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Abstract

In this paper, we are interested in approximating the solution to scalar conservation laws using
systems of interacting stochastic particles. The scalar conservation law may involve a fractional
Laplacian term of order α ∈ (0, 2]. When α ≤ 1 as well as in the absence of this term (inviscid
case), its solution is characterized by entropic inequalities. The probabilistic interpretation of the
scalar conservation is based on a stochastic differential equation driven by an α-stable process
and involving a drift nonlinear in the sense of McKean. The particle system is constructed by
discretizing this equation in time by the Euler scheme and replacing the nonlinearity by interaction.
Each particle carries a signed weight depending on its initial position. At each discretization time
we kill the couples of particles with opposite weights and positions closer than a threshold since the
contribution of the crossings of such particles has the wrong sign in the derivation of the entropic
inequalities. We prove convergence of the particle approximation to the solution of the conservation
law as the number of particles tends to ∞ whereas the discretization step, the killing threshold
and, in the inviscid case, the coefficient multiplying the stable increments tend to 0 in some precise
asymptotics depending on whether α is larger than the critical level 1.

Introduction

We are interested in providing a numerical probabilistic scheme for the fractional scalar conservation
law of order α

∂tv(t, x) + σα(−∆)
α
2 v(t, x) + ∂xA(v(t, x)) = 0, (t, x) ∈ R+ × R, (0.1)

where −(−∆)
α
2 is the fractional Laplacian operator of order 0 < α ≤ 2 (defined in Section 2), and A

is a function of class C1 from R to R. We also consider the equation obtained by letting σ → 0
in (0.2), namely the inviscid conservation law

∂tv(t, x) + ∂xA(v(t, x)) = 0, (t, x) ∈ R+ × R. (0.2)

In [9, 10], these equations are interpreted as Fokker-Planck equations associated to some stochas-
tic differential equations nonlinear in the sense of McKean, which can be approximated by a particle

This work was supported by the french National Research Agency (ANR) under the program ANR-08-BLAN-0218-03
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system. We introduce an Euler time discretization of this particle system and show the conver-
gence of its empirical cumulative distribution function to the solution of (0.1). We also study its
convergence to the solution of (0.2) as the parameter σ goes to 0.

Euler schemes for viscous conservation laws have already been studied in [3], [4], [5] or [6], where
a convergence rate of 1√

N
+

√
∆t is derived in the case α = 2, N denoting the number of particles,

and ∆t being the time step.
To give the probabilistic interpretation to (0.1) we consider the space derivative u = ∂xv of a

solution v to equation (0.1), which formally satisfies

∂tut = −σα(−∆)
α
2 ut − ∂x

(

A′(H ∗ ut)ut

)

, (0.3)

where H = 1[0,∞) denotes the Heavyside function. When u0 is a probability measure, that is, when
the initial condition v0 of Equation (0.1) is a cumulative distribution function, Equation (0.3) is the
Fokker-Planck equation associated to the following nonlinear stochastic differential equation

{

dXt = σdLα
t + A′(H ∗ ut(Xt))dt

ut = law of Xt

,

where Lα
t is a Markov process with generator −(−∆)

α
2 , namely

√
2 times a Brownian motion for

α = 2, and a stable Lévy process with index α in the case α < 2, that is to say a pure jump Lévy
process whose Lévy measure is given by cα

dy
|y|1+α , where cα is some positive constant.

We can still give a probabilistic interpretation to Equation (0.1) if the initial condition v0 has
bounded variation, is right continuous and not constant. Indeed, in that case v0 can be written
as v0(x) = a +

∫ x

−∞ du0(y) = a + H ∗ u0(x) for some finite measure u0. By replacing v0(x) by

(v0(x)− a) (|u0|(R))−1 and A(x) by A(a + x|u0|(R))(|u0|(R))−1 in (0.1) (|u0| denoting the total
variation of the measure u0,), one can assume without loss of generality that a = 0 and that |u0| is
a probability measure. We denote by γ = du0

d|u0| the Radon-Nikodym density of u0 with respect to

its total variation. Notice that γ takes values in {±1}.
Then, Equation (0.3) is the Fokker-Planck equation associated to

{

dXt = σdLα
t + A′(H ∗ P̃t(Xt))dt

P = law of X
, (0.4)

where P̃ denotes the measure defined on the Skorokhod space D of càdlàg functions from [0,∞) to R

by its Radon-Nikodym density dP̃
dP

= γ(f(0)), with f the canonical process on D, and P̃t denotes its

time marginal at time t, i.e the measure defined by P̃t(B) =
∫

D γ(f(0))1B(f(t))dP (f), for any B
in the Borel σ−field of R.

The rest of the paper is organized as follows:
In Section 1 we define the particle approximation for the stochastic differential equation (0.4).
Section 2 is devoted to the definition of the different notions of solutions used in the article.
In Section 3, we analyze the convergence of the time-discretized particle system to the solution of
the conservation law in different settings : for both a constant or vanishing diffusion coefficient and
any value of 0 < α ≤ 2.
Finally, we present some numerical simulations in Section 4. Those simulations are compared with
the results of a deterministic method described in [7].

In the following, the letter K denotes some positive constant whose value can change from line
to line.

Acknowledgement: We warmly thank Jérôme Droniou for providing us with the article [7]
and the source code from the corresponding deterministic numerical scheme, and Mireille Bossy for
fruitful discussions about the convergence rate of the numerical schemes.
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1 The particle approximation

In this section we construct a discretization of (0.4) consisting of both a particle approximation
in order to approximate the law of the solution and an Euler discretization to make the particles
evolve in time. The idea is to introduce N particles XN,1, . . . , XN,N which are N interacting copies
of the stochastic differential equation (0.4), where the actual law P of the process is replaced by the
empirical distribution of the particles 1

N

∑N
i=1 δXN,i .

In continuous time, those particles are driven byN independent Brownian motions or stable Lévy
processes with index α and undergo a drift given by A′(H∗µ̃N

t (.)), with µ̃N
t = 1

N

∑N
i=1 γ(X

N,i
0 )δ

X
N,i
t

.

The natural way to introduce the measure µ̃N
t in the dynamics is to give each particle a signed weight

equal to the evaluation of γ at the initial position of the particle. Then, H ∗ µ̃N
t (x) is simply given

by the sum of weights of particles situated left from x.
The entropy solution to (0.1) has a non-increasing total variation (see [2]), which can be inter-

preted probabilistically as a compensation of merging sample paths having opposite signs. For a
more precise statement in the case α = 2, see Lemma 2.1 in [9]. It is thus natural to adapt this
behavior in our particle approximation by killing any merging couple of particles with opposite signs.

In [9] Jourdain proves, for α = 2 in continuous time, the convergence of the particle system to
the solution of the nonlinear stochastic differential equation through a propagation-of-chaos result.
Moreover, the convergence of the signed cumulative distribution function H ∗ µ̃N

t to the solution
to Equation (0.1) is also proved, as well as convergence to the solution to the inviscid equation as
σ → 0. In [10] the same results are generalized to the case 1 < α < 2, assuming γ = 1 in the case
of a vanishig viscosity. However, to our knowledge there is even no existence result for the particle
system in continuous time when α ≤ 1, since the driving Lévy process is somehow weaker than the
nonlinear drift.

In discrete time, the probability of seeing two particles actually merging is 0. To adapt the
murders from the continuous time setting, we thus kill, at each time step, any couple of particles
with opposite signs separated by a distance smaller than a given threshold εN going to zero as N
goes to ∞. Though, one has to be careful, since one can have more than two particles lying in a
small interval of length εN . Precisely, the particles are killed in the following way: kill the leftmost
couple of particles at consecutive positions separated by a distance smaller than the threshold εN
and with opposite signs. Then, recursively apply the same algorithm to the remaining particles.
This can be done with a computational cost of order O(N). The essential properties satisfied by
this killing procedure are the following:

• to each killed particle is attached another killed particle, which has opposite signs and lies at
a distance at most εN of the first particle.

• after the killing there is no couple of particles with opposite signs in a distance smaller than εN .

• the exchangeability of the particles is preserved.

• after the murder, the quantity H ∗ µ̃N
t (XN,i

t ) remains the same for any surviving particle.

We are going to describe the killed processes by a couple (f, κ) in the space K = D × [0,∞] of
càdlàg functions f from [0,∞) to R endowed with a death time κ ∈ [0,∞]. The space K is endowed
with the product metric d((f, κf ), (g, κg)) = dS(f, g) + | arctan(κf ) − arctan(κg)|, where dS is the
Skorokhod metric on D, so that (K, d) is a complete metric space. It could seem more natural to
consider the space D([0,∞),R∪ {∂}) of paths taking values in R endowed with a cemetery point ∂.
However the corresponding topology is too strong to prove Proposition 3.4.

The precise description of the process is the following: each particle will be represented by a
couple (XN,i, κN

i ) ∈ K. Let (Xi
0)i∈N be a sequence of independent random variables with common

distribution |u0| and let hN > 0 denote the time step of the Euler scheme. At time 0, kill the
particles according to the preceding rules, that is to say, set κN

i = 0 for killed particles, which will
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not move anymore. Those particles will not be taken into account anymore. Now, by induction,
suppose that the particle system has been defined up to time khN , and kill the particles according
to the preceding rules (i.e. set κN

i = khN and XN,i
t = XN,i

khN
for all t ≥ khN , if the particle with

index i is one of those). Then let the particles still alive evolve up to time (k + 1)hN according to

dXN,i
t = A′







1

N

∑

κN
j

>khN

γ(Xj
0)1X

N,j
khN

≤X
N,i
khN






dt+ σNdLi

t,

where (Li)i∈N is a sequence of independent α-stable Lévy processes for α < 2, or a sequence of
independent copies of

√
2 times Brownian motion, which are independent of the sequence (Xi

0)i∈N.
The particle system is thus well-defined, by induction.

Let µN = 1
N

∑N
i=1 δ(XN,i,κN

i
) ∈ P(K) be the empirical distribution of the particles. For a

probability measure Q on K and t ≥ 0, we define a signed measure Q̃t on R by:

Q̃t(B) =

∫

K
1B(f(t))1κ>tγ(f(0))dQ(f, κ),

for any B in the Borel σ−field of R. With these notations, on the interval [khN , (k + 1)hN ), a
particle, provided it is still alive, satisfies

dXN,i
t = A′

(

H ∗ µ̃N
khN

(

XN,i
khN

))

dt+ σNdLi
t.

