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ABSTRACT: This paper presents a new method for
fitting a digital line or plane to a given set of points in a
2D or 3D image in the presence of noise by
maximizing the number of inliers, namely the
consensus set. By using a digital model instead of a
continuous one, we show that we can generate all
possible consensus sets for model fitting. We present a
deterministic algorithm that efficiently searches the
optimal solution with time complexity O(N¢ log N) for
dimension d, where d = 2,3, together with space
complexity O(N) where N is the number of points.
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I. Introduction
Line fitting and plane fitting are essential tasks in the
field of image analysis and computer vision. For
instance, these procedures are useful for shape
approximation (Bhowmick and Bhaattacharya, 2007;
Sivignon et al., 2004), image registration (Zitova and
Flusser, 2003; Shum et al., 1995), and image

segmentation (Koster and S{pann, 2000; Kenmochi et

al., 2000)8 and considered as the problem of parameter
estimation (Hartley and Zisserman, 2003). There exist
several optimal methods for fitting such as least-s quare
fitting, least-absolute-value fitting or least median of
s quares (LMS) (Boyd and Vandenberghe, 2004; Press

et al., 2007). In these methods, a continuous line or
plane model is used, defined respectively by

L={xy) €eRax+y+b=0} (1)

P={(xv,2) €R%ax+by+c+z=0} ()
where a,b,c € R. The fitting is carried out through
optimizing different cost functions. For instance, least-
s quares minimizes the sum of the geometric distances
from all given points to the model. The solution can be
obtained analytically, however it is not robust to the
presence of outliers, namely points which do not fit the
model. Least-absolute values uses the vertical
distances, instead of the geometric distances, for its
minimization. Some efficient iterative algorithms have
been proposed in the literature. However, if there are
outliers, the solution is known to be unstable. In
contrast, Least Median of S quares (LMS) minimizes
the median of the vertical/geometric distances of all
given points to the model. Thus, the fitting is robust as
long as fewer than half of the given points are outliers
(Rousseeuw, 191184)
In this paper, we present a novel globally optimal
method that, given an arbitrary cloud of 2D or 3D
points, finds the line or plane that minimizes the
number of outliers, or alternatively maximizing the
number of inliers, namely points which do fit the
model, also called the consensus set. The idea of using
such consensus sets was proposed for the RANdom
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Sample Consensus (RANSAC) method (Fischler and
Bolles, 1981), which is one of the most widely used in
the field of computer vision. However RANSAC (and
its variations) is inherently probabilistic in its
approach, and do not guarantee any optimality while
our method is both deterministic and optimal in the size
of the consensus set. In order to guarantee the
optimality of consensus sets, we follow a digital
geometry methodology (Klette and Rosenfeld, 2004)
by using a digital line and plane models (Klette and
Rosenfeld, 2004; Reveilles, 1991) instead of (1) and
(2). This methodology is in fact natural given the
assumption that our inputs are digital images. Besides,
such a digital model allows us to distinguish between
digitization-induced noise and actual noise. Related
work using digital line or plane models can be found in
works such as digital line or plane recognition (Buzer,
2003; Buzer, 2006; Gerard et al., 2005), digital curve
polygonalisation (Bhowmick and Bhaattacharya, 2007,
Debled Rennesson et al., 2006), and digital surface
polyhedrization (Provot et al., 2006; Sivignon et al.,
2004) with and without the presence of noise.
However, to the best of our knowledge, outliers,
namely points which do not fit the model, have never
been studied in the field of digital geometry.

This work is an extension of our previous papers on
digital line fitting (Zrour et al., 2009) and digital plane
fitting (Zrour et al., 2009). We can treat both the 2D
and 3D problems by considering them in the dual space
of the dual transform (De Berg, 2008). Indeed, we
show that digital plane fitting in 3D can be treated with
a similar methodology to the one for digital line fitting
in 2D because it can be viewed as a 2D problem. We
present an algorithm that has a time complexity of
O(N%logN) for the dimension d = 2,3, with N the
number of points, and a space complexity O(N). Note
that the space complexity is not affected by the
dimension. We also point out that there are degenerate
cases since our inputs are only integers and all
computations can be executed by using rational
numbers alone, and present how we can deal with
them.

The rest of the paper is as follows: in section II we
expose the framework of our digital model. In section
IIT we prove the optimality of our result. In sections IV
and V, we provide an algorithm for the computation of

the line fit in 2D and an extended algorithm for the
plane fit in 3D, respectively. Section VI provides a
method for extracting the parameters from the fit.
Sections VII is devoted to 2D and 3D results and
applications respectively. Finally Section VIII states
some conclusions and perspectives.

I1. The problem of digital line and plane
fitting
A line L and a plane P in the Euclidean space R",
n = 2, 3, are defined by (1) and (2). In this paper, we
use digital models, instead of continuous ones, for lines
and planes in a discrete space Z¢ for d = 2, 3, where Z
is the set of all integers. We contend that using digital
models is natural when our input data is a set of points
in a digital space.
A digital line D(L) that is the digitization of L is
defined by the set of discrete points satisfying two
inequalities:

D) ={(x,y)€Z>0<ax+y+hb<w} 3
where w is a given constant value. Geometrically,
D(L) is a set of discrete points lying between two
parallel lines ax+y+b =0 and ax+y+b=w,
and w specifies the vertical distance between them.
From the digital geometrical viewpoint (Klette and
Rosenfeld, 2004; Reveilles, 1991), w should not be less
than 1 if we expect that D(L) to be 8-connected. In
other words, 1 is the minimum distance to keep the
connectivity of a digital line. We can also fix the
horizontal distance, instead of the vertical one, between
the two parallel lines. In that case, we simply exchange
x and y in (3).

