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Abstract In this commentary we try to make clearer the state of the art
concerning the relation between mechanical contact interactions and the
di¤erent notions of stresses. We emphasize the importance of the concept of
virtual displacements. Its role has been recognized in Mechanics and in Con-
tinuum Mechanics long ago (see e.g. [59], [45], or [12], [13]) and it is central
as well when starting with an expression of the power expended by inter-
nal stresses and deducing the form of contact interactions as when starting
with some form of the contact interactions and developping a representa-
tion theorem for these contact interactions based on the Cauchy tetrahedron
construction.
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1 Short review of some relevant papers on the subject

In the last �fty years it has been widely recognized that in order to describe a
wealth of physical phenomena it is needed to introduce mechanical theories
which take into account contact actions more complex than those considered
in continuum mechanics after Cauchy. Some well-known contributions in
this regard are given in the papers [56], [37], [26], [55], [54].

More recently it has been recognized that second or even higher gradient
models are needed when continuum models are introduced for describing
systems in which strong inhomogeneities of physical properties are present
at eventually di¤erent lenght scales (see e.g. [2],[44],[40]).

Actually, immediately after the development of the Cauchy format of
continuum mechanics, a �rst relevant generalization in the aforementioned
direction was conceived by Eugène and François Cosserat, but their e¤orts
were not continued until late in XX century. Cosserat described continuum
bodies in which contact actions were to be modelled not only by means
of surface forces, but also by means of surface couples. The conceptual
di¤erences between Cauchy-type continuum mechanics and Cosserat-type
continuum mechanics were relevant, and the second one could not be ob-
tained by means of simple modi�cations of the �rst one. The remarkable
mathematical di¢culties confronted by Cosserat rendered their work di¢-
cult to be accepted, and for a long period their results were nearly com-
pletely ignored. This circumstance can be easily understood: the structure
of Cosserat contact actions is complex. Indeed in Cosserat continua one
needs, together with Cauchy stress tensor also a Couple stress tensor, for
representing contact Couples. Moreover Cosserat used systematically the
Principle of Virtual Work in a form which, although they recognized to go
back at least to Lagrage, has been only recently recovered see e.g.[25], [41].
It is an interesting topic by itself to discuss how many times the Principle of
Virtual Works and various Minimization Principles have been rediscovered
and reformulated: we limit ourselves to cite [45] or [59] for further details.

2 A �rst method for extending Cauchy model for continuous
bodies

In order to develop continuum mechanics going beyond the Cauchy format
it is possible to use at least two di¤erent approaches.

The most simple of them, used also by Cosserat, starts by postulating
how the power expended by internal actions in a body depends on the "vir-
tual" velocity �eld and its gradients. Starting from this postulate one can
deduce, by means of a successive application of the theorem of divergence,
i.e. by means of several iterative integrations by parts, what are the con-
tact actions which can be exerted at the boundary of the considered body.



Title Suppressed Due to Excessive Length 3

Hence, this method starts from the notion of stress tensors and deduces
from it the concept of contact actions.

It is based on the D�Alembert Principle of Virtual Work and has been
resumed by Paul Casal ([?]) and subsequently by Paul Germain, in his en-
lightening papers ([26],[27]). This Principle is undoubtedly a great tool in
Mechanics which has not been improved since its original �rst and "stan-
dard" formulation. It is not clear in which sense [25] use a "non-standard"
version of the Principle of Virtual Work (or Virtual Powers). Indeed already
Cosserat assumed that the internal power expended on virtual velocities
equals the external power (including inertial terms) for every virtual veloc-
ity �elds and for every subbody (suitably regular) of considered deformable
body.

This is generally a position generally mantained in the literature. For
instance in [3], adopting the same spirit as in [14] and in [15], it is stated
that:

In particular, the approach by means of the theory of distributions, men-
tioned by Germain himself but not fully developed, is here adopted from
the beginning. Clearly, in order to obtain deeper results such as the Cauchy
Stress Theorem, some extra regularity has to be assumed. Note that a power
depends in general from two variables, the velocity �eld and the subbody. So
it is a bit more complex than a mere distribution.

Indeed in [14] and in [15] the starting assumptions concerning contact
actions postulates that for every subbody of considered body the powers
they expend on a generic velocity �eld is a distribution (i.e. a linear and
continuous functional on velocity �elds). Subsequently in [14] and in [15] it is
postulated the quasi-balance of power (as formulated by [39]) and by using
di¤erent polynomial test velocity �elds and di¤erent families of subbodies,
the Cauchy construction for stress tensors is obtained.

The works of Germain have been taken up again and again, (e.g. in
[25],[43],[41]) often rephrasing them without introducing any notable ame-
lioration.

