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ABSTRACT proposed a method inspired by some recent research on dif-

In this paper, we introduce a new distance computed from thiz'Sion graphs [8], establishing connections between diffu
sion process on manifolds and random walks on finite data

construction of dual-rooted minirr,lal spanning trees (M-STS)sets. Grikschat's method is based on symmetrically grow-
This distance extends Grikschat's approach [7], exhiltits a0 MSTs rooted at each pairs of boints. by Prim’s alaorithm
tractive properties and allows to account for both local an 1% - the hitting ti ftr? " I\F/)IST » Dy thg P
global neighborhood information. I_:urthermore, a functio t]) twe Iting tll?eDo | N tW(;)t i_{Peastgres I ca tm-
measuring the probability that a point belongs to a detecte e'b ee? Fk))OIIn “I? rolo N I reesni .'n% Ime a .OV; fo
class is proposed. Some connections with diffusion maps [§{€SCribe global as well as local geometrical propertieser t
ata set. In this paper, we introduce a slight modification of

are outlined. The dual-rooted tree-based distance (DRIPT) &< X ! :
lows us to construct a new affinity matrix for use in a spectralrikschat's method, that confers new appealing properties
clustering algorithm, or leads to a new data analysis method, "€ New proposed distance is applied for both clustering and
Results are presented on benchmark datasets. data analysis tasks. Additionally, a probability estinttet

a point belongs to the different clusters is inferred from th

1 INTRODUCTION proposed distance.

. T . In Section 2.1, MST definitions and Prim’s construction
Data clustering is the task of partitioning a set of data 'ntoalgorithm are briefly sketched. Dual-rooted MST (drMST)

non-overlapping subsets, without using any prior knowédg principles and drMST based distance and its properties are

s_uc_h that patterns belonging to a same cluster share MOGroduced in Section 2.2. Applications in the framework
similarity with each other than with patterns belonging to

. of clustering is presented in section 2.3; relation to é@xist
different clusters [15]. Such problems are commonly Ny, is proposed in Section 2.4, and some data exploratory
countered in statistics, data mining, pattern recognjtion

age segmentation and bio-informatics [17]. Although man)gppllcatlon is presented in section 2.5. Section 3 presents

; : Rl . ults on both synthetic and real datasets.
strides were achieved in this area, there remains many open
issues. Hierarchical clustering, graph partitioning atos
and k-means [10] for instance are among the most populars 2. METHODGLOGY
ones (see e.g. [17, 15] for a more exhaustive state of artp.1 MST and Prim’salgorithm
More recently, a new class of clustering methods based OE

some graph theory notions has emerged: the spectral clu gb}; :u{r\llliﬁ\g\;\fﬁ.ﬁg%}egeﬂgt;zll'ﬁsg?gé (Zifednas;‘[i? El)_?]'gtSIggl
tering algorithms [11]. As in other methods, little success 9 9 y 9

is found if clusters do not form convex subsets or are no to partitionV into K clusters. LeP = {Cy,...,Cx} stand
or a set of clusters.

well separated or even overlapping. Furthermore the pre

ence of noise or outliers leads to dramatically decreased pe et G = (V,E) be an undirected graph whele= (g; :

formances in general. Our methods exhibit improved perfore(v;,v), (i, j) € (1,...,N)) denotes a set of undirected edges

mances in this context. between vertices df . The weightw;; of an edge measures
A crucial issue in clustering problems concerns thethe dissimilarity between two verticesandv;.