A digital plane D(P) that is the digitization of P is
defined by

D(P) ={(x,y,z)€Z30<ax+by+z+c<

w} (4)
and similar discussions on the value setting for w and
its direction choice among the x -, y- and z -axis
directions, namely, the permutation of x, y and z in (4),
are also valid for D(P).

Using the above digital line and plane models, our

fitting problem is then described as follows: given a

finite set of discrete points such that
S={x;€z%i=1,2,-,N},

we would like to find a digital line D(L) for d = 2

(resp. a digital plane D(P) for d = 3) such that D(L)



(resp. D(P)) contains the maximum number of points
in §. Points x; € § are called inliers if x; € SN D(L)
(resp. x; €SN D(P) ); otherwise, they are called
outliers.

III.  Digital models and their consensus sets

Our approach is focusing on inlier sets, also called
consensus sets. Since the size of § is finite and each
element x € S has finite coordinates, we easily notice
that the number of different consensus sets for the
digital line or plane fitting of § is finite as well. Thus,
if we can find all different consensus sets C from a
given S, we just need to verify the size of each C and
find the maximum one (ones if there are several) as the
optimal solution.
Then the following question comes up naturally: is it
possible to find all the consensus sets of §? If the
answer is positive, how can we do it? In this section,
we will answer these questions. For the followings, we
give some notions related to digital lines and planes.
Two parallel lines (resp. planes) that are given by the
equations in (3) (resp. (4)) are called the support lines
(resp. planes) of a digital line (resp. plane). Discrete
points that are on support lines (resp. planes) are called
critical points of a digital line (resp. plane).

A. Digital lines and their consensus sets
We first attack the 2D case of digital line fitting.

Proposition 1 Let € be a consensus set of § for a
digital line. It is possible to find a new digital line
whose consensus set is the same as € such that it has at
least two critical points.

Proof Let D be an initial digital line that contains all
points of C as its inliers. Then, the following three
cases can be considered when studying the critical
points of D.

1. Suppose that D has more than one critical
points, then the proposition is already
established in this case.

2. Suppose that D has one critical point p;. In
this case, we apply a rotation to D around p,
until finding another point p, in C so that p,
becomes a critical point. The rotation is
accomplished in such a way as to maintain the
distance w between the support lines, and so
that the support line on which there is not p4 is

rotated around the point prl that is the
projection of pq on the line. Figure 1 shows an
example of a rotated digital line. Note that we
can rotate D  either clockwise or
counterclockwise.
3. Suppose that D has no critical point. In this
case, we first apply a translation to D in order
to find a first critical point p;. Note that a
translation can be made to any direction and
the two support lines shall maintain the
distance w between them. During such a
translation, if more than one points are detected
as critical points, then the proof is complete. If
just one point p4 is detected, as illustrated in
Figure 2, then a rotation is made around p, as
mentioned in the previous case, in order to
obtain a second critical point p,.
From this proposition, we see that we can find a digital
line D(L) for any consensus set C of § such that it has
at least two critical points. This is intuitively
understandable, because when we move a digital line
D(L) in the image plane, its consensus set C will
change when a critical point goes out from D(L),
namely, becomes an outlier, due to the motion of the
line. Indeed, such a digital line D(L) can be
constructed from a pair of points chosen from § such
that they become critical points of D(L). Consequently,
we can find all € from those D(L) constructed from
pairs of points in S.

B. Digital planes and their consensus sets
Similarly to digital lines, we have the following
proposition for digital planes.

Proposition 2 Let C be a consensus set of § for a
digital plane. It is possible to find a new digital plane
whose consensus set is the same as € such that it has at
least three critical points.
Proof Let D be an initial digital plane that contains all
points in C as its inliers. Then, the following four cases
can be considered when observing the critical points of
D.
1. Suppose that D has more than two critical
points, then the proposition is correct in this
case.



2. Suppose that D has two critical points p; and

P2, which may be located on one side or either
side of the two parallel support planes of D.

First, we take the projections p1 (resp. pz) of
p1 (resp. p) on the other support plane where
p1 (resp. pz) does not exist in the z-axis
direction. We then apply a rotation to D in such
a way as to maintain the distance w between the
support planes until finding another point p3 in
C so that p3 becomes a critical point. To
achieve this to the support plane where p; and
p2 exist, we apply a rotation around the line
going through p; and p,, as illustrated in
Figure 3. To the other support plane, we apply a
rotation around the line going through p'1 and
plz, as illustrated in Figures 3. In the case of
Figure 4, similarly, to the support plane where
pP1 (resp. p;) exists, we apply a rotation around
the line going through p; and p2 (resp. pl and
pP2). Note that we can rotate D either clockwise
or counterclockwise.

Suppose that D has one critical point p4. In this
case, we also consider the projection of p;, pll.
We then apply a rotation to each support plane
until finding another point p, in € so that p,
becomes a critical point, as illustrated in Figure
5. The support plane where p (resp. pll) exists
is rotated around any line going through p4
(resp. p'1) on the support plane. If just one point
p2 is found as a second critical point after the
rotation, then another rotation is made, as
mentioned in the previous case, in order to
obtain a third critical point p3.

