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aUniversité Paris Descartes

(v2 released November 2012)

We consider the estimation of unknown parameters in the drift and diffusion coefficients of
a one-dimensional ergodic diffusion X when the observation Y is a discrete sampling of X
with an additive noise, at times iδ, i = 1 . . . N . Assuming that the sampling interval tends to
0 while the total length time interval tends to infinity, we prove limit theorems for functionals
associated with the observations, based on local means of the sample. We apply these results
to obtain a contrast function. The associated minimum contrast estimators are shown to be
consistent. Some examples are discussed with numerical simulations.

Keywords: contrast function; diffusion process; hidden Markov models; parametric
inference; discrete time noisy observations
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1. Introduction

Statistical inference for continuous time models based on high frequency data has
been the subject of a huge number of recent papers. On one hand, continuous time
stochastic processes are increasingly used for modelling purposes. On the other
hand, such kind of data is now commonly available in various fields of applications
whether in finance or in biology and medicine.

Among continuous time models, one-dimensional diffusion processes have re-
ceived a lot of attention. More precisely, let (Xt) be given by the stochastic differ-
ential equation:

dXt = b(Xt, κ)dt+ σ(Xt, λ)dBt, X0 = η (1)

with B a standard Wiener process and η a random variable independent of B, and
b(., κ), σ(., λ) real valued functions, defined on R, depending on unknown param-
eters (κ, λ) ∈ Rd1 × Rd2 . The estimation of θ = (κ, λ) based on a discrete sample
(Xiδ, i ≤ N) with small sampling interval δ has been largely investigated. (see
e.g. [6], [7] for contrast-based estimator of the drift parameter, [22] for maximum
likelihood estimator, [8] for the estimation of the diffusion coefficient of multidi-
mensional diffusion process, [16] for the case of an ergodic diffusion observed on a
long-time interval, [2], [21], [1] . . . )
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In this paper, we suppose that, instead of observing exactly Xiδ, the observation
at time iδ is given by

Yiδ = Xiδ + ρεiδ (2)

with (εiδ, i ≥ 0) a sequence of i.i.d. random variables, satisfying E(εiδ) = 0,
E((εiδ)

2) = 1, independent of the process (Xt). This kind of model takes into
account measurement errors or, in the case of financial data, the so-called mi-
crostructure noise. In this context, the estimation of the integrated volatility has
been widely investigated (see e.g [23]). Jacod et al. in [15] consider the same kind
of observations for δ = δN , over an interval of length NδN = t fixed, to estimate
the integrated volatility

∫ t
0 σ(Xs, λ)2ds.

From now on, our concern is the joint estimation of θ = (κ, λ) using discrete
observations 2 over a long-time interval.

The exact likelihood of (Yiδ, i ≤ N) given by (1)-(2) is generally intractable
except for few models (essentially for Gaussian diffusions with additive Gaus-
sian noise, see e.g. [3], [17], [5]). For data within a fixed length-time interval
(δ = δN = 1

N , NδN = 1), estimation for a general diffusion with additive Gaussian
noise is investigated in [12]. The authors use a contrast method and only diffusion
coefficient parameters can be consistently estimated in this case. For the nonpara-
metric case, the inference of the drift function and the diffusion coefficient have
been studied in [20] and [19].

In this paper, we study observations given by (1)-(2) where δ = δN → 0 while
NδN →∞, under ergodic properties for the hidden diffusion X and propose con-
sistent estimators of both the drift and diffusion coefficient parameters (κ, λ). The
noise distribution is unknown, the variance ρ2 of the noise term may be known or
unknown and we assume that ρ is fixed.

Our starting idea is to reduce the influence of the noise by splitting the sample
into sub-samples and taking empirical means of the sub-samples. More precisely,
the sample is split into k blocks of size p, with N = pk, where p = pN and k = kN
tend to infinity with N . Then, setting ∆N = pNδN where pN and δN are chosen
such that ∆N → 0, we build the empirical mean of the jth block:

Y j
• = Xj

• + ρεj•, j = 0, 1 . . . kN − 1, (3)

where, for Z = Y,X, ε,

Zj• =
1

pN

pN−1∑
i=0

Zj∆N+iδN . (4)

Thus, ∆N defines a coarser sampling interval than δN , still tending to 0 while
NδN = kN∆N →∞.

Our statistical procedure is based on the kN− sample (Y j
• , j = 0 . . . kN − 1)

and follows a scheme analogous to the one in [11]. Hence, the empirical mean

Xj
• = 1

pN

∑pN−1
i=0 Xj∆N+iδN of the diffusion is closed to the integrated process

1
∆N

∫ (j+1)∆N

j∆N
Xsds as δN is sufficiently small. The parameter estimation of κ and λ

based of the observations of an integrated diffusion process has been investigated
by Gloter in [9], [10] and [11]. Our approach is based on these considerations.

We study the differences Y j
• − Xj∆N

(Proposition 3.2) and prove a regression

type relation for the Y j
• ’s (Proposition 3.4) which is the base of the statistical

applications. These results allow us to prove limit theorems for the variation and
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the quadratic variation of (Y j
• ) which hold by setting δN = p−αN with 1 < α ≤ 2

(Theorems 4.2 and 4.3). We introduce contrasts and prove the consistency of the
associated minimum contrast estimators. The study of the asymptotic distributions
of the minimum contrast estimators is studied in another paper, as it requires
further developments (see [4]).

The paper is organised as follows. In Section 2, notations and assumptions on
the model are precised. Section 3 is devoted to the small sample properties of the
empirical means sample (Y j

• ) and Section 4 to uniform convergence in probability
results. In Section 5, we introduce the contrasts and prove the consistency of the
estimators. We also deal with the case ρ unknown and prove that ρ2 can be replaced
by an estimator in the contrast formula. Section 6 is devoted to examples and
numerical results. For several models, we implement our estimators on simulated
data for different choices of (N, δN , pN ) and of the noise level. Section 7 contains
some concluding remarks. Proofs are gathered in Section 8, and some auxiliary
results are recalled in the Appendix.

2. Assumptions and Notations

Consider the one-dimensional stochastic differential equation

dXt = b(Xt, κ0)dt+ σ(Xt, λ0)dBt, X0 = η (5)

where B is a standard Brownian motion and η is a real valued random variable
independent of B. The functions b(x, κ) and σ(x, λ) are respectively defined on
R×Θ1 and R×Θ2 where Θ1 (resp. Θ2) is a compact convex subset of Rd1 (resp.
R
d2). For simplicity of notations, in proofs, we assume that d1 = d2 = 1. We denote

by θ0 = (κ0, λ0) the true value of the parameter and assume that θ0 ∈
◦
Θ where

Θ = Θ1 ×Θ2.
From now on, we set b(x) = b(x, κ0) and σ(x) = σ(x, λ0) and make classical as-

sumptions on functions b and σ ensuring that (5) admits an unique strong solution
(Xt)t≥0, defined on a probability space (Ω,F ,P), and that this solution is positive
recurrent on R.

(A1) Functions b and σ belong to C2(R), σ(x) > 0 for all x, and there exists c > 0
such that for all x ∈ R:

|b(x)|+ |b′(x)|+ |b′′(x)| ≤ c(1 + |x|),
σ(x) + |σ′(x)|+ |σ′′(x)| ≤ c(1 + |x|).

(A2) For x0 ∈ R, let s(x) = exp(−2
∫ x
x0

b(u)
σ2(u)du) denote the scale density and

m(x) = 1
σ2(x)s(x) the speed density. Assume

∫
−∞ s(x)dx =

∫ +∞
s(x)dx = ∞

and
∫ +∞
−∞ m(x)dx = M <∞.

(A3) Let ν0(dx) = 1
Mm(x)dx. For all k > 0, ν0 admits a finite moment of order k.

(A4) For all k > 0, supt≥0 E(|Xt|k) <∞.
(A5) The common distribution of the random variables εiδN admits a 8th order mo-

ment, and is symmetric.

Assumption (A1) implies that (1) admits a unique strong solution on R. Under
(A1) and (A2), ν0 is the unique invariant probability of (5) and (Xt) satisfies the
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classical ergodic theorem (see e.g. [18])

∀f ∈ L1(dν0),
1

T

∫ T

0
f(Xs)ds −→

T→∞
ν0(f) a.s.

Moreover, under Assumption (A1), for all k ≥ 1, there exists a constant c(k) such
that, for all t ≥ 0:

E

(
sup

s∈[t,t+1]
|Xs|k

∣∣∣∣∣Gt
)
≤ c(k)(1 + |Xt|k). (6)

where Gt = σ(Bs, s ≤ t; η). (See e.g [9]). Furthermore, Assumptions (A1)-(A3)
imply (A4) if η has distribution ν0 or η is deterministic (for the latter case, see
[11], Proposition 3). Below, we first assume that the noise level ρ is known and
discuss later the case where ρ is unknown.

Define the σ-fields

GNj = Gj∆N
= σ(Bs, s ≤ j∆N ; η), HNj = GNj ∨ ANj ,

ANj = σ(εk∆N+iδN , i ≤ pN − 1, k ≤ j − 1) = σ(εlδN , l ≤ j∆N − δN )
(7)

For 0 ≤ j ≤ kN − 1, the random variable Y j
• is HNj+1 measurable. We introduce,

for further use, a condition on functions g : R×Θ −→ R:

(C1) The function g is the restriction of a function defined on R×O with O an open
neighbourhood of Θ and

∃c > 0,∀x ∈ R sup
θ∈Θ
|g(x, θ)| ≤ c(1 + |x|).

We need the following statistical assumptions ((A6) is the usual identifiability
condition for this problem and (A7) is a smoothness condition for the contrast):

(A6)

σ(x, λ) = σ(x, λ0) ν0 almost everywhere implies λ = λ0,
b(x, κ) = b(x, κ0) ν0 almost everywhere implies κ = κ0.

