A Coarse Space Construction Based on Local Dirichlet to Neumann Maps
Frédéric Nataf, Hua Xiang, Victorita Dolean, Nicole Spillane

To cite this version:
Frédéric Nataf, Hua Xiang, Victorita Dolean, Nicole Spillane. A Coarse Space Construction Based on Local Dirichlet to Neumann Maps. 2011. hal-00491919v2

HAL Id: hal-00491919
https://hal.archives-ouvertes.fr/hal-00491919v2
Submitted on 9 Feb 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A COARSE SPACE CONSTRUCTION BASED ON LOCAL DIRICHLET TO NEUMANN MAPS

FRÉDÉRIC NATAF*, HUA XIAO†, VICTORITA DOLEAN‡, AND NICOLE SPILLANE§

Abstract. Coarse grid correction is a key ingredient in order to have scalable domain decomposition methods. In this work we construct the coarse grid space using the low frequency modes of the subdomain DtN maps, and apply the obtained two-level preconditioners to the extended or the original linear system arising from an overlapping domain decomposition. Our method is suitable for parallel implementation and its efficiency is demonstrated by numerical examples on problems with high heterogeneities for both manual and automatic partitionings.

Some notations and definitions

\(A \) coefficient matrix of the linear system \(Ax = b \)
\(M \) preconditioner for \(A \)
\(Z, Y \) full rank matrices which span the coarse grid subspaces
\(E \) \(E = Y^T AZ \), Galerkin matrix or coarse-grid matrix
\(\Xi \) \(\Xi = ZE^{-1}Y^T \), coarse-grid correction matrix in MG and DDM
\(P_D \) \(P_D = I - A\Xi = I - AZ(Y^T AZ)^{-1}Y^T \)
\(Q_D \) \(Q_D = I - \Xi A = I - Z(Y^T AZ)^{-1}Y^T A \)
\(P_{BNN} \) \(P_{BNN} = Q_DM^{-1}P_D + ZE^{-1}Y^T \)
\(P_{ADEF2} \) \(P_{ADEF2} = Q_DM^{-1} + ZE^{-1}Z^T \)

1. Introduction. We consider the solution of the linear system \(Ax = b \in \mathbb{R}^p \) arising from the discretization of an elliptic boundary value problem (BVP) of the type

\[\eta u - \text{div}(\kappa \nabla u) = f \quad (1.1) \]

where \(\kappa \) is the diffusion tensor which can be discontinuous. When using an iterative method in a one-level domain decomposition framework, one may encounter a long stagnation or a slow convergence, especially when the number of subdomains is large. Even when \(\kappa = 1 \), the convergence of a one-level domain decomposition method presents a long plateau of stagnation. Its length is related to the number of subdomains of the decomposition in one direction. For example, we know that for the problem divided into \(N \) subdomains in a one-way partitioning, the convergence can never be achieved in less than \(N - 1 \) iterations since the exchange of information between the subdomains is reduced to their common interfaces. Thus, the global information transfers only from one subdomain to its neighbors [16, 19]. One needs a two-level method to have a scalable algorithm, i.e., an algorithm whose convergence rate is weakly dependent on the number of subdomains, see [28] and references therein.

Two-level domain decomposition methods are closely related to multigrid methods and deflation corrections, see [26] and references therein. These methods are defined by two ingredients: a full rank matrix \(Z \in \mathbb{R}^{p \times m} \) with \(m \ll p \) and an algebraic
formulation of the correction. These techniques imply solving a reduced size problem of order $m \times m$ called a coarse grid problem. The space spanned by the columns of Z should ideally contain the vectors responsible for the stagnation of the one level method. We will come back later to the choice of Z in the framework of domain decomposition methods and focus for now on the various algebraic ways to improve convergence by using a coarse grid.