choice of an affinity measure between data points. We will ) . )

restrict the scope of this paper to the case where data points A SPanning tree7 through the set of verticeg is a

are made of numerical features. Many situations cannot bgenhnected acyclic graph which passes through alNtver-

efficiently addressed by methods using Euclidean distancd§esVi. i € {1,...,N} in the set. The minimal spanning tree

to measure similarities between data points. Consider fdMST) is the tree which has the minimal weight

instance an Euclidean space and two imbricated non con- i )

vex clusters. Two points from cluster 1 may be more sep- Lny(V) = mym Z)Wil

arated from each other than e.g. 2 points from the neigh- ooeel

boring borders of cluster 1 and cluster 2 respectively. In . . v :

such a case, no linear form will correctly classify the datg commen choice fow; is wi; = |el*, y € (,1), whereeis

from the set of pairwise distances. This makes the motivath€ Euclidean distance between vertices. The tree of minima

tion for introducing more geometrically descriptive siam !Hitting time is defined there as the number of iterations|uhg two

ity measures. In their seminal work, Grikschat et al. [7]subtrees collide.




power weighted length enjoys many interesting propertie®roperty 2.3 The union of the subtree%; and.7 rooted at
(see e.g. [5]). However, in this paper the only assumptions; and v respectively is the MST for the subset of vertices
made for the weighy; j arew;; = 0 andwij = w;ji. We apply  involved in one or the other subtree. This property is rather
the Prim’s algorithm [12], whose complexity@Nlog(N)).  straightforward to prove, as a MST is unique and does not
Prim’s algorithm is a greedy procedure for growing trees bydepend upon the root used for initializing Prim’s algorithm
recursively connecting a new vertex to the existing subtree
At each iteration, the new vertex among the unconnected veProperty 2.4 Property 2.1 above insures that any Prim’s al-
tices is chosen, such that the edge which connects the neyorithm rooted at a vertex fron¥; U %, will connect all ver-
vertex to the subtree has a minimal weight. The proceduréces of.7; U .7 before connecting a vertex outsidg U .75.
is iterated until no unconnected vertex remains. The redult Then, by using property 2.2 above, it can therefore be con-
tree is uniqug i.e., independent of the initial vertex of the cluded that
graph, acyclic (no loop) and of minimal weight.

Wi € J1,Wj € Jo,d(vi,Vj) = d(vq, Vo)
2.2 Dual Rooted Prim Tree

In [7], Grikschat et al. propose a graph-based distance me&nd

sure between two verticas andv; to be the hitting-time of

the two Prim subtrees simultaneously grown, rooteg and V(Vi,Vj) € [71 x 71| U[T2 x Z2],d(Vi,V)) < d(V1, Vo)

vj. A slight modification is proposed here consisting in com-

petitive growing : at each step of the tree growing procedureProperty 2.5 Let %Q’Z} stands for the relation, defined rela-
only one of the two Prim subtrees is grown, namely the ONgively to v and v by wgggvj if d(vi,vj) < d(v,Vv2).

for which the new edge has minimal weight. As in [7], this Py} is trivially symmetric and reflexive. Transitivity @2 is
process continues until the two subtrees collide. Howevereasny obtained as a consequence of properties 2.2 and 2.4.

the number of vertices connected within each subtree are Vi i i -
longer identical. LeNier denote the hitting time of the sub- "Fherefore 7, s an equivalence relrimon and the obtained
clusters are equivalence classes v#}!

trees.
The tree obtained by the union of the two Prim subtrees is

referred to aPualRootedPrim Tree (DRPT) (Fig. 1). The

DRPT rooted iny; € V and inv;j € V will be notedDR(v;, V;). s

Different distances measurésvi,v;) can be computed

based oDR(v;, V;):
o the hitting time of the two sub-MSTs

diter(Vi,Vj) = Ner, 1)

o the length of the final tree constructed

Niter
dieng(Vi,Vj) = Witer, 2 . . .
eng(, Vi) ite,zzl e @ Figure 1: Dual rooted Prim tree built on a data set. Sym-
bol X marks the rooted vertices. The dashed edge is the last
¢ and the weight of the final edge connected connected edge.
Omax(Vi,Vj) = MaXtere[1,Nyer | Witer - 3 It must be pointed out that two ’'distances’ are involved