(A7) The partial derivatives ∂xb, ∂κb, ∂xσ, ∂λσ, ∂2
xxb, ∂

2
κκb, ∂

2
xκb, ∂xxσ, ∂2

λλσ and ∂2
xλσ

exist, are continuous and satisfy Condition (C1).

3. Small sample properties of the local means sample

In this section, some local properties of the local means are gathered ton enlight
first order approximation of Y j

• −Xj∆N
and Y j+1

• − Y j
• .

The following random variables appear in the expansions below:

ζj+1,N =
1

pN

pN−1∑
i=0

∫ (j+1)∆N

j∆N+iδN

dBs, ζ ′j+2,N =
1

pN

pN−1∑
i=0

∫ (j+1)∆N+iδN

(j+1)∆N

dBs, (8)

Consider also the following random variables which will appear in further ex-
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pansions:

ξ′j+1,N =
1

∆
3/2
N

∫ (j+2)∆N

(j+1)∆N

((j + 2)∆N − s)dBs, (9)

ξ′i+1,j,N =
1

δ
3/2
N

∫ j∆N+(i+2)δN

j∆N+(i+1)δN

(j∆N + (i+ 2)δN − s)dBs. (10)

Some basic properties of these random variables are summarized in Lemma 8.1
and in Lemma 8.2 in Section 8.

Proposition 3.1: Let X̄j = ∆−1
N

∫ (j+1)∆N

j∆N
Xsds. Under Assumption (A1), we

have

X̄j −Xj
• =

√
δN

(
1

pN

pN−1∑
i=0

σ(Xj∆N+iδN )ξ′i,j,N

)
+ ej,N

with (see (7))

∃c > 0, |E(ej,N |HNj )| ≤ δNc(1 + |Xj∆N
|), E(e2

j,N |HNj ) ≤ δ2
Nc(1 + |Xj∆N

|4).

The following proposition precises the local asymptotic behaviour of the observa-
tion blocks, by a first order comparison between Y j

• and Xj∆N
. It can be compared

to Proposition 2.2 in [9].

Proposition 3.2: Under (A1), we have for j ≤ kN − 1,

Y j
• −Xj∆N

= σ(Xj∆N
)
√

∆Nξ
′
j,N + e′j,N + ρεj• (11)

with |E(e′j,N |HNj )| ≤ c∆N (1 + |Xj∆N
|) and

E(e′j,N
2|HNj ) ≤ c∆2

N (1 + |Xj∆N
|4), E(e′j,N

4|HNj ) ≤ c∆3
N (1 + |Xj∆N

|4).

If moreover (A5) holds, for k ≤ 8,

∃c > 0,∀j ≤ kN−1,E
(
|Y j
• −Xj∆N

|k
∣∣∣HNj ) ≤ c(∆

k/2
N (1 + |Xj∆N

|k) + ρkE
(
|εj•|k

))
.

(12)

We deduce:

Corollary 3.3: Assume (A1) and (A5), and consider f : R2 × Θ → R such
that f, ∂xf, ∂

2
xxf satisfy (C1). Then

∃c > 0, ∀j ≥ 0, ∀θ ∈ Θ,
∣∣∣E(f(Y j

• , θ)− f(Xj∆N
, θ)
∣∣∣HNj )∣∣∣ ≤ c(∆N (1 + |Xj∆N

|2) + ρ2
√
E((εj•)4))

(13)
and for l = 1, 2

E

(
(f(Y j

• , θ)− f(Xj∆N
, θ))2l

∣∣∣HNj ) ≤ c(1 + |Xj∆N
|2l + ρ2l

E((εj•)
2l))

×(∆l
N (1 + |Xj∆N

|2l) + ρ2l
√
E((εj•)4l)).

(14)
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The following proposition is essential for the limit theorems of Section 4 and for
the statistical application.

Proposition 3.4: Under Assumptions (A1) and (A5), we have

Y j+1
• − Y j

• −∆Nb(Y
j
• ) = σ(Xj∆N

)(ζj+1,N + ζ ′j+2,N ) + τj,N + ρ(εj+1
• − εj•)

where τj,N is HNj+2 mesurable, and there exists a constant c > 0 such that

|E(τj,N |HNj )| ≤ c∆N (∆N (1 + |Xj∆N
|3) + ρ2

√
E((εj•)4)),

E(τ2
j,N |HNj ) + |E(τj,Nζj+1,N |HNj )|+ |E(τj,Nζ

′
j+2,N |HNj )| ≤

c∆N (1 + |Xj∆N
|2 + ρ2

E((εj•)
2))(∆N (1 + |Xj∆N

|4) + ρ2
√
E((εj•)4)),

E(τ4
j,N |HNj ) ≤ c(1 + |Xj∆N

|4 + ρ4
E((εj•)

4))(∆4
N (1 + |Xj∆N

|4) + ρ4
√
E((εj•)8)).

Note that, for i = 1, 2, by the Rosenthal inequality ρ2i
√
E((εj•)4i) = O(ρ

2i

piN
).

3.0.0.1. Remark: . In [9], Theorem 2.3., it is proved that

X̄j+1 − X̄j −∆Nb(X̄j) =
√

∆Nσ(Xj∆N
)(ξj,N + ξ′j+1,N ) + τ̄j,N

where τ̄j,N satisfies |E(τ̄j,N |GNj )| ≤ c∆2
N (1+ |Xj∆N

|3). In Proposition 3.4, addition-
nal terms due to the noise appear.

4. Uniform convergence in probability results

In this section, asymptotic results for functionals of local means are stated.
They are involved in the asymptotic study of the minimum contrast estimators
described in Section 5.

From now on, f : R × Θ → R denotes a C2 function, such that f , ∂xf ,
∂2
xxf and ∂θf satisfy (C1). The assumptions on asymptotics are denoted (AH) :

(AH) The number of observations N → ∞, with δN → 0, pN → ∞, kN → ∞,
∆N = pNδN → 0 and NδN = kN∆N →∞.

The first result is an ergodic theorem for the local means.

Proposition 4.1: Under Assumptions (A1)-(A5) and (AH), we have

ν̄N (f(., θ)) =
1

kN

kN−1∑
j=0

f(Y j
• , θ) −→ ν0(f(., θ)) (15)

uniformly in θ, in probability.

The next theorem precises the variation of the process (Y j
• ).
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Theorem 4.2 : Under Assumptions (A1)-(A5) and (AH), with δN = p−αN , α ∈
(1, 2], (∆N = p1−α

N ) we have

ĪN (f(., θ)) =
1

kN∆N

kN−2∑
j=1

f(Y j−1
• , θ)(Y j+1

• − Y j
• −∆Nb(Y

j−1
• ))

P−→ 0 (16)

uniformly in θ.

The late result deals with the quadratic variation of Y j
• .

Theorem 4.3 : Assume (A1)-(A5) and (AH).

(1) If δN = p−αN with α ∈ (1, 2) (∆N = p1−α
N ), then

Q̄N (f(., θ)) =
1

kN∆N

kN−2∑
j=1

f(Y j−1
• , θ)(Y j+1

• − Y j
• )2 P−→ 2

3
ν0(f(., θ)σ2),

(17)
(2) If δN = p−2

N (∆N = 1
pN

), then

Q̄N (f(., θ))
P−→ 2

3
ν0(f(., θ)σ2) + 2ρ2ν0(f(., θ)), (18)

uniformly in θ ∈ Θ.

The proofs of these two last theorems are based on the results of Proposition 3.4
and Lemma A.3 in the Appendix. Theorems 4.2 and 4.3 can be compared to the
following results from [16]:

1

kN∆N

kN−1∑
j=0

f(Xj∆N
, θ)(X(j+1)∆N

−Xj∆N
−∆Nb(Xj∆N

)) = oP (1), (19)

1

kN∆N

kN−1∑
j=0

f(Xj∆N
, θ)(X(j+1)∆N

−Xj∆N
)2 = ν0(f(., θ)σ2) + oP (1). (20)

Theorem 4.2 gives the analogous result as (19), under the condition δN = p−αN ,
α ∈ (1, 2] and provided that we introduce a lag to avoid correlation terms of order
∆N (if no lag, the limit is not 0, see for instance [11]). Theorem 4.3 underestimates
ν0(f(., θ)σ2) because the variance of ζj+1,N + ζ ′j+2,N (see Proposition 3.4) is equiv-

alent to 2
3∆N and not to ∆N . For δN = p−2

N , an additional bias appears due to the
noise.

5. Estimation by contrast minimization

The main results about minimum contrast estimators using local means are de-
scribed here. The contrasts presented in this section are inspired by the works
of Kessler (see [16]) and Gloter (see [9] and [11]). They derive from the log-
likelihood of independent Gaussian random variables of mean X(j+1)∆N

−Xj∆N
−

∆Nb(Xj∆N
, κ) and variance ∆Nσ

2(Xj∆N
, λ) previously used to build a contrast

for directly observed diffusions. Some corrections are needed to deal with the local
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means (Y j
• ), mainly justified by the asymptotic behaviour of the quadratic vari-

ation in Theorem 4.3. These constrasts have been modified in [11] to deal with
parameter estimation for integrated diffusion processes.

5.1. Definition of the contrasts

Define

EN (θ) =

kN−2∑
j=1

{
3

2∆N

(Y j+1
• − Y j

• −∆Nb(Y
j−1
• , κ))2

σ2(Y j−1
• , λ)

+ log(σ2(Y j−1
• , λ))

}
. (21)

When δN = p−αN with α ∈ (1, 2], let cN,ρ(x, λ) = σ2(x, λ) + 3∆
2−α
α−1

N ρ2 and define

EρN (θ) =

kN−2∑
j=1

{
3

2∆N

(Y j+1
• − Y j

• −∆Nb(Y
j−1
• , κ))2

cN,ρ(Y
j−1
• , λ)

+ log(cN,ρ(Y
j−1
• , λ))

}
(22)

We have limN→∞ cN,ρ(x, λ) = cρ(x, λ) with cρ(x, λ) = σ2(x, λ) if 1 < α < 2 and

cρ(x, λ) = σ2(x, λ) + 3ρ2 if α = 2. Let θ̂N and θ̂ρN be the associated minimum
contrast estimators, defined as any solution of

θ̂N = arginf
θ∈Θ

EN (θ) and θ̂ρN = arginf
θ∈Θ

EρN (θ). (23)

Theorem 5.1 : Assume (A1)-(A7), and consider θ̂N and θ̂ρN defined by (23).

