

The state of change of Erica scoparia L. heathland through cattle grazing and oak colonization

Sophie Gachet, Corinne Sarthou, Jacques Bardat, Jean-François Ponge

▶ To cite this version:

Sophie Gachet, Corinne Sarthou, Jacques Bardat, Jean-François Ponge. The state of change of Erica scoparia L. heathland through cattle grazing and oak colonization. Revue d'Ecologie, Terre et Vie, Société nationale de protection de la nature, 2009, 64 (1), pp.3-17. hal-00494632

HAL Id: hal-00494632 https://hal.archives-ouvertes.fr/hal-00494632

Submitted on 23 Jun 2010

HAL is a multi-disciplinary open access L'a archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. Public Domain

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	The state of change of <i>Erica scoparia</i> L. heathland through cattle grazing and oak
2	colonisation
3	
4	Sophie GACHET ¹ , Corinne SARTHOU ¹ , Jacques $BARDAT^2$ and Jean-
5	François PONGE ^{1,*}
6	
7	¹ Muséum National d'Histoire Naturelle, CNRS UMR 7179, 4 avenue du Petit-Château,
8	91800 Brunoy, France
9	
10	² Muséum National d'Histoire Naturelle, CNRS UMR 5202, 57 rue Cuvier, 75231 Paris
11	Cédex 05, France
12	
13	*Correspondence address: Muséum National d'Histoire Naturelle, CNRS UMR 7179, 4
14	avenue du Petit-Château, 91800 Brunoy, France; Tel: +33 1 60479213; Fax: +33 1
15	60465719; E-mail: ponge@mnhn.fr
16	

17 SUMMARY

18 Our aim was to ascertain whether changes in plant species richness and other vegetation 19 features occur in heath land dominated by Erica scoparia L. (besom heath) through the 20 impact of cattle grazing and oak colonisation. Our study took place in the Brenne 21 Regional Natural Park (center of France) where this ericaceous species, locally called 22 'brande', is now considered of patrimonial interest and protected at regional and 23 European level. We selected 10 sites in a private property, covering a wide range of 24 ecological conditions (shallow and deep soils, grazed and non-grazed besom heath, pure 25 and oak-colonised besom heath). Vegetation (percent occupancy of plant species) was sampled in May-June 2006 (105 samples, 1m² each) and the impact of shrub and tree 26 27 vegetation on plant biodiversity was assessed by correspondence analysis (CA) and total 28 and partial Mantel tests (Monte-Carlo procedure). An environmental gradient of 29 decreasing light incidence from grazed heath to old heath to oak-wood was depicted, 30 along which a number of ecological, morphological and physiological plant traits 31 (growth habits, Ellenberg values, Grime strategies, Tolerance Index of the plant 32 community) were observed to vary. Species richness decreases when ericaceous or, 33 although to a lesser extent, oak cover increase and it increases under low to moderate 34 cattle grazing. Consequences for the sustainable management of 'brande' are discussed.

35

<u>Keywords</u>: ericaceous heath, plant traits, plant biodiversity, Ellenberg values, Grime
 strategies, Tolerance Index

38

39 **RÉSUMÉ**

40 Le but de notre étude est de mettre en évidence les modifications de la richesse
41 spécifique et d'autres caractères de la végétation qui surviennent sous l'influence du

42 pâturage et de la colonisation par le chêne dans les landes dominées par Erica scoparia 43 L. (brande). L'étude a été menée dans le Parc Naturel Régional de la Brenne (France, 44 Région Centre) où cette Éricacée est aujourd'hui considérée comme patrimoniale et 45 protégée au niveau régional et européen. Dix sites ont été choisis au sein d'une propriété privée, couvrant un large éventail de conditions écologiques (sols superficiels et 46 47 profonds, brande pâturée et non pâturée, pure et envahie par le chêne). La végétation (pourcentage d'occupation de l'espace par les différentes espèces végétales) a été 48 49 échantillonnée en mai et juin 2006 (105 relevés d'1 m²) et l'impact de la végétation 50 arbustive et arborée sur la biodiversité végétale a été mis en évidence à l'aide de 51 l'analyse des correspondances (AFC) et de tests de Mantel totaux et partiels (méthode 52 de Monte-Carlo). Un gradient décroissant d'incidence de la lumière a été mis en 53 évidence depuis la brande pâturée jusqu'à la brande âgée puis la chênaie, en rapport 54 avec la variation de nombreux traits écologiques, morphologiques et physiologiques 55 (types physionomiques, indices d'Ellenberg, stratégies de Grime, indice de tolérance de 56 la communauté). La richesse spécifique décroît à mesure de l'extension des Éricacées 57 ou, dans une moindre mesure, de celle du chêne et s'accroit sous pâturage faible à 58 modéré. Les conséquences pour la gestion durable de la brande sont discutées.

59

Mots-clés: lande à Éricacées, traits végétaux, biodiversité végétale, indices d'Ellenberg,
stratégies de Grime, indice de tolérance

62

63 Introduction

64

65 *Erica scoparia* L. (besom heath) is a tall shrub species which dominates mesic 66 heathlands of South-western France and North-western Spain (Bartolomé *et al.*, 2005).

67 On poorly fertile soils, it establishes spontaneously by seed in grassland after agricultural abandonment and before oak colonisation (Perrinet, 1995). Once 68 69 established, this tall ericaceous shrub (2-3m height) grows vegetatively and resprouts 70 after cutting. It forms dense clumps in the shade of which a 'forest' environment is 71 created. Given the poor pastoral value of ericaceous heath and its richness in 72 allelochemicals (Ballester *et al.*, 1982), fire was used to suppress it at least temporarily 73 for the sake of sheep or cattle grazing (Gimingham et al., 1979; Bartolomé et al., 2005). 74 However, E. scoparia was also and is still cultivated for traditional purposes (broom, 75 fencing manufacture or roof making), thereby contributing to its widespread occurrence 76 in the temperate Atlantic region, especially on former agricultural land (Perrinet, 1995; 77 Bartolomé et al., 2005).

78

79 In the Brenne Regional Natural Park (Indre, Centre, France), heathland 80 dominated by E. scoparia, locally called 'brande' (the name indicate both the plant and 81 the community), covers wide areas of land not managed for agriculture (Rallet, 1935). It 82 is now protected, according to European policies for the conservation of heathland 83 habitats (European Council Directive 92/43). However, the conservation value of 84 'brande' imposes to preserve it from spontaneous colonisation by several oak species 85 [Ouercus robur L., O. petraea (Matt.) Liebl., O. pubescens Willd. and their hybrids] 86 could occur. Cutting, moderate grazing or prescribed burning are used for the 87 management of E. scoparia heathland, which is considered of a higher patrimonial 88 interest, when at an early successional stage, than the succeeding old heath and oak-89 wood stages (Gaudillat, 1997). In the particular landscape of 'Grande Brenne' (60,000 90 ha, included in the Brenne Natural Park) hard sandstone outcrops of poor agricultural 91 value, locally called 'buttons', are often covered with a dry variant of E. scoparia heath,

92 with common heather (Calluna vulgaris L.) and bell heather (Erica cinerea L.) as 93 companion species (Rallet, 1935). Colonization by oak is more difficult on 'buttons', 94 due to shallow soil conditions, and some of these outcrops appear devoid of any shrub 95 vegetation, with an abundant and diversified herb, moss and lichen vegetation 96 (Gaudillat, 1997). 'Buttons' are surrounded by more mesic environments, most often 97 used for pasture, with stagnant water during winter and spring months (Rallet, 1935). 98 Other important components of the Grande Brenne landscape are numerous ponds, 99 traditionally created from the Middle Age for the need of carp breeding.

