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Significantly Improved Performances of the Cryptographically Generated Addresses

thanks to ECC and GPGPU

Tony Cheneaua,∗, Aymen Boudguigaa, Maryline Laurenta

aInstitut TELECOM, TELECOM SudParis, CNRS Samovar UMR 5157, 9 rue Charles Fourier, 91011 Evry, France

Abstract

Cryptographically Generated Addresses (CGA) are today mainly used with the Secure Neighbor Discovery Protocol (SEND).

Despite CGA generalization, current standards only show how to construct CGA with the RSA algorithm and SHA-1 hash function.

This limitation may prevent new usages of CGA and SEND in mobile environments where nodes are energy and storage limited.

In this paper, we present the results of a performance and security study of the CGA and SEND. To significantly improve

the performances of the CGA, we investigate first replacing RSA with ECC (Elliptic Curve Cryptography) and ECDSA (Elliptic

Curve DSA), and second using the General-Purpose computing on Graphical Processing Units (GPGPU). Finally, a performance

comparison between different hash algorithms (SHA-256, WHIRLPOOL,...) allows to prepare a better transition for the CGA when

SHA-1 will be deprecated.
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Introduction

Neighbor Discovery (ND) is a protocol defined for IPv6 [1]

in RFC 4861 [2] and RFC 4862 [3]. ND serves throughout a

network link for any IPv6 nodes to determine their neighboring

routers, to perform any IPv6 address resolution, and to detect

any unreachable neighbors and duplicated addresses. It defines

new ICMPv6 (Internet Control Message Protocol - [4]) mes-

sages and options. As discussed in [5], the ND protocol suffers

from several well known security problems, and is vulnerable

to some critical attacks such as the Denial of Service attacks

(DoS). To cope with those attacks, the IETF Working Group

“SEND” introduced few extensions to the ND protocol, leading

to the standardized Secure Neighbor Discovery (SEND) proto-

col [6] that is essentially based on the Cryptographically Gen-

erated Addresses (CGA) [7].

A CGA is an IPv6 address bound to a public key, and it only

helps proving that the sender of a SEND message is the real

owner of its CGA address. The CGA defines a decentralized

mechanism to bind the public key to its owner, and is radi-

cally different from the legacy approach which centralizes the

binding through an electronic certificate being generated by a

centralized unique entity. SEND [6] makes this decentraliza-

tion possible by the compulsory use of a pair of self-generated

RSA keys and an RSA signature option. The CGA also makes

use of some electronic certificates but these certificates are only

attached to the routers and serve to prove that a router is au-

thorized to announce itself as a router with the declared subnet
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prefix on the local link. Those CGA works are derived from

previous research works relative to SUCV (Statistically Unique

and Cryptographically Verifiable) identifier and addresses [8].

The CGA is currently under adaptation to the mobile net-

works, that is the ND proxying [9] [10] and multihoming [11]

issues. That is, first, as required by some mobility proto-

cols [12], a proxy node must be able to announce itself to its

neighboring nodes as the owner of the CGA address of a re-

mote mobile node. Second, in a multi-homed scenario, a node

can be connected to many Internet Service Providers (ISP) at

the same time, thus it is allocated several subnet prefixes, and

there is a high interest in making the other neighboring nodes

securely identifying the node as a single entity. Further efforts

are currently done to adapt CGA to HIP (Host Identity Proto-

col) [13] and MIPv6 (Mobile IPv6) [12] protocols.

So far, the CGA is strongly associated to the RSA algorithm

in the context of SEND. Previously , document [14] proposed

to replace the RSA algorithm by a variation of the Feige-Fiat-

Shamir (FFS) scheme. This is a great improvement as it re-

duces the signature generation and verification time. How-

ever, it has not offered much about the Public Key and signa-

ture sizes. Moreover the FFS scheme as not been standardized

yet. Similarly, article [15] offers a more in-depth analysis of the

proposal of document [10] and proposes to use Rivest-Shamir-

Tauman (RST) ring signature scheme instead of RSA to extend

the SEND protocol. While it indeed offers a solution to the ND

proxying issues, it does not, however, improve protocol perfor-

mances at all.

In this paper, we propose another approach, that is, to gener-

ate the CGA with the ECC key. Thanks to the underlying math-

ematical theories of the Elliptic Curve Cryptography (ECC) and

the small lengths of the ECC keys, the CGA generation time
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should decrease. In mobile networks, it is of interest decreasing

this time as the time is critical, especially during the handover

operations that must be realized within few milliseconds. This

ECC approach was also motivated by the very promising results

that were already obtained by using ECC in the sensor and ad

hoc networks that are known for their resource limitation.

The CGA also relies on the SHA-1 hash function that is likely

to be broken in a near future ([16] and [17]). To deal with this

issue, the alternatives to SHA-1 must be introduced into the

CGA. The RFC 4982 standard [18] gives the mechanisms to

support multiple hash algorithms in CGA, but it does not rec-

ommend any of the current hash algorithms. The selection of

the hash function is of high importance. First, it fixes the se-

curity level of the CGA, and this criterion should be the main

concern. Second, it has a direct impact on the CGA perfor-

mances, and as such, depending on the resource-constrained

device implementing the CGA, a limited set of hash functions

is able to apply. This article investigates the performances of

some eligible hash functions, and gives a comparative analysis.