(1) If δN = p−αN , α ∈ (1, 2), the estimator θ̂N is consistent: θ̂N → θ0 in Pθ0

probability.
(2) If α ∈ (1, 2], the estimator θ̂ρN is consistent.

Note that point 1 does not require the knowledge of ρ.

The parameter α links the number of observations pN in a subsample and

the length ∆N in the time-interval of this subsample, as ∆N = pNδN = δ
1− 1

α

N .
Tuning α depends on the total number of observations, to deal with a rather
large number of observations in each subsample and denoise sufficiently each local
mean (See Table 1 in Section 6 for a numerical example).

The limit value α = 2 is determined by the apparition of the variance of the
additional noise: there is not enough observations in each subsample to neglect ρ2.
Hence, the choice of the contrast EρN is motivated by the second result in Theorem
5.1.

5.2. Estimation with unknown observation noise level

Assuming (B1) with unknown ρ, we consider the estimator ρ̂2
N =

1
2N

∑N−1
i=0 (Y(i+1)δN − YiδN )2, which is the half of the quadratic variation of the

observations.

Lemma 5.2: Assume (A1)-(A5) and (B1). Then we have ρ̂2
N

P−→ ρ2, when

N →∞, with δN → 0 and NδN →∞. If, moreover, Nδ2
N → 0,

√
N(ρ̂2

N − ρ2)
L−→

N (0, 3ρ4).
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The minimum contrast estimator θ̂ρ̂NN based on the constrast E ρ̂NN (θ) satisfies:

Corollary 5.3: Assume (A1)-(A7), (B1) and δN = p−αN with α ∈ (1, 2]. The

estimator θ̂ρ̂NN is consistent.

6. Examples

In this section, simulation results are given for several examples of diffusion models
on simulated data.

6.1. Example 1. The Ornstein-Uhlenbeck process

The hidden diffusion solves

dXt = κXtdt+ λdBt (24)

with κ < 0 and λ > 0, and X0 is deterministic or follows the stationary distribution
of X. We consider several distributions for the noise.

In this model, we can compute explicitly the estimator θ̂N by minimizing the
contrast. With the expressions of ∂κEN (θ) and ∂λEN (θ), we find

λ̂2
N =

3

2kN∆N

kN−2∑
j=1

(Y j+1
• − Y j

• −∆N κ̂NY
j−1
• )2 − 3ρ21{α=2};

κ̂N =
1

∆N

∑kN−2
j=1 Y j−1

• (Y j+1
• − Y j

• )∑kN−2
j=1 (Y j−1

• )2
.

We can replace λ̂2
N by

λ̃2
N =

3

2kN∆N

kN−2∑
j=1

(Y j+1
• − Y j

• )2 − 3ρ21{α=2}, as λ̂2
N − λ̃2

N = oP (1).

In Tables 1-5, the common distribution of εiδ is N (0, 1) and Table 6 presents
some results with other distributions. Tables 1, 2 and 3 give mean and variance
of θ̂N for different values of δ, α and N (δ = p−α). The values of the parameters
are κ0 = −1, λ0 = 1, ρ2 = 0.5. We have used 500 replications, and we give the
empirical mean and variance in parenthesis.

N = 5000, δ = 0.01 (Nδ = 50, Nδ2 = 0.5) κ0 = −1, λ0 = 1, ρ2 = 0.5
α = 1.17(p = 50, k = 100) α = 1.5(p = 22, k = 227) α = 2(p = 10, k = 500)

κ̂N (102 Var) -0.58 (1.53) -0.76 (2.75) -0.82 (3.26)

λ̂2
N (102 Var) 0.76 (1.19) 1.07 (1.25) 0.86 (2.61)

Table 1. Influence of the size of blocks on the estimators, Ornstein-Uhlenbeck model.

First, we remark that the empirical variance is larger in the case α = 2 than in
the other cases. The parameter κ0 is always underestimated, but the estimation
of κ0 is clearly improved as N grows, and δ is close to 0. The estimation of λ0

is better in Table 2 than in Table 1, and similar in Tables 2 and 3. The variance
decreases strongly in the case α = 2.
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N = 20000, δ = 0.005 (Nδ = 100, Nδ2 = 0.5) κ0 = −1, λ0 = 1, ρ2 = 0.5
α = 1.35(p = 50, k = 400) α = 1.5(p = 34, k = 588) α = 2(p = 14, k = 1428)

κ̂N (102 Var) -0.74 (1.08) -0.81 (1.47) -0.87 (1.51)

λ̂2
N (103 Var) 0.95 (3.87) 1.05 (3.88) 0.92 (11.07)

Table 2. Influence of the size of blocks on the estimators, Ornstein-Uhlenbeck model.

N = 100000, δ = 0.001 (Nδ = 100, Nδ2 = 0.1) κ0 = −1, λ0 = 1, ρ2 = 0.5
α = 1.3(p = 200, k = 500) α = 1.5(p = 100, k = 1000) α = 2(p = 32, k = 3125)

κ̂N (102 Var) -0.81 (1.36) -0.89 (1.49) -0.96 (1.95)

λ̂2
N (103 Var) 0.90 (2.74) 1.02 (1.99) 0.92 (3.85)

Table 3. Influence of the size of blocks on the estimators, Ornstein-Uhlenbeck model.

In Table 4, we study the influence of the noise on the estimators, in the case
α = 3

2 . We use 500 replications, with δ = 0.001 and N = 105, and we give the
empirical mean and standard deviation in parenthesis.

N = 105, δ = 10−3, α = 1.5, κ0 = −1, λ0 = 1
ρ2 = 0.1 ρ2 = 1 ρ2 = 2 ρ2 = 5

κ̂N (102 Var) -0.91 (1.49) -0.89 (1.50) -0.86 (1.75) -0.83 (1.52)

λ̂2
N (103 Var) 0.96 (1.71) 1.17 (2.92) 1.47 (4.33) 2.37 (13.42)

Table 4. Influence of the observation noise variance on the estimators, Ornstein-Uhlenbeck model.

A strong bias appears for λ̂N when ρ2 is bigger than 1, whereas there are no sig-
nificant changes in the estimation of the drift parameter κ0. The empirical variances
for the estimation of λ0 also increases: the presence of noise in the observations
contaminates the estimation of the diffusion coefficient in this case.

In Table 5, we study the influence of the value of the diffusion coefficient on
the estimators, in the case α = 3

2 . We use 500 replications, with δ = 0.001 and
N = 105, and we give the empirical mean and variance in parenthesis.

N = 105, δ = 10−3, α = 1.5, κ0 = −1, ρ2 = 1
λ2

0 = 0.1 λ2
0 = 0.5 λ2

0 = 1 λ2
0 = 2

κ̂N (102 Var) -0.81 (1.48) -0.87 (1.54) -0.90 (1.64) -0.89 (1.62)

λ̂2
N (103 Var) 0.23 (0.12) 0.58 (0.78) 1.01 (1.95) 2.01 (6.93)

Table 5. Influence of the diffusion coefficient on the estimators, Ornstein-Uhlenbeck model.

The smallest value of λ2
0 is overestimated by λ̂2

N , and this result confirms the
ones of Table 4 about high levels of noise. For the other values of λ2

0, no bias is
observed.

We finally study in Table 6 the influence of the distribution of the errors on the
estimators. We choose in this case α = 3

2 , κ0 = −1, λ0 = 1, ρ2 = 0.5 . We use
500 replications, with δ = 0.001 and N = 105, and we give the empirical mean
and standard deviation in parenthesis. We make the appropriate corrections on
the distributions of εiδ to have unitary variance.

We observe that, except in the case of a Uniform distribution, the estimators
give results close to the Gaussian case. For the case εiδ ∼ Uniform(−

√
3,
√

3), a
significant positive bias is observed, and the variance is larger in this case than in
the case of Gaussian distribution.

These simulations point out two facts : first, the value α = 3
2 for the local mean

size parameter appears as a good compromise, with a bias in the estimation of κ
lower than the bias observed for values of α close to 1, and an empirical variance
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N = 105, δ = 10−3, α = 1.5, κ0 = −1, λ0 = 1, ρ2 = 0.5

N (0, 1) Laplace(0, 1√
2
) Uniform(−

√
3,
√

3) Logistic(0,
√

3
π )

κ̂N (102 Var) -0.89 (1.65) -0.90 (1.52) -0.87 (1.53) -0.89 (1.65)

λ̂2
N (103 Var) 1.02 (2.11) 1.02 (2.18) 1.31 (3.45) 1.02 (2.10)

Table 6. Influence of the distribution of the noise on the estimation, Ornstein-Uhlenbeck model.

on simulations lower than the variance observed for α = 2. The second remark
concerns the number of observations: for N = 5000 observations, κ is underesti-
mated, for all the values of α considered. Thus, the context of high frequency data
requires a large number of observations, with a very small discretization step, to
be taken into consideration.

6.2. Comparison with a discretely observed Ornstein-Uhlenbeck process

We are interested in the comparison, on simulated datasets, of our method with
the methods based on the direct observation of the diffusion at discrete time (see
e.g. [7] and [16]). To compare the quality of the noise reduction and its influence on
the estimation of the parameters, we compare the results for discrete observations
with noise, based on the minimization of the contrast built on the (Y j

• ) (Tables
1, 2 and 3) with those obtained for the discrete observations without noise, based
on the minimization of the contrast built on the (XiδN ). In both cases the same
datasets of N observations with a δN -step of discretization are considered. The
hidden diffusion (Xt) is an Ornstein-Uhlenbeck process (24). The results based on
the direct observations are given in Table 7.

