Semidefinite programming for optimizing convex bodies under width constraints

Abstract : We consider the problem of minimizing a functional (like the area, perimeter, surface) within the class of convex bodies whose support functions are trigonometric polynomials. The convexity constraint is transformed via the Fejer-Riesz theorem on positive trigonometric polynomials into a semidefinite programming problem. Several problems such as the minimization of the area in the class of constant width planar bodies, rotors and space bodies of revolution are revisited. The approach seems promising to investigate more difficult optimization problems in the class of three-dimensional convex bodies.
Type de document :
Article dans une revue
Optimization Methods and Software, Taylor & Francis, 2012, 27 (6), pp. 1073-1099


https://hal.archives-ouvertes.fr/hal-00495031
Contributeur : Didier Henrion <>
Soumis le : jeudi 24 juin 2010 - 17:00:33
Dernière modification le : mardi 22 mars 2016 - 01:23:18
Document(s) archivé(s) le : lundi 27 septembre 2010 - 11:53:10

Fichiers

supsdp.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00495031, version 1

Citation

Terence Bayen, Didier Henrion. Semidefinite programming for optimizing convex bodies under width constraints. Optimization Methods and Software, Taylor & Francis, 2012, 27 (6), pp. 1073-1099. <hal-00495031>

Exporter

Partager

Métriques

Consultations de
la notice

344

Téléchargements du document

141