Suppose that D has no critical point. In this
case, we first apply a translation to D in order
to find a first critical point p;. Note that a
translation can be made in any direction while
the two support planes maintain a constant
distance w between them. During such a
translation, if more than two points are found as
critical points, then the proof is complete. If just
one point pq is found, as illustrated in Figure 6,
then we follow the previous case.

From this proposition, similarly to the 2D case, we
see that we can find a digital plane D(P) for any
consensus set C of § such that it has at least three

critical points. Consequently, we can find all C
from D(P) constructed from all possible triplets of
points in S.

IV. Digital line fitting algorithm

We first describe the digital line fitting problem in the
dual space of the duality transform (De Berg, 2008),
because our algorithm works in the dual space. We
then present an algorithm to exhibit the optimal
consensus set (or sets if the solution is not unique) that
maximizes the number of inliers of a fitted digital line
from a given set S of 2D discrete points, step by step.
We also describe special treatments for degenerate
cases; it should be noted that digital images likely
present many degenerate cases that must be processed
separately.

A. Digital line fitting in the dual space
Our algorithm 1is inspired by the algorithm of LMS
(Souvaine and Steele, 1987) working in the dual space
of the following duality transform (De Berg, 2008): let
P = (xp,Yp) be a 2D point in the primal space (x,y)
then the dual of p is the line:

L% ={(a,b):xya+ b +y, = 0}

in the dual space (a, b). Likewise, the dual of a non-
vertical line ax + y + b = 0 in the primal space is the
point (a, b) in the dual space.
Now, let us consider the dual-space interpretation of a
digital line in the primal space, defined by (3). A
digital line is regarded as a set of two parallel lines
whose slopes are -a, and whose y-intercepts are at -b
and w-b. It corresponds, in the dual space, to a vertical
line segment of length w which is the distance between
two parallel lines of the digital line, as illustrated in
Figure 7. Because points in S in the primal space are
represented by lines in the dual space, the problem of
finding the optimal consensus set in the primal set is
equivalent to searching the best position of the vertical
line segment of length w such that it intersects with as
many lines as possible in the dual space, as illustrated
in Figure 7.

B. Strips made from a critical point
Obviously, we cannot search everywhere in the dual
space to find the best line segment. From Proposition 1,
we know that, for any consensus set, there exists a
digital line that features at least two critical points.



Therefore, we first take one point p € §, and consider
it to be the first critical point of such a fitted digital
line. Because p corresponds to a line L(,’, in the dual
space, all digital lines for which p is a critical point
correspond to the set of all the vertical line segments of
length w having one of its endpoints on L?, in the dual
space, as shown in Figure 8. The set of such digital
lines, therefore, forms two strips in the dual space; one
of them is bounded by L(;’ and L%, , and another is
bounded by L(;, and L%,, where
Ly ={(a,b): xpa+b+y,+w =0},
)
L3 ={(a,b): x,a+b+y,—w =0},
(6)
as illustrated in Figure 8. For simplification, we focus
on the strip bounded by L?, and L%, , because the
following discussion is also valid for another strip
bounded by L(;, and L%,.

C. Digital lines with critical point pairs
According to Proposition 1, we choose a point
q € S\{p} to be the second critical point of a fitted
digital line such that Xq F Xp the case of Xq = Xp will
be discussed later. Any point q in the primal space is
represented by the line L?I in the dual space, as shown
in Figure 9. We see in this figure that L% intersects
each of the strip boundaries, L(;, and L},, if it is not
parallel to L(,’,; the parallel case occurs when x4 = xp,
and it will be dealt with separately as a degenerate case
in Section F. The intersections between L?I and Lg,,
oy = (af,by) , for i=0,1 , are calculated.
Geometrically, the vertical line segment in the strip,
one of whose endpoints is one of the intersections aﬁ,,
in the dual space corresponds to a digital line with the
two critical points p and q in the primal space. This
shows that the digital lines corresponding to the
vertical line segments between the two intersections 02

and o}, in the strip always contain q as an inlier.

D. Finding the largest consensus set in a

strip
In order to know the number of inliers within the
digital lines with a critical point p, we check the

intersections ag and 0,11 of L?, for all q € S\{p} with
the strip boundaries, L(z)r and L},. We use two values fqi
for i = 0,1, which is set to be 1 if L?, enters the strip

from L, and -1 if L?I leaves the strip from Lip.

p’
Once the intersections ail = (aﬁ,, bfl) , and the
associated value fqi for i = 0,1 are calculated for all
q € S\{p} ., we sort all the triples (aj,bg,fi) in
increasing order by using aﬁl as keys. As for
determining the location of the maximum number of
inliers, a function F(a) is used; after initially setting
F(a) = 1 for every a, since we already know that p is
an inlier, then the value f; is added to F(a) for a > aj,
in the above sorted order. By looking for the maximum
value of F(a), we obtain the parameter set (a,b)
corresponding to the maximum optimal consensus set
for a critical points p. In this section, we consider that
all L?I , enter or leave a strip at different a. The
degenerate cases such that many lines L?, enter or leave
a strip at the same a will be described in Section F.