α = 1.5, κ0 = −1, λ0 = 1, no noise
N = 5.103, δ = 10−2 N = 2.104, δ = 5.10−3 N = 105, δ = 10−3

κ̂N (Var) -1.04 (0.21) -1.02 (0.13) -1.01 (0.14)

λ̂2
N (Var) 0.99 (1.98× 10−2) 0.99 (9.80× 10−3) 1.00 (4.30× 10−3)

Table 7. Parameter estimation with direct observations of the Ornstein-Uhlenbeck model, for several numbers

of observations.

The estimation of κ0 is better for a direct observation of the diffusion, but in
this case, the whole set of N observations is taken into account, whereas the size

of the set of local means is kN = Nδ
1

α

N .

6.3. Example 2. The Cox-Ingersoll-Ross process

Consider the one-dimensional diffusion process (Cox-Ingersoll-Ross process), solu-
tion of

dXt = (κXt + κ′)dt+ λ
√
XtdBt, X0 = η, (25)

with κ < 0, κ′ ∈ R and λ > 0, and η a positive random variable independent of
(Bt).

We assume that the observations at time t0 < · · · < tN are given by

Yti = Xti exp(εti)

where (εti) is a sequence of independentN (0, ρ2) random variables. Hence the noise
is multiplicative, and the observations remain positive. We consider Uti = log(Yti)
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to have real valued observations. The process Zt = log(Xt) solves the stochastic
differential equation

dZt = (κ+ (κ′ − λ2

2
) exp(−Zt))dt+ λ exp(−Zt

2
)dBt.

We set κ′′ = κ′ − λ2

2 .

In this case, the scale density is s(x) = exp
(
−2κ
λ2 ex − 2κ′′

λ2 x
)

and the speed density

is m(x) = 1
λ2 exp

((
2κ′′

λ2 + 1
)
x+ 2κ

λ2 ex
)
. Provided κ < 0 and 2κ′′

λ2 + 1 > 0, Assump-
tions (A2), (A3) are ensured, and (A4) holds with η ∼ ν0. However, Assumption

(A1) does not holds, but θ̂N is explicit, and the consistency can be proved directly.

Explicit expressions for the estimator θ̂N = (κ̂N , κ̂′′N , λ̂
2
N ) are derived: (κ̂N , κ̂′′N )

is solution of the system(
∆N

∑kN−2
j=1 exp(Y j−1

• ) ∆NkN

∆NkN ∆N

∑kN−2
j=1 exp(−Y j−1

• )

)(
κ̂N
κ̂′′N

)
=

(∑kN−2
j=1 exp(Y j−1

• )(Y j+1
• − Y j• )∑kN−2

j=1 (Y j+1
• − Y j• )

)

and

λ̂2
N =

3

2kN∆N

kN−2∑
j=1

exp(Y j−1
• )(Y j+1

• − Y j
• −∆N (κ̂N + κ̂′′N exp(−Y j−1

• )))2.

Recall that the following explicit expressions for the estimator θ̃N =
(κ̃N , κ̃′N , λ̃

2
N ) are available when the diffusion (Xt) is directly observed ([16]):(

∆N
∑kN−2

j=1 Xj∆N
∆NkN

∆NkN ∆N
∑kN−2

j=1
1

Xj∆N

)(
κ̃N
κ̃′N

)
=

( ∑kN−2
j=1 (X(j+1)∆N

−Xj∆N
)∑kN−2

j=1
1

Xj∆N
(X(j+1)∆N

−Xj∆N
)

)

and

λ̃2
N =

1

kN∆N

kN−2∑
j=1

1

Xj∆N

(X(j+1)∆N
−Xj∆N

−∆N (κ̃NXj∆N
+ κ̃′N ))2.

Simulation results are presented in Table 8 (with noise) and Table 9 (directly
observed). For this study, N = 500 trajectories are simulated with parameters
κ0 = −2, κ′0 = 3, λ0 = 4, ρ2 = 0.5, and then κ′′0 = 1. Due to the simulation study
for the Ornstein-Uhlenbeck process, we have chosen the value α = 3

2 as local mean
size parameter.

κ0 = −2, κ′′0 = 1, λ0 = 4, ρ2 = 0.5, α = 1.5
N = 5.103, δ = 10−2 N = 2.104, δ = 5.10−3 N = 105, δ = 10−3

κ̂N (102 Var ) -1.43 (6.28) -1.56 (3.14) -1.78 (3.37)
κ̂′′N (102 Var) 0.99 (4.57) 1.03 (2.12) 1.13 (2.44)

λ̂2
N (102 Var) 4.23 (37.61) 4.35 (15.15) 4.40 (8.15)

Table 8. Parameter estimation for the Cox-Ingersoll-Ross process with a multiplicative noise for different values

of α.

In Table 8, we observe that κ′′0 = 1 is well estimated, whereas the estimation of
κ0 is negatively biased. The empirical variance, for κ̂N and κ̂′′N decreases between
N = 5000 and N = 20000 observations, but there is no significative improvement
between N = 20000 and N = 100000 observations. For the diffusion parameter λ0,
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the estimator λ̂N is positively biased, with a variance decreasing as the number of
observations grows.

These results can be compared with the case of direct observations, given in
Table 9.

κ0 = −2, κ′0 = 3, λ0 = 4, α = 1.5, ρ2 = 0.5
N = 5.103, δ = 10−2 N = 2.104, δ = 5.10−3 N = 105, δ = 10−3

κ̂N (102 Var ) -2.04 (11.03) -2.03 (6.65) -2.46 (53.45)
κ̂′N (102 Var) 3.02 (13.47) 3.03 (8.17) 3.45 (65.44)

λ̂2
N (102 Var) 4.11 (0.95) 4.05 (0.20) 4.01 (0.36)

Table 9. Parameter estimation for the Cox-Ingersoll-Ross process with direct observations for different values of

α.

Notice that there is no bias in the estimation of κ0 and κ′0 for N = 5000 and
N = 20000, contrary to the noisy case. Moreover, the estimation of λ2

0 is more

accurate, with a lower empirical variance for λ̂2
N .

7. Concluding remarks

The contrasts presented in this work give associated estimators for parameters
involved in a non-Markovian setting: one-dimensional diffusions observed with a
noise. The consistency of these minimum contrast estimators is illustrated on sev-
eral simulations, and the estimated values are close to the values obtained for a
direct observation of the diffusion, without specific assumption on the distribution
of the noise. The asymptotic normality is studied in a companion paper [4].
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8. Proofs

The following lemma, based on elementary computations, is mentioned in [9] and
summarize the properties of the random variables ξj,N and ξ′j+1,N defined in Section
3.

Lemma 8.1: The random variables ξj,N and ξ′j+1,N are independent and gaus-

sian; ξj,N is GNj+1 measurable and independent of GNj ; ξ′j+1,N is GNj+2 measurable

and independent of GNj+1. We will use the following expectations:

E(ξj,N |GNj ) = E(ξ′j+1,N |GNj ) = 0,

E(ξ2
j,N |GNj ) = E(ξ′2j+1,N |GNj ) = 1

3 ,

E((ξ2
j,N −

1
3)2|GNj ) = E((ξ′2j+1,N − 1

3)2|GNj ) = 2
9 ,

E((ξ2
j,N −

1
3)ξ′j,N |GNj ) = E((ξ′2j+1,N − 1

3)ξ′j,N |GNj ) = 0,

E(ξj,Nξ
′
j,N |GNj ) = 1

6 .
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It is useful to introduce the intervals Ij,k,N := Ij,k = [j∆N + kδN , j∆N + (k +
1)δN ), for k = 0, . . . , pN − 1, j = 0, . . . , kN − 1, which satisfy for all j, if k 6= k′

Ij,k ∩ Ij,k′ = ∅ and for j 6= j′ and all k, k′, Ij,k ∩ Ij′,k′ = ∅.

Lemma 8.2: The random variables ζj+1,N and ζ ′j+1,N are G(j+1)∆N
measurable,

ζ ′j+2,N is independent of G(j+1)∆N
, and the following holds:

ζj+1,N =
1

pN

pN−1∑
k=0

(k+1)

∫
Ij,k

dBs, ζ ′j+2,N =
1

pN

pN−1∑
k=0

(pN−1−k)

∫
Ij+1,k

dBs. (26)

Moreover, we have

E(ζj,N |GNj ) = 0, E(ζ ′j+1,N |GNj ) = 0, E(ζj+1,Nζ
′
j+1,N |GNj ) =

∆N

6

(
1− 1

p2
N

)
,

E((ζj+1,N )2|GNj ) = ∆N

(
1

3
+

1

2pN
+

1

6p2
N

)
, E((ζ ′j+1,N )2|GNj ) = ∆N

(
1

3
− 1

2pN
+

1

6p2
N

)
.

Proof of Lemma 8.2 Using (8), we can rearrange terms to exhibit non-
overlapping intervals, hence conditionally independent variables, and obtain (26).
Afterwards, the proof is achieved by elementary computations. 2
Proof of Proposition 3.1 First, note that, as (Xt, t ≥ 0) and (εkδN ) are inde-
pendent, for l = 1, 2,

E(elj,N |Hj,N ) = E(elj,N |Gj,N ).

Thus we study the expectations given Gj,N . Using ∆N = pNδN yields

Rj,N = X̄j −Xj
• =

1

pN

pN−1∑
k=0

1

δN

∫
Ij,k

(Xs −Xj∆N+kδN )ds.

Then,

Rj,N =
1

pN

pN−1∑
k=0

1

δN

∫
Ij,k

∫ s

j∆N+kδN

(b(Xu)du+ σ(Xu)dBu) ds.

