(�(X; t))r�(X; t)
Q(X; t) 2 �+
(15)

and must hold for every X 2 BR; t 2 T . Under (15) we obtain

W+
R (rp) =W+

R (rP + '
�

(�(X; t))r� 
Q);

W�

R (rp) =W�

R (rP + '+(�(X; t))r� 
Q)
(16)

and the mean strain energy will be given by

hWRi(rP;Q) := �+(�(X; t))W+
R (rp) + �

�

(�(X; t))W�

R (rp): (17)

For the mean value of the kinetic energy we obtain

1
2h�R _p2

i( _P;Q) := 1
2�R[�+(

_P + '+ cQ)2 + �
�

( _P + '
�

cQ)2]: (18)
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On phase transition layers in certain micro-damaged two-phase solids 183

From the principle of stationary action we obtain again (121) in which the mean strain
energy hWRi is now defined by (16) and (17). The layer existence conditions are now given
by (15) while (122) is replaced by

HR + �R  c
2Q = 0;  (�) :=

minf�+(�); ��(�)g
�
�

(�) �+(�)
;

where HR is given by (132) in which the means strain energy is given by (16) and (17).
In order to explain the above generalization of the proposed modelling procedure we shall

consider two special cases. First, assume that it is physically motivated the supposition that
the passage across the interface from one phase to another is continuous. In this case we can
set

�+ =
1
2

�
1 +

�

h(t)

�
; �

�

=
1
2

�
1�

�

h(t)

�
;

provided that the passage from � phase to + phase takes place in the �-axis direction.
Second, let the interfacial layer be situated inside, for instance, the + phase. In some cases

it may be reasonable to require that this interface is constituted by a mixture of + and �
phases in which concentration varies smoothly. Such a situation will be described by setting:

�+ =

�
�

h(t)

�2

; �
�

= 1�
�
�

h(t)

�2

:

This case constitutes a continuum model of the physical situation investigated in [16],
where the existence of such interfacial layers, but with a discrete structure, was shown.

It should be emphasized that if there is no physical information about the internal structure
of the interfacial layer, then the assumption �+ = �

�

= 0:5 and hence the model introduced
before seem to be the most reasonable.

4. Applications

In this section we want to apply the model developed up to now to the study of the propagation
of a particular interfacial layer. More precisely, we consider a certain variant of the micro-
cracked material of which the macromodel was introduced and investigated in [15] and [16]:
the considered solid body is assumed damaged because of the presence of planar stochastically
distributed microcracks (parallel to the laminae interfaces) whose planes are oriented in BR

by a regular field n of unit vectors. It will be assumed that the region BR can be partitioned
into three regions: i.e. the region in which the microcracks are open (phase +), the region in
which the microcracks are closed (phase�) and the interfacial layer in which the microcracks
are partly closed and partly open. In the last case we assume that the strain energy is not
defined.

We will limit our study to the case

(1) of linear elastic micro-cracked materials in which the vector field n is constant,
(2) of interfacial layer propagation in the direction of n.

Therefore, we will restrict our consideration to uniaxial strain states. In this case the strain
energy functions W+

R and W�

R (the strain energy in the medium with all open and with all
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184 F. dell’Isola and Cz. Woźniak

closed cracks respectively) and the sets of admissible local deformations are assumed to be
given, in terms of the infinitesimal strain tensor e, by

�+ := fe : n � en > �+g; W+
R (e) = 1

2E
+(n � en)2;

�� := fe : n � en < �
�

g; W�

R (e) = 1
2E

�(n � en)2;

where the constants �+; ��;�+ > �
�; which we can call strain thresholds, play the role of

the phase-defining thresholds. Moreover, the constants E+ and E� are longitudinal elastic
moduli relative to the uniaxial strain and to the phase with all open and all closed microcracks
respectively. They are such that E� > E+: when the cracks are open the stiffness of the
material is lower than in the case of closed cracks. In the model discussed in [15] and [16] it
is assumed that �+ = �

�

= 0: In the sequel we will study the propagation of a longitudinal
plane displacement wave, opening (or closing) microcracks, in which the phase change occurs
inside a layer. We will use the following denotations:

(1) U is the component of displacement vector field along n and U;n its derivative in the
direction of n,

(2) �(t) is the position of the midsurface of the interfacial layer and 2h(t) its thickness at any
instant t,