E. Algorithm

We now present Algorithm 1 in Figure 10. Input is a
set § of discrete points and a distance value w of our
digital line model. Output is a set V of parameter
values (a%, b®) corresponding to the fitted digital lines
of that give the optimal consensus sets. In the
algorithm, we consider another strip bounded by L?,
and L%, as well, as seen in Steps 4, 9 and 21. We remark
that, because bfl is not used for the sorting step and can
be calculated from aa, we do not have to store it for
each intersection. Simply for a candidate of the optimal
consensus set, we calculate it as shown in Steps 21 and
22. Note that, depending on the strip, we calculate
different b¢ because of the translation difference w
between the two strips. We also remark that Algorithm
1 provides us with the set of parameter pair values
(a%, b%) of all the fitted digital lines of (3) that give the
optimal consensus sets.

The time complexity of the algorithm is O(N? log N),
because we have N points in § and each p € § needs
the complexity O(N log N), for sorting at most 2N — 2
different values aj, forq € S, q # p, and i = 0,1. The



space complexity is O(N) because for each sorting we
have at most 2N — 2 different pairs (ay, f;).

Because all inputs can be given as integers or rational
numbers, all computations in Algorithm 1 can be made
by using only rational numbers. This guarantees that all
results obtained by Algorithm 1 contain no numerical
error. However, degenerate cases may occur, which are
discussed in the followings.

F. Degenerate cases
In this section, we deal with degenerate cases, which
are not considered in Algorithm 1. They are
summarized as follows:

- Suppose that p and q such that x; = xp,; L?, is
parallel to L(;,. If ; L?I is between L(I), and L%,
(resp. L%,), then we set the initial value of the
function F(a) to 2 when [ =1 (resp. | = 2)
because q is an inlier for any a. Otherwise, we
set it to 1, as described in Algorithm 1, because
q is an outlier for any a.

- When many lines L, enter or leave a strip at the
same moment a, all the positive values fqi of
that moment must be added to the function
F(a) at once (Step 17 in Algorithm 1), and the
value F(a) is compared with the current
maximum value Max (Step 18 in Algorithm 1).
Note that all the negative valued fq‘ of the same

moment a must be added after the comparison
to the function F(a). Indeed such a point q
must be considered as an inlier until that
moment.
Obviously, those modifications affect neither the time
nor space complexity of the algorithm.

V. Digital plane fitting algorithm

The algorithm is based on a similar idea to the one for
2D digital line fitting, presented in the previous
section. The key idea for the extension to 3D digital
plane fitting is treating the 3D problem as a 2D
problem. In this section, we show how to reduce the
dimension from three to two, and obtain an algorithm
providing a O(N3logN) time and O(N) space
complexity.

A. Digital plane fitting in the dual space

A point p = (x,y, z) in the primal space associates to a
non-vertical plane
P, ={(a,b,c):xa+yb+c+z=0}
(7

in the dual space. Conversely, a non-vertical plane in
the primal space associates to a point in the dual space.
Similarly to a digital line, a digital plane defined by (4)
is regarded as a set of non-vertical parallel planes
whose normal vectors are (a,b,1) and whose z -
intercepts are between —c and w — ¢, and it forms a
vertical line segment of length w in the dual space as
illustrated in Figure 11. The problem of finding the
optimal consensus set for digital plane fitting in the
primal space is then equivalent to searching the
position of the vertical line segment of length w such
that it intersects with the maximum number of planes
in the dual space.

We now need a search procedure for an optimal
segment. Thanks to Proposition 2, we know that, for
any consensus set, there exists a digital plane featuring
at least three critical points, among which at least two
are on one of the support planes. Thus, taking two
different points p, q from S in the primal space, we
first consider all the digital planes on which both p and
q are critical points on the same support plane. In the
dual space, digital planes having two critical points p,
q forms two strips, which will be described in Section
B. We then explain how digital planes with two critical
points p, q appear in the strips when they have a third
critical point 7, so that the sub-problem becomes the
same as the 2D sub-problem.

B. Strips made from a critical point pair
Let p = (Xp, ¥p, Zp) and q = (Xq,Yq,Zq). In the dual
space, they represent two planes B, and Fy, defined by
(7). They intersect in a line L%q if p and q are chosen
such that (x, — xq)% + (yp — ¥4)? # 0; otherwise, B,
and P, are parallel, and no intersection line can be
found. The intersection line L?,q is represented by the
following equation:

Lyg={v=(abc):v=u+tdt€R}
where
d= (xp' Vp» A (xqryq; 1) = (yp — Vg Xq —
Xp) XpYq = XqYp)-



and u = (u,, Uy, U.) ; wis a chosen point on L(,’,q. For
example, if X, Y, # XqYp, by fixing u. = 0, u, and w,
are automatically found since u is on both B, and F;.
Once L(,),q is found, then, all the digital planes on which
both p and q are critical points on the same support
plane in the primal space correspond to the set of all
the vertical line segments of length w having one of its
endpoints on Lg,q in the dual space, as shown in Figure
12. We see in the figure that the set of such digital
planes, therefore, forms two strips in the plane Q,4 that
contains L(I’,q and the direction parallel to the c-axis.
Taking the d-axis in Qpq as the orthogonal one to the
c-axis, such @pq is illustrated in Figures 12 and 13.
Each strip on @4 illustrated in Figure 13 is bounded
by two parallel lines, Ly, and Ly, fori = 1,2, which
are represented by:

Lyg={v=(abc):v=u+e+tdteR}

Lyg={v=(abc):v=u—e+tdteR}
where e = (0,0, w). Note that they correspond to L(I),
and L%, of (5) and (6) for the 2D case.