Notice that the sum of the weights of alive particles µ̃N
t (R) = 1

N

∑

κN
i

>t γ(X
i
0) is constant in time,

since the particles are killed by couples of opposite signs.

2 Notion of solutions

In this section, we recall the different notions of solutions that are associated to the equations (0.1)
and (0.2). Indeed, due to the shock-creating term ∂x(A(ut)), the notion of weak solution is too
weak, and does not provide uniqueness when the diffusion term is not regularizing enough. The
best suited notion in those cases is the notion of entropy solution.

In [11], Kruzhkov shows that for v0 ∈ L
∞((0,∞)) existence and uniqueness hold for entropy

solutions to (0.2), defined as functions v ∈ L
∞((0,∞) × R) satisfying, for any smooth convex

function η, any nonnegative smooth function g with compact support on [0,∞) × R and any ψ
satisfying ψ′ = η′A′, the entropic inequality

∫

R

η(v0)g0 +

∫ ∞

0

(
∫

R

η(vt)∂tgt + ψ(vt)∂xgt

)

dt ≥ 0. (2.1)

It is well known that this entropy solution can be obtained as the limit of weak solutions to (0.1)
as σ → 0 in the case α = 2.

Weak solutions to (0.1) (see [9]) are defined as functions v ∈ L
∞((0,∞) × R) satisfying, for all

smooth functions g with compact support in [0,∞)× R,
∫

R

v0g0 +

∫ ∞

0

∫

R

vt∂tgtdt− σα

∫ ∞

0

∫

R

vt(−∆)
α
2 gtdt+

∫ ∞

0

∫

R

A(vt)∂xgtdt = 0. (2.2)

For α < 2, we denote by (−∆)
α
2 the fractional symmetric differential operator of order α, that

can be defined through the Fourier transform:

̂(−∆)
α
2 u(ξ) = |ξ|αû(ξ).
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An equivalent definition for (−∆)
α
2 uses an integral representation

(−∆)
α
2 u(x) = cα

∫

R

u(x+ y)− u(x)− 1|y|≤ru
′(x)y

|y|1+α
dy

for any r ∈ (0,∞) and some fixed constant cα (see [8]), depending on the definition of the Fourier
transform.

It has been proven in [9] and [10] that existence and uniqueness holds for weak solutions of (0.1),
for 1 < α ≤ 2. However, for 0 < α ≤ 1, the diffusive term of order α in (0.1) is somehow
dominated by the shock-creating term, which is of order 1, so that a weak formulation does not
ensure uniqueness for the solution. We thus have to strengthen the notion of solution, and use
entropy solutions to (0.1), defined in [2] as functions v in L

∞((0,∞)× R) satisfying the relation

∫ ∞

0

η(v0)g0 +

∫ ∞

0

∫

R

(η(vt)∂tgt + ψt(vt)∂xgt) dt

+ cα

∫ ∞

0

∫

R

∫

{|y|>r}
η′(vt(x))

vt(x+ σy)− vt(x)

|y|1+α
gt(x)dydxdt (2.3)

+ cα

∫ ∞

0

∫

R

∫

{|y|≤r}
η(vt(x))

gt(x+ σy)− gt(x)− σy∂xgt(x)

|y|1+α
dydxdt ≥ 0

for any r > 0, any nonnegative smooth function g with compact support in [0,∞)×R, any smooth
convex function η : R → R and any ψ satisfying ψ′ = η′A′. Notice that from the convexity of η,
the entropic formulation (2.3) for a parameter r implies the entropic formulation with parameter
r′ > r. Also notice, using the functions η(x) = ±x that an entropy solution to (0.1) is a weak
solution to (0.1).

In [2], Alibaud shows that existence and uniqueness hold for entropy solutions of (0.1) pro-
vided that the initial condition v0 lies in L

∞(R). The entropy solution then lies in the space
C([0,∞),L1( dx

1+x2 )). He also proves that the entropy solution to (0.1) converges to the entropy

solution to (0.2) in the space C([0, T ],L1
loc(R)) as σ → 0.

3 Statement of the results

The aim of this article is to prove the three following convergence result, each one corresponding to
a particular setting.

Theorem 3.1. Assume 0 < α ≤ 1. Let σN ≡ σ be a constant sequence. Let εN and hN be two

vanishing sequences satisfying the inequalities

N−λ ≤ 4 sup
[−1,1]

|A′|hN ≤ εN , and N−1/α ≤ N−1/λεN

for some positive λ. For α = 1, also assume hN ≤ εNN
−1/λ. It holds for any T > 0,

lim
N→∞

∫ T

0

E

∥

∥

∥
H ∗ µ̃N

t − vt

∥

∥

∥

L1
(

dx
1+x2

) dt = 0,

where vt denotes the entropy solution to the fractional conservation law (0.1).

Theorem 3.2. Let εN , hN and σN be three vanishing sequences such that

N−λ ≤ 4 sup
[−1,1]

|A′|hN ≤ εN
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for some λ > 0. If α > 1, also assume σN ≤ ε
1− 1

α
N N− 1

λ . Then, for any T > 0,

lim
N→∞

∫ T

0

E

∥

∥

∥
H ∗ µ̃N

t − vt
∥

∥

∥

L1
(

dx
1+x2

) dt = 0,

where vt denotes the entropy solution to the inviscid conservation law (0.2).

The additional assumption for α > 1 comes from the fact that in this case, the dominant term
is the diffusion, while in the limit there is no diffusion anymore. The assumption ensures that the
diffusion is weak enough not to perturb the approximation. For α ≤ 1, the dominant term is the
drift, as in the limit, so that no additional condition is needed.

Theorem 3.3. Assume 1 < α ≤ 2. Let σN ≡ σ be a constant sequence, and let εN and hN be two

vanishing sequences. It holds for any T > 0,

lim
N→∞

∫ T

0

E

∥

∥

∥
H ∗ µ̃N

t − vt

∥

∥

∥

L1
(

dx
1+x2

) dt = 0,

where vt denotes the weak solution to the fractional conservation law (0.1).

In order to prove those three theorems, we will have to control the probability of seeing particles
merging. In the case α < 2, this is mainly due to the conjunction of the small jumps of the stable
process and the drift coefficient, while the large jumps of the stable term do not play an essential
role. As a consequence, for α < 2, we consider another family of evolutions coinciding with the
Euler scheme on the time discretization grid, for which we consider differently the jumps which are
smaller or larger than a given threshold r. The choice of this parameter has to be linked to the
parameter r appearing in the entropic formulation (2.3), since they play a similar role: the third
term in (2.3) corresponds to the effect of jumps larger than r in the driving Lévy process and the
fourth term corresponds to jumps smaller than r. This evolution is designed so that on the first
half of each time step, the process will evolve according to the drift and the small jumps, and on
the second half of each time step, it will evolve according to the large jumps. More precisely, let

νi(dy,dt) =
∑

∆Li
t 6=0

δ(∆Li
t,t)

be the jump measure associated to the Lévy process Li and let

ν̃i(dy,dt) = νi(dy,dt)− cα
dydt

|y|1+α

be the corresponding compensated measure, so that

Li
t =

∫

(0,t]×{|y|>r}
yνi(dy,dt) +

∫

(0,t]×{|y|≤r}
yν̃i(dy,dt),

where the right hand side does not depend on r. We define the process XN,i,r by

XN,i,r = Xi
0 + σNL

N,i,r + σNΛN,i,r +AN,i,

where

• LN,i,r
t is the large jumps part defined by

LN,i,r
t =

∫

(0,a(t)]×{|y|>r}
yνi(dy,ds),
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where a(t) =

{

khN for t ∈ [khN , (k + 1/2)hN ]

khN + 2(t− (k + 1/2)hN ) for t ∈ [(k + 1/2)hN , (k + 1)hN ]
. This process is

constant on intervals [khN , (k + 1/2)hN ] and behaves like a Lévy process with jump measure
1|y|>r

2cαdy
|y|1+α on intervals [(k + 1/2)hN , (k + 1)hN ].

• ΛN,i,r
t is the small jumps part, defined by

ΛN,i,r
t =

∫

(0,b(t)]×{|y|≤r}
ν̃i(dy,ds),

where b(t) =

{

khN + 2(t− khN ) for t ∈ [khN , (k + 1/2)hN ]

(k + 1)hN for t ∈ [(k + 1/2)hN , (k + 1)hN ]
. This term behaves like

a Lévy process with jump measure 1|y|≤r
2cαdy
|y|1+α on intervals [khN , (k+1/2)hN ] and is constant

on intervals [(k + 1/2)hN , (k + 1)hN ]. Notice that the process ΛN,i,r is a martingale.

• AN,i is the drift part, which satisfies AN,i
0 = 0, is constant over each interval [(k+1/2)hN , (k+

1)hN ], and evolves as a piecewise affine process with derivative 2A′(H ∗ µ̃N
khN

(XN,i
khN

)) on
intervals [khN , (k + 1/2)hN ].

One can check that for any r, the process (XN,1,r , . . . , XN,N,r) is equal to (XN,1, . . . , XN,N )
on the time discretization grid up to killing time. Conditionally on the positions of the parti-
cles at time khN , the particles evolve independently on [khN , (k + 1)hN ], and the evolution on
[khN , (k + 1/2)hN ] is independent of the evolution on [(k + 1/2)hN , (k + 1)hN ]. Since the entropic
formulation (2.3) with parameter r is stronger than the one with parameter r′ ≥ r, we have to make
the parameter r tend to zero in order to prove the entropic formulation for any parameter. However,
this convergence has to satisfy some conditions with respect to N, hN and εN . We will explain later
why a suitable sequence rN exists under the conditions given in the statement of Theorem 3.1.

In order to prove Theorems 3.1 and 3.2, we introduce µN,r the empirical distribution of the
processes (XN,i,r, κN

i ):

µN,r =
1

N

N
∑

i=1

δ(XN,i,r,κN
i

) ∈ P(K),

and by πN,r the law of µN,r.
The following proposition is the first step in the proof of Theorems 3.1, 3.2 and 3.3.

Proposition 3.4. • Assume α < 2. For any bounded sequences (hN ), (σN ) and (εN ), and for

any sequence (rN), the family of probability measures (πN,rN )N∈N is tight in P(P(K)).

• Denote by πN the law of µN . For any bounded sequences (hN), (σN) and (εN), the family of

probability measures (πN)N∈N is tight in P(P(K)).