According to [26], for a domain decomposition method (DDM), a well-known coarse grid correction preconditioner is of the form $I + ZE^{-1}Z^T$, where $E = Z^TAZ$ is the coarse grid matrix used to speed up convergence. The abstract additive coarse grid correction proposed in [21] is $M^{-1} + ZE^{-1}Z^T$, where M^{-1} is the additive Schwarz preconditioner, a sum of local solvers in each subdomain, which can be implemented in parallel. The first term is a fine grid solver, and the second term represents a coarse solver. Hence it is called the two-level additive Schwarz preconditioner. The BPS preconditioner introduced by Bramble, Paschiak and Schatz [1] is of this type. In the context of domain decomposition methods, we mention the balancing Neumann-Neumann preconditioner and the FETI algorithm. They have been extensively investigated, see [28] and references therein. For symmetric systems the balancing preconditioner was proposed by Mandel [17]. The abstract balancing preconditioner [17] for nonsymmetric systems reads [8],

$$P_{BNN} = QDM^{-1}P_D + ZE^{-1}Y^T .$$

(1.2)

For the preconditioner P_{BNN}, if we choose the initial approximation $x_0 = \Xi b$, then the action of P_D is not required in practice, see [28, p.48]. Note that the multigrid (MG) V(1,1)-cycle preconditioner P_{MG} is closely related to P_{BNN}. Choosing the proper smoother M in P_{BNN}, we can ensure that P_{MG} and P_{BNN} are SPD, and $P_{MG}A$ and $P_{BNN}A$ have the same spectrum [27].

For a SPD system, by choosing $Y = Z$, the authors in [26] define

$$P_{ADEF2} = QDM^{-1} + ZE^{-1}Z^T ,$$

(1.3)

which is as robust as P_{BNN} but usually less expensive [26]. The two-level hybrid Schwarz preconditioner in [25, p.48] has the same form as P_{ADEF2}. It is shown in [26] that with a proper choice of the starting vector the preconditioners P_{ADEF2} and P_{BNN} are equivalent.

Given the coarse grid subspace, we can construct the two-level preconditioners above. An effective two-level preconditioner is highly dependent on the choice of the coarse grid subspace. We will now focus on the choice of the coarse space Z in the context of domain decomposition methods for problems of type (1.1) with heterogeneous coefficients. In this case, the coarse space is made of vectors with support in one subdomain or one subdomain and its neighbors. When the jumps in the coefficients are inside the subdomains (and not on the interface) or across the interface separating the subregions, the use of a fixed number of vectors per subdomain in Z gives good results, see [6], [18], [22], [23], [4] and [5]. When the discontinuities are along the interfaces between the subdomains, results are not so good.

Here, we propose to construct a coarse subspace such that the two-level method is robust with respect to heterogeneous coefficients for an arbitrary domain decomposition. Even if the discontinuities are along the interface like for instance in the case with layered coefficients and a one-way decomposition in the orthogonal direction (see § 4.1), the iteration counts are very stable with respect to jumps of the coefficients.
Our method is based on the low-frequency modes associated with the Dirichlet-to-Neumann (DtN) map on each subdomain. After obtaining the eigenvectors associated with the small eigenvalues of DtN, we use the harmonic extension to the whole subdomain. It is efficient even for problems with large discontinuities in the coefficients. Moreover, it is suitable for parallel implementation. We apply such a two-level preconditioner to the original linear system (2.1) and to the extended one (2.2) arising from the domain decomposition method.

The paper is organized as follows. In Section 2, we introduce the two-level preconditioners: the additive Schwarz (AS), the restricted additive Schwarz (RAS) and the Jacobi-Schwarz (JS) with the coarse grid correction. The construction of coarse grid spaces is presented in Section 3. In Section 4 numerical tests on the model problem demonstrate the efficiency of our method. Some concluding remarks are given in Section 5.

2. Algebraic Domain Decomposition Methods. Without loss of generality, we consider here a decomposition of a domain Ω into two overlapping subdomains Ω_1 and Ω_2. The overlap is denoted by $O := \Omega_1 \cap \Omega_2$. This yields a partition of the domain: $\bar{\Omega} = \bar{\Omega}_1^{(1)} \cup O \cup \bar{\Omega}_2^{(2)}$ where $\bar{\Omega}_i^{(j)} := \Omega\setminus O_i$, $i = 1, 2$. At the algebraic level this corresponds to a partition of the set of indices \mathcal{N} into three sets: $\mathcal{N}_I^{(1)}$, O and $\mathcal{N}_I^{(2)}$.