(3) S is the normal stress component, S = n � SRn,
(4) we define the longitudinal wave propagation speeds in both phases by

c+ :=

s
E+

�R
; c

�

:=

s
E�

�R
:

The average strain energy for the considered continuum and displacement fields is easily
evaluated once (8) is recalled

hWRi =
1
2
~E(U;n)

2 +�EQ U;n +
1
2
~E(Q)2

where

~E := 1
2(E

+ +E�); �E := E� �E+:

Therefore, we obtain the following expression for the normal stress S in terms of Q and
U;n

S = ~EU;n +�EQ

while the second from (12) becomes

~EQ +�EU;n � �Rc
2Q = 0:

This last equation allows us to express Q in terms of U;n and c2

Q = �
�E

~E � �Rc2
U;n
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so that S can be expressed in terms of U;n and c2 as follows

S =

 
~E �

�E2

~E � �Rc2

!
U;n: (19)

We will call interfacial longitudinal modulus the quantity

E(c2) := ~E �
�E2

~E � �Rc2
:

The interfacial longitudinal modulus must be positive everywhere inside the interfacial
layer. This physical condition implies the following restrictions on the propagation speed c

c < c+ or c > c�: (20)

The field U has to satisfy the hyperbolic equation implied by the first from (12),

S;n � �R
d2U

dt2
+ b = 0 in B0

R(t); (21)

in which the expression (19) for S has to be substituted.
Equation (21) has to be considered together with the continuity conditions for S and U on

both surfaces separating the interfacial layer from the remaining part of the solid. If this layer
is included between + and � phase, then the position of these surfaces is given by

U;n(�(t) + h(t); t) = �+; U;n(�(t)� h(t); t) = �
�

:

It has to be emphasized that the above analysis has a physical sense only if condition (7)
holds inside the interfacial layer. In the framework of the linearized theory the aforementioned
condition yields

U;n +Q =

 
1�

�E

~E � �Rc2

!
U;n < �

�

;

U;n �Q =

 
1 +

�E

~E � �Rc2

!
U;n > �+: (22)

These inequalities must be satisfied at every point of the interfacial layer if it is to be
modelled as an ideal mixture of phases + and �, as done in the present paper.

Outside the interfacial layer the standard equations of linear elasticity with strain energy,
equal respectively to W+

R and W�

R , are assumed to hold.
We remark that:

(1) the interfacial longitudinal modulus reduces to the effective modulus found in [13] when
c vanishes;

(2) when c tends to c+ or to c� respectively from lower or higher values then at �(t) + h(t)
or �(t)� h(t) respectively the interfacial longitudinal modulus vanishes.
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5. Illustrative example

The analysis carried out in Section 2–4 was quite formal and one can ask whether the model
of the interfacial layer presented here satisfies the existence conditions (7) or (22) and hence
has physical sense. In order to give an answer to the above question, using the results found
in Section 4, we will consider below a simple problem illustrating the behaviour of micro-
damaged solids under consideration.

Let the micro-cracked solid occupy a thick layer bounded by coordinate planes x = 0; x =
L and the vector n, determining the orientation of microcracks, coincide with the versor of
x-axis. The solid is subject to a body force acting along the x-axis and having constant value
b and to the external pressure p = p(t) applied at the plane x = 0.

Moreover, let the displacement of the solid be equal to zero at x = L:
Hence, we deal with an uniaxial strain state corresponding to a displacement field with

only one non-vanishing component U(x; t) in which the material properties of the solid are
determined by the elasticity moduli E+ and E�. We must also recall that we assume as
known the two strain thresholds �+ and �

�

with �+ > �
�

> 0. It means that if U;x > �+ or
U;x < �

�

then the microcracks are all open or all closed and the corresponding stress strain
relations are given respectively by

S = E+U;x or S = E�U;x:

Our aim is to find the displacement field U(x; t); x 2 [0; L]; t 2 T: For the sake of
simplicity its evolution will be treated only in the quasi-stationary case.