Proof. We first check the tightness of the family (πN,rN )N∈N.
As stated in [13], checking the tightness of the sequence πN,rN boils down to checking the

tightness of the sequence (Law(XN,1,rN , κN
1 )). Owing to the product-space structure, we can check

tightness for XN,1,rN and κN
1 separately.

Of course, tightness for κN
1 is straightforward since it lies on the compact space [0,∞], and it is

enough to check tightness for the laws of the path (XN,1,rN ). For simplicity, we will assume that
A = 0, which is not restrictive since A′ is a bounded function so that the perturbation induced
by A belongs to a compact subset of the space of continuous functions, from Ascoli’s theorem (also
notice that the addition functional from D×C([0,∞)) to D is continuous). We use Aldous’ criterion
to prove tightness (see [1]). First, the sequences (XN,1,rN

0 )N∈N and (sup[0,T ] |∆XN,1,rN |)N∈N are
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tight, since (XN,1,rN
0 ) is constant in law and

(

sup[0,T ] |∆XN,1,rN |
)

N
is dominated by the identically

distributed sequence
(

(

sup
N
σN

)

sup
[0,T+supN hN ]

∣

∣∆L1
∣

∣

)

N

.

Then let τN be a stopping time of the natural filtration of XN,1,rN taking finitely many values,
and let (δN)N∈N be a sequence of positive numbers going to 0 as N → ∞. One can write

P

(∣

∣

∣
XN,1,rN

τN+δN
−XN,1,rN

τN

∣

∣

∣
≥ ε
)

≤P

(

σN

∣

∣

∣
ΛN,1,rN

τN+δN
− ΛN,1,rN

τN

∣

∣

∣
≥ ε/2

)

+ P

(

σN

∣

∣

∣
LN,1,rN

τN+δN
− LN,1,rN

τN

∣

∣

∣
≥ ε/2

)

(3.1)

≤P

(

sup
t∈[0,δN ]

σN |L≤rN
t | ≥ ε/2

)

+ P

(

sup
t∈[0,δN ]

σN |L>rN
t | ≥ ε/2

)

,

where

L≤r
t =

∫

(0,t]×{|y|≤r}
yν̃(dy,dt) and L>r

t =

∫

(0,t]×{|y|>r}
yν(dy,dt),

the measure ν being the jump measure of some Lévy process L with Lévy measure 2cαdy
|y|1+α , and ν̃ is

the compensated measure of ν. Now, using the maximal inequality for the martingale (L≤rN
t )t∈[0,δN ],

noticing that (L≤r
δN

)r∈[0,1] is also a martingale, we deduce

P

(

sup
t∈[0,δN ]

|L≤rN
t | ≥ ε/2σN

)

≤ sup
r∈[0,supN rN ]

P

(

sup
t∈[0,δN ]

|L≤r
t | ≥ ε/2σN

)

≤ 2σNε
−1 sup

r∈[0,supN rN ]

E

(

|L≤r
δN

|
)

= 2σNε
−1

E

(

|L≤supN rN
δN

|
)

−→
N→∞

0.

For the large jumps parts, one writes,

P

(

sup
t∈[0,δN ]

|L>rN
t | ≥ ε/2σN

)

≤ P

(

sup
t∈[0,δN ]

|Lt|+ sup
t∈[0,δN ]

|L≤rN
t | ≥ ε/2σN

)

≤ P

(

sup
t∈[0,δN ]

|Lt| ≥ ε/4σN

)

+ P

(

sup
t∈[0,δN ]

|L≤rN
t | ≥ ε/4σN

)

→
N→∞

0.

As a consequence, the family (Law(XN,1,rN ))N∈N is tight in D.
Thus, the family (πN,rN )N∈N is tight.
The proof is essentially the same for the tightness of (πN)N∈N, with a few simplifications, since

we do not treat separately large and small jumps. It also adapts in the case α = 2, since the
Gaussian distribution has thinner tails than the α−stable distribution for α < 2.

The use of the path space K instead of D([0,∞),R ∪ {∂}) for a cemetery point ∂ is crucial in
the proof of Proposition 3.4, since in the latter case, we need to control the jumps occuring close to
the death time in order to prove tightness. The following example is illustrative: if we consider a
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sequence fn of paths starting at 0, jumping to 1 at time 1−1/n, and being killed at time 1, then fn
does not converge in D([0,∞),R ∪ {∂}), while it does in K.

The following lemma deals with the initial condition of the particle system.

Lemma 3.5. If π∞ is the limit of some subsequence of πN or πN,rN , then for π∞-almost all Q,

for all A in the Borel σ−field of R,

Q0(A) :=

∫

R

1κ>01f(0)∈AdQ(f, κ) = |u0|(A). (3.2)

In particular, κ is Q−almost surely positive for π∞-almost all Q.

Proof. In a first time, we control the probability of seeing a partincle dying within a short time.
Let us write the Hahn decomposition u+

0 − u−
0 of the measure u0, the measures u+

0 and u−
0

being positive measures supported by two disjoint sets B+ and B−. From the inner regularity of the
measure u+

0 , for any δ > 0, one can find a closed set F+ ⊂ B+ such that u+
0 (F

+) ≥ u+
0 (B

+) − δ.
The complement set O− = (F+)c is then an open subset of R, which can thus be decomposed as a
countable union of disjoint open intervals O− =

⋃∞
m=1]am, bm[. For a large enough integer M , and

for εδ > 0 small enough, the set Oδ =
⋃M

m=1]am + εδ, bm − εδ[ is such that u−
0 (O

δ) ≥ u−
0 (O

−) − δ.
Consequently, we can write R as a partition

R = F+ ∪ (B− ∩ Oδ) ∪ Bδ,

where Bδ = (F+ ∪ (B− ∩ Oδ))c has small measure |u0|(Bδ) ≤ 2δ, particles starting in F+ have a
positive sign, and particles starting in (B− ∩ Oδ) have a negative sign. Let N be large enough to
ensure εN ≤ εδ/3. The distance between any element of F+ and any element of Oδ is larger than εδ.
As a consequence, if the particles with index i and j kill each other before time τ , then either one
of them started in Bδ , or one of the particles i and j moved by a distance larger than εδ/3. This
writes

♯
{

i, κN
i < τδ

}

= 2♯
{

(i, j), i < j,XN,i,rN and XN,j,rN kill each other
}

≤ 2♯

{

i,XN,i,rN
0 ∈ Bδ or sup

t∈[0,τ ]

|XN,i,rN
t −Xi

0| ≥ εδ/3

}

.

As a consequence, if τδ > 0 is small enough so that P(supt∈[0,τδ]
|XN,i,rN

t − XN,i,rN
0 | ≥ εδ/3) ≤ δ

(this can be achieved using an adaptation of (3.1)), it holds

P(κN
1 < τδ) =

1

N
E

(

♯
{

i, κN
i < τδ

})

≤ 2

N
E

(

♯

{

i,XN,i,rN
0 ∈ Bδ or sup

t∈[0,τδ]

|XN,i,rN
t −Xi

0| ≥ εδ/3

})

≤ 2P
(

Xi
0 ∈ Bδ

)

+ 2P

(

sup
t∈[0,τδ]

|XN,i,rN
t −XN,i,rN

0 | ≥ εδ/3

)

≤ 6δ.

Consequently,

E
π∞

(Q(κ < τ )) ≤ lim inf
N

E
πN

(Q(κ < τ )) = lim inf
N

P(κN
1 < τ ) →

τ→0
0.

Thus for π∞-almost all Q, κ is Q−almost surely positive. As a consequence, for any bounded
continuous function ϕ,

E
π∞

∣

∣

∣

∣

∫

K
1κ>0ϕ(f(0))dQ(κ, f)−

∫

R

ϕd|u0|
∣

∣

∣

∣

= E
π∞

∣

∣

∣

∣

∫

K
ϕ(f(0))dQ(κ, f)−

∫

R

ϕd|u0|
∣

∣

∣

∣

= lim
N

E
πN

∣

∣

∣

∣

∫

K
ϕ(f(0))dQ(κ, f)−

∫

R

ϕd|u0|
∣

∣

∣

∣

= 0,
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from the law of large numbers.

The main step in the proof of Theorems 3.1, 3.2 and 3.3 is the following proposition:

Proposition 3.6. Let εN and hN be vanishing sequences.

• If σN is a constant sequence and 0 < α ≤ 1, suppose N−1/α ≤ N−1/λεN and N−λ ≤
4 sup[−1,1] |A′|hN ≤ εN for some positive λ. If α = 1, also assume hN ≤ N−1/λεN . Then,
there exists a sequence (rN ) of positive real numbers, such that the limit of any converging

subsequence of πN,rN gives full measure to the set

{Q ∈ P(K),H ∗ Q̃t(x) is the entropy solution to (0.1)}.

• Let σN be a vanishing sequence and assume N−λ ≤ 4 sup[−1,1] |A′|hN ≤ εN for some positive λ.

If 1 < α ≤ 2, also assume σN ≤ ε
1− 1

α
N N−1/λ. Then

{Q ∈ P(K),H ∗ Q̃t(x) is the entropy solution to (0.2)}

is given full measure by any limit of a converging subsequence of πN,rN , for a well chosen

sequence (rN ), in the case α < 2, and by any limit of a converging subsequence of πN if α = 2.

• If σN is a constant sequence and 1 < α ≤ 2, the limit of any converging subsequence of πN

gives full measure to the set

{Q ∈ P(K),H ∗ Q̃t(x) is the weak solution to (0.1)}.

Proposition 3.6 will be proved in Section 3.1. We first admit it to end the proofs of Theo-
rems 3.1, 3.2 and 3.3. We need the following lemma.

Lemma 3.7. Let α < 2 and rN be a sequence of positive numbers going to zero. Then it holds, for

any T > 0,

lim
N→∞

∫ T

0

E‖H ∗ µ̃N
t −H ∗ µ̃N,rN

t ‖
L1

(

dx
1+x2

)dt = 0.

Proof. It holds, by exchangeability of the particles,

∫ T

0

E‖H ∗ µ̃N
t −H ∗ µ̃N,rN

t ‖
L1

(

dx
1+x2

)dt ≤ E

∫ T

0

∫

R

1

N

∑

κN
i

>t

∣

∣

∣1
X

N,i
t ≤x

− 1
X

N,i,rN
t ≤x

∣

∣

∣

dxdt

x2 + 1

≤
∫ T

0

E

(

1κN
1 ≥t

∣

∣

∣X
N,1
t −XN,1,rN

t

∣

∣

∣ ∧ π
)

dt.

