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ABSTRACT
PGA, or Principal Geodesic Analysis, is an extension of the classi-
cal PCA (Principal Component Analysis) to the case of data taking
values on a Riemannian manifold. In this paper a new and origi-
nal algorithm, for the exact computation of the PGA of data on the
rotation group SO(3), is presented. Some properties of this algo-
rithm are illustrated, with tests on simulated and real data, and its
possible applications are finally discussed.

1. INTRODUCTION

PGA, or Principal Geodesic Analysis, is a recently proposed statis-
tical framework [1], mainly aimed at analyzing the variability of
data on a Riemannian manifold. It is an extension of the classical
PCA [2] which performs the same task for data in a Euclidean vec-
tor space, but fails to do so when the data belong to a more general
Riemannian manifold [3].

PGA has found applications in diffusion tensor magnetic res-
onance imaging (DT-MRI) [3] and shape analysis [4]. In this pa-
per, we consider the PGA of data belonging to the rotation group
SO(3) [5]. Such data appear in the study of plate tectonics, con-
tinuum modelling of DNA chains [6], robotics [7] and computer
graphics [8, 9]. PGA can be used to analyze the variability of data
on SO(3), giving a better understanding of their structure. In par-
ticular, we will see in this paper that PGA can be used to reduce the
dimensionality of data on SO(3). Analyzing the variability of data
is an interesting starting point for compression, feature extraction
and segmentation applications. In the case of data in a vector space,
PCA is widely used for such applications. PGA can be a basis for
similar applications for manifold-valued data. We hope to investi-
gate such applications in the field of computer graphics in future
works.

All existing algorithms for PGA [1, 3, 4] are based on linear
approximations. The main contribution of this paper is a new algo-
rithm that performs exact PGA for data on SO(3). We believe this is
important for a better understanding of this new framework.

The outline of this paper is the following: In Section 2, unit
quaternions are introduced, as a tool for describing rotations, and
necessary pre-requisits on their geometry are given. In Section 3,
PGA is introduced and our algorithm for computing exact PGA is de-
scribed. In Section 4 the convergence of our algorithm is illustrated
with examples from simulations and from real data. In particular,
we consider the PGA of a simulated Gaussian distribution on SO(3)
[10] and also of real data obtained from motion capture. In Section
5, we conclude on the possible applications of PGA to the context
of signal processing.

2. THEORETICAL BACKGROUND

There are many ways of representing rotations [5, 11]. Here, the use
of unit quaternions [12] is preferred to other representations. Unit
quaternions offer a compact notation and are easier to manipulate
using computers. In order to deal with the ambiguity arising from
the fact that the group S3 of unit quaternions is in a 2-to-1 homomor-
phism with the rotation group SO(3) [5], a pre-step of hemispher-
ization of the unit-quaternion valued data can be carried out [10].

In the following, data are supposed to be available in the form of a
hemispherized distribution of unit quaternions. Under this assump-
tion, we can consider that we are working on the group S3. The
following two paragraphs introduce concepts from the Riemannian
geometry of S3 that arise in the definition of PGA.

2.1 Riemannian metric on S3

The quaternion sphere S3 is a Lie group isomorphic to SU(2). It is
formed by unit quaternions [5, 12]. Any unit quaternion q ∈ S3 can
be written:

q = cos∠(q)+ sin∠(q)q̂ (1)

Where ∠(q) ∈ [0,2π] and q̂ is a pure quaternion that can always
be chosen in the half space given by S (q̂k) ≤ 0. We will always
make this choice. 1 We are interested in the biinvariant Riemannian
geometry of S3 [13]. This Riemannian geometry is identical to the
one induced from the ambient Euclidian space R4 [13, 14]. The
Riemannian metric on S3 can be used to give it the topology of a
metric space with a metric distance function [15] given by:

d(x,y) = arccos [S (xȳ)] for x,y ∈ S3 (2)

Note that d(x,y) ∈ [0,π] for any two points x,y ∈ S3. An impor-
tant property is that between any two points x,y ∈ S3 there passes
a geodesic of minimal length d(x,y). This geodesic is unique if
d(x,y) < π .