100

Our aim was to ascertain whether changes in plant species richness and other vegetation features occur in *E. scoparia* heath through the impact of cattle grazing and oak colonisation. The negative impact of dense ericaceous heath on plant species richness has been often recorded (Barclay-Estrup & Gimingham, 1969; Gimingham *et al.*, 1979; Miles, 1979) and we hypothesized that this detrimental effect could be alleviated under either moderate grazing by cattle or colonisation by oak.

107

108 Methods

109

```
110 Study sites
```

111

The present study was done in a private property (Les Vigneaux, Mézières-en-Brenne, Indre), where the traditional land use of Grande Brenne has been maintained to a large extent, displaying a variety of typical environments: 'buttons' with shallow soils are let covered with spontaneous scrub and forest vegetation while the surrounding land (meadows and ponds) is devoted to extensive cattle pasture and to fishing. Such 117 practices have been widely maintained in Grande Brenne for several centuries 118 (Trotignon & Trotignon, 2007). The landscape includes two 'buttons' covered with 119 grazed or non-grazed ericaceous heath and woodlots of natural oak and planted pine and 120 poplar. Ponds and meadows are also present but they were not included in our study. 121 We selected ten sites (Fig. 1) covering the range of variation of non-agricultural land, 122 from grazed heath to oak woodland, thus expressing a gradient of decreasing opening of 123 the environment and increased vertical stratification (Table 1). They were chosen on the 124 base of a previous map of vegetation done by F. Pinet (personal communication) and 125 our own observations on plant communities. Soils were classified as shallow or deep 126 whether they were less or more than 20cm deep. Two intensities of grazing could be 127 ascertained from the morphology of besom heath: in BP1 bushes kept more or less their 128 natural erected form, while in BP2 they exhibited a typical conical shape resulting from 129 the selection of twigs of the year by cattle. BNP did not exhibit any sign of cattle 130 pressure, being located on Button 2, from which cattle was excluded. BA1, BA2 and BA3 were old besom heath sites, hardly accessible and not used by cattle. 131

132

133 The elevation is around 120m a.s.l., with an undulating relief due to an 134 alternation of 'buttons' and ponds. The climate is Atlantic, mild oceanic, with a mean 135 annual temperature of 11°C and a mean annual rainfall of 700mm. Soils are highly 136 heterogeneous, varying from Lithosols (top of 'Buttons') to Gleysols (pond shores, not studied here). According to data on BP1, BP2 and BA1 (Benoist, 2006) the topsoil of 137 138 pastured and old heath is acid ($pH_{water} \sim 4.5$) and moderately fertile (C/N ~18). These 139 features are quite similar to those of woodlots ($pH_{water} \sim 4.4$, C/N ~19) but differ from 140 those of pastures (pH_{water} ~ 4.9, C/N ~14). The Humus Index (Ponge & Chevalier, 2006)

141 varies to a great extent, from 1 (Eumull) in BP1 to 5.8 (Eumoder) in average in BP2142 (Benoist, 2006).

143

144 Sampling procedure

145

146 Stratified sampling of vegetation took place in June 2006. The sites CHM1, CHM2, BSF1, BSF2, BA3 and BA2 were sampled as follows: four 1m² squares were disposed 147 at each angle of a 10 x 10m square and an additional $1m^2$ square was placed at the 148 149 centre. Each unit square was divided into 25 sub-units according to a 20cm grid, 150 allowing to score plant species by counting the number of sub-units where they were 151 found (ranging from 0 to 25) which was an estimate of their occupancy. When trees 152 were present the projection of their crown was used for the calculation of their score. 153 Only four unit squares could be positioned in BA3, one corner being omitted by lack of 154 space. The choice of a small and constant plot size for our stratified sampling was 155 justified by the need to measure plant species richness at a very local level, and to 156 compare it among different ecosystem types.

157

BNP was sampled along eight transect lines radiating from a central post. Unit squares were positioned each 4m. The number of unit squares along a given direction varied from 2 to 5, totalling 29 samples.

161

BP1, BP2 and BA1 were sampled by positioning unit squares each 6m along
several rows placed 7m apart, the total number of samples varying according to the site
shape.

Differences in sampling design were mainly due to topographic variation and the need to embrace most visible intra-site heterogeneity. However, distances between unit squares within each site remained of the same order of magnitude (4 to 7m), and allowed to embrace the whole area covered continuously by a given vegetation type.

170

171 Mosses and vascular plants were identified at the species level whenever 172 possible (Table 2).

173

174 Data analysis

175

Species richness was calculated as the number of plant species found in each $1m^2$ unit 176 177 square (Table 1). We used species richness at the plot scale (a small-scale community 178 attribute) as a measure of species coexistence (a small-scale community process), considering that the more species co-occurring at a very small-scale (1m²), the less 179 180 negative interactions between them (Zobel, 1997; Reitalu *et al.*, 2008). Beta diversity β_w (Whittaker, 1960) was calculated as the total number of plant species found in a given 181 182 site divided by the mean number of species in unit squares. We used it as an estimate of 183 mosaic heterogeneity of the plant cover.

184

Plant species were classified into several groups according to their growth habits: mosses, grasses, forbs (non-grassy herbs), legumes (here only Fabaceae), ericaceous shrubs, non-ericaceous shrubs, trees (here only oak) and lianas. The percent occupancy of a given plant group per unit square was estimated by dividing the maximum number of sub-units occupied by a species member of this group by the total number of sub-units (25).

192 Ellenberg indices (Light, Moisture, Reaction and Nitrogen) were attributed to 193 each species (Table 2) using data for British vascular species (Hill et al., 1999) 194 completed for species by online data (MAVIS 2000, moss 195 http://www.ceh.ac.uk/products/software/mavis/download.asp). Most identified species 196 were present in the British data base (Table 2). They were taken into account in the 197 calculation of average Ellenberg indicator values (Diekmann & Lawesson, 1999) per 198 unit square. Species were not weighted by percent occupancy, according to Wamelink & Van Dobben (2003) and contrary to suggestions made by Diekmann (2003), because 199 200 we thought that the percent occupancy was too sensitive to growth habits, and may 201 confound habitat preferences. The same method was applied to the three strategies 202 Competitive ability, Stress tolerance and Ruderalness (Grime, 1987). Grime strategies 203 were also found in the MAVIS data base with the exception of moss species and some 204 vascular species (Table 2). Ellenberg indices were used to describe habitat preferences 205 and Grime strategies to describe life-history traits.