The objective of the paper is to analyse the experimental per-

formances of the CGA and also the SEND related operations,

first when using RSA vs ECC, and second for several eligible

hash algorithms. For more realistic results, the measurements

were performed on three devices with different capacities: a

desktop, an embedded device (Nokia N800), and a GPGPU

graphical processing unit. The results are presented under some

synthetic benchmarks.

This article starts by reminding some CGA (section 1) and

SEND related (section 2) generalities. Section 3 presents the

testing environment and the different timing measurements. We

then analyse the performances of the CGA in section 4 and the

performances of the SEND protocol in section 5. We further

investigate on these performances in an embedded context in

section 6. In section 7, we focus on the impact of some new

hash functions that are likely to replace SHA-1 in the CGA

generation processing in the near future. We further improve

the performances of the CGA generation in section 8 using the

cheap hardware solution offered by the General-Purpose com-

puting on Graphical Processing Units (GPGPU). Finally, sec-

tion 9 concludes this article.

Glossary

• CGA: Cryptographically Generated Addresses

• ECC: Elliptic Curve Cryptography

• ECDSA: Elliptic Curve Digital Signature Algorithm

• GPGPU: General-Purpose Computing on Graphical Pro-

cessing Units

• NA: Neighbor Advertisement

• NDP: Neighbor Discovery Protocol

• NS: Neighbor Solicitation

• RS: Router Solicitation

• RA: Router Advertisement

• RDTSC: Read Timestamp Counter

• SEND: Secure Neighbor Discovery

1. CGA generation and verification

1.1. CGA generation

The CGA generation algorithm consists in computing two

specific hashes. Hashes are computed over part of the CGA Pa-

rameters Data Structure presented on Figure 1, and according

to the fixed SEC value between 0 and 7 as described in [7].

This SEC value serves to determine the robustness of the CGA

against some brute-force attacks that might be attempted on the

hash algorithm. The current hash algorithm used with the CGA

is SHA-1, and the Public Key cryptography algorithm used with

SEND is RSA. Both of these algorithms are hard coded in the

protocols, and no transition mechanism toward another algo-

rithm is yet defined.

Modifier

Sub-network prefix

Public key

Extensions

Collision 
count

1 8 16 24 32

      

Figure 1: CGA Parameters Data Structure

The CGA Parameters Data Structure presented in Figure 1

is the result of the concatenation of a 128 bit random number

called modifier, the subnet prefix associated to the generated ad-

dress, the collision count, the DER encoded Public Key of the

node and some (not yet used) optional extensions. The modifier

is used during the CGA generation to strengthen the robust-

ness of the hashed values and to enhance the address privacy by

adding some randomness to the address generation processing

(two generation processes with the same Public Key will result

in two different addresses).

The CGA algorithm relies on the SHA-1 algorithm to com-

pute the two hash values presented in Figure 2:

• hash1 contains the 64 leftmost bits of the SHA-1 di-

gest computed over the CGA Parameters Data Structure.

These 64 bits form the CGA’s interface identifier [7] after

the 3 leftmost bits are set to the 3 bits of the encoded SEC

value and the U and G bits are set to 0. Please refer to [19]

for further information on U and G;
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Figure 2: Definition of hash1 and hash2

• hash2 contains the 112 leftmost bits of the SHA-1 digest

computed over the CGA Parameters Data Structure with a

prefix and a collision count equal to 0, and satisfying the

condition that the 16×SEC leftmost bits of the digest are

equal to 0. The SEC value increases the computational

power/time on the generator and also on the attacker. It is

used to increase the cost of a brute force attack against the

CGA generation algorithm [7].

The CGA generation algorithm can be split into the two fol-

lowing phases:

1. The computation of hash2 and thus the final modifier gen-

eration. This phase is time consuming, and it is generally

computed only once during the CGA generation (and pos-

sibly before the node joins any network). A modifier is

contained in the CGA Parameters Data Structure, it serves

to generate the hashes of the CGA, and it is incremented

by 1 each time that the computed hash value (hash2) does

not satisfy the requirement: 16×SEC leftmost bits equal

to 0. The final value of the modifier is stored for later use

in the CGA Parameters Data Structure. We refer to this

value in this document as the final modifier.

2. The computation of hash1 and the interface identifier con-

struction. It is computed each time a new CGA for a new

subnet prefix is required.

The CGA generation algorithm as depicted on Figure 3 starts

with a random modifier value, then hash2 is computed (possi-

bly many times) until verifying that its 16×SEC leftmost bits

are equal to 0. Then the collision count is set to 0 and hash1

is computed. The interface identifier is derived from this hash1

value. The CGA is formed by concatenating the subnet prefix

with the interface identifier. Finally the Duplicate Address De-

tection processing (DAD) as defined in [3] is launched to verify

that there is no address collision. If an address collision oc-

curs, the collision count field is incremented by 1 and hash1

is recomputed to form a new interface identifier. This step is

performed maximum three times. If during the third trial, a

collision is detected (again), the node gives up attempting to

generate an address.

No

Yes

modifier = modifier + 1 

Yes

No

collision count=collision count+1

Compute hash2

Collision count = 0

Compute hash1

Create the interface identifier

Form the CGA and its parameters structure 

16*SEC leftmost bits of hash2= 0 ?