C. Digital planes with critical point
triplets

Hereafter, we focus on one of the strips in Qp4, because
the following discussion is valid for both strips. Let us
consider the strip bounded by L(;,q and L%,q , as
illustrated in Figure 13. According to Proposition 2, we
choose a point r € S\{p, q} to be the third critical
point of a fitted digital plane such that r is not colinear
with p and q; the colinear case will be handled
separately as a degenerate case in Section F. Any point
T in the primal space is represented by the line L, in
Qpq 1n the dual space, which is the intersection
between B and @4, as shown in Figure 13. We see in
this figure that L, intersects each of the strip
boundaries, L‘,),q and L%,q, if it is not parallel to L‘;,q; the
parallel case will be also dealt with separately as a
degenerate case in Section F. The intersections
between L, and Lk, 0. = (ay, by, c;), fori = 0,1, are
calculated from L;,q and B.. Geometrically, the vertical
line segment in the strip, one of whose endpoints is one
of the intersections @', in the dual space corresponds to

a digital plane with three critical points p, q and r in

the primal space. This indicates that the digital planes
corresponding to the vertical line segments between the
two intersections ¢ and o2 in the strip always contain
r as an inlier. This structure is already seen for the 2D
case.

D. Finding the largest consensus set in a

strip
Similarly to digital line fitting, in order to know the
number of inliers within the digital planes with two
critical points p and q, we check the intersections o2
and ol of L, for all r € S\{p,q} with the strip

boundaries, L(I’,q and L%,q. We use the similar function
fif forr € S\{p,q}, i = 0,1, and sort the quadruples
(ab, bL, ck, 1), instead of the triples for the 2D case, in
increasing order by using either a;. or by. as keys; if Qpq
is not perpendicular to the a -axis, we use at ;
otherwise, we use b.. As for determining the location
of the maximum number of inliers, we also use the
similar function F(a) (resp. F(b) depending on the key
selection) after initially setting F(a) = 2 for every a.
We obtain the parameter set (a, b, ¢) corresponding to
the maximum optimal consensus set for a pair of
critical points p and q. The degenerate cases such that
many lines L, enter or leave a strip at the same

intersection will be treated in the same manner as the
2D case.

E. Algorithm

We now present Algorithm 2 in Figure 14, which is
easily obtained by modifying Algorithm 1. Input is a
set § of discrete points and a distance value w of our
digital plane model. Output is a set V of parameter
values (a, b, c®) corresponding to the fitted digital
planes that represent the optimal consensus sets. In the
algorithm, we consider another strip bounded by L(I)"I
and L%,q in Steps 5, 10 and 22. We remark that, because
c. is not used for the sorting step and can be calculated
from a’ and b., we do not have to store it for each
intersection.

In Steps 11 and 15, we only show the case where ay, is
used as keys for sorting. However, if Qpq is
perpendicular to the a-axis, all a; has the same value.
In such a case, as mentioned above, we use by as keys,
instead of a;. The time complexity of the algorithm is



O(N31logN), because we have N points in § and each
pair of p and q in § needs the complexity O(N logN)
for sorting at most 2N — 4 different values al for
r e S\{p,q} and i = 0,1. The space complexity is
O(N) because for each sorting we have at most 2N — 4
different triples (ay, by, fi)-

All computations in Algorithm 2 can be also performed
using only rational numbers since all inputs can be
given as integers or rational numbers. This causes the
following degenerate cases.

F. Degenerate cases
We consider the following three degenerate cases,
where the second and third ones were already
discussed for the 2D case in the previous section.

- If three points p, q and r are colinear in the
primal space, their associated planes Pp, Pq, and
P. have a line intersection in the dual space.
Therefore, for any digital plane having p and q
as its critical points also has r as its another
critical point. Thus, the function F(a) initially
set to 2 for the inclusion of p and q as inliers
will be automatically increased by 1 because of
the inclusion of r.

- Suppose that p, q and r are not colinear, but
there is no intersection between L(I)’q and L, in
Qpq Ly is parallel to L‘,),q. We treat it in the
same manner as the first degenerate case of
digital line fitting; if L, is between Ly and Ly,q
(resp. Lf,q), then we set the initial value of F(a)
to 3 when [ = 1 (resp. [ = 2); otherwise, we set
it to 2.

- When many lines L,. enter or leave a strip at the
same moment a, we apply the same procedure
as the second degenerate case of digital line
fitting.

Those modifications affect neither the time nor space
complexity of the algorithm.

VI.  Feasible
parameters
Once we obtained an optimal consensus set C for
digital line or plane fitting to a given point set S, we
need the parameters of digital lines and planes fitted to
C for many applications. In general, the continuous line

digital line and plane

and plane model such as (1) and (2) are used for
estimating them, for example, by applying the least
squared method (Hartley and Zisserman, 2003) to C.
However, we must be careful because this may change
inliers. In such a case, a new C should be recalculated
from a new estimated line or plane, so that the iterative
procedure may be necessary for renewing C with
consecutive re-estimated line or plane parameters.

In our case, however, since we use the digital model
such as (3) and (4) instead of (1) and (2), we do not
need such an estimation procedure, and we need not to
worry that parameter values obtained by € may
produce a different €. We can obtain all feasible
solutions for the parameters of digital lines (resp.
planes) fitted to an obtained optimal C. By simply
looking for all feasible solutions (a, b) (resp. (a, b, ¢)),
that satisfy the inequalities of (3) (resp. (4)) for all
(x,y) € C (resp. (x,y,z) € C).