By the Fubini theorem, we get

Rj,N =
√
δN

(
1

pN

pN−1∑
k=0

σ(Xj∆N+kδN )ξ′k,j,N

)
+ ej,N

where ej,N = αj,N + βj,N , with

αj,N =
1

pN

pN−1∑
k=0

1

δN

∫
Ij,k

(j∆N + (k + 1)δN − s)(σ(Xs)− σ(Xj∆N+kδN ))dBs

and

βj,N =
1

pN

pN−1∑
k=0

1

δN

∫
Ij,k

∫ s

j∆N+kδN

b(Xu)duds.
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Under Assumption (A1), we have |βj,N | ≤ cδN (1 + sups∈[j∆N ,(j+1)∆N ] |Xs|). And
for all p ≥ 0, by (6),

E(|βj,N |p|GNj ) ≤ cδpN (1 + |Xj∆N
|p).

Also E(αj,N |GNj ) = 0, so we get |E(ej,N |GNj )| ≤ δNc(1 + |Xj∆N
|). Furthermore, we

get with the Jensen inequality, the Ito isometry and the Fubini theorem

E
(

(αj,N )2
∣∣GNj ) ≤ c 1

pN

pN−1∑
k=0

∫
Ij,k

E((σ(Xs)− σ(Xj∆N+kδN ))2|GNj )ds.

With Proposition A.2 in the Appendix, it comes E

(
|αj,N |2

∣∣GNj ) ≤ Cδ2
N (1 +

|Xj∆N
|4). This implies the result. 2

Proof of Proposition 3.2 We have

Y j
• −Xj∆N

= Xj
• − X̄j + X̄j −Xj∆N

+ ρεj•,

where ε•j is independent ofHNj . Proposition 2.2 in [9] states that, using the random
variables (9),

X̄j −Xj∆N
= σ(Xj∆N

)
√

∆Nξ
′
j,N + ēj,N

with |E(ēj,N |HNj )| = |E(ēj,N |GNj )| ≤ c∆N (1 + |Xj∆N
|) and E(ē2

j,N |HNj ) =

E(ē2
j,N |GNj ) ≤ c∆2

N (1 + |X4
j∆N
|). With Proposition 3.1, setting e′j,N = ej,N + ēj,N ,

we get the first part of Proposition 3.2. Now we need to prove that, for some c > 0

E

(
|rj,N |k

∣∣∣HNj ) = E

(
|rj,N |k

∣∣∣GNj ) ≤ c(1 + |Xj∆N
|k) (27)

where

rj,N =
1

pN

pN−1∑
i=0

σ(Xj∆N+iδN )ξ′i,j,N

and ξ′i,j,N is defined in (10). With elementary computations on conditional expec-
tation, we get (see notation (7))

E

(
|rj,N |k

∣∣∣GNj ) ≤ 1

pN

pN−1∑
i=0

E(|σ(Xj∆N+iδN )|kE(|ξ′i,j,N |k|Gj∆N+iδN )|GNj ).

As ξ′i,j,N is independent of Gj∆N+iδN ,

E

(
|rj,N |k

∣∣∣GNj ) ≤ c 1

pN

pN−1∑
i=0

E(1 + |Xj∆N+iδN |k|GNj )

which implies (27). Finally, E(|εj•|k|HNj ) = E(|εj•|k) because εj• is independent of

HNj . 2



November 2, 2012 16:8 Statistics: A Journal of Theoretical and Applied Statistics
favetto contrast noise V2

16 Benjamin Favetto

Proof of Corollary 3.3 We have, with Taylor’s formula (order two):

Dj := f(Y j
• , θ)−f(Xj∆N

, θ) = ∂xf(Xj∆N
, θ)(Y j

• −Xj∆N
)+

1

2
∂2
xxf(Z, θ)(Y j

• −Xj∆N
)2

with Z ∈ (Y j
• , Xj∆N

). Then, with the Cauchy Schwarz inequality, using that the
derivatives satisfy (C1), and Proposition 3.2, there exists a constant c > 0 such
that, for all θ ∈ Θ,

|E(Dj |HNj )| ≤ c(1 + |Xj∆N
|)|E(e′j,N |HNj )|

+c(1 + |Xj∆N
|+ ρ

√
E((εj•)2))

√
E((Y j

• −Xj∆N
)4|HNj )

≤ c∆N (1 + |Xj∆N
|2)

+c(1 + |Xj∆N
|+ ρ

√
E((εj•)2))

×(∆N (1 + |Xj∆N
|2) + ρ2

√
E((εj•)4)).

With Taylor’s formula (order one), there exists a random variable Z̃ ∈ (Y j
• , Xj∆N

)

and a constant c > 0 independent of θ such that D2
j = (∂xf(Z̃, θ))2(Y j

• −Xj∆N
)2

and

D2
j ≤ c(1 + sup

s∈[j∆N ,(j+1)∆N ]
[Xs|2 + ρ2|εj•|2)(Y j

• −Xj∆N
)2.

Using the Cauchy-Schwarz inequality and condition (C1),

E(D2
j |HNj ) ≤ c(1 + |Xj∆N

|2 + ρ2
E((εj•)

2))(∆N (1 + |Xj∆N
|2) + ρ2

√
E((εj•)4)).

Analogously, D4
j = (∂xf(Z̃, θ))4(Y j

• −Xj∆N
)4 and

D4
j ≤ c(1 + sup

s∈[j∆N ,(j+1)∆N ]
[Xs|4 + ρ4|εj•|4)(Y j

• −Xj∆N
)4,

with c independent of θ. Using the Cauchy-Schwarz inequality, it comes

E(D4
j |HNj ) ≤ c(1 + |Xj∆N

|4 + ρ4
E((εj•)

4))(∆2
N (1 + |Xj∆N

|4) + ρ4
√
E((εj•)8)).

2

Proof of Proposition 3.4 In this proof, we study all conditional expectation
given GNj as they are identical to conditional expectations given HNj in all the
terms involved below. We have

Y j+1
• − Y j

• = Xj+1
• −Xj

• + ρ(εj+1
• − εj•).



November 2, 2012 16:8 Statistics: A Journal of Theoretical and Applied Statistics
favetto contrast noise V2

Statistics 17

Setting Cj = Xj+1
• −Xj

• and rearranging terms yields

Cj =
1

pN

pN−1∑
k=0

(X(j+1)∆N+kδN −Xj∆N+kδN )

=
1

pN

pN−1∑
k=0

pN−1∑
l=0

∫
Ij,k+l

dXs

=
1

pN

pN−1∑
k=0

(k + 1)

∫
Ij,k

dXs +
1

pN

pN−1∑
k=0

(pN − k − 1)

∫
Ij+1,k

dXs.

We use∫
Ij,k

dXs = b(Xj∆N+kδN )δN +

∫
Ij,k

(b(Xs)− b(Xj∆N+kδN ))ds

+σ(Xj∆N+kδN )

∫
Ij,k

dBs +

∫
Ij,k

(σ(Xs)− σ(Xj∆N+kδN ))dBs.

By splitting ∆N into ∆N = (k + 1)δN + (pN − k − 1)δN for all k, we get (see
notation 8)

Y j+1
• − Y j

• −∆Nb(Y
j
• ) = Cj −∆Nb(Y

j
• ) + ρ(εj+1

• − εj•)
= σ(Xj∆N

)(ζj+1,N + ζ ′j+2,N ) + τj,N + ρ(εj+1
• − εj•)

where τj,N =
∑4

`=1 τ
(`)
j,N and for ` = 1, . . . , 4, τ

(`)
j,N = r

(`)
j,N + s

(`)
j,N with

r
(1)
j,N =

1

pN

pN−1∑
k=0

(k + 1)δN (b(Xj∆N+kδN )− b(Y j
• )), (28)

s
(1)
j,N =

1

pN

pN−1∑
k=0

(pN − k − 1)δN (b(X(j+1)∆N+kδN )− b(Y j
• )), (29)

r
(2)
j,N =

1

pN

pN−1∑
k=0

(k + 1)σ(Xj∆N+kδN )

∫
Ij,k

dBs − σ(Xj∆N
)ζj+1,N , (30)

s
(2)
j,N =

1

pN

pN−1∑
k=0

(pN − k − 1)σ(X(j+1)∆N+kδN )

∫
Ij+1,k

dBs − σ(Xj∆N
)ζ ′j+2,N ,(31)

r
(3)
j,N =

1

pN

pN−1∑
k=0

(k + 1)

∫
Ij,k

(b(Xs)− b(Xj∆N+kδN ))ds, (32)

s
(3)
j,N =

1

pN

pN−1∑
k=0

(pN − k − 1)

∫
Ij+1,k

(b(Xs)− b(X(j+1)∆N+kδN ))ds, (33)

r
(4)
j,N =

1

pN

pN−1∑
k=0

(k + 1)

∫
Ij,k

(σ(Xs)− σ(Xj∆N+kδN ))dBs, (34)

s
(4)
j,N =

1

pN

pN−1∑
k=0

(pN − k − 1)

∫
Ij+1,k

(σ(Xs)− σ(X(j+1)∆N+kδN ))dBs. (35)
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We mainly treat the terms r
(`)
j,N because the others are analogous. We have

E(r
(`)
j,N |GNj ) = 0 and E(s

(`)
j,N |GNj ) = 0 for ` = 2, 4. Next,

|E(r
(1)
j,N |G

N
j )| ≤ 1

pN

pN−1∑
k=0

(k + 1)δN |E(b(Xj∆N+kδN )− b(Y j
• )|GNj )|

We use, for k = 0 . . . pN − 1 and s ∈ Ij,k, the inequality

|E(b(Xs)− b(Xj∆N+kδN )|GNj )| ≤ c∆N (1 + |Xj∆N
|3).

With (13), it comes |E(r
(1)
j,N |GNj )| ≤ c∆N (∆N (1 + |Xj∆N

|2) + ρ2
√
E((εj•)4)). Then,

with the Fubini theorem, we derive |E(τ
(3)
j,N |GNj )| ≤ c∆2

N (1 + |Xj∆N
|3). Hence

|E(τj,N |GNj )| ≤ c∆N (∆N (1 + |Xj∆N
|3) + ρ2

√
E((εj•)4)).