Duplicated Addresses Detection 

Generate a RSA/ECC key pair 

CGA-RSA 
or 

CGA-ECC 
generation

time } Final modifier generation time

RSA/ECC key generation time

We do not evaluate this step because we performed calculus offline

Generate a random modifier

Collision count < 3 Failure
No

Yes

Figure 3: CGA generation algorithm

Compare the 16*SEC lefmost bits  of hash2 to 0

Compute hash2

Compute hash1

Compare the CGA address subnet prefix to the related CGA Parameters Data Structure subnet prefix field

Verify collision count is< 3

Compare hash1 tothe interface identifier
CGA verificationtime

Figure 4: CGA verification algorithm

1.2. CGA verification

When a node receives a packet from one of its neighbors

which use a CGA address, it has to execute the CGA verifica-

tion algorithm. The received packet should contain an ICMPv6

CGA option carrying the final CGA Parameters Data Structure.

The verification algorithm presented in Figure 4, starts by

checking that the collision count value is less than 3. The subnet

prefix from the sender’s IPv6 source address (obtained from the

packet header) is then compared to the subnet prefix obtained in

the CGA Parameters Data Structure. Next, hash1 is computed

and compared to the interface identifier, omitting bit 0 to bit

2, bit 6 and bit 7 (encoding respectively the SEC value, U and

G). Finally, SEC is extracted from the interface identifier (the 3

leftmost bits) and hash2 is computed. Its 16×SEC leftmost bits
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are checked to be equal to 0. If any of the previous tests fails,

the CGA address is considered as unsecured.

2. CGA related operations in SEND

This section first presents the SEND basic protocol and then

it proposes a rough solution to integrate the use of ECC and

ECDSA into SEND.

2.1. SEND brief description

SEND is defined to secure the neighbor discovery mecha-

nism against the DoS and replay attacks [5], and also rogue

routers. It helps detecting rogue routers as it enables to dis-

tinguish valid sources of information from invalid ones. Some

SEND extensions are appended to the ND messages, that is, the

ND messages - Neighbor Solicitation (NS), Router Solicitation

(RS), Neighbor Advertisement (NA) and Router Advertisement

(RA) - that are usually exchanged between the hosts and the

routers (RS, RA) and between the hosts (NS, NA). SEND de-

fines two new ICMPv6 messages and six new ND options [6].

SEND relies on the CGA to prove that the sender is the owner

of the declared CGA address. A simple host announcing itself

over the link is required to sign the RS, NA and NS messages

with its private key, thus proving the receivers that it owns the

announced public key and thus the associated CGA. A router

playing the key role of relaying the traffic back and forth be-

tween the local hosts and the infrastructure network is required

to sign the RA messages with its private key and also to strongly

prove that it is the owner of the associated public key and it is

authorized to announce the declared subnet prefix. This latter

mechanism is known as ADD (Authorization Delegation Dis-

covery). It relies on an electronic certificate issued by a trusted

third party entity. To permit the host to check the validity of the

certificate, the host and the router should agree on a common

trust anchor, that is a certification authority that is trusted by

both of them and that belongs to one of the certification path

of the router’s certificate. The ADD mechanism is designed to

thwart the threat of rogue routers on the unsecured links, as a

trusted third party is certifying the role played by the router, and

the subnet prefix it has to announce. The ADD exchanges occur

at the very beginning of a session between the local host and the

router. A valid certificate guarantees to the host that the router

(i.e. its CGA address) is bound to a public key and a subnet pre-

fix. The SEND messages signed with the private key serve to

authenticate the router. ADD introduces two new SEND mes-

sages - Certification Path Solicitation (CPS) and Certification

Path Advertisement (CPA) - that are exchanged between the lo-

cal hosts and the router.

When a new node joins a network, it starts sending a RS mes-

sage to get all the information about the possible subnet prefixes

in use. Prefixes are required for later generating its CGA. Upon

receiving a response RA from a router, the host has to check

the validity of the router’s signature, and asks the router to send

back a certificate that can be checked as valid by itself. The

host solicits the router with a CPS message (Figure 5) including

a list of its own trust anchors in a Trust Anchor Option. Finally

the router responds with a CPA message containing the selected

trust anchor and a list of the certificates forming a chain from

its certificate to the trust anchor’s one (in Certificate Option).

Then the host is able to perform an offline verification of the

certificate validity.

Node Router
CPS Trust Anchor

CPA CertificateTrust Anchor

Figure 5: Exchange of messages Certification Path Solicitation/Certification

Path Advertisement

As depicted in figure 6, the ND messages are protected

thanks to four SEND options. The solicitation message NS or

RS sent by a node includes the CGA Option, the RSA Signature

Option, the Timestamp Option and the Nonce Option. The CGA

Option contains the CGA Parameters Data Structure and en-

ables the receiver to get the public key of the sender node. The

RSA Signature Option includes the RSA signature over part of

the ND message that certifies that the message was generated

by the owner of the CGA (bound itself to the public key). The

Timestamp Option protects the message against the replay at-

tacks. The Nonce Option serves to bind a solicited ND message

to its advertisement response, and also to detect replayed mes-

sages.

An advertisement message NA or RA can be generated by

either a host or a router. It includes the same options as in the

solicitation messages that serve to authenticate the origin of the

message and to detect replays. These messages can be sent

when a node changes one of its (physical or CGA) addresses or

when a router multicasts new information about its prefixes. In

case of an unsolicited message, the message is not bound to a

solicitation message and the Nonce Option is omitted.