_ _ _inthe dual-rooted tree approaches : the first one is related t
All these distances measures (1, 2, 3) enjoy the propertiahe weightw;j, as introduced in section 2.1. The second is

of being metrics in the mathematical sefise indexed on the MST grown on the vertex set from the knowl-
This DRPT (Fig. 1) enjoys many interesting properties,edge of allw;.
some of which are used in the rest of the paper. When a new vertex is added in the process of growing

trees, it is associated to an edge of minimal weight : this
Property 2.1 For a given couple of verticeSr, vz} serving  deals with local properties (neighborhood related) of the
as roots of two subtree; and.%, the last constructed edge, vertex set. Although Euclidean distances are commonly
which connects the two subtrees together, of weight notegsed for thewj, other dissimilarity measures may better fit
Wiast IS always the largest (with maximum weight) among thehe nature of the data at hand (e.g. information divergences
set of all edges from both subtrees. if the data are spectra as presented later). Whatever the
. chosen functiorw;j, its properties are encompassed in the
Property 2.2 Let d(v1,V2) = Wast the weight of the largest construction of the tree, the DRPT distance properties 2.1
edge among all the edges involved on the subtrees rooted g§ 2 5 are preserved. More specifically, it is important to
vertices y and v, d is a distance. emphasize that the DRPT distance is a metric, whengas
2The symmetry propertw;; = w;; insures unicity of the resulting graph may b.e a Se.ml_memc only. DRPT dIStan(-:eS account for
assuming furthermore that trj1ere iJs no ties in the similarigtrix. ' more glObal features of the saf, as described €.g. by

3They are symmetric, positive, and satisfy the triangulaqimlity; ~ Property 2.4.
proofs are developed with many details in [6].




2.3 Dual rooted trees-based distances for clustering o8
There exists a lot of clustering methods developed to parti- oadl
tion a set of data, as mentioned in the introduction. Regentl Py
spectral graph clustering algorithms [4] have receivedta lo 2
of interests because of their properties and the qualitief t o o
results obtained [11, 2]. Basically, the algorithm staritha 8
neighborhood graph built on the dataset (either KNN-graph, § o3
e-graph or even fully connected graph) and a distance matrix
d (di,j =d(v,V;)) is computed. This distance matrix is used o 0z 0a 05 08 1
to derive an affinity matrix commonly defined as: percentage of 0
Aj = exp(ﬂ) _ Figure 2: Jaccard index computed on the results obtained by
o applying the spectral clustering algorithm with the Euehd

) N ) distance on the Wine data set withvarying.
The eigendecomposition of the normalized Laplaclgn (

of the graph is realized:
situation, “hard labeling” turns out to be not satisfactory
D = diag($ Aj) L= D-Y2AD~ Y2 enough. A crucial issue is then to introduce the probability
that a given data point is a member of a detected cluster or
A K-means algorithm is finally applied on the eigenvectorsof another. In this section, we introduce such a probability
corresponding to thlelargest eigenvalues, to exhibit the can- of membership, and a close relation to transition matrices
didate clusters. introduced for diffusion maps [8] is presented.

The usual distance measutg used in the expression of . .
A'is the Euclidean distance. In [7], the authors proposed to FOF €ach vertex, itis proposed to compute the probabil-
use instead their graph-based distance. The obtainedgesufY ©f P€ing a member of the cluster as follows (4):

overcome those obtained with the Euclidean distance, espe- 5 h(d(v,v))
cially when the classes have non convex shapes. Following Probalv e Gj) = "ieq—"7 (4)
[7], we use DRPT distance together with spectral clustering Sver h(d(v,vi))

algorithms to exhibit clusters. whereh may be any integrable decreasing function of the