This last quantity goes to zero, since the processes XN,1 and XN,1,rN coincide on the discretization
grid, whose mesh vanishes. Indeed, for t ∈ [khN , (k + 1)hN )

E

(

1κN
1 >t|X

N,1,rN
t −XN,1

t | ∧ π
)

≤ E

(

1κN
1 >t|X

N,1,rN
t −XN,1

khN
| ∧ π

)

+ E

(

1κN
1 >t|XN,1

t −XN,rN
khN

| ∧ π
)

≤ Kh
1/2
N . (3.3)

For this last estimate, we used, for an α−stable Lévy process L, the inequality

E (|Lt| ∧ 1) ≤ KE

(

|Lt|α/2
)

= Kt1/2.
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From Lemma 3.7, it is sufficient to show lim
N→∞

∫ T

0
E‖H ∗ µ̃N,rN

t − vt‖L1( dx
1+x2 )dt in order to prove

Theorems 3.1 and 3.2.

Proof of Theorems 3.1-3.2-3.3. We write the proof for Theorems 3.1 and 3.2 in the case α < 2. The
proof of Theorem 3.2 with α = 2 and Theorem 3.3 is the same, with πN replacing πN,rN .

Let γk be a Lipschitz continuous approximations of γ, with P(γ(X1
0 ) 6= γk(X1

0 )) ≤ 1/k (see [9],
Lemma 2.5, for a construction of such a γk). We have, by exchangeability of the particles,

E

∫ T

0

∫

R

∣

∣

∣
H ∗ µ̃N,rN

t (x)− vt(x)
∣

∣

∣

dxdt

x2 + 1

≤E

∫ T

0

∫

R

1κN
1 >tH(x−XN,1,rN

t )
∣

∣

∣
γ(XN,1,rN

0 )− γk(XN,1,rN
0 )

∣

∣

∣

dxdt

x2 + 1
(3.4)

+ E
πN

(
∫ ∞

0

∫

R

∣

∣

∣

∣

∫

K
1κ>tH(x− f(t))γk(f(0))dQ(f, κ)− vt(x)

∣

∣

∣

∣

dx

x2 + 1

)

.

From the assumption on γk, the first term in the right hand side of (3.4) is smaller than 2π/k which
vanishes as k goes to ∞. The bounded function

Q 7→
∫ T

0

∫

R

∣

∣

∣

∣

∫

K
1κ>tH(x− f(t))γk(f(0))dQ(f, κ)− vt(x)

∣

∣

∣

∣

dxdt

x2 + 1

is continuous. From Proposition 3.6, the second term in the right hand side of (3.4) converges, as N
goes to ∞ to

E
π∞

(
∫ T

0

∫

R

∣

∣

∣

∣

∫

K
1κ>tH(x− f(t))

(

γk(f(0))− γ(f(0))
)

dQ(f, κ)

∣

∣

∣

∣

dx

x2 + 1

)

.

This terms goes to zero as k tend to infinity using the argument of the begining of the proof
with XN,1,rN replaced by the canonical process y.

3.1 Proof of Proposition 3.6

This section is devoted to the proof of Proposition 3.6. Since the hardest part of this proof is the
first two items, we do not give all details for the third item and for the second one in the case α = 2.
Indeed, for these two last settings, the separation of small jumps and large jump is not necessary
for the proof.

Let rN be a sequence of positive real numbers, going to zero as N → ∞, which will be explicited
later. Let r > 0 and c be reals numbers, η a smooth convex function, ψ a primitive of A′η′ and g
a smooth compactly supported nonnegative function. We define the function ϕt(x) =

∫ x

−∞ gt(y)dy.
Note that ϕ is smooth, and nondecreasing with respect to the space variable. We consider a
subsequence of πN,rN , still denoted πN,rN for simplicity, which converges to a limit π∞. We want
to prove that, for π∞−almost all Q, the function H ∗ Q̃t satisfies the entropy formulation associated
to the corresponding case.

One can write, for any k ≥ 0 and t ∈]khN , (k + 1)hN ]

P

(

∃i, j, κN
i ∧ κN

j > t,XN,i,r
t = XN,j,r

t

)

= E

(

P

(

∃i, j, κN
i ∧ κN

j > t,XN,i,r
t = XN,j,r

t

∣

∣

∣

∣

(XN,q
khN

)q

))

=E

(

P

(

∃i, j, κN
i ∧ κN

j > t, σNZ
i,j,k,N
t = XN,j

khN
−XN,i

khN
+AN,j

t −AN,i
t

∣

∣

∣

∣

(XN,q
khN

)q

))

,
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where we denote

Zi,j,N,k
t = ΛN,i,r

t − ΛN,i,r
khN

− ΛN,j,r
t +ΛN,j,r

khN
+ LN,i,r

t − LN,i,r
khN

− LN,j,r
t + LN,j,r

khN
.

From the conditional independence of the processes LN,i,r, LN,j,r, ΛN,i,r and ΛN,j,r, the random
variable Zi,j,N,k

t has a density. As a consequence, since the process AN,j
t − AN,i

t is deterministic
on [khN , (k + 1)hN ] conditionally to (XN,q

khN
)q, the above probability is zero, meaning that for all

time t > 0, the alive particles XN,i,rN
t almost surely have distinct positions. As a consequence, the

function η
(

H ∗ µ̃N,rN
t (x)

)

is the cumulative distribution function of the signed measure

ξNt =
∑

κN
i

>t

wi
tδXN,i,rN

t

,

where

wi
t = 1κN

i
>t













η













1

N

∑

κN
j >t

X
N,j,rN
t ≤X

N,i,rN
t

γ(Xj
0)













− η













1

N

∑

κN
j >t

X
N,j,rN
t <X

N,i,rN
t

γ(Xj
0)

























= 1κN
i

>t

(

η
(

H ∗ µ̃N,rN
t

(

XN,i,rN
t

))

− η
(

H ∗ µ̃N,rN
t

(

XN,i,rN
t −

)))

.

Let (ζm)m∈N be the increasing sequence of times which are either a jump time for some LN,i,rN (i.e.
a jump of size > rN for XN,i,rN ) or either a time of the form khN/2. One has

−
〈

ξN0 , ϕ0

〉

=
∞
∑

m=1

〈

ξNζm , ϕζm

〉

−
〈

ξNζm−1
, ϕζm−1

〉

=
∑

κN
i

>0

∞
∑

m=1

wi
ζm−1

(

ϕζm

(

XN,i,rN
ζm−

)

− ϕζm−1

(

XN,i,rN
ζm−1

))

(3.5)

+
∑

κN
i

>0

∞
∑

m=1

(

wi
ζmϕζm

(

XN,i,rN
ζm

)

− wi
ζm−1

ϕζm

(

XN,i,rN
ζm−

))

.

Notice that these infinite sums are actually finite, since the function ϕt is identically zero when t is
large enough, and since the process (LN,1,rN , . . . , LN,N,rN ) has a finite number of jumps on bounded
intervals.

We consider the first term in the right hand side of (3.5). Denote by νi,r =
∑

∆X
N,i,r
t 6=0

δ
(∆L

N,i,r
t +∆Λ

N,i,r
t ,t)

the jump measure associated to LN,i,r + ΛN,i,r, and by

ν̃i,r(dy,dt) = νi,r(dy,dt)− 2cα
(

χN
t 1|y|≤r + (1− χN

t )1|y|>r

) dydt

|y|1+α

its compensated measure, where χN
t =

∑∞
k=0 1[khN ,(k+1/2)hN )(t). Let us apply Itō’s Formula on the

interval (ζm−1, ζm). If ζm−1 = khN for some integer k, then ζm = (k + 1/2)hN , and almost surely

12



XN,i,r

(k+ 1
2
)hN− = XN,i,r

(k+ 1
2
)hN

holds. As a consequence

ϕ(k+ 1
2
)hN

(

XN,i,r

(k+ 1
2
)hN−

)

− ϕkhN

(

XN,i,r
khN

)

=

∫ (k+ 1
2
)hN

khN

∂tϕt(X
N,i,r
t )dt+ 2

∫ (k+ 1
2
)hN

khN

∂xϕt(X
N,i,r
t )A′

(

H ∗ µ̃N,r
khN

(XN,i,r
khN

)
)

dt.

+

∫

(khN ,(k+1/2)hN )

∫

{|y|≤r}

(

ϕt(X
N,i,r
t− + σNy)− ϕt(X

N,i,r
t− )− σNy∂xϕt(X

N,i,r
t− )

)

νi,r(dy,dt)

+ σN

∫

(khN ,(k+1/2)hN )

∂xϕt(X
N,i,r
t− )

(

∫

{|y|≤r}
yν̃i,r(dy,dt)

)

.

If ζm−1 is not of the form khN , then the process XN,i,r is constant on the interval [ζm−1, ζm),

and one has ϕζm (XN,i,r
ζm− )− ϕζm−1 (X

N,i,r
ζm−1

) =
∫ ζm
ζm−1

∂tϕt(X
N,i,r
t )dt. Summing over all the intervals

(ζm−1, ζm), Equation (3.5) writes, denoting τt = max{ζm, ζm ≤ t},

−
〈

ξN0 , ϕ0

〉

=
∑

κN
i

>0

∫ ∞

0

wi
τt

(

∂tϕt(X
N,i,rN
t ) + 2χN

t ∂xϕt(X
N,i,rN
t )A′

(

H ∗ µ̃N,rN
τt (XN,i,rN

τt )
))

dt

+ cα
∑

κN
i

>0

∫ ∞

0

wi
τtχ

N
t

∫

{|y|≤rN}

(

ϕt(X
N,i,rN
t + σNy)− ϕt(X

N,i,rN
t )− σNy∂xϕt(X

N,i,rN
t )

) 2dydt

|y|1+α

+
∑

κN
i

>0

∑

large jump
at ζm

wi
ζmϕζm(XN,i,rN

ζm
)− wi

ζm−1
ϕζm (XN,i,rN

ζm− )

+
∑

κN
i

>0

∑

ζm of the
form khN

(wi
ζm −wi

ζm−1
)ϕζm (XN,i,rN

ζm
) (3.6)

+
∑

κN
i

>0

∑

ζm of the
form (k+1/2)hN

(wi
ζm − wi

ζm−1
)ϕζm (XN,i,rN

ζm
)

+MN .