Now we deal with E((r
(1)
j,N )2|GNj ). With Proposition 3.3 and the Cauchy-Schwarz

inequality, it comes

E((b(Y j
• )−b(Xj∆N

))2|GNj ) ≤ c(1+|Xj∆N
|2+ρ2

E((εj•)
2))(∆N (1+|Xj∆N

|2)+ρ2
√
E((εj•)4)).

Applying the Cauchy-Schwarz inequality, and after elementary computations, we
obtain

E((r
(1)
j,N )2|GNj ) ≤ c∆2

N (1 + |Xj∆N
|2 + ρ2

E((εj•)
2))(∆N (1 + |Xj∆N

|2) + ρ2
√
E((εj•)4)).

With analogous techniques, we have

E((τ
(3)
j,N )2|GNj ) ≤ c∆2

N sup
s∈[j∆N ,(j+2)∆N ]

E((b(Xs)− b(Xj∆N
))2|GNj )

≤ c∆3
N (1 + |Xj∆N

|4).

Using Lemma 8.2, we obtain

r
(2)
j,N =

1

pN

pN−1∑
k=0

(k + 1)(σ(Xj∆N+kδN )− σ(Xj∆N
))

∫
Ij,k

dBs,

s
(2)
j,N =

1

pN

pN−1∑
k=0

(pN − k − 1)(σ(X(j+1)∆N+kδN )− σ(Xj∆N
))

∫
Ij+1,k

dBs.

Thus r
(2)
j,N =

∫ (j+1)∆N

j∆N
f(s)dBs with

f(s) =
1

pN

pN−1∑
k=0

(k + 1)(σ(Xj∆N+kδN )− σ(Xj∆N
))1Ij,k(s) (36)
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With the Ito isometry and the Fubini theorem, we have

E((r
(2)
j,N )2|GNj ) =

1

p2
N

pN−1∑
k=0

(k + 1)2δNE((σ(Xj∆N+kδN )− σ(Xj∆N
))2|GNj )

≤ c∆2
N (1 + |Xj∆N

|4)

We use similar techniques with r
(4)
j,N and s

(4)
j,N to obtain

E((τ
(2)
j,N )2 + (τ

(4)
j,N )2|GNj ) ≤ c∆2

N (1 + |Xj∆N
|4).

Collecting terms, we get the bound for E(τ2
j,N |GNj ).

Now, using (28), (8), Lemma 8.2 and the Cauchy Schwarz inequality we have

|E(r
(1)
j,Nζj+1,N |GNj )| ≤ c∆

3

2

N

√
E((b(Xj∆N+kδN )− b(Y j

• ))2|GNj ).

Corollary 3.3 implies

|E(r
(1)
j,Nζj+1,N |GNj )| ≤ c∆

3

2

N (1+|Xj∆N
|+ρ
√
E((εj•)2))(

√
∆N (1+|Xj∆N

|)+ρ(E((εj•)
4))

1

4 ).

The same inequality holds for E(r
(1)
j,Nζ

′
j+2,N |GNj ), E(s

(1)
j,Nζj+1,N |GNj ) and

E(s
(1)
j,Nζ

′
j+2,N |GNj ).

We can write ζj+1,N =
∫ (j+1)∆N

j∆N
g(s)dBs with g(s) = 1

pN

∑pN−1
l=0 (l + 1)1Ij,l(s).

Using (36) and Corollary 3.3, we obtain

|E(r
(2)
j,Nζj+1,N |GNj )| ≤ 1

p2
N

pN−1∑
k=0

(k + 1)2δN |E(σ(Xj∆N+kδN )− σ(Xj∆N
)|GNj )|

≤ c∆N (1 + |Xj∆N
|+ ρ2

E((εj•)
2))(∆N (1 + |Xj∆N

|2) + ρ2
√
E((εj•)4)).

The same inequality holds for |E(r
(2)
j,Nζ

′
j+2,N |GNj )|.

For r
(3)
j,N (see (32)), we use the Cauchy Schwarz inequality:

|E(r
(3)
j,Nζj+1,N |GNj )| ≤ 1

p2
N

pN−1∑
k,l=0

(k + 1)(l + 1)δ
3/2
N E

(
sup
s∈Ij,k

(b(Xs)− b(Xj∆N+kδN ))2

∣∣∣∣∣GNj
) 1

2

.

Hence

|E(r
(3)
j,Nζj+1,N |GNj )| ≤ c∆2

N (1 + |Xj∆N
|2).

Furthermore E(r
(3)
j,Nζ

′
j+2,N |GNj ) = 0.

With the Fubini theorem and the Ito isometry, we have

E(r
(4)
j,Nζj+1,N |GNj ) =

1

p2
N

pN−1∑
k=0

(k + 1)2

∫
Ij,k

E(σ(Xs)− σ(Xj∆N+kδN )|GNj )ds
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Introducing Lf = σ2

2 f
′′ + bf ′ yields

σ(Xs)− σ(Xj∆N+kδN ) =

∫ s

j∆N+kδN

Lσ(Xu)du+
1

2

∫ s

j∆N+kδN

σ(Xu)σ′(Xu)dBu.

Therefore, |E(σ(Xs)− σ(Xj∆N+kδN )|GNj )| ≤ c∆N (1 + |Xj∆N
|4) which implies

|E(r
(4)
j,Nζj+1,N |GNj )| ≤ c∆2

N (1 + |Xj∆N
|4).

Furthermore E(r
(4)
j,Nζ

′
j+2,N |GNj ) = 0. The terms containing s

(3)
j,N and s

(4)
j,N

are treated analogously. This gives the bound for |E(τj,Nζj+1,N |GNj )| and

|E(τj,Nζ
′
j+2,N |GNj )|.

Finally, we have to bound the fourth order conditional moment of τj,N . We

only study the terms r
(2)
j,N and r

(1)
j,N . Using (36), the Burkholder - Davies - Gundy

inequality and Proposition A.2, we have

E((r
(2)
j,N )4|GNj ) ≤ cE

(∫ (j+1)∆N

j∆N

f(s)2ds

)2
∣∣∣∣∣∣GNj


≤ c∆2

NE( sup
s∈[j∆N ,(j+1)∆N ]

(σ(Xs)− σ(Xj∆N
))4|GNj ) ≤ c∆4

N (1 + |Xj∆N
|4).

With similar computations, we derive E((τ
(2)
j,N )4 +(τ

(4)
j,N )4|GNj ) ≤ c∆4

N (1+ |Xj∆N
|4).

Using Proposition 3.3, we get

E((r
(1)
j,N )4|GNj ) ≤ c

δ4
N

pN

pN−1∑
k=0

(k + 1)4
E((b(Y j

• )− b(Xj∆N+kδN ))4|GNj )

≤ c(1 + |Xj∆N
|4 + ρ4

E((εj•)
4))(∆6

N (1 + |Xj∆N
|4) + ρ4

√
E((εj•)8)).

Analogously, using Proposition A.2, E((r
(3)
j,N )4|GNj ) ≤ c∆6

N (1 + |Xj∆N
|4). Finally,

we get the bound for E(τ4
j,N |GNj ). 2

Proof of Proposition 4.1 By Lemma A.1, it is enough to prove the L1 conver-
gence to zero of

sup
θ∈Θ

1

kN

kn−1∑
j=0

|f(Y j
• , θ)− f(Xj∆N

, θ)|.

By Taylor expansion and condition (C1) we derive the bound

Aj := sup
θ∈Θ
|f(Y j

• , θ)− f(Xj∆N
, θ)| ≤ c(1 + |Xj∆N

|+ |Y j
• |)|Y j

• −Xj∆N
|.

Hence, the Cauchy Schwarz inequality and Assumption (A2) imply

E
(
Aj |HNj

)
≤ c(1 + |Xj∆N

|+ ρ

√
E((εj•)2))

√
E

(
|Y j
• −Xj∆N

|2
∣∣∣HNj ).

Then, with (12), Assumptions (A5) and (B1), and E((εj•)
2) = 1

pN
, the result holds.

2
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Proof of Theorem 4.2 We have

ĪN (f(., θ)) = ĨN (f(., θ)) +
1

kN∆N

kN−2∑
j=1

f(Y j−1
• , θ)∆N (b(Y j

• )− b(Y j−1
• )),

where ĨN (f(., θ)) = 1
kN∆N

∑kN−2
j=1 V N

j (θ) with V N
j (θ) = f(Y j−1

• , θ)(Y j+1
• − Y j

• −
∆Nb(Y

j
• )). We only need to prove that ĨN (f(., θ))→ 0 in probability, uniformly in

θ ∈ Θ, as the second term is oP (1), uniformly in θ. As V N
j (θ) is HNj+2-measurable,

we split the sum into three parts

kN−2∑
j=1

Vj,N (θ) =
∑

1≤3j≤kN−2

V3j,N (θ)+
∑

1≤3j+1≤kN−2

V3j+1,N (θ)+
∑

1≤3j+2≤kN−2

V3j+2,N (θ).

We treat only the sum with indexes multiples of 3 and set:

V N
3j (θ) = v

(1)
3j,N (θ) + v

(2)
3j,N (θ) + v

(3)
3j,N (θ)

where

v
(1)
3j,N (θ) = f(Y 3j−1

• , θ)σ(X3j∆N
)(ζ3j+1,N + ζ ′3j+2,N ),

v
(2)
3j,N (θ) = f(Y 3j−1

• , θ)ρ(ε3j+1
• − ε3j

• ),

v
(3)
3j,N (θ) = f(Y 3j−1

• , θ)τ3j,N .

In order to prove the pointwise convergence in θ to zero, we use Lemma A.3. As
Y 3j−1
• , X3j∆N

are HN3j-measurables and ε3j+1
• − ε3j

• is independent of HN3j , we have

E(v
(1)
3j,N (θ)|HN3j) = 0 and E(v

(2)
3j,N (θ)|HN3j) = 0. By Proposition 3.4,

|E(τ3j,N |HN3j)| ≤ c∆N (1+|X3j∆N
|2+ρ2

E((ε3j
• )2))(∆N (1+|X3j∆N

|4)+ρ2
√
E((ε3j

• )4)).