![Decomposition into two overlapping subdomains.](image)

After the discretization of the BVP (1.1) defined in domain Ω, we obtain a linear system of the following form

$$A \mathbf{u} := \begin{bmatrix} A_{II}^{(1)} & A_{IO}^{(1)} \\ A_{OI}^{(1)} & A_{OO}^{(1)} \\ A_{II}^{(2)} & A_{IO}^{(2)} \\ A_{OI}^{(2)} & A_{OO}^{(2)} \end{bmatrix} \begin{bmatrix} u_I^{(1)} \\ u_O^{(1)} \\ u_I^{(2)} \\ u_O^{(2)} \end{bmatrix} = \begin{bmatrix} f_I^{(1)} \\ f_O^{(1)} \\ f_I^{(2)} \\ f_O^{(2)} \end{bmatrix}. \quad (2.1)$$

We can also define the extended linear system by considering twice the variables located in the overlapping region

$$\tilde{A} \tilde{\mathbf{u}} := \begin{bmatrix} A_{II}^{(1)} & A_{IO}^{(1)} & A_{II}^{(1)} & A_{IO}^{(1)} \\ A_{OI}^{(1)} & A_{OO}^{(1)} & A_{OI}^{(1)} & A_{OO}^{(1)} \\ A_{II}^{(2)} & A_{IO}^{(2)} & A_{II}^{(2)} & A_{IO}^{(2)} \\ A_{OI}^{(2)} & A_{OO}^{(2)} & A_{OI}^{(2)} & A_{OO}^{(2)} \end{bmatrix} \begin{bmatrix} u_I^{(1)} \\ u_O^{(1)} \\ u_I^{(2)} \\ u_O^{(2)} \end{bmatrix} = \begin{bmatrix} f_I^{(1)} \\ f_O^{(1)} \\ f_I^{(2)} \\ f_O^{(2)} \end{bmatrix}. \quad (2.2)$$
where the subscript 'O' stands for 'overlap', \(u^{(i)}_O \) are the duplicated variables in the overlapping domain \(O \), \(u^{(i)}_I \) are variables in the subdomain \(\Omega^i \). It is easy to check that if \(A_{OO} \) is invertible, there is an equivalence between problems (2.1) and (2.2).

Classical preconditioners for problem (2.1) are the additive Schwarz (AS) and the restricted additive Schwarz (RAS) methods, see [2] or [28] and references therein. Let \(R_j \) be the rectangular restriction matrix to subdomain \(\Omega_j \), \(j = 1, 2 \). Let \(D_j \) be diagonal matrices which correspond to a partition of unity in the sense that

\[
R^T_j D_j R_j = I.
\]

By defining \(\tilde{R}_j := D_j R_j \), we have

\[
\tilde{R}^T_1 R_1 + \tilde{R}^T_2 R_2 = I.
\]

Then the additive Schwarz preconditioner reads

\[
M_{AS}^{-1} := R^T_1 A^{-1}_1 R_1 + R^T_2 A^{-1}_2 R_2 \tag{2.3}
\]

and the restricted additive Schwarz method reads

\[
u^{n+1} = u^n + (\tilde{R}^T_1 A^{-1}_1 R_1 + \tilde{R}^T_2 A^{-1}_2 R_2)(f - A u^n), \tag{2.4}
\]

where \(A_i := R_i A R^T_i, \ i = 1, 2 \). From the iterative scheme (2.4), we can define the preconditioner

\[
M_{RAS}^{-1} := \tilde{R}^T_1 A^{-1}_1 R_1 + \tilde{R}^T_2 A^{-1}_2 R_2.
\]

Note that the RAS preconditioner is nonsymmetric. It leads to an iterative method that is identical to the discretization of the continuous Jacobi-Schwarz method, see [7].

![Diagram](image-url)

Fig. 2.2. RAS (\(n_{\text{domain}} = 3, n_{\text{overlap}} = 4, n_{\text{spt}} = 6 \), see § 4.1 for these parameters). The circles and the crosses stand for the unknowns in each subdomain.