206

207 Correspondence analysis (CA) was used to discern trends in the distribution of 208 plant species across the 10 investigated sites (Greenacre, 1984). This indirect gradient 209 method was chosen because of its ease to discern trends in matrices of count numbers 210 (Benzécri, 1969; Kenkel, 2006). However, it was slightly improved, as explained below. 211 Species present in less than two samples were omitted from the analysis, because they 212 were not judged very informative. Species were coded as in Table 2 and their percent 213 occupancy in the different samples was used to built a data matrix crossing 79 species 214 as rows (active variables) and 105 samples as columns. Passive variables were added as 215 additional lines: soil (shallow or deep, each coded as 1 or 0), sites (10 sites, each coded

216 as 1 or 0), species richness per sample (number of species), growth habit occupancy 217 (eight types, each in percent), average Ellenberg indices (4) and Grime strategies (3) per 218 sample (each in percent). All variables (active and passive) were reweighted and 219 refocused (variance equal to 1 and mean equal to 20), in order to (i) avoid advantaging 220 rare species, (ii) interpret factorial coordinates of variables in terms of their contribution 221 to the axes and (iii) allow mixing data of varying type (Fédoroff et al., 2005). 222 Additional variables with floating values were doubled (X' = 40-X, X being the original 223 value, X' the new, conjugate value), each variable being represented by two points, one 224 for its higher values (original values), the other for its lower values (conjugate values), symetrical around the origin of the axes, with a gradient between them (Fédoroff et al., 225 226 2005). The choice of 40 was justified by the need to avoid negative values, but it has no 227 effect on the calculation of eigen values.

229 The first axis of CA was used to measure the tolerance of the different plant 230 species to overall environmental influences, or niche width (McNaughton & Wolf, 231 1970). For each plant species the variance of CA coordinates along Axis 1 was averaged 232 over all samples, each sample being weighted by the percent occupancy of the species. 233 The higher was the variance the higher was the tolerance of the species to the 234 environmental variation depicted by Axis 1 of CA. The average tolerance of the plant 235 community or Tolerance Index (Dolédec et al., 2000) was calculated by averaging the 236 unweighted tolerance value of the different plant species found in each sample.

237

Given that our data could be thought at first sight to be autocorrelated (samples taken in the same site are not independent), correlation was tested by Signed Mantel tests (Legendre & Legendre, 1998; Oberrath & Böhning-Gaese, 2001). For that purpose geographical and ecological distance matrices were built. The ecological distance between two samples was measured by the signed (algebraic) difference in the value of a parameter (for instance the percent occupancy of a given species or group of species or Axis 1 of CA). The correlation between two distance matrices was calculated as the product-moment correlation coefficient, which was then tested by Monte-Carlo simulation. Partial Mantel tests were used to discern possible causal relationships within a set of self-correlated variables (Legendre & Fortin, 1989).

248

All statistical treatments were performed with XLStat Pro[®] version 2007.5 (Addinsoft[®]).

251

252 **Results and discussion**

253

254 Within-site spatial autocorrelation

255

256 Species richness of unit squares and percent occupancy of ericaceous vegetation were 257 used to test for the existence of within-site spatial autocorrelation (between-site 258 autocorrelation being considered trivial in our study). Only sites with a higher number 259 of unit squares (BP1 with 17 samples, BP2 with 20 samples and BNP with 29 samples) 260 were considered. Signed Mantel correlation coefficients r_M between geographic distance 261 and species richness showed a negative spatial autocorrelation of species richness in the 262 more pastured heath BP2 ($r_M = -0.21$, P < 0.01): nearby unit squares differed more than 263 null expectation, i.e. there was a mosaic of species-rich and species-poor zones at a 264 scale ~6-7m. A positive spatial autocorrelation was detected in the non-pastured heath BNP ($r_M = 0.12$, P < 0.05), showing the existence of patches of species-rich and species-265

poor vegetation at a scale in excess of 6-7m (nearby samples differed less than remote samples). No spatial autocorrelation was detected in the slightly pastured heath BP1 (r_M = 2.10⁻¹⁷, P = 0.98), showing the absence of species-rich and species-poor vegetation patches at least at the scale of the sampling grid (\geq 6-7m).

270

271 Contrary to species richness, the percent occupancy of ericaceous vegetation, as 272 well as that of *E. scoparia* alone, did not show any spatial autocorrelation at the scale of 273 the sampling grid.

274

275 The gradient of floristic composition depicted by Correspondence Analysis

276

277 Most significant variation in the floristic composition was depicted by Axis 1 (10% of 278 the total variation), along which all plant species were regularly distributed. Axis 2 279 (7.6% of the total variation) corresponded to only one sample taken in BP2, and thus 280 was not considered. Axis 1 correlated well with all vegetation parameters measured at 281 the community level (Table 1). Highest correlation values were with Tolerance Index 282 and Light Index, 60% and 52% of the total variation of which being depicted by Axis 1, 283 respectively (Fig. 2). The Light Index decreased while Moisture, Reaction and Nitrogen 284 Ellenberg indices increased when Axis 1 values increased. Grime strategies 'Stress 285 tolerance' and 'Ruderalness' decreased while 'Competitive' ability increased when Axis 286 1 values increased. Local species richness and beta diversity decreased when Axis 1 287 values increased. The percent occupancy of mosses, legumes, ericaceous and nonericaceous shrubs decreased while that of grasses, oak trees and lianas increased when 288 289 Axis 1 values increased. This was reflected in the projection of passive variables along 290 Axis 1 (Fig. 3). All vegetation parameters negatively correlated with Axis 1 were

291 projected on the negative (lower) side, while those positively correlated were projected 292 on the positive (upper) side, as expected. In addition, shallow soil was projected far 293 from the origin on the negative side, the contrary for deep soil, and the 10 sites were 294 classified in the following order, from negative to positive values of Axis 1: BP2 < BP1 295 < BNP < BA3 = BA2 <, BA1 = BSF2 < BSF1 = CHM1 < CHM2. We interpreted Axis 296 1 as a gradient of stability of the ecosystem, from pastured heath to oak-wood, 297 associated with increasing soil thickness and fertility, the latter being indirectly 298 ascertained from (i) Ellenberg indices (less light, more nitrogen, more moisture, less 299 acidity), (ii) Grime plant strategies (less ruderals and stressors, more competitors) and 300 (iii) niche width (increasing Tolerance Index of the community).

301

302 More woody species were projected on the positive side of Axis 1 (Fig. 4), while 303 more herb species were projected on the negative side of this axis. The increase in the 304 number of woody species and the decrease in the number of herb species along Axis 1 305 contrasts with the absence of any significant correlation between Axis 1 and percent 306 occupancy by forbs (Table 1, Fig. 3) and the weak (although significant) correlation 307 between Axis 1 and percent occupancy by grasses. This means that although more forbs 308 and grasses were present in more open environments (negative side of Axis 1), they 309 occupied more restricted areas than under higher vegetation (positive side of Axis 1), 310 thus giving them low scores of occupancy.