Such feasible solutions of digital lines and planes are
called preimages. It is known that preimages of digital
lines have interesting properties. For instance, a
preimage of a digital line forms a convex polygon in
the dual space that has at most four vertices (Dorst and
Smeulders, 1984). However for digital planes, the
structure of their preimages are more complex than that
of digital lines (Gerard et al., 2008); we even do not
know the maximum number of vertices or facets of a
convex polyhedron that constitutes a preimage of a
digital plane.

VII. Experiments

This section presents the 2D and 3D experiments.
We cannot avoid using colors in the figures shown
in this section, which can be seen correctly at the
on-line version of the paper.

A. 2D noisy image of digitized lines
We first tested our method with an image of size
102 X 102 originally made from two digital lines
defined by a set of points (x,y) € Z? satisfying either
0 S%x+y+50£w or 0 S—%x+y+50£w ,
w=0.999. We then randomly added and removed 2000
points as noise for the image, and finally obtained 1800
points. Our method is applied to fit a digital line to
these points. The optimal consensus set is found using
our method, as shown in Figure 15; it has 87 inliers.



From those 87 inliers, we also calculated a set of
feasible parameters of fitted digital lines; it is given as
the convex polygon in the parameter space (a, b) of (3)

whose vertices are (— 91—9, — % ), (0,—49), (0,—48),
(1_ 4852
99’ 99 ).

We compared our result with that of RANSAC. For
comparison, the tolerance of RANSAC is set to 0.5;
this value specifies the maximum distance of inliers
from a fitted line. In this experiment, we use the
continuous line model of ax+by+c=0 as in
conventional RANSAC methods, and the vertical or
horizontal distance as well as our method. Figure 16
shows the RANSAC results after 37587 iterations. The
number of inliers is 34 and the parameters of the line
are: a=-0.131175, b = 0.149704, c =
—0.989991. It should be noted that with our method
all the feasibility parameters can be exactly computed
from the inliers, while RANSAC finds only one
parameter set. Moreover, the 34 inliers obtained by
RANSAC are far from the optimal result of our digital
line. In fact, this is due to the fact that RANSAC is
based on a random sampling, which provides no
guarantee of optimality. However, the computation
time is relatively rapid, thanks to its probabilistic
strategy. Thus, in cases where there is a lot of noise,
RANSAC should be avoided, whereas the use of
RANSAC may be justified when it is sufficient to
obtain an approximate solution for practical reasons,

B. 2D real image

We then tested our method with respect to a real image,
as shown in Figure 17 (left), whose size is 520X693.
Before applying our method, edge detection and
mathematical morphological filtering are done for this
image; the number of points in the image after this pre-
processing is 5572 points. Our method is then applied
in order to fit a digital line to the set of points. Figure
17 (right) shows the optimal consensus set, which
includes 602 inliers, for digital line fitting. The
distance w was set to 1.

C. 2D Polygonal contour images
We also tested polygonalisation using our method. It is
tested using an iterative procedure by applying our
method; after each iteration, we take the inliers off and
apply our method to the remaining points. Figure 18

(left) shows the original polygonal contour image
containing some noise whose size is 497x456. Figure
18 (right) shows the result after six iterations of
applying our method for the polygonalisation. The
consensus set obtained after each iteration is colored in
red, blue, yellow, pink, cyan and green, respectively.
The number of all points is 1960, and the sizes of the
consensus sets are 297, 264, 186, 180, 119, and 104,
respectively. The distance w is set to be 1.

D. 3D real images
For the 3D experiments, we applied our proposed
method to two example data, such as a 3D discrete
point cloud and a 3D binary digital image.
The first example is a 3D discrete point cloud in Figure
19, which is obtained after a planar surface
segmentation of a range image of blocks (Kenmochi et
al., 2008). The number of points in the cloud is 12859,
and they are segmented into thirteen planar surfaces,
which are illustrated in Figure 19 with points in
different colors, except for those colored in light green
that are detected as edge points. For each of these
thirteen sets, we fitted a digital plane. We see the
corresponding planes in Figure 20, and the number of
points for each segmented surface and the size of its
optimal consensus set in Table 1. In Figure 21, we also
see that the fitted plane for the blue segmented surface
points in Figure 19: inliers are colored blue while
outliers are in pink.
We also applied our method to a 3D image extracted
from a polymer foam observed in X-ray micro-
tomography, on which homotopic thinning and surface
decomposition were applied (Plougonven et al.
(2006)). Figure 22 shows a cross section of the original
image and Figure 23 shows a 3D binary image
obtained after homotopic thinning and surface
decomposition; the image is cut into two parts for
visualization. Among around 400 sets of points
forming surfaces in the entire image, we choose a part,
as illustrated in Figure 24, including 17 decomposed
surfaces for digital plane fitting. We show the fitted
planes in Figure 25, and the number of points and the
optimal consensus set size for each segmented surface
in Table 2. For both the examples, we set w = 1.