Parametew in the affinity matrix determines the hori- distance measuv,v;).
zon above which two vertices are considered to be extremely A popular choice foh is the exponential function:
distant from each other and cannot belong to a common clus- )
ter. Although this parameter drastically influences thdigua h(d(v,v)) = exp( —do(v, Vi)) (5)
of the results, there is no broadly adopted strategy to deter o £ ’
mine its value [9] . In [7], the authors choose the maximum o
distance ind. In order to be more robust to the outliers, Wwheree stands for the characteristic decay length. Note that
Schclar [13] proposed two heuristics for choosiog the @ discussion for choosingwould use similar arguments as
median heuristic (median af) and the max-min heuristic those developed for discussiogn the previous section.
(max min; d;j). All these heuristics allow to define a global Euclidean distance is often chosenddsut the algorlthm
parameter. Based on this observation, Zelnik-Manor and Pefails to correctly clustek when the classes are either non-
ona [18] have proposed to consider a logah the compu- ~ convex or I|e_ on some no_n-llnear manifold; it is proposed
tation of the affinity matrix. The choice af depends on the here to substitute DRPT distancedoActually DRPT prop-
neighborhood of each vertex; = d(vi, vk ), wherey is the erties allow to deal with non-convex c_Iusters by following
K th nearest neighbor ofi. Therefore, the affinity matrix the shape of the clusters on the manifold (see [5]) and to
is ch dinto thi o —d(vi.v)) account for both local and global feature of the data space,
Is changed into this new expressiofy; = exp( 0] ) as explained previously (see Fig. 3). Let us emphasize that
The main drawback of this approach is its sensitivity to thereplacingd by the DRPT distance is made possible, as the

numberK of neighbors, for which no heuristic exists. latter is actually a metric. This could not make sense for
In Fig.2, the Jaccard [17]. index is computed on the re-Grikschat's distances for instance, as it is not a metric.
sults obtained by applying the spectral clustering albanit It is worth noticing that the expression of the probability

with the Euclidean distance on the Wine data set [1] for varmeasure (4) is similar to the expression of the probalslitie
ious values otr. Note thato (horizontal axis) is normalized entering the transition probability matrix of Lafon et a8] [
by the median of the distance distribution, in order to iesur for constructing diffusion maps. The probability of diffas
independence of the results with respect to affine transforftom vertexi to vertexj is actually defined given by

of the data. Thew corresponds to the percentage of the me-

dian distance odl. This plot highlights the importance of the exp( [Ivi—vj HZ)
parameteo in the clustering result. M(i,v;) = H £ /
’ Vi —Vj ’
exp( 22—
2.4 Relation to Diffusion Maps, prabability of member- 2 p( € )

ship The diffusion map is given by the eigenelementdvgfand
In many applications, data clusters may overlap each otha&lusters are issued by applying a simple (e.g. K-means) al-
and/or exhibit complicated non convex shapes. In suclgorithm on the obtained map.
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Figure 4: Embedded Iris data set with MDS (a) Euclidean

Figure 3: Probability membership map of the upper half-distance, (b) DRPT distances.
moon data set with the use of the DRPT distances.

2.5 Exploratory analysisof DRPT clustering 3. EXPERIMENTAL RESULTS

Several methods can be used to obtain an embedding of tiie performances of the proposed methods are illustrated
data set into a low dimensional-space where the data can lo@ various data sets. The main features of the algorithm
easily explored. A popular method to achieve such represemre tested on simulation data. The quality of the results are
tation consists in projecting the data onto a low dimendionaevaluated by computing the Jaccard index Pétbe some
Euclidean space, under the constraint that the Euclidesan diknown ground truth reference partition of the data and let
tances on the image space are as close as possible to the disse the obtained partition. The Jaccard (J) index between
tances in the high dimensional original data space. This iP andP* measures the similarity between the partitions. It
the strategy adopted in the Multi Dimensional Scaling algois expressed a¥(P,P*) = £, wherea is the number of
rithm (MDS) [16] or Isometric mapping (Isomap) [14]. Note pairs of points iV belonging to a same set hand a same
that Laplacian eigenmaps introduced by Belkin etal. [2als set inP*, b is the number of pairs of points i belonging to
provide a solution to this problem, exploited in spectrabel  a same set i and different sets i®* andc is the number
tering algorithms. This section is focused on applying MDSof pairs of points iV belonging to different sets iR and a