311

Two species of patrimonial interest were present in our samples: *Arenaria montana* L., which is protected locally, and *Halimium umbellatum* (L.) Spach., which is protected regionally (Pinet, 2005). Both species were projected far from the origin, on the negative side of Axis 1, i.e. they were typically present in pastured heath. No invasive species was found in the investigated sites, which are in a fairly good state ofnaturalness (Pinet, personal communication).

318

319 It may be questioned whether the main gradient depicted by Axis 1 of CA was a 320 potential trajectory of the ecosystem (from pastured heath to oak forest) or the 321 juxtaposition of separate habitats. A nearby wet meadow with grasses and rushes was 322 excluded from our study because it did not exhibit any relationships with the vegetation 323 types used for our study, thereby restricting comparisons to well-drained sites with 324 varying soil depth. In the environmental conditions prevailing in the studied region, 325 lowland is commonly used for pasture and fish breeding, and sandstone outcrops 326 ('buttons') are abandoned to colonization by heath and oak-wood. The colonisation of 327 outcrops by oak can be observed whenever soils are at least 20 cm thick, i.e. when soils 328 were not completely destroyed by human activities (pasture, mining) or had time to 329 recover from naked bedrock (Rallet, 1935; Perrinet, 1995; Gaudillat, 1997). The same 330 successional trajectory may thus be arrested at different stages according to the (slow, 331 sometimes nil) soil development, like in a primary succession (Miles & Walton, 1993). 332 In that sense Axis 1 describes both a (potential) successional trajectory and a continuum 333 of habitats.

334

335 The effect of ericaceous vegetation, grazing and oak colonisation on plant biodiversity

336

Compared with other vegetation features, plant species richness did not display a good
relationship with the gradient depicted by Axis 1, despite a negative and highly
significant Mantel correlation coefficient (Table 1). However, on the negative side of
Axis 1, BNP, BP1 and BP2 form a sequence of increasing distance to the origin which

341 is related to an increasing level of grazing (nil in BNP, low in BP1, medium in BP2) and 342 an increasing level of species richness (Table 1). The three sites are on shallow soils, at 343 the top or near the top of Buttons A and B (Table 1). Species richness near doubled from BNP to BP2, BP1 being intermediate, while the beta diversity β_w did not vary to a 344 345 great extent (Table 1). Other pronounced differences between non-pastured and 346 pastured heath were in the percent occupancy of grasses, which tripled from BNP to 347 BP2 (BP1 being intermediate) and ruderalness, which increased from BNP to BP1 then 348 to BP2 (Table 1). Plotted against the percent occupancy of ericaceous vegetation in 349 treeless sites, plant species richness showed a decreasing trend (Fig. 5), indicating that 350 in the absence of trees any decrease in ericaceous vegetation would increase plant 351 species richness. This is reflected in a negative and highly significant Mantel correlation 352 coefficient ($r_M = -0.54$, P < 0.0001) between species richness and percent occupancy by 353 ericaceous vegetation. The projection of individual samples from the same site (Fig. 5) 354 suggests that the decreasing trend displayed when all treeless sites are plotted together is 355 still depicted at the inside of individual sites, except in BA1, BA2 and BA3 (old heath) 356 where the percent occupancy by ericaceous vegetation is always high. The Mantel 357 correlation coefficient between species richness and percent occupancy by ericaceous vegetation was negative and highly significant (P < 0.0001) in BNP (r_M = -0.32), BP1 358 359 $(r_M = -0.36)$ and BP2 $(r_M = -0.43)$. When all sites (oak-heath and oak-wood included) 360 were taken into account, the Mantel correlation coefficient between species richness and 361 percent occupancy by ericaceous vegetation was lower ($r_M = -0.25$) but still highly 362 significant (P < 0.0001). When corrected for percent occupancy by trees (oak), partial 363 r_{M} calculated on all sites became as low as -0.42 thus of the same magnitude as when 364 only treeless sites were considered.

Calculated on all sites, there was a very weak (although still highly significant) negative effect of percent occupancy by oak on species richness ($r_M = -0.09$, P < 0.0001). When corrected for percent occupancy by ericaceous vegetation the negative oak effect became much more prominent (partial $r_M = -0.36$, P < 0.0001) but remained at a lower level than the negative effect of ericaceous vegetation when corrected for oak effect (partial $r_M = -0.42$, P < 0.0001).

372

373 We showed that the species richness at the unit square $(1m^2)$ level decreased in 374 parallel with the development of woody (shrub or tree) vegetation. Within the limits of causality inference based on correlation values (Thagard, 1998), we interpret it as a 375 376 result of the detrimental effect of woody vegetation to the small-scale coexistence of 377 plant species, which has been observed to occur in wooded pastures (Gillet et al., 1999). 378 This effect was more prominent with ericaceous than with oak cover and could be 379 attributed to a combination of factors such as competition for light and nutrients (Aerts 380 et al., 1990) and mycorrhizal interference (Genney et al., 2000). The nutrient status of 381 the soil improved along the environmental gradient from heath to oak-wood (Axis 1 of 382 CA), as ascertained from habitat preferences and life-history traits of plant species (Fig. 383 2, Table 1). Similar changes have been observed when ericaceous heath becomes 384 colonised by oak (Nielsen et al., 1987, 1999). Thus, the observed decrease in plant 385 species richness under oak cannot be ascribed to scarcity of nutrients and increased 386 acidity (Roem & Berendse, 2000). Given that Grime's Competitive ability and 387 Tolerance Index of the community (mean niche breadth) increased along the 388 environmental gradient depicted by Axis 1 of CA while Stress Tolerance decreased, we 389 interpret the observed decrease in species coexistence level as a result of increased

exploitative competition rather than direct interference or environmental stress (Huston,
1979; Grime, 1985; Connell, 1990).

392

393 On shallow soils ('buttons'), we observed a favourable effect of grazing on 394 species coexistence level when comparing non-grazed heath (BNP) to slightly grazed 395 (BP1) and to moderately grazed heath (BP2). Grime's Ruderalness increased and 396 Competitive ability decreased from BNP to BP1 and BP2 (Table 1), thus pointing to an 397 alleviation of competition through herbivory (Bardgett et al., 1998) and associated 398 disturbances known to favour non-ericaceous plant species such as trampling (Gallet & 399 Rozé, 2001; Kohler et al., 2006) and dung deposition (Welch, 1985; Feeley, 2005). 400 Such a small-scale effect of grazing has been registered at a moderate level of cattle 401 pressure (Dupré & Diekmann, 2001), and was verified experimentally (Lavorel et al., 402 1998). The explanation lies in an increase in spatial and temporal heterogeneity and 403 multi-scaling of the ecosystem at a moderate level of disturbance, known to favour the 404 coexistence of species (Denslow, 1985; Lavorel et al., 1994; Levin, 2000), more 405 especially at the time of seedling establishment (Grubb, 1977). In the case of rocky 406 outcrops ('buttons') which are submitted to harsh climate conditions and poor nutrient 407 availability, most plants are stress tolerant (Table 1) and exhibit low nutrient loss rates 408 due to their evergreen habits (Aerts, 1995). They devote a prominent part of energy 409 requirements to resistance to environmental and biological hazards (Stowe & Osborn, 410 1980), this being reinforced in the presence of cattle grazing by the resistance of 411 seedlings and mature plants to herbivory (Coley et al., 1985; Hanley, 1998). It must be 412 noted that species of patrimonial interest were also favoured by cattle grazing on 413 shallow soils.

