Simultaneous model-based clustering and visualization in the Fisher discriminative subspace

Charles Bouveyron 1 Camille Brunet 2
2 TADIB
IBISC - Informatique, Biologie Intégrative et Systèmes Complexes
Abstract : Clustering in high-dimensional spaces is nowadays a recurrent problem in many scientific domains but remains a difficult task from both the clustering accuracy and the result understanding points of view. This paper presents a discriminative latent mixture (DLM) model which fits the data in a latent orthonormal discriminative subspace with an intrinsic dimension lower than the dimension of the original space. By constraining model parameters within and between groups, a family of 12 parsimonious DLM models is exhibited which allows to fit onto various situations. An estimation algorithm, called the Fisher-EM algorithm, is also proposed for estimating both the mixture parameters and the discriminative subspace. Experiments on simulated and real datasets show that the proposed approach performs better than existing clustering methods while providing a useful representation of the clustered data. The method is as well applied to the clustering of mass spectrometry data.
Type de document :
Article dans une revue
Statistics and Computing, Springer Verlag (Germany), 2012, 22 (1), pp.301--324. 〈10.1007/s11222-011-9249-9〉
Liste complète des métadonnées

Littérature citée [51 références]  Voir  Masquer  Télécharger

https://hal-paris1.archives-ouvertes.fr/hal-00492406
Contributeur : Charles Bouveyron <>
Soumis le : mardi 19 avril 2011 - 10:16:21
Dernière modification le : jeudi 9 février 2017 - 15:49:06
Document(s) archivé(s) le : mercredi 20 juillet 2011 - 02:37:10

Fichier

revision_FisherEM_3.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Charles Bouveyron, Camille Brunet. Simultaneous model-based clustering and visualization in the Fisher discriminative subspace. Statistics and Computing, Springer Verlag (Germany), 2012, 22 (1), pp.301--324. 〈10.1007/s11222-011-9249-9〉. 〈hal-00492406v4〉

Partager

Métriques

Consultations de la notice

488

Téléchargements de fichiers

542