An illustration of RAS is given in Figure 2.2 for a three subdomain decomposition, where \(\Omega_i \) are overlapping subdomains and \(\Omega^*_i \) are nonoverlapping subdomains. If we
take \(D_i \) to have zero entries for nodes in the region \(\Omega_i \setminus \Omega_i^* \), we define

\[
\tilde{R}_1 = \begin{bmatrix} 0_{\Omega_i^*} \\ 0 \\ 0 \end{bmatrix}, \quad \tilde{R}_2 = \begin{bmatrix} 0 \\ I_{\Omega_2^*} \\ 0 \end{bmatrix}, \quad \tilde{R}_3 = \begin{bmatrix} 0 \\ 0 \\ I_{\Omega_3^*} \end{bmatrix},
\]

\[
R_1 = \begin{bmatrix} I_{\Omega_i} \\ 0 \\ 0 \end{bmatrix}, \quad R_2 = \begin{bmatrix} 0 \\ I_{\Omega_2} \\ 0 \end{bmatrix}, \quad R_3 = \begin{bmatrix} 0 \\ 0 \\ I_{\Omega_3} \end{bmatrix},
\]

where \(I_{\Omega_i} \) is the identity matrix, whose dimension equals to the number of unknowns in \(\Omega_i \).

For our extended linear system (2.2), a natural preconditio ner can be built by using its diagonal blocks. For the two subdomain case (2.2), the block diagonal preconditioner \(M_{JS} \) is

\[
M_{JS} := \begin{bmatrix} A^{(1)}_{II} & A^{(1)}_{I_O} & A^{(1)}_{O_O} \\ A^{(1)}_{I_O} & A_{II} & A^{(2)}_{I_O} \\ A^{(2)}_{O_O} & A^{(2)}_{I_O} & A_{II} \end{bmatrix},
\]

and one can easily notice that \(M_{JS}^{-1} \) can be computed in parallel. The resulting method will be referred to as the Jacobi-Schwarz (JS) method. When used in a Richardson algorithm such as in (2.4), it was proved in [3] that \(M_{JS} \) applied to (2.2) and \(M_{RAS} \) applied to (2.1) lead to equivalent algorithms. But as we shall see from numerical experiments, two-level methods applied to (2.2) or to (2.1) are not necessarily equivalent.

Note that even though the original matrix \(A \) is symmetric, the extended one \(\tilde{A} \) is not. As for the preconditioners, \(M_{AS} \) and \(M_{JS} \) are symmetric but \(M_{RAS} \) is not. As a result the only case where we have both a symmetric matrix and a symmetric preconditioner is when \(M_{AS} \) applies to the original matrix \(A \). In this case, the Krylov method we use is the CG algorithm. In the other two cases (namely \(M_{JS} \) applied to the extended matrix and \(M_{RAS} \) applied to the original system), we use GMRES [24].

Using preconditioners \(M_{AS} \), \(M_{JS} \) or \(M_{RAS} \), we can remove the influence of very large eigenvalues of the coefficient matrix, which correspond to high frequency modes. But the small eigenvalues still exist and hamper the convergence. These small eigenvalues correspond to low frequency modes and represent certain global information. We need a suitable coarse grid space to efficiently deal with them.

3. The Coarse Grid Space Construction. A key problem is the choice of the coarse subspace. Ideally, we can choose the deflation subspace \(Z \) which consists of the eigenvectors associated with the small eigenvalues of the preconditioned operator. But the lower part of the spectrum of a matrix is costly to obtain. The cost is in any case larger than the cost of solving a linear system. Thus, there is a need to choose the coarse space \textit{a priori}. For instance in [20], Nicolaides defines the deflation subspace \(Z \) as follows

\[
(z_j)_i = \begin{cases} 1, & \text{if } i \in \Omega_j, \\ 0, & \text{if } i \notin \Omega_j, \end{cases}
\]

whose matrix form is

\[
Z = \begin{bmatrix} 1_{\Omega_1^*} & 0 & 0 \\ 0 & 1_{\Omega_2^*} & 0 \\ 0 & 0 & 1_{\Omega_3^*} \end{bmatrix},
\]

(3.1)
where $1_{\Omega^*_i}$ is a vector of all ones, and its length equals the number of unknowns in Ω^*_i. Recall that the subdomains Ω^*_i are nonoverlapping as shown in Figure 2.2.