415 Temporary but repeated grazing and trampling by cattle may thus be considered 416 as a factor allowing vegetation and soil to remain at a pioneer stage with a richer and 417 patrimonial flora (Partzch, 2007).

418

419 **Conclusion**

420

421 Our study, although limited in time and space, allowed us to describe a number of 422 vegetation types which are representative of rocky outcrops of the Brenne Regional 423 Natural Park, as ascertained from the extensive study done by Gaudillat (1997). We 424 showed that a variety of plant strategies and ecological traits could be found within a 425 limited area where natural (soil depth) and man-induced (cattle grazing) conditions 426 interfere to create a mosaic of environments. That such regional hot spots of 427 biodiversity must be protected is now out of dispute at the European level. More 428 problematic are the management rules which should be applied to protect them in the 429 long-term. We showed that the development of shrub (heath) and tree (forest) 430 vegetation induced a change in plant communities, shifting from stress-tolerant to 431 competitive species, and that moderate grazing allowed more species, and especially 432 those of patrimonial interest, to cohabit. Rather than prescribed fire and clear-cut 433 operations, which are known to induce severe environmental stresses to a lot of 434 organisms, thereby impoverishing communities in the long-term (Donegan et al., 2001; 435 Lloret et al., 2005), moderate grazing by cattle or sheep might be the best method for 436 the sustainable management of outcrop vegetation in agricultural landscapes, as this has 437 been successfully experimented in other regions (Pakeman et al., 2003; Agreil & Greff, 438 2008).

) Acknowledgements

442	François Pinet (Parc Naturel Régional de la Brenne) is greatly acknowledged for his
443	precious vegetation maps and help in the identification of vascular plant species. The
444	private owners, Mr and Mrs Lefébure, deserve a special mention for free access to the
445	site and fruitful discussions. Financial support was partially provided by IFR 101.
446	
447	References
448	
449	Aerts, R. (1995) The advantage of being evergreen. TREE, 10: 402-407.
450	
451	Aerts, R., Berendse, F., Caluwe, H. de & Schmitz, M. (1990) Competition in
452	heathland along an experimental gradient of nutrient availability. Oikos, 57: 310-
453	318.
454	
455	Agreil, C. & Greff, N. (2008) Des troupeaux et des hommes en espaces naturels: une
456	approche dynamique de la gestion pastorale. Conservatoire Rhône-Alpes des
457	Espaces Naturels, Vourles, France.
458	
459	Ballester, A., Vieitez, A.M., Vieitez, E. (1982) Allelopathic potential of Erica
460	vagans, Calluna vulgaris and Daboecia cantabrica. J. Chem. Ecol., 8: 851-857.
461	
462	Barclay-Estrup, P. & Gimingham, C.H. (1969) The description and interpretation of
463	cyclical processes in a heath community. I. Vegetational change in relation to
464	the Calluna cycle. J. Ecol., 57: 737-758.

466	Bardgett, R.D., Wardle, D.A. & Yeates, G.W. (1998) Linking above-ground and
467	below-ground interactions: how plant responses to foliar herbivory influence soil
468	organisms. Soil Biol. Biochem., 30: 1867-1878.
469	
470	Bartolomé, J., López, Z.G., Broncano, M.J. & Plaixats, J. (2005) Grassland
471	colonization by Erica scoparia (L.) in the Montseny Biosphere Reserve (Spain)
472	after land-use changes. Agric. Ecosyst. Environ., 111: 253-260.
473	
474	Benoist, A. (2006) Impacts des activités anthropiques et de la végétation sur les
475	communautés de macro-invertébrés du sol dans la Brenne (Indre, France).
476	Dissertation, François-Rabelais University, Tours, France.
477	
478	Benzécri, J.P. (1969). – Statistical analysis as a tool to make patterns emerge from data.
479	Pp. 35-74, in: S. Watanabe (Ed). Methodologies of pattern recognition.
480	Academic Press, New York, NY.
481	
482	Coley, P.D., Bryant, J.P. & Chapin, F.S. III (1985) Resource availability and plant
483	antiherbivore defense. Science, 230: 895-899.
484	
485	Connell, J.H. (1990) Apparent versus "real" competition in plants. Pp. 9-26, in: J.B.
486	Grace & D. Tilman (Eds). Perspectives on plant competition. Academic Press,
487	San Diego, CA.
488	

489	Denslow, J.S. (1985) Disturbance-mediated coexistence of species. Pp. 307-323, in:
490	S.T.A. Pickett & P.S. White (Eds). The ecology of natural disturbance and patch
491	dynamics. Academic Press, San Diego, CA.
492	
493	Diekmann, M. (2003) Species indicator values as an important tool in applied plant
494	ecology. A review. Basic Appl. Ecol., 4: 493-506.
495	
496	Diekmann, M. & Lawesson, J.E. (1999) Shifts in ecological behaviour of herbaceous
497	forest species along a transect from Northern Central to North Europe. Folia
498	Geobot., 34: 127-141.
499	
500	Dolédec, S., Chessel, D. & Gimaret-Carpentier, C. (2000) Niche separation in
501	community analysis: a new method. Ecology, 81: 2914-2927.
502	
503	Donegan, K.K., Watrud, L.S., Seidler, R.J., Maggard, S.P., Shiroyama, T., Porteous,
504	L.A., Di Giovanni, G. (2001) Soil and litter organisms in Pacific northwest
505	forests under different management practices. Appl. Soil Ecol., 18: 159-175.
506	
507	Dupré, C. & Diekmann, M. (2001) Differences in species richness and life-history
508	traits between grazed and abandoned grasslands in southern Sweden. Ecography,
509	24: 275-286.
510	
511	Fédoroff, E., Ponge, J.F., Dubs, F., Fernández-González, F. & Lavelle, P. (2005)
512	Small-scale response of plant species to land-use intensification. Agric. Ecosyst.
513	Environ., 105: 283-290.