2.2 Geodesics of S3

A geodesic of the biinvariant Riemannian metric of S3 passing
through a point q in a direction W (a unit pure quaternion such that
S (Wk)≤ 0) is of the form [13, 14]:

c(s) = qeWs, s ∈ [0,2π] (3)

In particular, a geodesic passing through the identity 1 is given by:

cW (s) = cos(s)+ sin(s)W, s ∈ [0,2π] (4)

The parameter s is the distance from the identity 1 to the current
point along the geodesic curve cW .

The projection πW (x) of a point x ∈ S3 on a geodesic through
the identity cW is defined as the closest point on cW to x [1]. We call
the distance d(x,cW )≡ d(x,πW (x)) the distance of the point x to the
geodesic cW . Finding πW (x) is an optimization problem. Since the
geodesics of S3 are compact, the solution of this optimization prob-
lem always exists. It is given by the following proposition which
can be proved by direct calculation:

Proposition 1 For any x ∈ S3 and any geodesic cW ,

1The notation of basic quaternion operations is as usual. S (q) and V (q)
are the scalar and vector parts, the bar denotes conjugation, 1, i,j,k are the
usual quaternion basis, etc.



• If S (x) +WS (Wx̄) 6= 0 then the projection πW (x) is unique
and given by:

πW (x) = cW (s∗) , where s∗ = ∠(S (x)+WS (Wx̄)) (5)

• If S (x) +WS (Wx̄) = 0 then the function D(s) is a constant
equal to π/2.

The projection πW (x) is thus almost always unique. It is given by the
unit quaternion along the projection of x on the plane Span{1,W}.

3. PRINCIPAL GEODESIC ANALYSIS: PGA

3.1 Introduction to PGA
PGA is defined in analogy with classical Principal Component Anal-
ysis (PCA) and constitutes an extension of it. There are several
variants of PGA [1]. Here, the one given in [4] is adopted, as
it uses the group structure more clearly. Given a distribution of
data {qi ∈ S3}N−1

i=0 , the goal of PGA, like PCA, is to find a set of
geodesic directions 2, called principal geodesic directions or princi-
pal geodesics, that best represent the variability of the data and that
allow the reconstruction of the data with good precision. Unlike the
linear case of PCA, the number of principal geodesics is not, in gen-
eral, limited by the dimension of the space where the data are taken
(in our case dim(S3) = 3).

Here we will consider that the data are centered, i.e. that their
center of mass (or Karcher mean) is the identity 1 ∈ S3. This re-
quires, first of all, that the data be sufficiently localized for its center
of mass to be well-defined [13, 16]. This is verified whenever the
points qi can be inscribed in a Riemannian sphere of radius strictly
less than π/2. It is then sufficient to multiply the data, on the left or
on the right, by the inverse of its center of mass, in order to make
them centered.

Given the first k principal geodesic directions, v1,v2, ...,vk it
is possible to represent the data as a product of projections on its
principal geodesic directions [4]:

qi = π1(qi)π2(q
(1)
i )...πk(q

(k−1)
i )q(k)

i (6)

Where π j(.) is the projection on the geodesic cv j and q(k)
i is the

reconstruction error at order k. As explained above, the principal
geodesic directions will have the two interesting properties of rep-
resenting the variability of the data and of allowing to reconstruct it
with good precision. It will be seen, experimentally, that the recon-
struction error decreases rapidly with k. This means that the first
few principal geodesic directions are usually sufficient for a reason-
ably precise description of the data.

The following procedure, taken from [4], explains how to find,
for any k > 0, the first k principal geodesic directions:
1. The first principal geodesic direction v1 is defined as generating

the geodesic cv1 that is closest, in mean distance, to all the data:

v1 = argminv{∑
i

d(qi,cv)} (7)

2. The following principal geodesics are defined recursively (1 ≤
j ≤ k):

v j+1 = argminv{∑
i

d(q( j)
i ,cv)} (8)

Where q( j)
i is the reconstruction error q( j)

i = (π j(qi))−1q( j−1)
i

as defined in formula (6).
The recursivity of this procedure appears in the fact that the ( j +
1)th principal direction is the first principal geodesic direction of
{q( j)

i }. In this sense, we only need to master two operations in
order to carry out PGA. These two operations are finding the first

2In the case of PCA, these are just straight lines

principal geodesic direction and projecting. Projection can be car-
ried out quite directly, using proposition 2.2 and the operation of
finding the first principal geodesic direction will be discussed in the
next paragraph 3.2. Let us rewrite the procedure given above in a
way that shows its recursive nature more clearly.