In [29, 30], the projection vectors z_i are chosen in a similar but more complicated way. Definition (3.1) is also used as the aggregation-based coarse level operator in AMK [9]. Originally (3.1) is used for disjoint sets, not for the overlapping case. In the following, we use it in the overlapping case as well. This coarse space performs well in the constant coefficient case. But when there are jumps in the coefficients, it cannot prevent stagnation in the convergence.

We now propose a construction of the coarse space that will be suitable for parallel implementation and efficient for accelerating the convergence for problems with highly heterogeneous coefficients and arbitrary domain decompositions. We still choose Z such that it has the form

$$Z = \begin{bmatrix} W^1 & 0 & \cdots & 0 \\ \vdots & W^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & W^d \end{bmatrix},$$

(3.2)

where d is the number of subdomains. But W^i is now a rectangular matrix whose columns are based on the harmonic extensions of the eigenvectors corresponding to small eigenvalues of the DtN map in each subdomain Ω_i. Remark that the sparsity of the coarse operator $E = Z^T AZ$ is a result of the sparsity of Z. The nonzero components of E correspond to adjacent subdomains.

More precisely, let us consider first at the continuous level the Dirichlet to Neumann map DtN_{Ω_i}. Let $u : \Gamma_i \mapsto \mathbb{R},$

$$\text{DtN}_{\Omega_i}(u) = \kappa \frac{\partial v}{\partial n_i}\bigg|_{\Gamma_i},$$

where v satisfies

$$\begin{cases} \mathcal{L}(v) := (\eta - \text{div}(\kappa \nabla))v = 0, & \text{in } \Omega_i, \\
v = u, & \text{on } \Gamma_i, \end{cases}$$

(3.3)

and Γ_i is the interface boundary. If the subdomain is not a floating one (i.e. $\partial \Omega_i \cap \partial \Omega \neq \emptyset$), it is necessary to add on the part of the global boundary, the boundary condition from the original problem. To construct the coarse grid subspace, we use the low frequency modes associated with the DtN operator:

$$\text{DtN}_{\Omega_i}(u) = \lambda \kappa u$$

(3.4)

with

$$\lambda < 1/diam(\Omega_i)$$

(3.5)

where $diam(\Omega_i)$ is the diameter of subdomain Ω_i.

We first motivate our choice of a coarse space based on DtN map. We write the original Schwarz method at the continuous level, where the domain Ω is decomposed in a one-way partitioning. The error e^n_i between the current iterate at step n of the algorithm and the solution u_{Ω_i} ($e^n_i := u^n_i - u_{\Omega_i}$) in subdomain Ω_i at step n of the algorithm satisfies:
Fig. 3.1. Fast or slow convergence of the Schwarz algorithm.

\[L(e^{n+1}_i) = 0 \quad \text{in } \Omega_i, \]
\[e^{n+1}_i = \sum_{j \neq i} \xi^j_i e^n_j \quad \text{on } \partial \Omega_i \cap \partial \Omega_j, \]

where \(\xi^j_i \) is such that
\[\sum_{j \neq i} \xi^j_i = 1 \quad \text{on } \partial \Omega_i. \]

On the 1D example sketched in Figure 3.1, we see that the rate of convergence of the algorithm is related to the decay of the harmonic functions \(e^n_i \) in the vicinity of \(\partial \Omega_i \) via the subdomain boundary condition. Indeed, a small value for this BC leads to a smaller error in the entire subdomain thanks to the maximum principle.

Moreover a fast decay for this value corresponds to a large eigenvalue of the DtN map whereas a slow decay corresponds to small eigenvalues of this map because the DtN operator is related to the normal derivative at the interface and the overlap is thin. Thus the small eigenvalues of the DtN map are responsible for the slow convergence of the algorithm and it is natural to incorporate them in the coarse grid space.