5	1	Δ

514	
515	Feeley, K. (2005) The role of clumped defecation in the spatial distribution of soil
516	nutrients and the availability of nutrients for plant uptake. J. Trop. Ecol., 21: 99-
517	102.
518	
519	Gallet, S. & Rozé, F. (2001) Resistance of Atlantic heathlands to trampling in
520	Brittany (France): influence of vegetation type, season and weather conditions.
521	Biol. Conserv., 97: 189-198.
522	
523	Gaudillat, V. (1997). – Inventaire du patrimoine naturel en Centre Brenne. Dissertation,
524	Paris-Sud University, Orsay, France.
525	
526	Genney, D.R., Alexander, I.J. & Hartley, S.E. (2000) Exclusion of grass roots from
527	soil organic layers by Calluna: the role of ericoid mycorrhizas. J. Exp. Bot., 51:
528	1117-1125.
529	
530	Gillet, F., Murisier, B., Buttler, A., Gallandat, J.D. & Gobat, J.M. (1999) Influence of
531	tree cover on the diversity of herbaceous communities in subalpine wooded
532	pastures. Appl. Veg. Sci., 2: 47-54.
533	
534	Gimingham, C.H., Chapman, S.B. & Webb, N.R. (1979) European heathlands. Pp.
535	365-413, in: R.L. Specht (Ed). Heathlands and related shrublands. Elsevier,
536	Amsterdam, The Netherlands.
537	

538	Greenacre, M.J. (1984) Theory and applications of Correspondence Analysis.
539	Academic Press, London, UK.
540	
541	Grime, J.P. (1985). – Towards a functional description of vegetation. Pp. 503-514, in: J.
542	White (Ed). The population structure of vegetation. Junk, Dordrecht, The
543	Netherlands.
544	
545	Grime, J.P. (1987) Dominant and subordinate components of plant communities:
546	implications for succession, stability and diversity. Pp. 413-428, in: A.J. Gray,
547	M.J. Crawley & P.J. Edwards (Eds). Colonization, succession and stability,
548	Oxford. Blackwell, London, UK.
549	
550	Grubb, P.J. (1977) The maintenance of species-richness in plant communities: the
551	importance of the regeneration niche. Biol. Rev., 52: 107-145.
552	
553	Hanley, M.E. (1998) Seedling herbivory, community composition and plant life
554	history traits. Persp. Plant Ecol. Evol. Syst., 1: 191-205.
555	
556	Hill, M.O., Mountford, J.O., Roy, D.B. & Bunce, R.G.H. (1999) Ellenberg's
557	indicator values for British plants. Natural Environment Council, Institute of
558	Terrestrial Ecology, Centre for Ecology and Hydrology, Huntingdon, UK.
559	
560	Huston, M. (1979) A general hypothesis of species diversity. Am. Nat., 113: 81-101.
561	

562	Kenkel, N.C. (2006) On selecting an appropriate multivariate analysis. Can. J. Plant
563	<i>Sci.</i> , 86: 663-676.
564	
565	Kohler, F., Gillet, F., Gobat, J.M. & Buttler, A. (2006) Effect of cattle activities on
566	gap colonization in mountain pastures. Folia Geobot., 41: 289-304.
567	
568	Lavorel, S., Lepart, J., Debussche, M., Lebreton, J.D. & Beffy, J.L. (1994) Small
569	scale disturbances and the maintenance of species diversity in Mediterranean old
570	fields. Oikos, 70: 455-473.
571	
572	Lavorel, S., Touzard, B., Lebreton, J.D. & Clément, B. (1998) Identifying functional
573	groups for response to disturbance in an abandoned pasture. Acta Oecol., 19:
574	227-240.
575	
576	Legendre, P. & Fortin, M.J. (1989) Spatial pattern and ecological analysis. Vegetatio,
577	80: 107-138.
578	
579	Legendre, P. & Legendre, L. (1998) Numerical ecology, 2 nd ed. Elsevier, Amsterdam,
580	The Netherlands.
581	
582	Levin, S.A. (2000) Multiple scales and the maintenance of biodiversity. <i>Ecosystems</i> ,
583	3: 498-506.
584	

585	Lloret, F., Estevan, H., Vayreda, J. & Terradas, J. (2005) Fire regenerative syndromes
586	of forest woody species across fire and climatic gradients. Oecologia, 146: 461-
587	468.
588	
589	McNaughton, S.J. & Wolf, L.L. (1970) Dominance and the niche in ecological
590	systems. Science, 167: 131-139.
591	
592	Miles, J. (1979). – Vegetation dynamics. Chapman and Hall, London, UK.
593	
594	Miles, J. & Walton, D.W.H. (1993) Primary succession revisited. Pp. 295-302, in: J.
595	Miles & D.W.H. Walton (Eds). Primary succession on land. Blackwell, Oxford,
596	UK.
597	
598	Nielsen, K.E., Dalsgaard, K. & Nørnberg, P. (1987) Effects on soils of an oak
599	invasion of a Calluna heath. I. Morphology and chemistry. Geoderma, 41: 79-
600	95.
601	
602	Nielsen, K.E., Ladekarl, U.L. & Nørnberg, P. (1999) Dynamic soil processes on
603	heathland due to changes in vegetation to oak and Sitka spruce. For. Ecol.
604	Manag., 114: 107-116.
605	
606	Oberrath, R. & Böhning-Gaese, K. (2001) The Signed Mantel test to cope with
607	autocorrelation in comparative analyses. J. Appl. Stat., 28: 725-736.
608	

609	Pakeman, R.J., Hulme, P.D., Torvell, L. & Fisher, J.M. (2003). – Rehabilitation of
610	degraded dry heather [Calluna vulgaris (L.) Hull] moorland by controlled sheep
611	grazing. Biol. Conserv., 114: 389-400.
612	
613	Partzsch, M. (2007) Flora, vegetation and history of the porphyry landscape between
614	Halle and Wettin (Saxony-anhalt, Germany). Schlechtendalia, 15: 1-91.
615	
616	Perrinet, M. (1995) Les groupements végétaux de la Réserve Naturelle du Pinail
617	(Vienne, France). I. Les landes. Bull. Soc. Bot. Centre Ouest, 26: 3-18.
618	
619	Pinet, F. (2005). – Flore remarquable du Parc Naturel Régional de la Brenne: guide
620	photographique. Parc Naturel Régional de la Brenne, Rosnay, France.
621	
622	Ponge, J.F. & Chevalier, R. (2006) Humus Index as an indicator of forest stand and
623	soil properties. For. Ecol. Manag., 233: 165-175.
624	
625	Rallet, L. (1935) Étude phytogéographique de la Brenne. Bull. Soc. Sc. Nat. Ouest
626	<i>France</i> , 5: 1-280.
627	
628	Reitallu, T., Prentice, H.C., Sykes, M.T., Lönn, M., Johansson, L.J. & Hall, K. (2008). –
629	Plant species segregation on different spatial scales in semi-natural grasslands. J.
630	Veg. Sci., 19: 407-416.
631	