Assume that the operations of projection πV (Q) = {πv(qi)} and
of finding the first principal geodesic direction, V , of the data Q =
{qi} are given primitives. Use the notation, V = FPD(Q), for the
operation of finding the first principal geodesic direction. In order
to find the principal geodesic directions of the data Q we use the
following recursive function PGA:

Algorithm 1 Compute list of principal geodesic directions
PGA(Q) = (V 1,V 2, ..,V k, ..) from data Q = {qi}

Function PGA(Q)
if ∑i d(qi,1) < ε then

return () ;
else

V = FPD(Q)
return (V,PGA((πV (Q))−1Q))

end if

where ε is a default precision, () is an empty list, and
(V,PGA((πV (Q))−1Q)) denotes the concatenation of vector V with
the result list of PGA((πV (Q))−1Q)).

Hence, PGA is a procedure that can be used to describe data
{qi ∈ S3}N−1

i=0 . It describes this data in terms of a set of princi-
pal geodesic directions. These directions describe the variability of
the data and also allow to reconstruct it. The number of principal
geodesic directions is not limited.

3.2 Finding the first principal geodesic direction
In order to carry out PGA, the operation of finding the first principal
geodesic direction of data needs to be performed several times. This
operation consists in finding the closest geodesic to the data wrt.
mean distance. This is a kind of ”geodesic regression”, in the sense
that it gives a geodesic that best represents the variability of a set of
samples. Here, an analytical characterization of the first principal
geodesic direction, as well as a gradient algorithm for finding it
numerically, is given.

3.2.1 Analytical characterization

Given a dataset
{

qi ∈ S3}, then the first principal geodesic direction
is given in equation (7), where the minimum should be found under
the constraint that v is a unit vector. This optimization problem can
be seen as searching for the minimum of the following function:

D : S2 → R+
D(v) = 1

N ∑i d(qi,cv)
(9)

A necessary condition for a unit vector V ∈ S2 to give the first prin-
cipal geodesic direction of data qi can be found through standard use
of Lagrange multipliers [17], as explained in the following proposi-
tion:

Proposition 2 If V is the first principal geodesic direction of data
qi then V solves the following equation:

V ∝ ∑
i

sin(s∗i )V (qi) (10)

Where s∗i = ∠(S (qi)+ vS (V q̄i)), as in proposition 2.2. Or equiv-
alently, the equation:

V ∝ ∑
i

S (V q̄i)√
S 2(qi)+S 2(V q̄i)

V (qi) (11)

In other words, if D(v) has a minimum then it reaches it at V which
is the unit vector along the weighted mean of the vector parts of the
data given in formulae (10) and(11).



3.2.2 Gradient Algorithm

Finding the first principal geodesic direction of the data qi has been
reduced to minimizing the function D(v). This is a real-valued
function on the unit sphere S2. An adequately initialized gradient
algorithm on the sphere can be an effective way of finding the global
minimum of this function. Gradient algorithms on various Rieman-
nian manifolds, including spheres are given in [18].

We use a simplified version of the Riemannian gradient descent
method given in [18]. It consists in considering D(v) as a function
of vectors v ∈ R3 and applying a usual gradient descent method to
it. However, at every step of the gradient descent method we project
the gradient on the tangent space of the sphere S2 = {||v||= 1} and
normalize the new vector obtained this way. This algorithm is an
approximation of the Riemannian gradient descent algorithm, to the
second order of the gradient step.

The update rule of this algorithm is the following:

Vk+1 =
Vk−λ∇‖D(Vk)
||Vk−λ∇‖D(Vk)||

(12)

Where λ is the gradient step and ∇‖D(Vk) is the component of the
gradient of D(Vk) in the tangent plane to the shere S2. The gradient
itself is given by:

∇D(Vk) =
1
N ∑

i

−S (Vkq̄i)√
S 2(qi)+S 2(Vkq̄i)

V (qi) (13)

As usual, the efficiency of this minimization is subject to the initial
choice of V0. Choosing V0 close to the solution vector V guaran-
tees a fast convergence. Of course there is no unique way to do
this. Here, we choose an initialization based on the following rea-
soning: if V achieves the minimum of D(v) then, by definition of
the first principal geodesic direction, the data qi lies relatively close
to the geodesic cV . Based on this assumption, we can consider that
S 2(qi)+S 2(V q̄i) ≈ 1, for any qi. By inserting this into equation
(10) we obtain:

V ∝ ∑
i

sin∠(qi)V (qi) (14)

This value can be used to initialize the gradient descent. If the data
qi lies on a geodesic cW , then it is easy to verify that the quaternion
V given by formula (14) solves equation (10), that is V = W . In
other words, formula (14) will directly give the vector minimizing
D(v). In this case, the initialization ensures the convergence of the
algorithm in one step.