Germain, following a tradition set in France by André Lichnerowicz,
uses the original version (and more e¢cient) absolute notation due to Levi-
Civita. This version, at least in this context, is the most adapted, as many
objects of di¤erent tensorial order are to be simultaneously handled. Some-
times those who are refraining from using the most sophisticated version of
Levi-Civita absolute Calculus are lead to refer to the needed stress tensors
and the related contact actions indistinctly using the names "hyperstresses"
and "hypertractions". On the contrary Germain tries to convey through the
nomenclature chosen the physical meaning to be attached to the new math-
ematical objects he is introducing: for instance he calls "double forces" the
actions which are expending powers on the velocity gradient in the direc-
tions which are normal to the surfaces of Cauchy cuts. Germain then decom-
poses these "double forces" into "couples" and "symmetric double forces"
recognizing that couples were already introduced by Cosserat. Germain�s
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notation supports the mechanical and physical intuition contrarily to what
does a generic nomenclature based on some "hyper" pre�xes.

3 A second method for extending Cauchy model and its
relationship with the �rst

The second method starts by postulating the type of contact action which
can be exerted on the boundary of every "regular" part of a body and
then proceeds by proving a "representation" theorem for the considered
class of contact actions: the existence of stress tensors is deduced from the
postulated form of contact actions and a "balance-type" postulate, based on
physical grounds. In other words: to the "constitutive" assumption chosen
for characterizing the class of contact action under consideration one must
add a Principle of Balance: the contact actions have to be balanced by a bulk
action. This is the method followed by Cauchy which is often considered as
the foundation of Continuum Mechanics. The important contribution due
to [39] is to have introduced the assumption of "quasi-balance" for powers,
which generalized, in the most suitable way, the Euler-Cauchy Postulate
used in Cauchy continum mechanics.

3.1 The mathematical di¢culties presented by this second method

As remarked explicitly in [15],[14],[3],[33] the mathematical di¢culty to be
confronted in order to establish a �rm foundation for this second method
relies on the dual dependence of power functional on velocity �elds and on
subbodies of the considered continuum. It is obvious, starting from physical
plausibility considerations, that power functionals must be regarded as dis-
tributions on the set of test functions represented by the admissible velocity
�elds (see e.g. [26], [15], [3]).

A foundamental results due to Schwartz allows for representing distribu-
tions (with compact support) as �nite sums of derivatives of measures [46].
When (as it is important for considering contact actions) the distribution
is concentrated on a smooth submanifold of threedimensional Euclidean
space, then the derivatives to be considered are only those "normal" or
"transversal" to the submanifold itself. Unfortunately in Schwartz it is not
considered a representation theorem for families of distributions "attached
to" the family of measurable subset of a given measurable set.

The e¤orts of [3], [21], [33], [21] are directed, with remarkable results, to
the search of such a generalized Schwartz representation theorem.

Also of relevance is the problem arising when one must de�ne generalized
"stresses" having a �ux which allows the representation of contact action
and a divergence to be used for formulating bulk "local" form of balance
laws.

This problem has been also addressed with some interesting results (see
[32], [22], [53], [53])
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3.2 The two methods can be reconciled.

During a long period the �rst method has been rejected by many researchers
and it is lucky for advancement of science that its power has been, in the
last decade, �nally nearly unanimously accepted.

Moreover the two methods can be reconciled. Indeed the equivalence of
the two methods has been explicitly established by Cauchy him-self and
precised by Noll, for First Gradient Theories.

The same equivalence has been proven for the so called Second Gradient
Theories, i.e. for theories in which the internal power is a second order distri-
bution: this results has been obtained in the sequence of papers [39],[14],[15].
The relationship between the concept of contact line force and surface dou-
ble forces was there mathematically proven obtaining also a representation
formula relating the two concepts.

3.3 The �rm foundations of second gradient theories

During the last century, second gradient theories have been the subject of
controversies. The works of E. and F. Cosserat have been underestimated
and misunderstood because these controversies were not solved in a su¢-
ciently clear way until the papers of Paul Germain.

These controversies were due to two facts : the �rst is that second gra-
dient theories are not compatible with the concept of stress as formalized
by Cauchy. The second is the strong belief of a large part of the mechan-
ics community that Cauchy stress was the only and universal framework in
which all theories of continuous material should take place. To overcome the
di¤uculties di¤erent more or less exotic concepts were invoked. Let us quote
the notion of interstitial working [23], the theory of extended thermodynam-
ics [38], the notion of con�gurational forces [29], the so-called non-standard
principle of virtual work [25].

Now time has come when the solid foundation of second and higher
gradient theories must be recognized. Unfortunately it seems that the fun-
damental connection between the two aforementioned methods (and the
available proof of the existence of this connection at least for those mate-
rials which were called by Germain second gradient materials) seems still
not well understood in part of the mechanics community, while it has been
considered as established by others (see e.g. [35], [36], [24]).