632	Roem, W.J. & Berendse, F. (2000) Soil acidity and nutrient supply ratio as possible
633	factors determining changes in plant species diversity in grassland and heathland
634	communities. Biol. Conserv., 92: 151-161.
635	
636	Stowe, L.G. & Osborn, A. (1980). – The influence of nitrogen and phosphorus levels on
637	the phytotoxicity of phenolic compounds. Can. J. Bot., 58: 1149-1153.
638	
639	Thagard, P. (1998) Explaining disease: correlations, causes, and mechanisms. Minds
640	Mach., 8: 67-78.
641	
642	Trotignon, E. & Trotignon, J. (2007). – La Brenne: la nature en héritage. Alan Sutton,
643	Saint-Cyr-sur-Loire, France.
644	
645	Wamelink, G.W.W. & Van Dobben, H.F. (2003) Uncertainty of critical loads based
646	on the Ellenberg indicator value. Basic Appl. Ecol., 4: 515-523.
647	
648	Welch, D. (1985). – Studies in the grazing of heather moorland in North-East Scotland.
649	IV. Seed dispersal and plant establishment in dung. J. Appl. Ecol., 22: 461-472.
650	
651	Whittaker, R.H. (1960) Vegetation of the Siskiyou Mountains, Oregon and
652	California. Ecol. Monogr., 30: 279-338.
653	
654	Zobel, M. (1997) The relative role of species pools in determining plant species
655	richness: an alternative explanation of species coexistence? TREE, 12: 266-269.
656	

658	
659	Figure 1. Map of the study area and location of the 10 sites. $a = BP1$, $b = BA1$, $c =$
660	BP2, $d = BNP$, $e = BA2$, $f = BA3$, $g = BSF1$, $h = BSF2$, $k = CHM2$, $m = CHM1$
661	
662	Figure 2. Relationship between Tolerance Index (Dolédec et al. 2000) and Ellenberg's
663	Light Index with the first axis of Correspondence Analysis (CA). Equations of
664	regression lines and determination coefficients are indicated. Codes for the 10
665	study sites as in Table 1
666	
667	Figure 3. Projection of passive variables along Axis 1 of CA: sites (in boxes), soil types
668	(underlined), percent occupancy by species groups, average Ellenberg indices,
669	average Grime strategies and Tolerance Index (higher values in bold, lower
670	values in italics, see text for more details)
671	
672	Figure 4. Projection of the 79 plant species along Axis 1 of CA. Species codes and
673	letter types as in Table 2
674	
675	Figure 5. Relationship between percent occupancy by ericaceous vegetation and plant
676	species richness of unit samples, in 6 oak-free heath sites. Codes for sites as in
677	Fig. 1. Equation of regression line and determination coefficient are indicated
678	
679	

Table 1. Main site and vegetation features of the 10 investigated plots (mean ± S.E). r_M is a Mantel correlation coefficient woth Axis 1 values, tested by Monte-Carlo simulation. *** = significant at 0.001 level. NS = not significant at 0.05 level

Code	BP2	BP1	BNP	BA3	BA2	BA1	BSF2	BSF1	CHM1	CHM2	r _M	
Site (button)	1	1	2	2	2	1	2	2	2	2		
Vegetation type	Pastured heath	Pastured heath	Non-pastured heath	Old heath	Old heath	Old heath	Oak-heath	Oak-heath	Oakwood	Oakwood		
Soil type	Shallow	Shallow	Shallow	Deep								
Number of samples	20	17	29	4	5	10	5	5	5	5		
Species richness per m ²	14.4±0.9	12.6±1	7.9±0.4	7±0.7	7.2±0.9	11.6±0.9	7.6±1.2	11±1.9	7±0.8	11.6±1.7	-0.24***	
Beta diversity (Whittaker's βw)	3,8	3,4	3,7	1,9	2,4	2,8	2,6	2,7	2,1	2,2		
Mosses %	76.8±3.8	90.6±2.9	77.5±5	83±17	76±19.4	72.5±6.7	16.8±7.2	61.6±16.7	0.8±0.8	5.6±1.6	-0.60***	
Grasses %	53.6±4.9	46.6±6	17.2±4.8	2±2	17.6±10.5	24.3±3.8	40±17.4	14.4±6	100±0	80.8±19.2	0.08***	
Forbs %	43.4±5.8	41.4±5.1	15.6±4.4	5±3	16.8±8.2	30.1±7.6	19.2±6.4	10.4±7.1	75.2±15.3	48.8±5.6	0.01NS	
Legumes %	67.6±6.5	58.4±7.6	51.7±5.5	17±5	9.6±5.5	1.7±0.8	2.4±1	2.4±1.6	3.2±2.3	2.4±2.4	-0.39***	
Ericaceous shrubs %	56.2±5.5	62.6±7.5	85.5±3.5	95±5	88±10.1	87.5±0	20±20	45.6±20	0±0	0±0	-0.38***	
Non-ericaceous shrubs %	66.4±7	67.5±5.6	58.2±4.7	75±25	9.6±3.5	44.8±6.7	2.4±1	8.8±4.6	0.8±0.8	15.2±8.3	-0.43***	
Oak trees %	6.4±5.1	4.2±2.6	9.5±4.9	0±0	16.8±15.8	1.7±0.8	75.2±16.7	92±17.8	100±0	100±0	0.68***	
Lianas %	1.2±1.2	8.7±4.9	5±2.8	5±3.8	0±0	6.1±3.9	14.4±7.4	22.4±10.5	75.2±12.4	41.6±11.8	0.58***	
Light Index	7.3±0.05	7.27±0.05	7.31±0.06	7.17±0.15	7.1±0.07	6.71±0.07	6.58±0.27	6.51±0.14	6.13±0.13	6.31±0.12	-0.72***	
Moisture Index	5.35±0.08	5.22±0.11	5.81±0.04	6.01±0.3	5.71±0.18	5.45±0.08	5.54±0.14	5.48±0.11	5.28±0.13	5.48±0.08	0.14***	
Reaction Index	3.89±0.09	4.13±0.1	3.58±0.08	4.59±0.15	4.47±0.23	4.77±0.08	4.55±0.21	4.63±0.1	4.75±0.17	4.86±0.22	0.5***	
Nitrogen Index	2.58±0.1	2.93±0.08	2.49±0.09	3.33±0.16	3.26±0.13	3.44±0.08	3.71±0.27	3.63±0.19	4.17±0.21	4.3±0.19	0.7**	
Competitive ability	1.97±0.04	2.01±0.06	2.35±0.8	3.08±0.08	2.72±0.12	2.82±0.08	2.99±0.14	2.73±0.14	2.92±0.05	2.96±0.04	0.7***	
Stress tolerance	3.53±0.08	3.18±0.07	3.63±0.08	2.75±0.16	3.32±0.14	3.11±0.05	3.01±0.14	3.17±0.11	2.8±0.12	2.77±0.06	-0.45***	
Ruderalness	1.88±0.11	2.34±0.11	1.12±0.04	1.42±0.25	1.45±0.14	1.83±0.1	1.6±0.21	1.39±0.06	1.83±0.09	1.98±0.14	-0.11***	
Tolerance Index	0.42±0.02	0.49±0.02	0.46±0.02	0.54±0.04	0.62±0.05	0.63±0.02	1.05±0.09	0.79±0.1	1.1±0.03	1.01±0.01	0.77***	
Axis 1 of CA	0	-0.62±0.14	-0.26±0.05	0.11±0.02	0.15±0.07	0.64±0.1	0.84±0.1	1.42±0.69	1.46±0.24	2.2±0.24		