Here, the third, fourth and fifth terms correspond to the second term in the right hand side of (3.5),
and MN is a martingale term given by

MN =
∑

κN
i

>0

∫ ∞

0

wi
τtχ

N
t

∫

{|y|≤rN}

(

ϕt(X
N,i,rN
t− + σNy)− ϕt(X

N,i,rN
t− )

)

ν̃i,rN (dy,dt).

Equation (3.6) can be rewritten

T 1
N = T 2

N + T 3
N + T 4

N + T 5
N +MN ,

where T 1
N = −

〈

ξN0 , ϕ0

〉

, T 2
N is the sum of the two first terms in the right-hand-side of (3.6), T 3

N is
the third one, T 4

N the fourth one and T 5
N the fifth one.

The four following Lemmas, whose proofs are postponed to Section 3.2 deal with the asymptotic
behavior of the terms MN , T 2

N − T 1
N , T 3

N and T 4
N .

Lemma 3.8. It holds

E|MN |2 ≤ Kσ2
Nr

2−α
N

N
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for some positive constant K. The equivalent term in the case α = 2,

MN = σN

∑

κN
i

>0

∫ ∞

0

wi
τt∂xϕ(X

N,i
t )dLi

t,

satifies the same estimate :

E|MN |2 ≤ K
σ2
N

N
.

Lemma 3.9. • It holds

E

∣

∣

∣

∣

− T 1
N + T 2

N +

∫ ∞

0

∫

R

(

η(H ∗ µ̃N,rN
t )∂tgt + 2χN

t ψ(H ∗ µ̃N,rN
t )∂xgt

)

dt+

∫

R

g0η(H ∗ µ̃N,rN
0 )dx

+2cα

∫ ∞

0

χN
t

∫

R

∫

{|y|≤rN}
η(H ∗ µ̃N,rN

t (x)) (gt(x+ σNy)− gt(x)− σNy∂xgt(x))
dydxdt

|y|1+α

∣

∣

∣

∣

∣

→
N→∞

0.

• If rN ≤ 1/σN , then

∣

∣

∣

∣

∣

2cα

∫ ∞

0

χN
t

∫

R

∫

{|y|≤rN}
η(H ∗ µ̃N,rN

t (x)) (gt(x+ σNy)− gt(x)− σNy∂xgt(x))
dydxdt

|y|1+α

∣

∣

∣

∣

∣

≤ Kσα
N .

The following lemma gives two estimates for the term T 3
N , the first being useful for a constant

viscosity σN ≡ σ, and the second for vanishing viscosity σN → 0.

Lemma 3.10. • The error term

E

∣

∣

∣

∣

∣

T 3
N + 2cα

∫ ∞

0

(1− χN
t )

∫

R

∫

{|y|>rN}
η′(H ∗ µ̃N,rN

t (x))
(

H ∗ µ̃N,rN
t (x+ σNy)−H ∗ µ̃N,rN

t (x)
)

gt(x)
dydxdt

|y|1+α

∣

∣

∣

∣

∣

vanishes if N−1r−α
N goes to 0.

• It holds

E|T 3
N | ≤ K(σNr

1−α
N + σα

N ).

Lemma 3.11. One has E|T 4
N | →

N→∞
0.

We now have to control the probability for the last remaining term T 5
N to be negative. If

there is no crossing of particles with opposite signs between khN and (k + 1/2)hN , for any k,

then T 5
N ≥ 0. Indeed, let XN,i1,rN

(k+1/2)hN
≤ . . . ≤ X

N,iq ,rN
(k+1/2)hN

be a maximal sequence of consecutive

particles with same sign. The sequence
(

ϕ(k+1/2)hN
(XN,il,rN

(k+1/2)hN
)
)

l=1,...,q
is thus a nondecreasing

sequence, and from the convexity of η and the fact that no particles with opposite signs cross,
(wil

(k+1/2)hN
)l=1,...,q is the nondecreasing reordering of (wil

khN
)l=1,...,q. Thus, from Lemma 3.13

below,
∑

κN
i

>khN
(wi

(k+1/2)hN
− wi

khN
)ϕ(k+1/2)hN

(XN,i,rN
(k+1/2)hN

) is nonnegative. It is thus sufficient

to control the probability that two particles with opposite signs cross between khN and (k+1/2)hN .
Since after the murder there is no couple of particles with opposite signs separated by a smaller
distance than εN , this does not happen as soon as no particle drift by more than εN/4 and no
particle is moved by more than εN/4 by the small jumps. The drift on half a time step is smaller
than sup[−1,1] |A′|hN which is assumed to be smaller than εN/4. We control the contribution of the
small jumps in the following lemma:
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Lemma 3.12. Let BN be the event

BN =
{

∀k ≤ T/hN ,∀i, σN

∣

∣

∣
Λi,rN

(k+1/2)hN
− Λi,rN

khN

∣

∣

∣
≤ εN/4

}

,

so that no crossing of particles with opposite signs between khN and (k + 1/2)hN occurs on BN .

One has, for α < 2,

P(BN ) ≥
(

1− eKhN r−α
N

−εN/4σNrN
)NT/hN

,

For α = 2, we define the event BN by

BN =
{

∀k ≤ T/hN ,∀i, σN

∣

∣

∣L
i
(k+1)hN

− Li
khN

∣

∣

∣ ≤ εN/4
}

.

It holds

P(BN ) ≥
(

1−Ke−ε2N/(32hNσ2
N )
)NT/hN

.

The proof will be given in Section 3.2.
We now gather all the previous information to prove that, depending on the considered case, the

entropic formulation or the weak formulation holds almost surely.

1. Constant viscosity σN ≡ σ, with index 0 < α ≤ 1.

Define, for Q ∈ P(K),

F r
N (Q) =

∫

R

η(H ∗ Q̃0)g0 +

∫ ∞

0

∫

R

(

η(H ∗ Q̃t)∂tg + 2χN
t ψ(H ∗ Q̃t)∂xg

)

dt

+ 2cα

∫ ∞

0

(1− χN
t )

∫

R

∫

{|y|>r}
η′(H ∗ Q̃t(x))(H ∗ Q̃t(x+ σNy)−H ∗ Q̃t(x))gt(x)

dydxdt

|y|1+α

+ 2cα

∫ ∞

0

χN
t

∫

R

∫

{|y|≤r}
η(H ∗ Q̃t(x))(gt(x+ σNy)− gt(x)− σNy∂xgt(x))

dydxdt

|y|1+α

and

F r(Q) =

∫

R

η(H ∗ Q̃0)g0 +

∫ ∞

0

∫

R

(

η(H ∗ Q̃t)∂tg + ψ(H ∗ Q̃t)∂xg
)

dt

+ cα

∫ ∞

0

∫

R

∫

{|y|>r}
η′(H ∗ Q̃t(x))(H ∗ Q̃t(x+ σy)−H ∗ Q̃t(x))gt(x)

dydxdt

|y|1+α

+ cα

∫ ∞

0

∫

R

∫

{|y|≤r}
η(H ∗ Q̃t(x))(gt(x+ σy)− gt(x)− σy∂xgt(x))

dydxdt

|y|1+α
.

Notice that from the convexity of η, one has

η′(H ∗ Q̃t(x))(H ∗ Q̃t(x+ σy)−H ∗ Q̃t(x)) ≤ η(H ∗ Q̃t(x+ σy))− η(H ∗ Q̃t(x)),

so that for any 0 < r ≤ r′, it holds F r ≤ F r′ and F r
N ≤ F r′

N .

From Equation (3.6), it holds, for N large enough so that rN ≤ r,

F r
N(µN,rN ) ≥ F rN

N (µN,rN ) = T 5
N +

(

−T 1
N + T 2

N + T 3
N + T 4

N +MN + F rN
N (µN,rN )

)

.

From the assumptions made on εN and hN one can construct a sequence rN such thatN−1/α =
o(rN ), hNr

−α
N = o

(

εNr
−1
N

)

and N
hN
e−εN/4σrN → 0. Indeed, set rN = εNN

−1/2λ. Then it holds

N−1/αr−1
N ≤ KN−1/2λ and hN

εN
r1−α
N = hNε

−α
N N (α−1)/2λ, which vanishes for any value of α.
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Then N
hN

goes to infinity at the rate of a power of N , and εN/rN = N1/2λ as well. Thus,
N
hN
e−εN/4σrN vanishes.

As a consequence, from Lemmas 3.8, 3.9, 3.10 and 3.11, E
∣

∣−T 1
N + T 2

N + T 3
N + T 4

N +MN + F rN
N (µN,rN )

∣

∣

vanishes as N tends to infinity, and the event BN defined in Lemma 3.12 is such that
P(BN ) → 1. On the event BN , T 5

N is almost-surely nonnegative, so that, from the uni-

form boundedness of F r
N with respect to N , EπN,rN

(F r
N (Q)−) = E(F r

N(µN,rN )−) goes to 0.
To show that the entropic formulation holds almost surely, we need a continuous approxi-
mation of F r

N and F r. We define F r,δ and F r,δ
N by replacing every occurrence of H ∗ Q̃t in

the definitions of F r and F r
N by

∫

K 1κ>tH(.− f(t))γδ(f(0))dQ(f, κ), where γδ is a Lipschitz

continuous approximation of γ, with P(γ(X1
0 ) 6= γδ(X1

0 )) ≤ δ (see [9], Lemma 2.5, for the
construction of γδ). Then, for any fixed δ and r, the family {F r,δ}∪{F r,δ

N , N ∈ N} is equicon-
tinuous for the topology of weak convergence. Indeed, let Qk be a sequence of probability
measures on K converging to Q as k goes to infinity. From the continuity of the application
K → R, (f, κ) 7→ 1κ>0f(0), Q

k
0 converges weakly to Q0 (where Q0 and Qk

0 are defined as
in (3.2)), and from the continuity of the applications K → R, (f, κ) 7→ 1κ>tγ

δ(f(0))1f(t)≤y on
the set {(f, κ) ∈ K, f(t) = f(t−), f(t) 6= y}, for all t in the complement of the countable set {t ∈
[0,∞), Q({f(t) 6= f(t−)} ∪ {κ = t}) > 0}, the quantity

∫

K 1κ>tH(.− f(t))γδ(f(0))dQk(f, κ)

converges almost everywhere to
∫

K 1κ>tH(.−f(t))γδ(f(0))dQ(f, κ). From Lebesgue’s bounded
convergence theorem, we deduce that

sup
N

|F r,δ
N (Qk)− F r,δ

N (Q)|+ |F r,δ(Qk)− F r,δ(Q)| →
k→∞

0

yielding equicontinuity for {F r,δ} ∪ {F r,δ
N , N ∈ N}. Moreover, since the sequence χN

t con-
verges ∗-weakly to 1/2 in the space L

∞((0,∞)), F r,δ
N converges pointwise to F r,δ as N goes to

infinity. Ascoli’s theorem thus implies that F r,δ
N converges uniformly on compact sets to F r,δ.