A measure of how closely packed the dataset is around the first
principal geodesic direction V is given by the reconstruction error
q1

i as given in formula (8), that is:

q1
i = (πV (qi))−1qi (15)

The reconstruction error measures how far from the first princi-
pal geodesic each data sample qi is. If the whole dataset lies on
a geodesic, this will be the first principal geodesic and we will have
1
N ∑i d(q1

i ,1) = 0. In general, the average:

R1 =
1
N ∑

i
d(q1

i ,1) (16)

measures the dispersion of the data away from the first principal
geodesic. The smaller it is, the more aligned the data is along the
first principal direction.

4. EXAMPLES AND CONVERGENCE

In this section, some examples of PGA, applied to simulated data
and also to real data from motion capture, are given. They will
be used to discuss the convergence of PGA and how it describes

the variability of data. The convergence of PGA is measured
by the reconstructon error at order k (see formula (8)), q(k)

i =

(πk(qi))−1q(k−1)
i . This quantity expresses the precision to which

the data can be reconstructed using the first k principal geodesic di-
rections. A global measure of this precision is given by the average:

Rk =
1
N ∑

i
d(qk

i ,1) (17)

If Rk = 0, then the first k principal geodesic directions describe the
data completely. Rk is decreasing with k. This means that the pre-
cision of the description of the data given by PGA improves with
every new principal geodesic direction. Since the Rk form a de-
creasing sequence of positive numbers, we can conclude that the
data can be described to any desired degree of precision by using
a sufficient number of principal geodesics. We give two simple ex-
amples of data with low dimensionality in paragraph 4.1. Then, in
paragraph 4.2, we move on to the PGA of a Gaussian distribution.
Finally, in paragraph 4.3, an example of real data from motion cap-
ture is studied.

4.1 Data with low dimensionality
Here two examples are discussed of data that can be completely de-
scribed using a low number of principal geodesic. By low number,
it is meant a number inferior to the dimension of the initial group S3

where the data are taken. This happens when the data are confined
to a submanifold of S3 of dimension 1 or 2. These two examples
show how PGA, like PCA, can be used to reduce the dimensionality
of the data.

In the first example, R1 = 0. The data can be described com-
pletely using the first principal geodesic. Simply, this means that all
the data lie on some geodesic cW .

Figure 1 shows how, in such a case, the mean distance of the
data to the geodesic generated by Vk -see paragraph 3.2.2 equation
(12)- decreases during the gradient descent. This mean distance
decreases to 0, which shows that the data belong to the first principal
geodesic so that R1 = 0. Note that in this example the gradient
descent was initialized at a random value. The initialization given
in formula (14) was not used. This initialization would have lead to
the algorithm converging in one step.
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Figure 1: Gradient descent for data on a geodesic

We also considered an example where R1 6= 0 and R2 = 0. The
data lies, in this case, on a non degenerate two dimensional sub-
manifold of S3 and it can be completely described using its first
two principal geodesic directions. By characterizing the variability
of the data as being essentially along a 2-dimensional submanifold
and not on all of S3, PGA allows a reduction of its dimensionality.



When performing PGA in such a case, we will use the gradient
descent algorithm of paragraph 3.2.2 twice. Indeed we have to find
two principal geodesic directions. Figure 2 shows the convergence
of PGA in this case. The first decreasing part of the graph corre-
sponds to the first application of the gradient descent algorithm.
When the first principal direction is found, at the end of this de-
creasing part, the search for the second principal geodesic direction
starts. This search converges in one step. Indeed, the curve imme-
diately goes to zero. This happens thanks to the initialization given
by formula (14).
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Figure 2: Gradient descent for data on a two dimensional submani-
fold

4.2 PGA of a Gaussian distribution
In the two examples of the last paragraph, the structure of the data
was fairly simple. A low number of principal geodesics was suffi-
cient to describe it. When the data has a more complex structure,
PGA needs a relatively high number of principal geodesics in order
to describe the data. In this section, the results of applying PGA
to a Gaussian distribution are presented. It is seen that such a dis-
tribution requires a high number of principal geodesics to describe
it.