Table 2. Code and latin name of plant species recorded in the study area in at least two samples, together with their tolerance values, Ellenberg values and CSR strategies when known. Codes in bold type for vascular species (lower case for herbs, upper case for trees and shrubs), in italic lower case type for mosses and lichens, underlined for legumes

Code	Latin name	Light	Moisture	Reaction	Nitrogen	Competitive ability	Stress-tolerance	Ruderalness	Tolerance value
amo	Arenaria montana L.								0.37
aod	Anthoxanthum odoratum L.	7	6	4	3	2	3	3	0.90
apr	Aira praecox L.	8	2	4	2	1	3	3	0.41
ate	Agrostis tenuis Sibth.	6	5	4	4	3	3	3	0.95
aun	Atrichum undulatum (Hedw.) P. Beauv.	7	6	3	4				1.02
bca	Bryum caespititium Hedw.		-		-				0.00
bru	Brachythecium rutabulum (Hedw.) B., S. & G.	6	5	6	5				0.35
bsp	Bryum sp.	1	5	/	/				0.14
ogl	Coroctium domoratum Thuill	7	F	6	F	1	2	4	0.12
СМО	Crataequis monogyna Jacq	6	5	7	6	3	2	4	1.37
cni	Carex pilulifera I	7	5	3	2	1	5	1	0.27
cpu	Ceratodon purpureus (Hedw.) Brid.	5	5	4	5		-		0.21
csc	Cytisus scoparius (L.) Link	8	5	4	4	3	3	1	1.50
cs1	Carex sp.								0.00
cs2	Cerastium sp.	8	3	7	4				0.31
CVU	Calluna vulgaris (L.) Hull	7	6	2	2	3	3	1	0.18
dde	Danthonia decumbens (L.) DC.	7	6	4	2	1	5	1	0.01
dhe	Dicranella heteromalla (Hedw.) Schimp.	9	3	4	1				0.73
dsc	Dicranum scoparium Hew.	9	3	4	1				0.21
ECI	Erica cinerea L.	1	5	2	2	2	4	1	0.31
ESC	Erica scoparia L. Eurovechium striatum (Hew.) Schimp	7	5	4	3				0.55
FAI	Francula alous Mill	6	8	5	5				0.00
fbr	Fissidens bryoides Hedw	0	0	0	0				0.00
fov	Festuca ovina L.	7	5	4	2	1	5	1	0.23
GAN	Genista anglica L.	8	5	3	2				0.00
gap	Galium aparine L.	6	6	7	8	3	1	3	0.12
gmo	Geranium molle L.	7	5	6	5	1	2	4	0.36
hcu	Hypnum cupressiforme Hedw.	8	8	4	2				1.01
HHE	Hedera helix L.	4	5	7	6	3	3	1	1.00
hhu	Hypericum humifusum L.	7	6	4	3	2	4	2	0.89
him	Hieracium umbellatum L.	•	0		0				0.05
nju	Hypnum jutiandicum Baicerk, et Brzeg	8	8	4	2	2	2	2	0.41
hlm	Hyppum Jacuposum (Brid.) Hoffm, ex Brid	1	0	0	5	3	3	3	0.11
hmo	Holcus mollis I	6	6	3	3	4	2	2	1.05
hpi	Hieracium pilosella L.	8	4	7	2		-	-	0.38
hra	Hypochoeris radicata L.	8	4	5	3	3	3	3	0.34
hum	Halimium umbellatum (L.) Spach.								0.26
jsp	Juncus sp.	7	8	4	3				0.28
kpr	Kindbergia praelonga (Hedw.) Ochyra	7	5	4	3				0.56
lca	Luzula campestris (L.) DC.	7	4	5	2	2	4	2	0.50
LPE	Lonicera periciymenum L.	5	6	5	5				1.10
isp	Unidentified lichen species	7	4	8	6	3	1	3	0.34
mmi	Medicado minima I	á	3	7	2	5		5	1 36
mmr	Montia minor C. C. Gmel.	7	8	5	3	1	2	4	0.31
pan	Poa annua L.	7	5	6	7	1	1	5	0.32
pfo	Polytrichum formosum Hew.	4	5	6	6				0.33
pju	Polytrichum juniperinum Hew.	4	5	6	6				1.04
pla	Plantago lanceolata L.	7	5	6	4	3	3	3	0.57
ppr	Poa pratensis L.	7	5	6	6	3	3	3	0.03
pre	Potentilla reptans L.	7	5	7	5	3	2	3	0.00
pse	Prunus spinosa I	6	5	∠ 7	2 6	3	3	1	1 15
047	Ouercus (hybrid)	0	J	'	0	5	J		0.79
QPE	Quercus petraea (Mattuschka) Lieblein	6	6	3	4	3	3	1	1.61
QPU	Quercus pubescens Willd.	-	-	-		-	-		0.64
QRO	Quercus robur L.	7	5	5	4	3	3	1	1.37
QSE	Quercus (seedling)								0.89
rac	Rumex acetosella L.	7	5	4	3	2	3	3	0.93
RAR	Rosa arvensis Huds.	6	4	7	5				0.00
rbu	Ranunculus bulbosus L.	7	4	7	4	1	3	3	0.21
RCA	Rosa canina L.	6	5	1	6	2	2	4	0.03
KFK rlo	Rubus Inuicosus L.	7	5	6	4	3	3	1	0.93
RSA	Ruhus sp. A	'	5	5	-				0.31
RSB	Rubus sp. B								0.05
RSC	Rubus sp. C								0.09
spu	Scleropodium purum (Hedw.) Limpr.	8	5	6	2				0.63
sti	Serratula tinctoria L.	7	6	6	2				0.00
STO	Sorbus torminalis (L.) Crantz	4	5	6	5				0.21
tnu	Teesdalia nudicaulis (L.) R.	8	3	2	2				0.58
tsc	Teucrium scorodonia L.	6	4	4	3	2	4	2	1.30
UNA	Ulex nanus I. F. Forster ex Symons	8	6	1	2				0.24
vca	Viola cafilfia L. Veropica chamaedrys I	6 6	4	с 6	2	3	3	3	0.30
ven	Unidentified vascular species	U	5	U	5	5	5	5	0.23

684 Fig. 1

687 Fig. 2

690 Fig. 3

Axis 1 hmo LPE gap ^{ate} QSE QRO kpr HHE tsc ^{fbr aun} ^{hcu} ppr^{bru} STO СМО RAR QPE bsu QHY hhu lvu _{dhe} est - PSP bsp RCA RFR bsp pfo ESC QPU FAL pre 0 <u>CSC</u> dde cpi vca cs1 hpi him sti <u>mmi</u> psemmr bca pju pla cgl cpu rbu aod cgl jsp rla lsp lca gmo tnu hju hum dsc hra cs2 RSB RSA <u>GAN</u> hra cs2 vch vsp apr pan ECI CVU amohla fov spu UNA

691

692 Fig. 4