We now explain why we only keep eigenvectors with eigenvalues smaller than \(1/diam(\Omega_i) \) in the coarse space. We start with the constant coefficient case \(\kappa = 1 \). In this case, the smallest eigenvalue of the DtN map is zero and it corresponds to the constant function 1. For a shape regular subdomain, the first positive eigenvalue is of order \(1/diam(\Omega_i) \), see [10]. Keeping only the constant function 1 in the coarse space leads to good numerical convergence, see figure 4.2. In the case of high contrasts in the coefficient \(\kappa \), the smallest eigenvalue of the DtN map is still zero. But due to the variation of the coefficients we may possibly have positive eigenvalues smaller than \(1/diam(\Omega_i) \). In order to have a convergence behavior similar to the one of the constant coefficient case, it is natural to keep all eigenvectors with eigenvalues smaller than \(1/diam(\Omega_i) \).

To obtain the discrete form of the DtN map, we consider the variational form of (3.3). Let’s define the bilinear form \(a_i : H^1(\Omega_i) \times H^1(\Omega_i) \to \mathbb{R} \),
\[a_i(w, v) := \int_{\Omega_i} \eta vw + \kappa \nabla w \cdot \nabla v. \]

With a finite element basis \(\{ \phi_k \} \), the coefficient matrix of a Neumann boundary value problem in domain \(\Omega_i \) is
\[A^{(i)}_{kl} = \int_{\Omega_i} \eta \phi_k \phi_l + \kappa \nabla \phi_k \cdot \nabla \phi_l. \]

Let \(I \) (resp. \(\Gamma_i \)) be the set of indices corresponding to the interior (resp. boundary) degrees of freedom and \(n_{\Gamma_i} := \#(\Gamma_i) \) the number of interface degrees of freedom. Note
that for the whole domain Ω, the coefficient matrix is given by

$$A_{kl} = \int_{\Omega} \eta \phi_k \phi_l + \kappa \nabla \phi_k \cdot \nabla \phi_l.$$

With block notations, we have

$$A^{(i)}_{II} = A_{II}, \quad A^{(i)}_{\Gamma_i I} = A_{\Gamma_i I} \quad \text{and} \quad A^{(i)}_{I \Gamma_i} = A_{I \Gamma_i}.$$

But the matrix $A^{(i)}_{\Gamma_i \Gamma_i}$ refers to the matrix prior to assembly with the neighboring subdomains and thus cannot be simply extracted from the coefficient matrix A. In problem (3.3), we use Dirichlet boundary conditions. Let $U \in \mathbb{R}^{n \Gamma_i}$ and $v := \sum_{k \in \Gamma_i} U_k \phi_k$. Let $v := \sum_{k \in I} V_k \phi_k + \sum_{l \in \Gamma_i} V_l \phi_l$ be the finite element approximation of the solution of (3.3). Let $V_I = (V_k)_{k \in I}$, we have with obvious notations:

$$A_{II} V_I + A_{I \Gamma_i} U = 0. \quad (3.6)$$

A variational definition of the flux reads

$$\int_{\Gamma_i} \kappa \frac{\partial v}{\partial n} \phi_k = \int_{\Omega_i} \eta v \phi_k + \kappa \nabla v \cdot \nabla \phi_k$$

for all $\phi_k, k \in \Gamma_i$. So the variational formulation of the eigenvalue problem (3.4) reads

$$\int_{\Omega_i} \eta v \phi_k + \kappa \nabla v \cdot \nabla \phi_k = \lambda \int_{\Gamma_i} \kappa v \phi_k$$

for all $\phi_k, k \in \Gamma_i$. Let M_{κ, Γ_i} be the weighted mass matrix

$$(M_{\kappa, \Gamma_i})_{kl} := \int_{\Gamma_i} \kappa \phi_k \phi_l, \quad \forall k, l \in \Gamma_i.$$

The compact form of equation (3.7) is

$$A^{(i)}_{\Gamma_i \Gamma_i} U + A_{\Gamma_i I} V_I = \lambda M_{\kappa, \Gamma_i} U.$$

With (3.6), the discrete form of (3.4) is a generalized eigenvalue problem

$$(A^{(i)}_{\Gamma_i \Gamma_i} - A_{\Gamma_i I} A^{-1}_{II} A_{I \Gamma_i}) U = \lambda M_{\kappa, \Gamma_i} U. \quad (3.8)$$

The step by step procedure on how to construct the rectangular matrices W^i in the coarse space matrix Z, see (3.2), is as follows.