Node RouterorHost
CGA1 CGA2RA or NA CGA2 Parameters Timestamp2 Nonce1 RSA Signature2

RS or NS CGA1 Parameters Timestamp1 Nonce1 RSA Signature1

 RS = Router Solicitation RA = Router Advertisement NS= Neighbor SolicitationNA = Neighbor Advertisement

Figure 6: SEND options usage

2.2. ECC / ECDSA integration into SEND

The ECC cryptography [20] is promising for the resource-

constrained networks such as the wireless sensor and ad-hoc

networks. ECC and its ECDSA signature algorithm offer the

following advantages:

• ECDSA provides fast computation of the signature;

• The ECC/ECDSA code size is pretty short, and suits well

small capacity devices;

4



• The ECC keys are shorter than RSA keys for the same se-

curity level. This property is very interesting as the public

keys are usually transmitted to the receiver to let it verify a

signature. Shorter is the key, less bandwidth is consumed

and more energy is saved by the devices. Table 1, ex-

tracted from document [21], reminds the equivalence be-

tween ECC keys and RSA keys length in term of security

level.

RSA key length (bits) ECC key length (bits)
1024 163
2048 224
3072 256
7680 384
15360 512

Table 1: RSA and ECC key length equivalence from a security level point of

view

The objective of this section is to describe the rough mod-

ifications we brought to CGA and SEND to get a first SEND

implementation with ECC and ECDSA, for the performance

measurement purpose. We propose the following modifications

to the initial SEND specifications:

• Replace the RSA signature algorithm used in SEND [6]

with ECDSA;

• Replace the DER encoded RSA key with a DER encoded

ECC key in the CGA Parameters Data Structure (Fig-

ure 1).

We propose to keep the RSA signature option format as de-

fined in the RFC [6], even if it contains an ECDSA signature.

The verifier is adapting the signature verification to the type of

the public key presented in the CGA Parameters Data Struc-

ture, as it verifies the public key during the CGA verification,

and before the signature verification.

These modifications to the SEND protocol are currently re-

vised to define a backward compatible and interoperable tech-

nical solution, but this extra work has no impact on the perfor-

mance measurement results. For further explanations, the inter-

ested readers can refer to the IETF drafts [22], [23] and [24].

3. Testing environment

Generally, when we need to recompute a CGA (e.g. in case a

node is moving from one network to another), only the subnet

changes: this change involves recomputing only hash1 (and not

hash2). Also, the Public key does not have to be recomputed

each time. However, in our testing platform, we are measuring

the time needed for the very first CGA generation. As such,

each time measurement includes the time needed for generating

a new Public Key, and so a new CGA. These measurements

are also interesting to assess for the CGAs to support the IP

Privacy Extension (cf. [25] and [26]) which requires fast CGA

generation.

The following time measurements are evaluated in the next

sections:

• the CGA generation time (or total CGA generation time) is

the complete duration of the generation of the CGA, from

the generation of the Public Key up to the computation of

the interface identifier including hash1 and hash2 calcu-

lus;

• the CGA verification time is the time spent verifying the

CGA, as described in section 1.1, by testing the CGA ad-

dress against the CGA Parameters Data Structure. It does

not include the RSA Signature Option verification;

• the Final modifier generation time corresponds to the time

spent computing a hash2 value that matches the condition

on the first bits;

• the RSA/ECC key generation time is the time for generating

an RSA or ECC key;

• the RSA/ECDSA signature generation time is the time

spent for computing the RSA or ECC digital signature. In

the SEND protocol, it corresponds to the generation of the

digital signature carried into the RSA Signature Option;

• the RSA/ECDSA signature verification time is the dura-

tion of the RSA or ECC Digital Signature verification. In

SEND, it corresponds to the time spent to verify the Digi-

tal Signature contained in the RSA Signature Option.

To evaluate the CGA generation and verification time, we use

an assembly instruction RDTSC (Read Timestamp Counter)

that returns the internal processor clock value expressed in CPU

cycles. By comparing two executions of this function, we can

deduce the elapsed time, in CPU cycles, and get an important

precision even on small measurements. Then by dividing this

elapsed cycles by the CPU clock frequency, we get the elapsed

time in seconds.

The major drawback of this method is that the monitored pro-

cessing can be interrupted by the scheduler whose time will be

accounted for. To avoid too many interruptions, a Linux kernel

was used in the single mode, so the number of processes and

their interactions with our synthetic test program remain very

limited.

To determine the appropriate number of measurement sam-

ples, our first idea was using the Monte Carlo estimator, but

this method was proved to be inappropriate for our application

as the evaluated time measurements were random. This ran-

domness is mainly due to the randomness of the key generation

and the final modifier calculus. That is why, we then decided

to perform the testing on a fixed 10000 samples. A later cal-

culus of variance proves that 10000 samples are enough as the

variance remains low for all our measurements.

Note that we used an RSA public key exponent equal to 3

during our testing (for a faster signature generation).

Note also that we wanted to use 512-bit ECC keys which are

equivalent to 15360-bit RSA keys. However, due to a limitation
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in the OpenSSL library which does not implement the 512-bit

ECC key, we then decided to round to the higher value 571-

bit ECC key. This security level difference is depicted into the

tables under the “15360+” RSA key.

4. CGA generation and verification time on a PC

4.1. CGA generation

This section compares the CGA generation time measure-

ments between the RSA key and the ECC key when SEC is

equal to 0 and 1. Table 2 gives the mean values computed over

the 10000 samples, on a Pentium 4 running at 2593 MHz.