to the DRPT distance matrix introduced previously. same set ifP*. J(P*,P) = 1 indicates a perfect match of the
MDS may be summarized by the following steps: partitions.
e First compute]: J=1— ﬁllt. J is referred to as the
double centering matrix. Simulated Data Sets. We consider the classical 'two
» Normalize the row and column af: introducel{; = moons’ problem with ouliers. Spectral clustering method
_%deJ_ (with Euclidean distance) with a local scaling@fsucceeds

in recovering the classes in the absence of outliers, bist fai

. . . " when outliers are present (counts 150 data points and 100
largest eigenvaluek; and their corresponding eigenvec- outliers). Replacing the Euclidean distance by the DRPT dis
tors ;. i . . tance leads much better results, as shown on figure 5. For

e The new set of coordinates is given by computingyoih casesg was chosen according to Zelnik-Malnor and
\//\_jl-‘j- Perona method. The performance of DRPT based approach
comes from its ability to convey information from both local

The Iris data set consists in 150 points in 4-dimensionand global features of the analyzed ¥et

containing three clusters (one of which is well separatenhfr

the others and the two others exhibit interleave). Figure 4

e Compute the eigen-decompositionldfand keep thé’

shows this set embedded in a 2-dimensional space compute* .7+ A i L
by MDS with the Euclidean distances (a) and with the DRPT ¢ "+ - e I oo
distances (b). This clearly emphasizes the ability of DRPT ..’ ST ST
distance to ‘concentrate’ the image vertices on the low di- Yo el ) D et me
mensional space into three well separated clusters. Ne theo Pl Vi, - . Pl Vi, - °c°
retical details will be given here, but this appears cleady — “[.+# & % < 0 | LA e w0 g
being a consequence of property 2.4 above. By applying a 4 "* % L W 4 % % moyg
basic K-means algorithm in the low dimensional Euclidean ...f "." - .z 1ol 707 o Toeege®
space represented on Fig.4(b), a correct labeling score 0 | ™ .- * s Lo °0° o
146/150 was obtained (136/150 for classical unsupervisec 7 Tl - .8
clustering algorithms). AT e s e s 0 e e
This simple experimentation allows us to attest the major @ (0)

importance of the distance measures computed on the ddtégure 5: Two Moons perturbated by a random noise: Spec-
poin wts. The use of the dual-rooted trees-based distancésl clustering with (a) Euclidean distance, (b) DRPT dis-
better discriminates the data points into relevant clgster ~ tances.



Real data: The Iris and Wine data sets from the UCI 15th Annual Conference on Neural Information Processing
machine learning repository [1] are used for benchmarking  SystemsVancouver, British Columbia, Canada, 2001.
the proposed approach. Firstly, spectral clustering #yor (31 ¢ | chang. An information-theoretic approach to speictr
are applied to detect clusters, with Euclidean distancés an" ~ yariability, similarity, and discrimination for hypersgteal
DRPT based distances (with Euclidean weight used in the  image analysis. IEEE Transactions on information thegry
Prim’s growing algorithm). The number of clusters is known 46(5):1927-1932, August 2000.

a priori. As Wine dat set is made of a set of proportions of [4] F. R. K. Chung. Spectral Graph TheotyNumber 92 in Con-

chemical elements, it behaves like a spectrum. Following” ™ terence Board on the Mathematical Sciences. American Math-
[3], we propose to use a symmetrized Kullback information  ematical Society, 1997.