Algorithm 1. In parallel for all subdomains $1 \leq i \leq N$,

1. Compute eigenpairs of (3.8) $(U^1_1, \lambda^1_1), (U^1_2, \lambda^1_2), \ldots, (U^i_{m_i}, \lambda^i_{m_i})$ such that

$$\lambda^1_1 \leq \ldots \leq \lambda^i_{m_i} < 1/diam(\Omega_i) \leq \lambda^i_{m_i+1} \leq \ldots$$

2. Compute their harmonic extensions

$$V^i_k := (-A^{-1}_{II} A_{I \Gamma_i} U^i_k, U^i_k)^T, \quad 1 \leq k \leq m_i.$$
3. The final formula for the rectangular matrix \(W^i \) with \(m_i \) columns depends on the system to be solved. If the extended system is solved, see (2.2),

\[
W^i = [V^i_1| \ldots |V^i_{m_i}].
\]

If the original system is solved, see (2.1),

\[
W^i = [D_i V^i_1| \ldots |D_i V^i_{m_i}].
\]

We call this procedure the \(Z_{D2N} \) method. We also use \(Z_{D2N} \) to denote the coarse grid space constructed by this method. Its construction is fully parallel. Similarly we call \(Z_{Nicco} \) the method of Nicolaides or the corresponding coarse grid space. Let us remark that when \(\eta = 0 \) and the subdomain is a floating one, the lowest eigenvalue of the DtN map is zero and the corresponding eigenvector is a constant vector. Thus, \(Z_{Nicco} \) and \(Z_{D2N} \) coincide. As we shall see in the next section, when a subdomain has several jumps of the coefficient, taking \(Z_{Nicco} \) is not efficient and it is necessary to take \(Z_{D2N} \) with more than one vector per subdomain.

Note that when we work on the original system, the definition of the coarse space involves a partition of unity via the matrices \(D_i \). Thus the vectors of the coarse space are able to span the zero energy modes of the original problem if there are no Dirichlet boundary conditions.

4. Numerical Results. From a practical point of view, it is more difficult to work on the extended system (2.2) than on the original one (2.1). Indeed, when working on (2.2) we have to create extra data structures. For this reason, we first consider in § 4.1 a one-way decomposition of the domain. This enables us to work both on the original system (2.1) and on the extended one (2.2). In § 4.2 an arbitrary decomposition is considered. We will work only on the original system (2.1).

4.1. One-way domain decomposition. In order to illustrate numerically the behavior of the coarse space, we first consider the following model problem:

\[
\mathcal{L} u := \left(-\frac{\partial}{\partial x} c(y) \frac{\partial}{\partial x} - \frac{\partial}{\partial y} d(y) \frac{\partial}{\partial y} + \eta(y) \right) u(x, y) = f(x, y) \quad \text{in} \ (0, L) \times (0, 1)
\]

where the length \(L \) of the domain is proportional to the number of subdomains.

![Subdomains and boundary conditions](image)

Fig. 4.1. Subdomains and boundary conditions.
We use Neumann boundary condition (BC) on the top and the bottom, Dirichlet BC on the left and \((\partial/\partial n + \alpha)u = 0, \alpha \ll 1\) on the right boundary, see Figure 4.1.

All the test cases are described in Table 4.1. We first consider the constant coefficient case with \(c(y) = d(y) = 1.0\) (CONST in Table 4.1). Afterwords we will test more difficult cases, with discontinuities in the coefficients, such as \(c(y) = d(y) = \text{val}[10 \times y]\), where \(\text{val}\) is an array that defines the heterogeneity pattern and that depends on two parameters \(a\) and \(b\) (e.g., in the case HPL3, \(\text{val} = [a\ a\ b\ a\ a\ b\ a\ b\ a\ a]\) means there are three high-permeability layers). In our tests we take \(a = 10^{5}, b = 1, \eta = 10^{-7}\).