From the weak convergence of πN,rN to π∞, one thus deduces

E
πN,rN

[F r,δ
N (Q)−] →

N→∞
E

π∞

[F r,δ(Q)−].

Moreover, for any t > 0, any y, and any probability measure Q satisfying Q0 = |u0| (with Q0

defined as in (3.2)), which holds true for π∞−almost all Q from Lemma 3.5, it holds

∣

∣

∣

∣

H ∗ Q̃t(y)−
∫

K
1κ>tH(y − f(t))γδ(f(0))dQ(f, κ)

∣

∣

∣

∣

≤
∫

R

|γ − γδ|d|u0| ≤ δ,

yielding convergence to 0 for E
π∞ |F r(Q)− − F r,δ(Q)−| + E

πN,rN |F r
N (Q)− − F r,δ

N (Q)−| as δ
goes to 0, uniformly in N . As a consequence, writing

E
π∞

(F r(Q)−) ≤E
π∞

|F r(Q)− − F r,δ(Q)−|+
∣

∣

∣
E

π∞

(F r,δ(Q)−)− E
πN,rN

(F r,δ
N (Q)−)

∣

∣

∣

+ E
πN,rN |F r,δ

N (Q)− − F r
N (Q)−|+ E

πN,rN
(F r

N (Q)−)

we deduce that F r(Q) is nonnegative for π∞−almost all Q. We just have to notice that
Lemma 3.5 yields that, π∞−almost surely, H ∗ Q̃0 = v0 to conclude that the entropy formu-
lation holds π∞−almost surely.

2. Vanishing viscosity σN → 0.

We define

F r
N (Q) =

∫

R

η(H ∗ Q̃0)g0 +

∫ ∞

0

∫

R

(

η(H ∗ Q̃t)∂tg + 2χN
t ψ(H ∗ Q̃t)∂xg

)

dt
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and

F (Q) =

∫

R

η(H ∗ Q̃0)g0 +

∫ ∞

0

∫

R

(

η(H ∗ Q̃t)∂tg + ψ(H ∗ Q̃t)∂xg
)

dt.

Regularized versions F r,δ
N and F δ of F r

N and F are also considered using the function γδ

instead of γ. In the case α < 2, the same arguments as above, using the second parts of
Lemmas 3.9 and 3.10 will show that the entropy formulation holds π∞−almost surely for

H ∗ Q̃t, provided there exists a sequence rN such that
σ2
Nr2−α

N

N
and σNr

1−α
N vanish, rN ≤ σ−1

N ,

hNr
−α
N = o(εN(σNrN )−1) and N

hN
e−εN/4σNrN → 0.

• For α ≤ 1, any sequence rN vanishing at a very quick rate will fit.

• For α > 1, since we assumed σN ≤ ε
1− 1

α
N N−1/λ these conditions are satisfied by the

sequence rN = εN
σN
N

− α
2λ(α−1) .

In the case α = 2, Itō’s formula writes

ϕ(k+1)hN

(

XN,i
(k+1)hN

)

− ϕkhN

(

XN,i
khN

)

=

∫ (k+1)hN

khN

∂tϕt(X
N,i
t )dt

+ 2

∫ (k+1)hN

khN

∂xϕt(X
N,i
t )A′

(

H ∗ µ̃N
khN

(XN,i
khN

)
)

dt.

+ σ2
N

∫

(khN ,(k+1)hN )

∫

{|y|≤r}
∂2
xϕt(X

N,i
t )dt

+ σN

∫

(khN ,(k+1)hN )

∂xϕt(X
N,i
t )dLi

t.

The three first terms are treated as in the case α < 2, and the stochastic integral is dealt
with using Lemma 3.8. For the entropic inequality to holds, we need to control the crossing of

particles with opposite sign. From Lemma 3.12, if N
hN
e
− ε2N

32σ2
N

hN goes to zero, then no crossing

occurs. Since our assumptions yield hNσ
2
N ≤ ε2NN

−1/λ and N/hN ≤ KN1+λ, this condition
holds true.

3. Constant viscosity σN ≡ σ, with index 1 < α ≤ 2.

In this case, since we want to derive a weak formulation, we do not need to consider separately
large and small jumps. As a consequence it is enough to study the process XN,i

t .

Let g be a smooth function with compact support, and define for Q ∈ P(K),

F (Q) =

∫

R

H∗Q̃0g0+

∫ ∞

0

∫

R

H∗Q̃t∂tgtdt−σα

∫ ∞

0

∫

R

H∗Q̃t(−∆)
α
2 gtdt+

∫ ∞

0

∫

R

A(H∗Q̃t)∂xgt.

Let ϕt(x) =
∫ x

−∞ gt(y)dy. One has

− 1

N

∑

κN
i

>0

γ(XN,i
0 )ϕ0(X

N,i
0 ) =− 1

N

∞
∑

k=0

∑

κN
i

=(k+1)hN

γ(XN,i
0 )ϕ(k+1)hN

(XN,i
(k+1)hN

)

+
1

N

∞
∑

k=0

∑

κN
i

>khN

γ(XN,i
0 )

(

ϕ(k+1)hN
(XN,i

(k+1)hN
)− ϕkhN

(XN,i
khN

)
)

.
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From Itō’s formula, in the case α < 2, when κN
i > khN ,

ϕ(k+1)hN
(XN,i

(k+1)hN
)− ϕkhN

(XN,i
khN

) (3.7)

=

∫ (k+1)hN

khN

∂tϕt(X
N,i
t )dt+

∫ (k+1)hN

khN

∂xϕt(X
N,i
t )A′

(

H ∗ µ̃khN
(XN,i

khN
)
)

dt

+ cα

∫

(khN ,(k+1)hN )

∫

R

(

ϕt(X
N,i
t + σy)− ϕt(X

N,i
t )− 1{|y|≤r}σy∂xϕt(X

N,i
t )

) dydt

|y|1+α

+

∫

(khN ,(k+1)hN )

∫

R

(

ϕt(X
N,i
t− + σy)− ϕt(X

N,i
t− )

)

ν̃i(dy,dt).

We denote τt = max{khN , khN ≤ t}.Multiplying (3.7) by 1
N
1κN

i
>khN

γ(XN,i
0 ), summing over i

and k, and integrating by parts, one obtains

∫

R

g0H ∗ µ̃N
0 =−

∫ ∞

0

∫

R

∂tgtH ∗ µ̃N
t dt+

∫ ∞

0

∫

R

(−∆)
α
2 gtH ∗ µ̃N

t dt

+
1

N

∫ ∞

0

∑

κN
i

>τt

γ(XN,i
0 )∂xϕt(X

N,i
t )A′

(

H ∗ µ̃khN
(XN,i

khN
)
)

dt

+
1

N

∫

(0,∞)×R

∑

κN
i

>τt

γ(XN,i
0 )

(

ϕt(X
N,i
t− + σy)− ϕt(X

N,i
t− )

)

ν̃i(dy,dt)

− 1

N

∞
∑

k=0

∑

κN
i

=(k+1)hN

γ(XN,i
0 ))ϕ(k+1)hN

(XN,i
(k+1)hN

), (3.8)

Combining an adaptation of Lemma 3.14, stated in Section 3.2, with A replacing η, and
integrating by parts, the difference

1

N

∫ ∞

0

∑

κN
i

>τt

γ(XN,i
0 )∂xϕt(X

N,i
t )A′

(

H ∗ µ̃khN
(XN,i

khN
)
)

dt+

∫ ∞

0

∫

R

∂xgtA(H ∗ µ̃N
t )dt

vanishes in L
1. Using an adaptation Lemma 3.8, the the fourth term in the right hand side

of (3.8) vanishes in L
2. The fifth term vanishes in L

1 since

∣

∣

∣

∣

∣

∣

1

N

∞
∑

k=0

∑

κN
i =(k+1)hN

γ(XN,i
0 )ϕ(k+1)hN

(XN,i
(k+1)hN

)

∣

∣

∣

∣

∣

∣

≤ 1

N

∞
∑

k=0

∑

pairs {i,j} killled
at time (k+1)hN

∣

∣

∣
ϕ(k+1)hN

(

XN,i
(k+1)hN

)

− ϕ(k+1)hN

(

XN,j
(k+1)hN

)∣

∣

∣

≤KεN .

As a consequence, EπN |F (Q)| = E|F (µN )| vanishes. We conclude by regularizing the func-
tion γ as in the two first points, that Eπ∞ |F (Q)| = 0. Thus, F (Q) = 0 almost surely, so that
H ∗ Q̃ almost surely satisfies the weak formulation.

The case α = 2 is treated in the same way, the only difference lying in the nature of the
stochastic integral.
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3.2 Proofs of Lemmas 3.8 to 3.12

In this section, we give the proofs of the previously admitted lemmas of Section 3.1.

Proof of Lemma 3.8. Since the particles are driven by independent stable processes and since the
inequality |wi

t| ≤ K
N

holds for some constant K not depending on t, i and N ,

EM2
N =E

∣

∣

∣

∣

∣

∣

∑

κN
i

>0

∫ ∞

0

wi
τtχ

N
t

(

∫

{|y|≤rN}

(

ϕt(X
N,i,rN
t− + σNy)− ϕt(X

N,i,rN
t− )

)

ν̃i,rN (dy,dt)

)

∣

∣

∣

∣

∣

∣

2

≤2σ2
NcαE





∑

κN
i

>0

∫ ∞

0

(wi
τt)

2χN
t

∫

{|y|≤rN}
(y‖gt‖∞)2

dydt

|y|1+α





≤Kσ2
Nr

2−α
N

N

∫ ∞

0

‖gt‖2∞dt.

A similar proof with stochastic integrals against Brownian motion yields the result for α = 2.