It can be easily shown that the evolution of the midsurface and of the thickness of the
interfacial layer, provided that it exists, is given by

�(t) =
1
�Rb

 
p(t)�

�+E
+ + �

�

E�

2

!
;

h(t) =
�+E

+ + �
�

E�

2�Rb
=: h = const (23)

respectively. Hence the local propagation speed is given by

c(t) =
_p(t)

�Rb
:

The above formulas are valid if both the conditions

�(t)� h > 0 and �(t) + h < L (24)

hold for every t 2 T and c(t) satisfies (20). The inequalities (24) combined with conditions
(23) have to be interpreted as necessary conditions imposed on the pressure p(t) under which
the interfacial layer may exist. For the parts of the solid situated outside this layer we have

E�U;xx(x; t) + �Rb = 0 if x 2 (�(t) + h;L)

E+U;xx(x; t) + �Rb = 0 if x 2 (0; �(t)� h)
: (25)
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In the region occupied by the interfacial layer the stress-strain relation cannot be specified
in the framework of standard elasticity theory. Thus, we model it using the results found in
Sections 3 and 4. Combining (19) and (21) we obtain 

~E �
�E2

~E � �Rc2(t)

!
U;xx(x; t) + �Rb = 0

if x 2 (�(t)� h; �(t) + h); (26)

where the conditions (20) are assumed to be verified.
Since �(t); c(t) andh are given by (23), (25) and (26) together with the continuity conditions

for the displacement U and the stress S for x = �(t) � h and �(t) + h as well as with the
boundary conditions

U(0; t) = 0; E+U;1(0; t) = p(t) 8t 2 T

allow, with simple algebra, the analytical expression for the unique solution of the considered
evolution problem, provided that for every t 2 T the conditions (24) are verified.

However, the model applied may have no physical sense if this solution does not verify the
existence condition (22) which now reads 

1�
�E

~E � �Rc2(t)

!
U;x(x; t) < �

�

;

 
1�

�E

~E � �Rc2(t)

!
U;x(x; t) > �+; 8x 2 (�(t)� h; �(t) + h):

The last inequalities imply that 
1�

�E

~E � �Rc2(t)

!
<
�
�

�+
;

 
1�

�E

~E � �Rc2(t)

!
>
�+

�
�

(27)

which represent the conditions imposed on the material parameters �E; ~E; �R; �� and �+
under which the interfacial layer, propagating at the instant t 2 T with the speed c(t) 2
(�1; c+)[ (c�;1), can be modelled as an ideal mixture of the two considered solid phases.

A necessary condition to (27), as �+ > �
�

; is

c < c+;8t 2 T (28)

which excludes the higher propagation speeds.
In concluding this Section we consider two special cases of the conditions (27):

(1) Let us assume that �
�

= �+. In this case (as �E > 0) the conditions (27) are equivalent
to condition (28), if one recalls (20). If we assume that �

�

= �+ = 0, (as done in [16])
then (23) implies that the interfacial layer becomes an interfacial surface.

(2) If �+ > 0 > �
�

then the conditions (27) are never satisfied. In this case the proposed
model of the interfacial layer as fine mixture of both phases does not make sense from the
physical viewpoint. Indeed our reasoning proves that two phases with the phase-defining
thresholds verifying �+ > 0 > �

�

cannot coexist as constituents of the fine mixture
introduced in this paper.
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6. Conclusions

Summarizing the general results obtained in Section 3 we can conclude that:

(1) in the proposed model the properties of the medium constituting the interfacial layer can
be easily determined once the constitutive properties of phases + and � and the motion
of the layer are known,

(2) since c is the relative velocity in the interfacial layer with respect to the referencial space
BR then the equations (12) and (13) are Galilean invariant,

(3) the second from (13) is an algebraic relation Q and rP. The definition (8) of average
strain energy implies that using it one can express Q in terms ofrP and c2 and therefore
the strain energy, for the introduced interfacial fine mixture can be regarded as a function
of the macrodeformation gradient rP and the speed c,

(4) if the interfacial layer coincides with a material one (i.e. if it is not moving across BR)
then the speed c vanishes and the equations (12) and (13) reduce to those found in [14]
where some macromodels for micro-laminated materials are considered.

Moreover, in Section 4 of this paper we have proven that:

(1) the interfacial layers can be modelled as fine mixtures of both phases only if the propa-
gation speed satisfies the inequalities (20),

(2) the material behaviour of the medium filling the interfacial layer depends not only on the
material properties of both phases but also on the propagation speed of the layer,

(3) since the interfacial longitudinal elastic modulus has to be always positive not every
propagation speed of the interfacial layer is possible.

Finally, in Section 5 we have shown that the class of systems described by the model
proposed in this paper is not empty.

The aforementioned results lead to the conclusion that the proposed approach to the
modelling of interfacial layers in the micro-damaged two-phase solids seems to deserve both
mathematical and physical interest.
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