� The "full set of representation formulae not only, as is relatively easy, for
tractions and hypertractions in terms of stresses and hyperstresses, but
also, conversely, for stresses and hyperstresses in terms of di¤used and
concentrated tractions and hypertractions ... generalizing the correspond-
ing formulae for simple materials" invoked in [43] has been established
by Paul Germain ([26],[28]) in the seventies (extending the results of
Casal [9], [10]) and has su¢ciently and with more or less succes been
rephrased or exploited (see e.g. [31],[50], [8], [51],[17],[18], [25]) and even
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recalled in the textbook [24]. Applications of second gradient theories to
the mechanics of porous media is proposed for instance (but many other
references could be given) in [11], [48] [19] where many results listed as
novel in [43] are exploited.

� The fact that "since we work in a nonvariational setting, our results
apply whatever the material response" is already contained in the cited
original papers of Paul Germain. So is the fact that "without edge trac-
tions, both internal and external it would not be possible to arrive at
the complete representation formula for the hyperstress in terms of hy-
pertractions " or the "interesting feature of second-gradient materials is
that, if bodies and subbodies having non everywhere smooth boundary are
considered, then edge forces, i.e., line distributions of hypertractions are
to be expected ".

� The characterization of the class of second gradient materials for which
contact edge action are always vanishing was already shown and ex-
ploited before the paper [43], contrarily to what is there stated: we
provide a new proof of the following not very well-known fact in the
theory of second-gradient materials: if edge tractions are constitutively
presumed null on whatever edge, then the hyperstress takes a very special
form whose information content is carried by a vector �eld. We surmise
that inability to develop edge interactions be characteristic of certain
second-gradient �uids, an issue that we take up in a forthcoming article
(..), continuing a line of thought proposed by Podio-Guidugli. Indeed,
this results, rather obvious, is obtained in exactly the same way in [15],
Remark 3, pag. 48 and systematically exploited in the applications of
second gradient theory presented in [19], [48]. Some interesting consid-
eration about this point are already available in [51] togheter with some
consideration about third gradient �uids. Remark that Equation (35) on
pag. 173 in [43] for instance is exactly equal to Equation (18) pag. 6612
in [47] or to Equation (13) pag.107 in [49].

� Contrarily to the claim that "to the knowledge" of the authors of [43] "a
rigorous interaction theory accommodating such a nonstandard behavior
remains to be constructed; interesting attempts in this direction have been
carried out by Dell� Isola and Seppecher", we are not aware of any precise
criticism of the rigorous interaction theory which has been developped
in [14] and [15]. For sake of simplicity we have only considered in these
papers contact interactions the type of which limits the theory to a
second gradient one. We show in the forthcoming work [16] how easy it
is to extend the study to any type of distribution interactions and get
thus any higher order gradient theory.

� It is not clear if the authors [43] are really aware of the assumptions and
theorems presented in [39], [14] and in [15] which supply, in our opin-
ion, the demanded Cauchy-like construction for second gradient mate-
rials. Indeed in [43] one reads "Relations (7) and (8) are also arrived
at when, as is customary, only tractions on body parts are introduced,
because stress is constructed à la Cauchy as a consequence of balance
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of tetrahedron-shaped parts. The Cauchy construction is the pillar on
top of which the standard theory of di¤use (i.e., absolutely continuous
with respect to the area measure) contact interactions stands. For com-
plex (i.e., nonsimple) material bodies, a Cauchy-like construction has
been attempted often, but not achieved so far, to our knowledge. On the
contrary in the Conclusions of the paper [15] one can read: The most
important concepts introduced in this paper are: (i) the concept of quasi-
balanced power of contact force distribution and (ii) that of prescribed
shapes. They allowed us to develop a system of axioms �à la Cauchy�
for continua in which edge contact forces are present.

The connection between internal power and the power expended by ex-
ternal actions has not been yet completely established for a generic Nth Gra-
dient Theory, although interesting and useful considerations can be found
in [20], and also in [42].

In [16] and in a forthcoming paper it will be shown how the work started
in ([39], [14], [15]) can be continued. The aim in these lecture notes will be
to give a �rm framework to those researchers which need to deal with more
complex contact actions (for instance "wedge forces"), wish to refrain from
using the Principle of Virtual Power and instead prefer to adopt an approch
based on "contact interactions" rather than on "virtual power expended on
virtual velocity �elds". Indeed the original ideas presented in ([15]) can be
rather easily extended in order to treat the case of all types of contact distri-
butions: more precisely the Cauchy tetrahedron argument can be generalized
to prove that all types of mechanical contact actions can be represented in
terms of generalized stress tensors.
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