SEC value 0
RSA key length (bits) 1024 2048 3072 7680 15360+
Equivalent ECC key length (bits) 163 224 256 384 571
CGA-RSA generation time 0.165630 1.047319 3.415941 91.562634 -
CGA-ECC generation time 0.009535 0.010031 0.015732 0.023823 0.129787
SEC value 1
CGA-RSA generation time 0.302924 1.218577 3.631235 91.957422 -
CGA-ECC generation time 0.103472 0.103276 0.108027 0.135732 0.265401
Final modifier gen. using RSA 0.137296 0.171260 0.215295 0.394790 -
Final modifier gen. using ECC 0.093938 0.093247 0.092297 0.111910 0.135616

Table 2: CGA generation time and final modifier generation time using RSA

and ECC keys on a Pentium 4 at 2593 MHz (in seconds)
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Figure 7: Comparison of CGA generation time between RSA and ECC keys

As depicted on Table 2, the CGA generation time using a

571-bit ECC key with a SEC equal to 1 is shorter than the gen-

eration time using a 2048-bit RSA key with a SEC equal to 0.

We can deduce that ECC increases the security level while de-

creasing the CGA generation time. Figure 7 clearly indicates

the gap between the generation of RSA and ECC based CGA.

As expected, the generation time for SEC equal to 1 is greater

than the generation time for SEC equal to 0. The difference is

due to the extra time spent for SEC equal to 1 to generate the

final modifier, that is, to compute several hash2 values until the

16×SEC leftmost bits of hash2 are equal to 0. The generation

time for SEC equal to 0 includes only the key generation time

and the hash1 computation time. For SEC equal to 1, there

is an average of 216 hash computations before finding the final

modifier. This value is confirmed by the formula 1 giving the

number of trials necessary to get the final modifier according to

the SEC value. This formula is adapted from the formula of the

complexity of a first pre-image attack on a hash function [27].

f (S EC) = 216×S EC (1)

From the formula 1, we also show that generating a CGA

with a SEC value of 2 or higher is not computationally feasible

in a timely fashion. A test on an unrepresentative set of 10 sam-

ples gave an average of 1.8 hours to generate 1024-bit long RSA

key-CGA address for a SEC value of 2. This result is confirmed

with Formula 1 which gives scaling factor of 216 between the

duration of a final modifier calculus with SEC value of 1 and a

final modifier calculus with SEC value of 2. If 0,137 sec is the

average duration of the final modifier generation for the 1024-

bit long RSA keys, and SEC value of 1 (cf. Table 2), we can

deduce a synthetic estimation of the final modifier calculus du-

ration of 2.5 hours vs 1.8 hour, which is not acceptable in a real

usage scenario.

Table 2 also depicts that the final modifier generation time

is shorter with the ECC keys than with the RSA keys. This is

due to the hash2 generation time which is shorter with ECC

because the SHA-1 hash function is calculated over the CGA

Parameters Data Structure, whom length heavily depends on

the public key length (as explained in the following section).

4.2. Theoretical analysis of the SHA-1 impact on the perfor-

mances

This section proposes to analyse the impact of the SHA-1

hash function (as required by SEND) on the CGA generation

time measurements of table 2. As stated previously, the two

digests hash1 and hash2 have to be computed when generating

a CGA. In order to further understand how significant is the

impact of SHA-1 on the CGA generation time, when an ECC

key pair and an RSA key pair is used, let us first analyse the

internal functioning of SHA-1.

The SHA-1 algorithm is divided into the two following major

phases: the preprocessing and the hash computation [28]. The

preprocessing phase starts by doing an aligning operation over

the input message, then parsing the previously padded message

into 512-bit blocks and finally setting the initial hash values.

Let us suppose that the input message has been parsed into N

blocks of 512 bits. The hash computation applies on each in-

dividual block and is composed of 4 rounds, each of them con-

taining 20 steps. This hash computation time is constant for

every block, so we can infer that the complexity of this compu-

tation is bound to the number of blocks and can be estimated to

O(N).

In the CGA context, SHA-1 applies to the CGA parameter

data structure, and the length of that structure has a direct im-

pact on the computation time of the digests. All the fields of

the CGA parameter data structure but the DER encoded Public

Key field are fixed length. As such, the table 3 reports the length

of the structure and the number of the corresponding generated
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512-bit blocks, when using different key lengths. These blocks

have been calculated using the method proposed in [28].

RSA key length (bits) 1024 2048 3072 7680 15360
DER encoded RSA public key length (bytes) 160 292 420 996 1956
CGA parameters data structure Length (bits) 1480 2536 3560 8168 15848
Number of 512 bits blocks 4 6 8 17 32

Equivalent ECC key length (bits) 163 224 256 384 571
Octets encoded ECC public key length (bytes) 66 80 88 120 170
CGA parameters data structure Length (bits) 728 840 904 1160 1560
Number of 512 bits blocks 2 2 2 3 4

Table 3: CGA parameter data structure length (in bits) and corresponding num-

ber of blocks

From the Table 3, we deduce that the hash1 and hash2 com-

putation times belong to the same range of time duration for a

1024 bits RSA key and a 384 bits or a 571 bits ECC key. We

can check that this result is verified in the Table 2. The same

remark applies for ECC keys with 163, 224 and 256-bit length

which are spilled over 2 blocks.

It is now clear that the generation time of hash1 and hash2 is

greater with RSA keys than ECC keys because RSA generally

generates more blocks (especially when the RSA key length is

greater than or equal to 2048 bits). The same remark applies to

the CGA verification procedure, as we will see in the following

section.

4.3. CGA verification

The CGA verification is the first step performed in the SEND

protocol as soon as receiving a ND message coming from a

CGA address. It is supposed to be a lightweight check before

the (heavier) RSA signature verification. The CGA verifica-

tion algorithm contains two main computational steps which

are hash1 and hash2 verification. The other steps are only quick

comparisons. The Table 4 depicts these results.