VIII. Conclusions



In this paper we have exposed a new method for line
and plane fitting on discrete data such as bitmap
images using a digital geometry (DG) approach. The
DG approach allows practitioners to separate effects
due to digitization on the one hand and noise on the
other. Using our approach, we have proposed an
optimal fitting method from the point of view of the
maximal consensus set: we are guaranteed to fit a
digital line or plane with the least amount of outliers.
The 3D algorithm is based on the same idea as the 2D
algorithm however some extensions are done to adapt
the algorithm to a 2D dual problem and to cope with
the different degenerate cases. The 2D and 3D
algorithms has a complexity that are identical to
parameter-less traditional plane-fitting algorithms such
as least median of squares regression (Rousseeuw,
1984), but allows us to define a digital line or plane
exactly, in the presence of outliers. Future work will
include improving algorithmic complexities and more
complete applications such as optimal polygonalization
or polyhedrization by choosing a good value for w
automatically, and image registration considering all
feasible digital line and plane parameters.
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Figures captions

Fig. 1. A digital line that has one critical point p; and its rotated digital line with a second critical point p,.
Fig. 2. A digital line that has no critical point and its translated digital line with one critical point p,.

Fig. 3. A digital plane with two critical points p; and p, on one of its support planes and its rotated digital plane

that also has a third critical point p3.

Fig. 4. A digital plane with two critical points p; and p, on distinct support planes and its rotated digital plane that

also a the third critical point ps.
Fig. 5. A digital plane with one critical point p; and its rotated digital plane that also has a second critical point p,.
Fig. 6. A digital plane with no critical point and its translated digital plane that has one critical point p;.

Fig. 7. A digital line of width w in the primal space (left) corresponds to a vertical line segment of length w in the

dual space (right).

Fig 8. Digital lines on which a point p is a critical point in the primal space (left), and those corresponding vertical
line segments of length w in the dual space (right). In the dual space, a set of all such digital lines forms two

strips, each of which is bounded by two lines L, and L, for i = 1,2,

Fig. 9. Three points p, g, r in the primal space (left), and the corresponding lines L, L} and L in the dual space,

with their intersections a?, @’ for i = 0,1 (right).
Fig. 10. Algorithm 1: digital line fitting.

Fig. 11. A digital plane in the primal space (left) corresponds to a vertical line segment of length w in the dual

space (right).



Fig. 12. All the digital planes with two critical points p and q in the primal space (left) correspond to a set of

vertical line segments of length w having one of its endpoints on the intersection line of the two planes B, and P,

(right).

Fig. 13. Four points p, q, r and s in the primal space (left), and their interpretations in the cross-section Q,,, of the
dual space (right). @4 is made as the plane that contains the intersection line L‘},q of B, and P, and the parallel
direction to the c-axis, as illustrated in Figure 12. In Q,,, all the digital planes having p, and q as critical points are
represented by the strips each of which is bounded by Lopq and either of its parallel lines L%,q and Lf,q. The other

points r and s in the primal space are represented by the two lines L,. and Ly in Q4.
Fig. 14. Algorithm 2 : digital plane fitting.

Fig. 15. The optimal consensus set (87 red points) obtained by our method for digital line fitting to a noisy image

of digitized lines containing 1800 points.

Fig. 16. A consensus set (34 red points) obtained by RANSAC for line fitting after 37587 iterations to the same

image of Figure 15.
Fig. 17. An original image (left), and its optimal consensus set, in red color, of digital line fitting (right).

Fig. 18. A polygonal contour image with noise (left), and its result after six iterations of applying our method: the

optimal consensus set obtained after each iteration is in red, blue, yellow, pink, cyan and green, respectively

(right).

Fig. 19. Planar surface segmentation of a 3D discrete point cloud: the number of points is 12859, and they are
segmented into thirteen planar surfaces whose points are in different colors, except for those colored in light

green that are detected as edge points.



Fig. 20. Fitted planes of segmented planar surface in Figure 19.

Fig. 21. The fitted plane with its optimal consensus set for the blue segmented surface points in Figure 20: inliers

are colored blue while outliers are colored pink.

Fig. 22. A cross section of a 3D image extracted from a polymer foam observed in X-ray micro-tomography.

Fig. 23. The 3D binary image obtained after homotopic thinning and surface decomposition applied on the image

in Figure 22: the image is cut into two parts for visualization.

Fig. 24. Selected decomposed surfaces, which is a part of the 3D binary image in Figure 23, for digital plane

fitting.

Fig. 25. Fitted digital planes for decomposed surfaces shown in Figure 24.

Table 1. The number of points for each segmented surface in Figure 20 and the size of its optimal consensus set.

Table 2. The number of points and the optimal consensus set size for each decomposed surface in Figure 25.



Fig. 3. A digital plane with two critical points p; and p, on one of its support planes and its rotated digital plane
that also has a third critical point p3.




Fig. 4. A digital plane with two critical points p; and p, on distinct support planes and its rotated digital plane that
also a the third critical point p3.

Fig. 6. A digital plane with no critical point and its translated digital plane that has one critical point p;.
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Fig. 7. A digital line of width w in the primal space (left) corresponds to a vertical line segment of length w in the
dual space (right).
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Fig 8. Digital lines on which a point p is a critical point in the primal space (left), and those corresponding vertical
line segments of length w in the dual space (right). In the dual space, a set of all such digital lines forms two
strips, each of which is bounded by two lines L‘{, and Li, fori =1,2.
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Fig. 9. Three points p, g, r in the primal space (left), and the corresponding lines L, L} and L in the dual space,

with their intersections @, @’ for i = 0,1 (right).