Using (A4), this implies 1
kN∆N

∑
1≤3j≤kN−2 E(v

(3)
3j,N (θ)|HN3j) = oP (1). We also have

to verify for ` = 1, 2, 3,

1

(kN∆N )2

kN−2∑
j=1

E((v
(`)
3j,N (θ))2|HN3j) = oP (1).

For ` = 1, we have

1

(kN∆N )2

∑
1≤3j≤kN−2

E((v
(1)
3j,N )2(θ)|HN3j)

=
1

(kN∆N )2

∑
1≤3j≤kN−2

f(Y 3j−1
• , θ)2σ(X3j∆N

)2
E

((
ζ3j+1,N + ζ ′3j+2,N

)2∣∣∣HN3j)
≤ 1

NδN

2

kN

∑
1≤3j≤kN−2

f(Y 3j−1
• , θ)2σ(X3j∆N

)2 = oP (1).
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For ` = 2,

1

(kN∆N )2

∑
1≤3j≤kN−2

E((v
(2)
3j,N )2(θ)|HN3j) =

1

(kN∆N )2

∑
1≤3j≤kN−2

f(Y 3j−1
• , θ)2ρ2

E((ε3j+1
• − ε3j

• )2)

=
2ρ2

NδNpN∆N

1

kN

∑
1≤3j≤kN−2

f(Y 3j−1
• , θ)2.

As pN∆N = p2−α
N , with 1 < α ≤ 2, the above term is oP (1).

For ` = 3,

1

(kN∆N )2

kN−2∑
j=1

E((v
(3)
3j,N )2(θ)|HN3j) =

1

kN

1

kN

kN−2∑
j=1

fθ(Y
3j−1
• )2 1

∆2
N

E(τ2
j,N |HN3j) = oP (1),

using that, by Proposition 3.4, ∆−2
N E(τ2

j,N |HNj ) is OP (1).
To obtain uniformity in θ, we shall use Proposition A.4 and evaluate

supN∈N E(supθ∈Θ |∂θ ĨN (fθ)|). To study

∂θ ĨN (fθ) =
1

kN∆N

kN−2∑
j=1

∂θV
N
j (θ),

we use the same method, split the sum in three parts, and define:

S
(`)
N (θ) =

1

kN∆N

∑
1≤3j≤kN−2

v
(`)
3j,N (θ).

The sum for ` = 3 is the simplest. With assumption (C1) for ∂θf , we deduce

E(sup
θ∈Θ
|∂θv

(3)
3j,N (θ)||HN3j) ≤ c(1 + |Y 3j−1

• |)
√
E(τ2

3j,N |HN3j).

With the Cauchy Schwarz inequality, we have

E(sup
θ∈Θ
|∂θv

(3)
3j,N (θ)||HN3j) ≤ c

√
∆N (1 + |Y 3j−1

• |)(1 + |X3j∆N
|+ ρ

√
E((ε3j

• )2))

×(
√

∆N (1 + |X3j∆N
|2) + ρ

(
E

((
ε3j
•
)4)) 1

4

)

and with Lemma A.1 and (A4)-(A5), this implies

sup
N∈N

E(sup
θ∈Θ
|∂θS

(3)
N (θ)|) <∞.

We cannot use the same method to study S
(`)
N (θ), ` = 1, 2. Instead, we use

Theorem 20 in Appendix 1 of [14]: it is enough to show that, for ` = 1, 2, there
exists two constants M ≥ 0 and ε > 0 such that:

∀θ ∈ Θ, ∀N ∈ N, E(|S(`)
N |2+ε) ≤M

and ∀θ, θ′ ∈ Θ, ∀N ∈ N, DN (θ, θ′) ≤M |θ − θ′|2+ε (37)

where DN (θ, θ′) = E(|S(`)
N (θ)− S(`)

N (θ′)|2+ε).
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For ` = 1, using the Rosenthal inequality for martingales (see [13]), we get, for
any ε > 0:

E(|S(1)
N (θ)|2+ε) ≤ 1

(kN∆N )2+ε
E


∣∣∣∣∣∣

∑
1≤3j≤kN−2

E

(
(v

(1)
3j,N (θ))2

∣∣∣HN3j)
∣∣∣∣∣∣
1+ ε

2


+

1

(kN∆N )2+ε

∑
1≤3j≤kN−2

E(|v(1)
3j,N (θ)|2+ε)

Then it comes:

E


∣∣∣∣∣∣

∑
1≤3j≤kN−2

E

(
(v

(1)
3j,N (θ))2

∣∣∣HN3j)
∣∣∣∣∣∣
1+ ε

2

 ≤ k ε2N ∑
1≤3j≤kN−2

E

(∣∣∣E((v
(1)
3j,N (θ))2

∣∣∣HN3j) ∣∣∣1+ ε

2

)

With E((ζ3j+1,N + ζ ′3j+2,N )2|HN3j) = ∆N

(
1− 1

3

(
p2
N−1
p2
N

))
, Assumption (A5) and

(C1), we derive

sup
j,N

E

(∣∣∣E((v
(1)
3j,N (θ))2

∣∣∣HN3j)∣∣∣1+ ε

2

)
≤ c∆1+ ε

2

N and sup
j,N

E

(∣∣∣v(1)
3j,N (θ)

∣∣∣2+ε
)
≤ c∆1+ ε

2

N .

Hence

E

(∣∣∣S(1)
N (θ)

∣∣∣2+ε
)
≤ c

(
1

(kN∆N )1+ ε

2

+
1

(kN∆N )1+ ε

2

1

k
ε

2

N

)
.

The study of DN (θ, θ′) is analogous, so (37) holds. This implies S
(1)
N (θ) = oP (1)

uniformly in θ.

We use similar tools for S
(2)
N . With the Rosenthal inequality, we have

E(|S(2)
N (θ)|2+ε) ≤ 1

(kN∆N )2+ε
E


∣∣∣∣∣∣

∑
1≤3j≤kN−2

E

(
(v

(2)
3j,N (θ))2

∣∣∣HN3j)
∣∣∣∣∣∣
1+ ε

2


+

1

(kN∆N )2+ε

∑
1≤3j≤kN−2

E(|v(2)
3j,N (θ)|2+ε).

Hence, with E

(
(v

(2)
3j,N (θ))2

∣∣∣HN3j) = 2ρ2f(Y 3j−1
• , θ)2σ(X3j∆N

)2
E((ε3j

• )2) and

E((ε3j
• )2) = 1

pN
, and ∆N = p1−α

N , we obtain (37). Finally ĨN (fθ) = oP (1), uni-
formly in θ. 2
Proof of Theorem 4.3 Let Wj,N (θ) = f(Y j−1

• , θ)(Y j+1
• − Y j

• )2. By Proposition
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3.4, we have Wj,N (θ) =
∑6

i=1w
(i)
j,N (θ) with

w
(1)
j,N (θ) = f(Y j−1

• , θ)σ(Xj∆N
)2(ζj+1,N + ζ ′j+2,N )2

w
(2)
j,N (θ) = f(Y j−1

• , θ)ρ2(εj+1
• − εj•)2

w
(3)
j,N (θ) = f(Y j−1

• , θ)(∆Nb(Y
j
• ) + τj,N )2

w
(4)
j,N (θ) = f(Y j−1

• , θ)2σ(Xj∆N
)(ζj+1,N + ζ ′j+2,N )ρ(εj+1

• − εj•)
w

(5)
j,N (θ) = f(Y j−1

• , θ)2σ(Xj∆N
)(ζj+1,N + ζ ′j+2,N )(∆Nb(Y

j
• ) + τj,N )

w
(6)
j,N (θ) = f(Y j−1

• , θ)2ρ(εj+1
• − εj•)(∆Nb(Y

j
• ) + τj,N ),

where we recall that Y j−1
• , Xj∆N

are HNj -measurable and εj+1
• − εj• is independent

of HNj . Therefore, splitting again into three parts, we consider, for ` = 0, 1, 2,

T
(i)
`,N (θ) =

1

kN∆N

∑
1≤3j+`≤kN−2

w
(i)
3j+`,N (θ) for i = 1, . . . , 6.

We start by studying T
(1)
0,N (θ):

E(w
(1)
3j,N (θ)|HN3j) = f(Y 3j−1

• , θ)σ(X3j∆N
)2∆N

(
1− 1

3

(
p2
N − 1

p2
N

))
and

E((w
(1)
3j,N (θ))2|HN3j) = 3f(Y 3j−1

• , θ)2σ(X3j∆N
)4∆2

N

(
2

3
+

1

3p2
N

)2

.

Applying Lemma A.3 with Lemma A.1, we get, for all θ, T
(1)
0,N (θ) = 1

3 ×
2
3ν0(f(., θ)σ2) + oP (1). Thus

T
(1)
0,N (θ) + T

(1)
1,N (θ) + T

(1)
2,N (θ) =

2

3
ν0(f(., θ)σ2) + oP (1).