SEC value 0
RSA key length (bits) 1024 2048 3072 7680 15360+
Equivalent ECC key length (bits) 163 224 256 384 571
CGA-RSA verification time 0.000004 0.000005 0.000006 0.000009 -
CGA-ECC verification time 0.000004 0.000004 0.000005 0.000005 0.000005
SEC value 1
CGA-RSA verification time 0.000005 0.000006 0.000007 0.000013 -
CGA-ECC verification time 0.000003 0.000003 0.000003 0.000004 0.000005

Table 4: CGA verification time on a Pentium 4 at 2593 MHz(in seconds)

Similarly to the previous section, as ECC provides shorter

keys than RSA, ECC offers, as expected, some better timing

performances.

5. RSA and ECDSA signature generation and verification

times on a PC

This section presents the results relative to the RSA / ECDSA

signature generation and verification. For testing purpose, we

simulate a SEND scenario where we create a SEND protected

NS message, by first generating randomly a message having the

same length than an NS message with all the SEND options (but

the RSA signature option). The length of the messages varies

depending on the size of the public key. The resulting messages

in use for the signature benchmark are crafted to be of the same

size as the ones that would be emitted by an actual SEND [6]

implementation.

RSA key length (bits) 1024 2048 3072 7680 15360+
Equivalent ECC key length (bits) 163 224 256 384 571
RSA signature generation time 0.004568 0.022275 0.053676 0.609052 -
ECDSA signature generation time 0.002219 0.002588 0.004439 0.007338 0.042402
RSA signature verification time 0.000069 0.000165 0.000321 0.001422 -
ECDSA signature verification time 0.004398 0.003039 0.005352 0.008775 0.084884

Table 5: RSA and ECDSA signature generation and verification time on a Pen-

tium 4 at 2593 Mhz (in seconds)

Table 5 shows that the RSA signature generation time in-

creases with the key length. This is the expected result as the

signature calculus depends on the modulus length. This table

also highlights that the ECDSA signature verification procedure

always takes more time than its generation. As such, the exper-

imental results confirm the expected behavior of ECDSA [29].

However, neither RSA or ECDSA based signature generation

and verification exceed 0.5 seconds. Values exceeding 0.5

seconds would have caused the Duplicate Address Detection

(DAD) process to fail as it expects to send and receive 2 Neigh-

bor Discovery messages below 1 second (see [2]) , involving 2

signature generations and 2 signature verifications.
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Figure 8: Comparison between the RSA and ECDSA signature generation and

verification times on a Pentium 4 at 2593 MhZ

Figure 8 depicts graphically the difference between the sig-

nature verification and generation for ECDSA and RSA. For the

signature verification, RSA is even faster than ECDSA. Due to

this time difference, there could be advantages using one of the

RSA or ECDSA signature depending on the SEND model that

applies:

• in the one-to-one model, when two nodes are directly com-

municating together (e.g. to learn each others’ link-layer
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addresses), with big key sizes, ECDSA is mostly superior

to RSA on an average of signature generation/verification

operations.

• in the one-to-many model, when a router is multicasting a

lot of information on the link (e.g. to refresh the current

prefix lifetime), RSA is best suited because the RSA sig-

nature verification is faster than the ECDSA’s and globally

more nodes are likely to verify the signature rather than to

generate it.

Unfortunately, we were not able to monitor a real SEND de-

ployment to evaluate which model is more widely used. Het-

erogeneous networks where routers are using RSA algorithm

and where hosts are using ECDSA could provide a good com-

promise.

6. Performances on a Tablet PC

To have an idea of the performances of the CGA generation

times with ECC vs RSA in a resource-constrained environment,

we performed the CGA generation tests on a Tablet PC. We

used a Nokia N800 with an ARMv6-compatible processor run-

ning at 400 MHz.

As far as we know, there is no equivalence of the assembly

instruction RDTSC on ARM CPUs, so we decided to measure

the elapsed time for the CGA generation based on the function

gettimeofday() from time library. Note that this latter function is

imprecise as it measures the global generation time (including

the CPU time consumption of other background processes).

SEC value 0
RSA key length (bits) 384 512 1024 2048
(Total) CGA generation time 0.651353 1.004133 4.699501 35.484486
RSA key generation time 0.637553 0.990302 4.685756 35.470764
RSA signature generation time 0.012324 0.021701 0.114592 0.711035
RSA signature verification time 0.000522 0.000712 0.001837 0.005783
Final modifier generation time 0 0 0 0

SEC value 1
Final modifier generation time 1.761618 1.754493 2.817053 3.873690

Table 6: CGA/RSA generation time on a Nokia N800 (in seconds)

SEC value 0
ECC key length (bits) 163 224 256 384 571
Total CGA generation time 0.148385 0.169551 0.308717 0.461143 1.866542
ECC key generation time 0.079611 0.086993 0.135157 0.186858 0.654368
Final modifier generation time 0 0 0 0 0
ECDSA sig. generation time 0.028778 0.037199 0.085092 0.138247 0.604534
ECDSA sig. verification time 0.056505 0.045464 0.102846 0.168529 1.207743

SEC value 1
Final modifier generation time 1.765540 1.760574 1.760952 2.287539 2.788008

Table 7: CGA/ECC generation time on a Nokia N800 (in seconds)

Although the RSA keys of size greater than or equal to 1024

are recommended in [30], we decided for the sake of the com-

pleteness to include shorter keys in our tests. We used the 384
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Figure 9: Comparison between CGA/RSA and CGA/ECC signature generation

and verification on a Nokia N800

and 512-bit RSA keys to evaluate the key size impact on the

generation time.