divergenceDys) for the weight functiorw; ; this choice for
wij leads to improved results ag; is better adapted to the ; q AT fold learn
. . E Trans-
nature of the data, although it is not a metric. sion and entropy estimation in manifold learnitige
Secondly, we applie d?le S algorithm to embed the data °10"S O Signal Processing2(8):2210-2221, Aug 2004.
into a 2-dimensional Euclidean space where K-means can bé] L. Galluccio, O. Michel, P. Comon, M. Kliger, and A. O. Her
used. The inter vertex distance matrices computed in their ~Dual rooted trees bgsed_cjusterlng. Tech_nucaI r_ep?rt, tbo
original (high dimensional) space are either using Eudlide toire 135, CNRS-Universite de Nice-Sophia Antipolis, 801
metric or DRPT based distances. [7] S. Grikschat, J. A. Costa, A. O. Hero, and O. Michel. Dual
Again, the proposed graph-based distances allow im- rooted-diffusions for clustering and classification on ian
proved performances, especially in the case (Wine) where folds. INIEEE International Conference on Acoustics, Speech,
the weightw function is adapted to the data characteristics, ~ and Signal Processingoulouse, France, 2006.
and despite it is not a metric. [8] S.Lafon, Y. Keller, and R. R. Coifman. Data fusion and mul
ticue data matching by diffusion mapdEEE Transactions
on Pattern Analysis and Machine Intelligen@8:1784-1797,
Table 1: Results obtained in terms of Jaccard Index for vari- ~ 2006.

[5] J.Costa and A. O. Hero. Geodesic entropic graphs for dime

ous datasets. . . [9] U. Von Luxburg. A tutorial on spectral clusteringstatistics
Methods _ | _Iris | Wine and Computing17(4):395-416, 2007.
Sngtéi![r(;llucsltjs”tg?irgadl)d ean) g 87;?('35 (? 3229; [10] J. B. MacQueen. Some methods for classification and/aisal
P 1Ol . ter ) : of multivariate observations. IRroceedings of 5-th Berkeley
Spectral Clusteringdeng) 0.8876 | 0.4276 Symposium on Mathematical Statistics and Probabilityl-
Spectral Clusteringdnax) 0.5000 | 0.4276 ume 1, pages 281287, Berkeley, 1967.

Spectral Clustering (Grikschat [7]) 0.8876 | 0.4499 .
MDS (Euclidean) + Kmeans 0.7016 | 0.4199 [11] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral cluster-

ing: Analysis and an algorithm. lAdvances on 15th Annual
MDS (DRPT) + Kmeans 0.8876 | 0.5338 Conference on Neural Information Processing Systerak

ume 14, Vancouver, British Columbia, Canada, 2001.

. Remark .Th's ch0|§:e to embed the data In a 2 dlme_rg-lz] R. Prim. Shortest connection networks and some gereral
sional space is not mOt'V"?‘tEd .by some theoretical PVOFE”' tions. Bell System Technical Journ&6:1389-1401, 1957.
but was set for sake of visualization. The determination of

the optimal embedding dimension is not addressed in the-3] A Schclar. A diffusion framework for dimensionalitgduc-
present paper. tion. In Soft Computing for Knowledge Discovery and Data

Mining, pages 315-325. Springer, 2008.

4. CONCLUSION [14] J. Tenenbaum, V. de Silva, and J. Langford. A global getem
ric framework for nonlinear dimensionality reductiorSci-

In this paper, we have presented some dual-rooted diffusion  ence 290(5500):2319-2323, 2000.
distances (DRPT) Computed from the_ construction of dua_ll 15] S. Theodoridis and K. KoutroumbasPattern Recognition
rooted MSTs. These distances exhibit appealing properti€s ~ academic Press, third edition, 2006.
and allow to account for both local and global properties of o
the set to be clustered. As the new proposed distance is[3] W-S. TorgersonTheory and methods of scalingliley, 1958.
metric, it allows us to introduce a function that measure$17] R. Xu and D. Wunsch 1l. Survey of clustering algorithms.
the probability of a point to belong to the different classes IEEE Transactions on Neural Networks5(3):645-678, May
that brings some connections with diffusion maps. It allows  2005.
furthermore to use non metric distance measures for grow1g] L. zelnik-Manor and P. Perona. Self-tuning spectraisbr-
ing trees on which the DRPT is based, which may leads t0 ~ ing. In Advances in Neural Information Processing Systems
improved clustering performances in some cases ('speetrum 17, pages 1601-1608. MIT Press, 2005.
like’ data). The usefulness of the new proposed distance is
illustrated through some spectral clustering applicatj@amd
for some data exploratory analysis.
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