Here, the definition given in [10] of a Gaussian distribution on
S3 is adopted. This approach defines the Gaussian distribution as
the one with maximum entropy for a given covariance [16]. Its
probability density function is given by:

p(q) = k.exp
(−〈log(q)|Γ|log(q)〉

2

)
(18)

Where k is a renormalization constant and Γ is a symmetric ma-
trix called the concentration matrix of the distribution. |log(q)〉 de-
notes the vector corresponding to the pure quaternion log(q) and
〈log(q)|Γ|log(q)〉 is the quadratic form defined by Γ. It is shown
in [10] how to generate data following this distribution.

Figure 3 shows that a reasonably precise representation of the
data generated following a Gaussian distribution can be achieved
using 5 principal geodesics. This representation is however not ex-
act. We do not have R5 = 0. The 5 decreasing parts of this graph
correspond to 5 calls to the gradient descent algorithm, one for ev-
ery principal geodesic. It is interesting to note that we have found
the first three principal geodesic directions of the generated data to
coincide with the three eigendirections of the matrix Γ. It is still not
clear how general this result is.

4.3 PGA on motion capture data
In this last example we tested the PGA on real data acquired from
motion capture. Those data were acquired using an optical VICON
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Figure 3: PGA of a Gaussian distribution

system at the rate of 30 frames per second. The rotation time series
corresponds to the global rotation of a body during a 300 frames
animation. The results of the reconstruction error (distance to the
original data) using the k first principal geodesics are presented in
Figure 4. It can be seen from Figure 4 that the reconstruction with
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Figure 4: Reconstruction error using a limitated number of prin-
cipal geodesics (PG). This example has been computed using data
acquired from motion capture

only one geodesic is not very accurate, especially when the motion
is rather complicated, such as depicted in the 4th frame (see the
motion frames in the upper part of Figure 4). When increasing the
number of principal geodesics, the error (distance to the original
data) decreases rapidly (already for 2 principal geodesics), even in
the case of complicated motions. It is possible to envisage an auto-
matic segmentation of the motion by looking at the derivative of this
reconstruction error [19]. This type of applications constitutes the
perspectives of our work and illustrates the potential applications of
PGA.



5. CONCLUSIONS AND PERSPECTIVES

In this paper, a new algorithm for the exact calculation of PGA for
data on the rotation group SO(3) was introduced. The goal was to
gain a better understanding of this new statistical framework and
to start exploring its potential applications. The algorithm we in-
troduced was used to study the convergence of PGA and its ability
to represent the variability of data. This task is performed by the
classical PCA for data in a vector space. We have found that PGA
extends several of the functionalities of PCA to the case of data on a
Riemannian manifold -in particular SO(3). Indeed, PGA can detect
data with low dimensionality and reduce its dimensionality. It can
represent the variability of the data using a set of principal geodesic
directions and reconstruct it with any desired precision by using a
sufficient number of principal geodesics. We applied PGA to a sim-
ulated Gaussian distribution on SO(3) and to real data from motion
capture. We have found that a higher number of principal geodesics
is needed to describe these kinds of data, which have a more com-
plicated structure.

In the case of data from motion capture, we have seen how PGA
can reconstruct a time sequence of rotations. The number of prin-
cipal geodesics needed to reconstruct a certain part of the time se-
quence with a given precision becomes higher when this part con-
tains a more complicated motion. In other words, increasing the
number of principal geodesics increases the level of detail in the
reconstruction PGA gives of the data.

The ability of PGA to reduce the dimensionality of data, to rep-
resent its variability and to reconstruct it with different levels of
precision makes it an interesting basis for compression, feature ex-
traction and segmentation applications. Indeed, PCA performs these
same tasks for vector-valued data and is used in such applications.
The algorithm given in this paper, which makes it possible to apply
PGA to data on the rotation group SO(3), can be seen as a starting
point for the investigation of such applications. We hope to further
investigate the applications of PGA in computer graphics in future
works.
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