Then, we study T
(2)
0,N (θ):

E(w
(2)
3j,N (θ)|HN3j) = f(Y 3j−1

• , θ)ρ2
E((ε3j+1

• − ε3j
• )2)

= 2f(Y 3j−1
• , θ)ρ2p−1

N

and

E((w
(2)
3j,N (θ))4|HN3j) = f(Y 3j−1

• , θ)2ρ4
E((ε3j+1

• − ε3j
• )4)

= f(Y 3j−1
• , θ)2ρ4(12p−2

N (1 + o(1)))

Recall that ∆N = p1−α
N , 1 < α ≤ 2. If α < 2, with Lemma A.3, T

(2)
0,N = oP (1). But

if α = 2, i.e. ∆N = 1
pN

, and ρ = ρ, we have T
(2)
0,N (θ) = 1

3 × 2ρ2ν0(f(., θ)2) + oP (1).
and

T
(2)
0,N (θ) + T

(2)
1,N (θ) + T

(2)
2,N (θ) = 2ρ2ν0(f(., θ)2) + oP (1).
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We easily deduce from Proposition 3.4, Lemma A.3 and Lemma A.1 that T
(3)
0,N (θ) =

oP (1). For T
(4)
0,N (θ), we have

E(w
(4)
3j,N (θ)|HN3j) = 2f(Y 3j−1

• , θ)σ(X3j∆N
)ρE((ζ3j+1,N + ζ ′3j+2,N )(ε3j+1

• − ε3j
• )|HN3j)

Given HN3j , the random variables (ζ3j+1,N + ζ ′3j+2,N ) and (ε3j+1
• −ε3j

• ) are indepen-

dent, so E(w
(4)
3j,N (θ)|HN3j) = 0. Furthermore

E((w
(4)
3j,N (θ))2|HN3j) = 4f(Y 3j−1

• , θ)2σ(X3j∆N
)2ρ2

E((ζ3j+1,N + ζ ′3j+2,N )2(ε3j+1
• − ε3j

• )2|HN3j)

= 8f(Y 3j−1
• , θ)2σ(X3j∆N

)2ρ2∆N

(
2

3
+

1

3p2
N

)
1

pN
.

Then, with Proposition 3.4, Lemma A.3 and Lemma A.1, T
(4)
0,N (θ) = oP (1).

We have

E(w
(5)
3j,N (θ)|HN3j) = 2f(Y 3j−1

• , θ)σ(X3j∆N
)E((ζ3j+1,N + ζ ′3j+2,N )(∆Nb(Y

3j
• ) + τ3j,N )|HN3j).

With the Cauchy Schwarz inequality,

|E(w
(5)
3j,N (θ)|HN3j)| ≤ c|f(Y 3j−1

• , θ)|σ(X3j∆N
)
√

∆N

√
E((∆Nb(Y

3j
• ) + τ3j,N )2|HN3j)

≤ c|f(Y 3j−1
• , θ)|σ(X3j∆N

)
√

∆N

√
∆2
NE(b(Y 3j

• )2|HNj ) + E(τ2
3j,N |HN3j).

Moreover, with the Cauchy Schwarz inequality,

E((w
(5)
3j,N (θ))2|HN3j) = 4f(Y 3j−1

• , θ)2σ(X3j∆N
)2
E((ζ3j+1,N + ζ ′3j+2,N )2(∆Nb(Y

3j
• ) + τ3j,N )2|HN3j)

≤ cf(Y 3j−1
• , θ)2σ(X3j∆N

)2∆2
N

√
E((∆Nb(Y

3j
• ) + τ3j,N )4|HN3j).

Then, with Proposition 3.4, Lemma A.3 and Lemma A.1 T
(5)
0,N = oP (1).

With some straightforward computations, T
(6)
3j,N = oP (1).

We prove now uniformity in θ in these convergences, using Proposition A.4. For

w
(1)
j,N (θ), we get

E

sup
θ∈Θ

∣∣∣∣∣∣ 1

kN∆N

kN−2∑
j=1

∂θw
(1)
j,N (θ)

∣∣∣∣∣∣
 <∞

with

E
(
σ(Xj∆N

)2(ζj+1,N + ζ ′j+2,N )2
∣∣HNj ) ≤ c∆Nσ(Xj∆N

)2.

With similar arguments for w
(i)
j,N (θ), i = 2 . . . 6, we derive uniformity in θ. 2
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Proof of Lemma 5.2 We have ρ̂2
N − ρ2 = a1,N + a2,N + a3,N where

a1,N =
ρ2

2N

N−1∑
i=0

{(ε(i+1)δN − εiδN )2 − 2}, a2,N =
1

2N

N−1∑
i=0

(X(i+1)δN −XiδN )2,

a3,N =
ρ

N

N−1∑
i=0

(X(i+1)δN −XiδN )(ε(i+1)δN − εiδN ).

With the usual law of large numbers, a1,N = oP (1). With Proposition A.2,

E(a2,N ) ≤ cδN (1 + sup
t≥0

E(X2
t )) = δNO(1), E((a2,N )2) ≤ cδN

N
.

Hence ρ̂N − ρ2 = oP (1). Moreover,
√
Na2,N =

√
NδNOP (1) and

√
Na3,N =√

δNOP (1) tend to 0 as N → ∞ for Nδ2
N = o(1). To study the main term, let

us set ui = ρ2

√
N

(ε2
iδN
− 1− ε(i−1)δN εiδN ) so that

√
Na1,N =

∑N−1
i=1 ui + oP (1). With

E(ui|ε`δN , ` ≤ i− 1) = 0,
N−1∑
i=1

E(u2
i |ε`δN , ` ≤ i− 1) = 3ρ4 + oP (1),

E(u4
i |ε`δN , ` ≤ i− 1) = oP (1),

we conclude by the Central Limit Theorem for martingale arrays. 2
Proof of Theorem 5.1. For this proof, recall that b(.) = b(., κ0), c(.) = c(., λ0)
denote the drift and diffusion coefficients at the true value θ0.

The steps of the proof of the convergence of θ̂N to θ0 are similar to Section
4 of [16], and we only give details here for the convergence of 1

kN
EN (θ) and

1
kN∆N

(EN (κ, λ)− EN (κ0, λ)).

Developping EN (θ) (see (21)) yields:

EN (θ) = kN

{
3

2
Q̄N (

1

c(., λ)
) + ν̄N (log(c(., λ)))

}
+3kN∆N

{
1

2
ν̄N

(
b(., κ)2 − 2b(., κ)b(., κ0)

c(., λ)

)
− ĪN

(
b(., κ)

c(., λ)

)}
.

Proposition 4.1, Theorem 4.2 and Theorem 4.3 imply that EN (θ) is the sum of two

terms with different rates of convergence. Therefore, to prove consistency of θ̂N ,
we must proceed in two steps as in [16] and [11]. It is enough to prove that, first,

1

kN
EN (θ) −→

N→∞
ν0

(
c(., λ0)

c(., λ)
+ log(c(., λ))

)
(38)

in probability, uniformly in θ. This will ensure the convergence of λ̂N to λ0 (as in
Theorem 1 of [16]). Second, we prove that

1

kN∆N
(EN (κ, λ)− EN (κ0, λ)) −→

N→∞

3

2
ν0

(
(b(., κ)− b(., κ0)2

c(., λ)

)
(39)

in probability, uniformly in θ. Using Theorem 4.2, Theorem 4.3 and Proposition
4.1, with ∆N → 0 we obtain (38) and (39).
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For the second case, we have ‖cN,ρ(., λ)− cρ(., λ)‖∞ = 0 if α = 2, and

‖cN,ρ(., λ)− cρ(., λ)‖∞ ≤ 3∆
2−α
α−1

N ρ2 if α ∈ (1, 2).

Then, cN,ρ converges uniformly (in (x, λ)) to cρ. Moreover, by Assumption (A7),
c−1 satisfies (C1). Thus

|cN,ρ(x, λ)−1 − cρ(x, λ)−1| ≤ c‖cN,ρ(., λ)− cρ(., λ)‖∞(1 + |x|4)

and

| log(cN,ρ(x, λ))− log(cρ(x, λ))| ≤ c‖cN,ρ(., λ)− cρ(., λ)‖∞(1 + |x|2).

The end of the proof is identical, replacing EN by EρN and c by cρ in the limits
(38)-(39).2
Proof of Corollary 5.3. As formerly, we evaluate

‖cN,ρ̂N (., λ)− cρ(., λ)‖∞ ≤ 3∆
2−α
α−1

N |ρ2 − ρ̂2
N |.

We conclude using Lemma 5.2. 2
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Appendix A. Appendix

The following lemma can be found in [11], and precises a result from [16] :

Lemma A.1: Assume (A1)-(A3). Let f ∈ C1(R × O), where O is an open
neighbourhood of Θ, satisfy

sup
θ∈Θ
{|f(x, θ)|+ |∂xf(x, θ)|+ |∂θf(x, θ)|} ≤ C(1 + |x|)

then:

1

kN

kN−1∑
j=0

f(Xj∆N
, θ) −→

kN→∞
ν0(f(., θ)) (A1)

uniformly in θ, in probability.

The following proposition can be found in [9] and [11], and the numerical constant
c may varies.

Proposition A.2: Assume (A1) and let f ∈ C1(R) satisfy:

∃γ ≥ 0, ∃c > 0, ∀x ∈ R|f ′(x)| ≤ c(1 + |x|).

Then for all integer k ≥ 1, there exists c > 0 such that, for all j ≥ 0:

E

(
sup

s∈[j∆N ,(j+1)∆N ]
|f(Xs)− f(Xj∆N

)|k|GNj

)
≤ c∆

k

2

N (1 + |Xj∆N
|1+k)

In particular, with f(x) = x, we have:

E

(
sup

s∈[j∆N ,(j+1)∆N ]
|Xs −Xj∆N

|k
∣∣∣∣∣GNj

)
≤ c∆k/2

N (1 + |Xj∆N
|k).

We also recall the following lemma which is given in [8], setting GNj = Gj∆N

Lemma A.3: Let χNj , U be random variables, with χNj being GNj -measurable.
The following two conditions:

∑kN−1
j=0 E(χNj |GNj−1)

P→ U,∑kN−1
j=0 E((χNj )2|GNj−1)

P→ 0

imply
∑kN−1

j=0 χNj
P→ U .
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The following proposition is given in [11], to obtain convergences in probability
uniformly in θ.

Proposition A.4: Let Sn(ω, θ) be a sequence of measurable real valued func-
tions defined on Ω × Θ where (Ω,F ,P) is a probability space, and Θ is product
of compact intervals of Rd1 × Rd2. We assume that Sn(., θ) converges to zero in
probability for all θ ∈ Θ and that there exists an open neigbourhood of Θ on which
Sn(ω, .) is continuously differentiable for all ω ∈ Ω. Furthermore, we suppose that
supn∈N E(supθ∈Θ |∇θSn(θ)|) <∞. Then

Sn(θ)→ 0

uniformly in θ, in probability.