Algorithm 1: Digital line fitting
input : A set S of NV discrete points, a distance w
output: A set V of parameter value pairs (a“, b°) of the best fitted digital

lines
1 begin
2 initialize Maz = 0;
3 foreach p € S do
4 fori=1,2do
5 initialize the array T'[k| for k = 1,... 2N —2;
6 set j =0
7 foreach q € S such that g # rp do
3 calculate ag for: =0,1;
9 if I = 2 then calculate a.fl and reset aa = afl:
10 if ag < ag thenset fg = 1, fg = —1
1 else set fg = -1, f}] =1;
12 set the pair (ag, fg), fori = 0,1,in T2 +df;
13 j=7+1
14 sort all the elements (ay, fi) for k = 1,...,27 in T with the
values ay. as keys:
15 initialize F' = 1;
16 fork=1,...,25do
17 F=F+ fi;
18 if F > Max then set Maz = F,V = ();
19 if ' = Max then
20 set a® = ay;
21 ifl = 1then t* = —a,zp — yp;
2 else i = —arxp — yp +w;
23 put (a%, b%) in V;
24 return V;
25 end

Fig. 10. Algorithm 1: digital line fitting.
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Fig. 11. A digital plane in the primal space (left) corresponds to a vertical line segment of length w in the dual
space (right).



Fig. 12. All the digital planes with two critical points p and q in the primal space (left) correspond to a set of
vertical line segments of length w having one of its endpoints on the intersection line of the two planes B, and P,

(right).

a¥

Fig. 13. Four points p, q, r and s in the primal space (left), and their interpretations in the cross-section @, of the
dual space (right). Q,4 is made as the plane that contains the intersection line L, of P, and P, and the parallel
direction to the c-axis, as illustrated in Figure 12. In Q,,, all the digital planes having p, and q as critical points are
represented by the strips each of which is bounded by qu and either of its parallel lines L},q and Lf,q. The other
points r and s in the primal space are represented by the two lines L,. and Lg in Qpgq.



Algorithm 2: Digital plane fitting

input : A set S of NV discrete points, a distance w
output: A set V of parameter value triplets (a, b, ) of the best fitted
digital planes

1 begin

2 initialize Max = 0;

3 | foreach {p,q} € Sdo

4 calculate Lp,q:

5 for/ =1,2do

6 initialize the array T'|k| for k = 1,...,2N — 4;

7 set 7 =0

8 foreachr € S\ {p.q} do

9 calculate aj- and bj. fori =0, 1;

10 if { = 2 then calculate a3 and b3, and reset aj. = aj- and

by = by.;

1 if ay. < ay thenset fp. =1, fr = —1;

12 elseset fp = —1, fr = 13

13 set the tuple, (aj., by, f.), fori = 0,1,in T[2j + 4|;

14 =7+ 1;

15 sort all the tuple elements (ay, by, fi) fork =1,...,27inT
with a;, as keys;

16 initialize F = 2;

17 fork=1,...,25do

18 F =F+ fi;

19 if F > Maxz then set Mazr = F,V = 0);

20 if ' = Max then

21 set a® = ay, b¢ = by.:

22 if | = 1 then c® = —apTp — bkyp — zp;

23 else ¢ = —aqrzp — bryp — 2p +w;

24 put (a®,b%,¢¢) in V;

25 return V;

26 end

Fig. 14. Algorithm 2 : digital plane fitting.
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Fig. 15. The optimal consensus set (87 red points) obtained by our method for digital line fitting to a noisy image
of digitized lines containing 1800 points.

-
=t

.

e

__,_ __
nk L M
A T WAL R i
I I L
M e
N
1
" =
| Lo
Lo

. " .
A ey
o - L
ae = e
o ia oo o g
L EL
. . ek
S ey e
L® . -

Fig. 16. A consensus set (34 red points) obtained by RANSAC for line fitting after 37587 iterations to the same
image of Figure 15.



Fig. 17. An original image (left), and its optimal consensus set, in red color, of digital line fitting (right).

Fig. 18. A polygonal contour image with noise (left), and its result after six iterations of applying our method: the
optimal consensus set obtained after each iteration is in red, blue, yellow, pink, cyan and green, respectively

(right).



Fig. 19. Planar surface segmentation of a 3D discrete point cloud: the number of points is 12859, and they are
segmented into thirteen planar surfaces whose points are in different colors, except for those colored in light
green that are detected as edge points.

Fig. 20. Fitted planes of segmented planar surface in Figure 19.

Fig. 21. The fitted plane with its optimal consensus set for the blue segmented surface points in Figure 20: inliers
are colored blue while outliers are colored pink.



Fig. 22. A cross section of a 3D image extracted from a polymer foam observed in X-ray micro-tomography.

Fig. 23. The 3D binary image obtained after homotopic thinning and surface decomposition applied on the image
in Figure 22: the image is cut into two parts for visualization.

Fig. 24. Selected decomposed surfaces, which is a part of the 3D binary image in Figure 23, for digital plane
fitting.



Fig. 25. Fitted digital planes for decomposed surfaces shown in Figure 24.

Table 1. The number of points for each segmented surface in Figure 20 and the size of its optimal consensus set.

Number of points Opt. consensus set size

Blue 1770 1401
Yellow 1578 1195
Pink 1523 935
Pale blue 1191 922
Orange 699 693
Green 573 573
Brown 545 544
Turquoise 536 512
Olive 440 405
Purple 248 245
Violet 232 206




Moss green 223 223

Cream 101 97

Table 2. The number of points and the optimal consensus set size for each decomposed surface in Figure 25.

Number of points Opt. consensus set size
541 269
512 233
439 208
427 196
427 200
405 208
377 159
335 206
333 169
309 141
308 168
258 76
220 104
200 90
198 61
163 98
104 71