Proof of Lemma 3.9. Integrating by parts, one finds

N
∑

i=1

∫ ∞

0

wi
t∂tϕt

(

XN,i,rN
t

)

dt = −
∫ ∞

0

∫

R

η(H ∗ µ̃N,rN
t )∂tgtdt+

∫ ∞

0

∫

R

η(µ̃N,rN
t (R))∂tgtdt

yielding, from Lemma 3.14 below,

E

∣

∣

∣

∣

∣

N
∑

i=1

∫ ∞

0

wi
τt∂tϕt

(

XN,i,rN
t

)

dt+

∫ ∞

0

∫

R

η(H ∗ µ̃N,rN
t )∂tgtdt−

∫ ∞

0

∫

R

η(µ̃N,rN
t (R))∂tgtdt

∣

∣

∣

∣

∣

−→
N→∞

0.

From the constancy of µ̃N,rN
t (R) and an integration by parts, one has

−T 1
N +

∫ ∞

0

∫

R

η(µ̃N,rN
t (R))∂tgtdt = −

∫

R

g0η(H ∗ µ̃N,rN
0 ).

Another integration by parts yields

2cα

N
∑

i=1

∫ ∞

0

wi
tχ

N
t

∫

{|y|≤rN}
ϕt

(

XN,i,rN
t + σNy

)

− ϕt

(

XN,i,rN
t

)

− σNy∂xϕt

(

XN,i,rN
t

) dydt

|y|1+α

=− 2cα

∫ ∞

0

χN
t

∫

{|y|≤rN}

∫

R

(gt(x+ σNy)− gt(x)− σNy∂xgt(x)) η(H ∗ µ̃N,rN
t (x))

dxdydt

|y|1+α

+ 2cα

∫ ∞

0

χN
t η(µ̃

N,rN
t (R))

∫

{|y|≤rN}

∫

R

(gt(x+ σNy)− gt(x)− σNy∂xgt(x))
dxdydt

|y|1+α

=− 2cα

∫ ∞

0

χN
t

∫

{|y|≤rN}

∫

R

(gt(x+ σNy)− gt(x)− σNy∂xgt(x)) η(H ∗ µ̃N,rN
t (x))

dxdydt

|y|1+α
.

Moreover, from the regularity of A and η, it holds

wi
τtA

′
(

H ∗ µ̃N,rN
τt (XN,i,rN

τt )
)

= ψ
(

H ∗ µ̃N,rN
τt (XN,i,rN

τt )
)

− ψ
(

H ∗ µ̃N,rN
τt (XN,i,rN

τt −)
)

+ o

(

1

N

)

,
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so that

E

∣

∣

∣

∣

∣

2

N
∑

i=1

∫ ∞

0

wi
τtχ

N
t ∂xϕt

(

XN,i,rN
t

)

A′
(

H ∗ µ̃N,rN
τt (XN,i,rN

τt )
)

dt+ 2

∫ ∞

0

χN
t

∫

R

∂xgtψ(H ∗ µ̃N,rN
t )dt

∣

∣

∣

∣

∣

→
N→∞

0,

from an adaptation of Lemma 3.14 (replacing η by ψ in the definition of wi
t). This concludes the

proof of the first item of Lemma 3.9.
To prove the second item, observe that the change of variable z = σNy yields, for rN ≤ 1

σN
,

∣

∣

∣

∣

∣

2cα

∫ ∞

0

χN
t

∫

R

∫

{|y|≤rN}
η(H ∗ µ̃N,rN

t (x)) (gt(x+ σNy)− gt(x)− σNy∂xgt(x))
dydxdt

|y|1+α

∣

∣

∣

∣

∣

≤2cασ
α
N

∫ ∞

0

χN
t

∫

R

∫

{|z|≤1}

∣

∣

∣
η(H ∗ µ̃N,rN

t (x)) (gt(x+ z)− gt(x)− z∂xgt(x))
∣

∣

∣

dzdxdt

|z|1+α
.

Proof of Lemma 3.10. First notice that

T 3
N =

∑

κN
i

>0

∫ ∞

0

(1− χN
t )

∫

{|y|>rN}

(
∫

R

ϕtdρ
y,i
t−

)

νi,rN (dy,dt),

with ρ defined by the following formula: (µ̄y,i,N,rN
t being the measure obtained by moving in the

expression of µ̃N,rN
t the particle XN,i,rN

t to the position XN,i,rN
t + σNy)

ρy,it = ∂x
(

η(H ∗ µ̄y,i,N,rN
t )− η(H ∗ µ̃N,rN

t )
)

.

To prove the second item in Lemma 3.10, we integrate by parts, and, using the definition
of µ̄y,i,N,rN and the compactness of the support of g, it holds

∣

∣

∣

∣

∫

R

ϕtdρ
y,i
t

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R

gt
(

η(H ∗ µ̄y,i,N,rN
t )− η(H ∗ µ̃N,rN

t )
)

∣

∣

∣

∣

≤ K
(σNy) ∧ 1

N
, (3.9)

so that

E|T 3
N | ≤ K

∫ ∞

0

(1− χN
t )

∫

{|y|>rN}
(σNy) ∧ 1

dydt

|y|1+α
≤ K(σα

N + σNr
1−α
N ).

Now let us prove the first item of Lemma 3.10. Applying the same martingale argument as the
one used to prove E|MN | → 0, and using the upper bound K/N in (3.9), one has

E

∣

∣

∣

∣

∣

∣

T 3
N − 2cα

∫ ∞

0

(1− χN
t )

∫

{|y|>rN}





∑

κN
i

>t

∫

R

ϕtdρ
y,i
t





dydt

|y|1+α

∣

∣

∣

∣

∣

∣

2

≤ K

rαNN
.

Let us give a more explicit expression for ρy,it . For simplicity, we denote

w̃i
t = 1κN

i
>t











η











1

N

∑

j 6=i
κN
j

>t

γ(Xj
0)1X

N,j,rN
t ≤X

N,i,rN
t +σNy

+
γ(Xi

0)

N











− η











1

N

∑

j 6=i
κN
j

>t

γ(Xj
0)1X

N,j,rN
t ≤X

N,i,rN
t +σNy
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and for i 6= j,

w̃i,j,±
t = 1κN

i
>t1κN

j
>t











η











1

N

∑

k 6=j
κN
k

>t

γ(Xk
0 )1X

N,k,rN
t ≤X

N,i,rN
t

± γ(Xj
0)

N











− η











1

N

∑

k 6=j
κN
k

>t

γ(Xk
0 )1X

N,k,rN
t ≤X

N,i,rN
t





















.

One can write

ρyt :=
∑

κN
i

>t

ρy,it =
∑

κN
i

>t

w̃i
tδXN,i,rN

t +σNy
−
∑

κN
i

>t

wi
tδXN,i,rN

t

+
∑

κN
i

>t







∑

κN
j

>t

(

w̃i,j,+
t − wi

t

)

1
X

N,i,rN
t <X

N,j,rN
t

1
X

N,j,rN
t +σNy<X

N,i,rN
t






δ
X

N,i,rN
t

+
∑

κN
i

>t







∑

κN
j

>t

(

w̃i,j,−
t − wi

t

)

1
X

N,j,rN
t <X

N,i,rN
t

1
X

N,i,rN
t <X

N,j,rN
t +σNy






δ
X

N,i,rN
t

.

(3.10)

In this expression, the two first terms deal with particles jumping from the site XN,i,rN
t to the

site XN,i,rN
t + σNy, while the third term corresponds to the jump from right to left of the particle

labelled j above the particle labelled i and, conversely, the fourth term corresponds to the jumps of
particle j from left to right over particle i. Notice that this last equality, as well as (3.11) below,
only holds when each XN,i,rN

t + σNy is distinct from all XN,j,rN
t . However, for all t, this condition

holds dy-almost everywhere, which is enough for our purpose.
In the entropic formulation (2.3), the term that should appear for large jumps is given by

2cα

∫ ∞

0

∫

{|y|>rN}

(
∫

R

ϕtdσ
y
t

)

dydt

|y|1+α
,

where

σy
t =∂x

(

η′(H ∗ µ̃N,rN
t )

(

H ∗ µ̃N,rN
t (· − σNy)−H ∗ µ̃N,rN

t

))

=
1

N

∑

κN
i

>t

γ(Xi
0)η

′
(

H ∗ µ̃N,rN
t (XN,i,rN

t + σNy)
)

δ
X

N,i,rN
t +σNy

− 1

N

∑

κN
i

>t

γ(Xi
0)η

′
(

H ∗ µ̃N,rN
t (XN,i,rN

t )
)

δ
X

N,i,rN
t

+
∑

κN
i

>t

(

H ∗ µ̃N,rN
t (XN,i,rN

t − σNy)−H ∗ µ̃N,rN
t (XN,i,rN

t )
)

×
(

η′
(

H ∗ µ̃N,rN
t (XN,i,rN

t )
)

− η′
(

H ∗ µ̃N,rN
t (XN,i,rN

t −)
))

δ
X

N,i,rN
t

. (3.11)

When computing the difference ρyt − σy
t integrated against some bounded function, using Taylor

expansions for η, one can check that, up to an error term of order O
(

1
N

)

the first terms in the right
hand side of (3.10) and (3.11) cancel each other, the second terms as well, and so does the sum of
the two last term in (3.10) with the last one in (3.11). Consequently,
∣

∣

∣

∣

∣

∫ ∞

0

(1− χN
t )

∫

{|y|>rN}

(
∫

R

ϕtdρ
y
t

)

dydt

|y|1+α
−
∫ ∞

0

(1− χN
t )

∫

{|y|>rN}

(
∫

R

ϕtdσ
y
t

)

dydt

|y|1+α

∣

∣

∣

∣

∣

≤ K

NrαN
.

This concludes the proof.
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Proof of Lemma 3.11. For a time ζm of the form khN , no particle moved in the interval (ζm−1, ζm),
so that wi

ζm − wi
ζm−1

= 0, unless the particle labelled i has been killed at time ζm. Hence,

T 4
N =

N
∑

i=1

∑

ζm of the
form khN

(wi
ζm −wi

ζm−1
)ϕζm (XN,i,rN

ζm
)

=−
∑

ζm of the
form khN

∑

κN
i

=ζm

wi
ζm−1

ϕζm (XN,i,rN
ζm

).