Table 6 illustrates that RSA is too slow to generate a strong

enough CGA in a timely fashion. In the case where SEC is

equal to 0 (i.e. hash2 is not computed), we can see that the gen-

eration time with 1024-bit RSA keys (which should be at least

the default secure size) is greater by 3 seconds than the shorter

384 and 512-bit RSA keys. Given those results, we deduce that

it will not be possible to generate on the fly new RSA-based

CGA on lightweight mobile nodes. This prevents the use of

solutions based on document RFC 4941 [25].

To improve the CGA generation, we recommend to use some

pre-generated keys to avoid the key generation delays, so the

CGA generation time becomes dependent only on the hash1

computation time which is about 10−4 second. It should also be

noted that the pre-computation involves some key storage, that

could lead to a security issue when the nodes cannot rely on a

secure storage solution.

In the case where SEC is equal to 1, we can note that the final

modifier computation time is at least 1 second. This time du-

ration is too long in a mobility context. Furthermore, for SEC

equal to or greater than 1, we can deduce that the CGA can-

not be computed on the fly on the resource-constrained devices.

However, since the final modifier is computed only once during

the CGA generation, it should not affect the handover delays,

requiring only hash1 recomputation to fit to a new subnet pre-

fix.

Table 7 also shows, for SEC equal to 1, that the CGA gen-

eration with ECC keys cannot be executed in a timely fashion.

The final modifier generation time difference we observe be-

tween RSA and ECC is mainly due to the key length difference.

In Table 7, we notice that ECC-based CGA shows great im-

provement for the key generation delays. For larger key sizes,

the generation time is smaller than for RSA, but is still too much

important for use on a lightweight device. Smaller keys below

256 bits for SEC value of 0 provide a generation time less than

0.15 second and this can help the whole CGA generation pro-
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cessing to become seamless to the user.

As stated in the previous section, given the usage scenario

(one-to-many or one-to-one), RSA could have some advantages

over ECDSA. However, this is a first sight conclusion as the

impact of ECDSA shorter keys on the energy consumed during

wireless transmission should also be taken into consideration.

We believe it could be another point in favor of the use of ECC

in CGA. Also note that some RSA and ECC key size can not

work on these lightweight devices. As outlined in Figure 9, val-

ues over 0.5 second (over the line) indicate the key sizes that do

not perform a Duplicate Address Detection process in a timely

fashion.

To conclude this section, we recommend that lightweight de-

vices in a mobility context make use of CGA with ECC keys

and SEC value equal to 0 when the address cannot be pre-

generated beforehand.

7. Influence of a hash function on the CGA generation time

Due to the security flaws ([16] and [17]), SHA-1[28] will

soon be phased out by the NIST [31] and it is recommended to

replace it with SHA-2 family hash functions. Some on-going

works in the “CGA and Send maIntenance” Working Group

in the IETF are providing some insights about these security

issues and how CGA can be generated with a different hash

algorithm [32].

For these reasons, we evaluated the performances of some

hash algorithms in the CGA context. Tests are performed

on: SHA-256, SHA-512 [28] (current hash algorithms pro-

posed by the NIST), RIPEMD-160 [33], TIGER2 [34] and

WHIRLPOOL [35]. SHA-224 and SHA-384 are not evalu-

ated as they are truncated versions of respectively SHA-256 and

SHA-512. SHA-512, TIGER2 and WHIRLPOOL are benefit-

ting from our 64-bit processor architecture, which are very pop-

ular in recent workstations and servers. Except for TIGER2 and

WHIRLPOOL, for which we use available online implementa-

tions [36] [35], all the algorithm implementations we used are

part of the OpenSSL library [37].

For each hash algorithm, we evaluated the final modifier gen-

eration time over a basic CGA Parameters Data Structure (Fig-

ure 1) when generating the RSA-based CGA with a SEC value

equal to 1. It helps evaluating the influence of the hash func-

tions on the CPU intensive hash2 calculus. The comparative

results are given in Figure 10. Remind that SEC=1 implies an

average of 216 hash calculations (cf. Formula 1).

Figure 10 show that the final modifier generation time de-

pends on the key length. This is normal as the hash is computed

over the CGA Parameters Data Structure that contains the Pub-

lic Key. SHA-256 and SHA-512 meet our expectations as they

are known to be slower than SHA-1. SHA-512 benefits from

our 64-bit architecture and actually offers better performances

than the SHA-256 hash function. WHIRLPOOL [35] as already

stated in the literature [38], is known to be slower than SHA-

256. However, the counter-performances here are likely to be

more related to a lack of optimization in the implementation.
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Figure 10: Hash function influence on the final modifier generation time on a

Pentium 4 running at 2400 MHz (in seconds) with SEC=1

We remark that the most efficient algorithm concerning the

final modifier generation time is the currently used SHA-1 al-

gorithm. Next, RIPEMD-160 presents also interesting perfor-

mances. TIGER2 performances are close to RIPEMD-160’s

ones, but this is mostly due to our 64-bit architecture.

Currently, SHA-256 and the whole SHA-2 family (SHA-384,

SHA-512...) are being reviewed among the IETF and should be

proposed as the next hash algorithm standard instead of SHA-

1 for CGA. This decision is not based on the performances:

in our comparative results, we clearly see that SHA-256 and

SHA-512 are not the fastest ones. The choice is based on the

security level and robustness provided by SHA-2 family that

has received a thorough analysis by the NIST and among the

cryptographic community. This choice will however slow down

the CGA generation processing.

8. Improved performances with the General-Purpose com-

putation on GPU

Nowadays, inexpensive graphic cards shipped with new end-

user computers tend to be more and more powerful and are

GPGPU enabled. In the contrary, we cannot expect an end-user

to acquire some cryptographic accelerator cards. We evaluate

in this section the benefits offered by the General-Purpose com-

putations on GPUs (GPGPU), by parallelizing the CGA gener-

ation algorithm, and we analyse possible gain using the widely

deployed recent graphic card generation.

We ported the lightweight XySSL’s [39] SHA-1 implementa-

tion into the NVIDIA CUDA [40] platform. The CUDA frame-

work offers a C-like programming language to perform the par-

allel operations on graphic cards and is relatively easy to use.

The main idea here is to parallelize the final modifier’s SHA-

1 computations. As explained in section 1.1, the hash2 com-

putation is the most consuming task of the CGA generation al-

gorithm. Multiple SHA-1 hashes are computed over the CGA
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Parameters Data Structure which is slightly modified each time

the modifier value is incremented. Basically, we suggest testing

multiple modifier values at once. We barely modify the CGA’s

generation algorithm [7] to achieve parallelization as shown in

Figure 11.

The results are obtained using NVIDIA Geforce 8600GT and

NVIDIA Geforce 8600GTS graphic cards (CPU type has only

little influence here). These two cards have exactly the same

number of Multiprocessors (used to compute data) but the GTS

version has higher GPU and memory frequencies (GTS has a

GPU clocked to 675 MHz and memory running at 1000 Mhz

while the GT is limited respectively to 540 Mhz and 700 Mhz).

Due to these low end graphic cards’ limitations (small shared

memory, low number of registers, etc.), our portage of SHA-1’s

code does not fit completely in the card’s “fast” memory and

some data must be spilled over the computer local (slow) mem-

ory, involving performance losses. This drawback is partially

mitigated when scheduling multiple threads to hide the mem-

ory latency.

We performed, on each card, 500 calculus of final modi-

fier with CGA having SEC value equal to 2 and a 1024-bit

long RSA key. An average of 1351 s (approx. 22 min) was

spent to compute the final modifiers on a NVIDIA 8600 GT, vs

852 s (approx. 14 min) on the NVIDIA 8600 GTS. The time

difference is due to the GPU and memory clock frequencies.

The standard deviation for the NVIDA 8600 GT is 1300 sec-

onds (almost the same as the mean value), which highlight the

high randomness of the address generation process. These re-

sults should be compared with the approximative estimation of

2.4 hours on a Pentium 4 (see section 4). With the 8600 GTS,

the speed increases by a factor of 10. This is a serious improve-

ment, however, 14 min to generate a CGA address with a SEC

value of 2 is still too long for an end-user.

We were not able to test out the latest NVIDIA Geforce

GT200 series card, but the authors believe that this series can

perform at least 7 times faster than the tested NVIDIA. This

conjecture is held on the basis that new GT200 series contain at

least 7 times more Multiprocessors, while having faster GPUs,

more registries and a new memory management mechanism.

With GPGPU, CGA with a SEC value of 2 could become more

widely used in the next upcoming years as their generation time

could drop to few seconds.

There are currently some talks at the IETF for using the

DHCPv6 servers to generate CGA on behalf of the computa-

tionally limited nodes [41]. We can further improve this pro-

posal by embedding graphic cards, like the ones presented here,

into routers. This will permit decreasing the CGA generation

time. The very same graphic cards will also be able to serve as

cheap cryptographic accelerators for other needs of the router.

As a conclusion of the section, we note that GPGPU could

be used in conjunction with the multi-core CPUs to further im-

prove hash2 calculus. We also note that the calculus duration

of a CGA with a SEC value of 3 is supposed to be in average

216 times longer than the one with a SEC value of 2, which

means weeks of calculus with the current hardware. Unless an-

other big technological jump improves the performances, we

consider the SEC value above 3 to be out of reach of modern

computers.

9. Conclusion

CGA have been initially defined with RSA and SHA-1. RSA

with key length equal to or greater than 1024 bits is recom-

mended by the NIST for a medium security level. The gen-

eration time and the size of such keys make the use of the

RSA-based CGA for the constrained devices difficult. More-

over, larger is the key, larger is the size of transmitted packets

and worse it is for the wireless operations on battery limited

devices.

We proposed and measured the actual performances of an al-

ternative based on the Elliptic Curve Cryptography, providing

shorter keys and faster computations. With experimental mea-

surements, we did prove that the usage of ECC was an impor-

tant breakthrough for CGA, especially for constrained devices

like PDA and Tablet PC. We further evaluated the impact of the

hash functions on the CGA as the next generation of CGA is

highly likely to implement one of the SHA-2 hash algorithm

instead of SHA-1.

We then significantly reduced the generation time of higher

SEC values by introducing the GPGPU. This demonstrates that
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even a higher security could be used in the network without the

need for an expensive specialised hardware.

All of this analysis can provide serious leads for standardiza-

tion bodies such as the IETF where document such as [22], [23]

and [24] are proposed.

Future works of the authors will mainly focus on some new

usages of the CGA and SEND benefiting from the significantly

improved performances presented in this paper.
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