This sum is actually a sum over pairs of close particles with opposite signs, thus

|T 4
N | =

∣

∣

∣

∣

∣

∣

∣

∣

∑

ζm of the
form khN

∑

pairs {i,j} of particles
killed at time ζm

(

wi
ζm−1

ϕζm (XN,i,rN
ζm

) + wj
ζm−1

ϕζm (XN,j,rN
ζm

)
)

∣

∣

∣

∣

∣

∣

∣

∣

≤
∑

ζm of the
form khN

∑

pairs {i,j} of particles
killed at time ζm

∣

∣

∣
wi

ζm−1
+ wj

ζm−1

∣

∣

∣
‖ϕ‖∞ +

∣

∣

∣
wj

ζm−1

∣

∣

∣

∣

∣

∣
ϕζm(XN,i,rN

ζm
)− ϕζm (XN,j,rN

ζm
)
∣

∣

∣

≤ K

(

1

N
+ εN

)

.

Indeed, a couple (i, j) of killed particles is such that |XN,i,rN
ζm

− XN,j,rN
ζm

| ≤ εN and is made of
particles with opposite signs, so that

|wi
ζm−1

+ wj
ζm−1

| =
∣

∣

∣

∣

(

γ(Xi
0) + γ(Xj

0)
)

η′(H ∗ µ̃N,rN
t (XN,i,rN

t )) +O
(

1

N2

)∣

∣

∣

∣

≤ K

N2
.

Proof of Lemma 3.12. Notice that from independence of the increments, denoting by L≤r a Lévy
process with Lévy measure cα1|y|≤r

dy
|y|1+α , it holds

P(BN) = P(σN |L≤rN
hN

| ≤ εN/4)
NT/hN

=

(

1− P

(

σNrN |L≤1

hN r−α
N

| ≥ εN/4

))NT/hN

.

Since the Lévy measure cα1|y|≤1
dy

|y|1+α has compact support, the random variables L≤1
t have expo-

nential moments, and Chernov’s inequality yields

P

(

σNrN |L≤1

hNr
−α
N

| ≥ εN/4

)

≤ E



e

∣

∣

∣

∣

∣

L≤1

hNr
−α
N

∣

∣

∣

∣

∣



 e−εN/4σN rN = eKhN r−α
N

−εN/4σN rN ,

where the constant K does not depend on N .

In the Brownian case α = 2, we use the tail estimate
∫∞
M
e−x2

dx ≤ Ke−M2

for positive M .

Lemma 3.13. Let a1 ≤ . . . ≤ aN and b1 ≤ . . . ≤ bN be two nondecreasing sequences of reals

numbers. Then the quantity
∑N

i=1 aibσ(i) for some permutation σ is maximal when σ(i) = i for

all i.
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Proof. From optimal transportation theory (see [14, page 75]), the quantity
∑N

i=1(ai − bσ(i))
2 is

minimal when σ is the identity. Expanding the square, we see that
∑N

i=1(ai − bσ(i))
2 =

∑N
i=1(a

2
i +

b2i ) − 2
∑N

i=1 aibσ(i). Thus,
∑N

i=1 aibσ(i) is maximal if and only if
∑N

i=1(ai − bσ(i))
2 is minimal,

concluding the proof.

Lemma 3.14. Let f be some bounded function with compact support on [0,∞)×R which is smooth

with respect to the space variable. If hN vanishes and σN is bounded, it holds

lim
N→∞

E

∣

∣

∣

∣

∣

∣

∑

κN
i

>0

∫ ∞

0

(

wi
t − wi

τt

)

ft
(

XN,i,rN
t

)

dt

∣

∣

∣

∣

∣

∣

= 0.

Proof. First notice that when t is not in an interval [khN , (k+ 1/2)hN ], it holds wi
t = wi

τt , since no
particle moved between τt and t. Then, one can write, from the assumptions on f ,
∣

∣

∣

∣

∣

∣

∑

κN
i

>0

∫ ∞

0

(

wi
t − wi

τt

)

ft
(

XN,i,rN
t

)

dt

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∑

κN
i

>0

∫ T

0

χN
t

(

wi
tft(X

N,i,rN
t )− wi

τtft(X
N,i,rN
τt )

)

dt

∣

∣

∣

∣

∣

∣

+
K

N

∑

κN
i

>0

∫ T

0

χN
t

∣

∣

∣X
N,i,rN
t −XN,i,rN

τt

∣

∣

∣ ∧ 1dt.

Integrating by parts, it holds:
∣

∣

∣

∣

∣

∣

∑

κN
i

>0

∫ T

0

χN
t

(

wi
tft(X

N,i,rN
t )− wi

τtft(X
N,i,rN
τt )

)

dt

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ T

0

χN
t

∫

R

(

η
(

H ∗ µ̃N,rN
t (x)

)

− η
(

H ∗ µ̃N,rN
τt (x)

))

∂xft(x)dxdt

∣

∣

∣

∣

≤K
N

∫ T

0

χN
t

∫

R





∑

κN
i

>0

1
X

N,i,rN
t ≤x<X

N,i,rN
τt

+ 1
X

N,i,rN
τt

≤x<X
N,i,rN
t



 ∂xft(x)dxdt

≤K
N

∫ T

0

χN
t

∑

κN
i

>0

∣

∣

∣
XN,i,rN

t −XN,i,rN
τt

∣

∣

∣
∧ 1dt

We conclude the proof by writing

E
1

N

∫ T

0

χN
t

∑

κN
i

>0

∣

∣

∣
XN,i,rN

t −XN,i,rN
τt

∣

∣

∣
∧ 1dt = E

∫ T

0

χN
t 1κN

1 >0

∣

∣

∣
XN,1,rN

t −XN,1,rN
τt

∣

∣

∣
∧ 1dt

≤ T

(

hN sup
[−1,1]

|A′|+ E

(

(σN |ΛN,1,rN
hN

|) ∧ 1
)

)

.

This last quantity vanishes when hN goes to 0.

4 Numerical results

In this section, we illustrate our convergence results by some numerical simulations. We simulated
the solution to the fractional and the inviscid Burgers equations

∂tu+
1

2
∂x(u

2) + σα(−∆)
α
2 = 0 and ∂tu+

1

2
∂x(u

2) = 0,
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corresponding to the choice A(x) = x2/2, with different values for the parameter α.
One can find an explicit exact solution to the inviscid Burgers equation (see [12]) and we compare

the result of the simulation to this exact solution in the vanishing viscosity setting. However, to our
knowledge, no explicit solutions exist in the case of a positive viscosity coefficient for α < 2, so that
we have to compare the result of our simulation with the one given by another numerical method.
Here, we use a deterministic method, introduced by Droniou in [7].

4.1 Constant viscosity (σN = σ)

We give three examples of approximation to the viscous conservation law. On Figures 1, 2 and 3,
we show the approximation of the viscous conservation law with respective index α = 1.5, α = 1
and α = 0.1 and diffusion coefficient σ = 1 using N = 1000 particles, with parameters h = 0.01 and
ε = 0.04 at simulation times 0.25, 0.5, 0.75 and 1. The continuous line is the simulated solution,
and the dotted line is the “exact” solution obtained with the determistic scheme of [7] using small
time and space steps.

We now investigate the vanishing rate of the error, that is the Riemann sum on the discretization
grid associated to the integral in Theorems 3.1, 3.2 and 3.3. On Figure 4 is depicted the logarithmic
plot of the error as a function of N where we used the relation hN = 10/N , and εN = 40/N , with N
ranging from 10 to 10000, in the three cases α = 0.5, 1 and 1.5. In the case α < 1, this relation
between N , hN and εN satisfies the condition of Theorem 3.1. These pictures make us expect a
convergence rate of 1√

N
, corresponding to the optimal rate analyzed theoretically in [5, 6], in the

case α = 2, without killing.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Approximation of the conservation law with index α = 1.5.

4.1.1 Behaviour as h → 0

We give in Figure 5 the approximation error at fixed number of particle, with a vanishing time
step h, in logarithmic plot. We set the parameter ε to be equal to 4h so that the condition of
Theorem 3.1 is satified. We took N = 340000 and σ = 1. We set α = 0.5, α = 1 and α = 1.5
respectively. The different parameters h range from 1 to 2−8. In [5, 6] it is shown, in case α = 2 and
the initial condition is monotonic, that the error is of order h. In view of Figure 5, it seems that the
convergence rate is still of order h, even for α < 2 and any initial condition with bounded variation.
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Figure 2: Approximation of the conservation law with index α = 1.
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Figure 3: Approximation of the conservation law with index α = 0.1.

4.2 Vanishing viscosity (σN → 0)

We consider the Burgers equation
∂tv = ∂x(u

2/2)

with initial condition u0(x) = 1[−3,−2] − 1[2,3], which is the cumulative distribution function of the
measure δ−3 − δ−2 + δ2 − δ3. In that case, the solution of the Burgers equation is explicit and given
by the expression

u(t, x) = min

(

x+ 3

t
, 1

)

1[−3,min(−2+ t
2
,−3+

√
2t,0)] +max

(

x− 3

t
,−1

)

1[max(2− t
2
,3−

√
2t,0),3].

We compare the function u to the function obtained by running the Euler scheme with a small
diffusion coefficient σ. One can expect the approximation to be better for large values of α. Indeed,
for small values of α, the particles tend to jump very far away, and subsequently “disappear” from
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Figure 4: Logarithmic error in the approximation of the conservation law with index α = 0.5, 1 and 1.5. The
respective slopes are −0.46, −0.41 and −0.56.
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Figure 5: Logarithmic plot of the error as h vanishes, with a fixed number of particles, at respectively α = 0.5,
1 and 1.5. The slopes are equal to 1 up to an error of 0.01.

the simulation. The consequence of this behavious is that the solution is somehow decreased by a
multiplicative constant.

For large values of α, the approximation is quite good, even for not so small diffusion coefficients.
Figure 6 gives the result of the simulation of the Euler scheme with parameters α = 1.5, ε = 0.04,
σ = 0.1 and h = 0.01, at the different times 2, 4, 6 and 8 for N = 10000 particles. Figure 7 gives
the same simulation for α = 1. In the case α < 1, and especially when α is small, one need to take
a very small value for the diffusion coefficient in order to have a reasonable approximation of the
solution. Indeed, the approximation depicted on the Figure 8 is the appproximation of the solution
at times 2, 4, 6 and 8 for diffusion coefficient σ = 10−4. Here, we used 10000 particles killed at a
distance ε = 0.01, the time step being h = 0.01. On Figure 9 we show the same simulation, with
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diffusion coefficient changed to σ = 10−12.
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Figure 6: Approximation of the inviscid conservation law by a fractional Euler scheme with index α = 1.5 and
diffusion coefficient 0.1.
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Figure 7: Approximation of the inviscid conservation law by a fractional Euler scheme with index α = 1 and
diffusion coefficient 0.1.
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