<table>
<thead>
<tr>
<th>Case</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONST</td>
<td>(c(y) = d(y) = 1.0,) constant coefficients</td>
</tr>
<tr>
<td>HPL1</td>
<td>(c(y) = d(y) = \text{val}[10 \times y], \text{val} = [b\ b\ b\ a\ a\ a\ b\ b\ b])</td>
</tr>
<tr>
<td>HPL2</td>
<td>(c(y) = d(y) = \text{val}[10 \times y], \text{val} = [b\ b\ a\ b\ b\ a\ a\ b\ a\ b])</td>
</tr>
<tr>
<td>HPL3</td>
<td>(c(y) = d(y) = \text{val}[10 \times y], \text{val} = [a\ b\ b\ b\ a\ a\ b\ a\ b\ a\ a])</td>
</tr>
<tr>
<td>HPL4</td>
<td>(c(y) = d(y) = \text{val}[10 \times y], \text{val} = [a\ b\ b\ a\ b\ b\ a\ b\ b\ a\ a])</td>
</tr>
<tr>
<td>HPL5</td>
<td>(c(y) = d(y) = \text{val}[10 \times y], \text{val} = [b\ a\ b\ a\ b\ a\ b\ a\ b\ a])</td>
</tr>
</tbody>
</table>

Case Remarks

Test cases. \(b = 1, a = 10^{5}\).

In addition, we use the following parameters in our tests
- \(n_{\text{domain}}\) represents the number of subdomains.
- \(n_{\text{overlap}}\) stands for the overlap in \(x\)-direction; correspondingly the width of the overlap is \(\delta = (n_{\text{overlap}} + 1)h\), where \(h\) is the mesh size.
- \((n_{\text{xp}} + n_{\text{overlap}})\) is the number of grid points in \(x\)-direction in one subdomain.
- \(n_{\text{yp}}\) is the number of grid points in the \(y\)-direction.

These numerical tests are performed in MATLAB. We compare the two coarse grids, namely the Nicolaides one (3.1) and the one defined in Algorithm 1 (D2N), only for the RAS and JS preconditioners. See 4.2 for the RAS and AS methods. We use full GMRES as the linear solver, together with the left preconditioner \(P_{\text{ADF2}}\), which is constructed by taking \(Z\) equal to \(Z_{\text{Nico}}\) or to \(Z_{\text{D2N}}\), where \(Z_{\text{D2N}}\) is of the form (3.2). Please note that when using the left preconditioned GMRES on \(Ax = b\), the residual \(||b - A\tilde{x}||\) is returned for the approximate solution \(\tilde{x}\) (Figures 4.2-4.6).

4.1.1. The original vs. extended system.

We first compare the effect of the coarse grid correction when applied to the original system (2.1) (RAS method) or to the extended system (2.2) (JS method). We begin with the Nicolaides coarse grid space. As expected when there is no coarse grid correction, RAS and JS perform similarly and have a plateau in the convergence curve.

For the constant case in Figure 4.2, the piecewise coarse grid space of Nicolaides is quite good for both the extended system and the original system. It works better on the extended system (2.2) (JS method) than on the original system (2.1) using RAS (22 vs. 36 iterations).

For the case with discontinuities \(Z_{\text{Nico}}\) is not good. For this kind of problem, \(Z_{\text{D2N}}\) gives a much faster convergence, see Figure 4.3. Note that for the case HPL2, the number of small eigenvalues determined by (3.5) is 2, which is equal to the number of high permeability layers, see [29].
We can see that our Z_{D2N} method works well on both the extended system and the original system but it gives better convergence on the extended system. It seems to us that this is due to the fact that for JS we do not need a partition of unity. For RAS this partition of unity is necessary to be able to span the zero energy modes of the original problem. But then, the local harmonicity of the coarse space components is lost. This the reason why we will further investigate our Z_{D2N} method on the extended system.

4.1.2. The robustness of the Z_{D2N} method. In the following we test the robustness of the approach with respect to the various parameters of the problem: jumps of the coefficients, number of subdomains, mesh size and size of the overlap.

Figure 4.4 shows that when using a coarse space the iteration numbers are almost constant as the number of subdomains increases. The three convergence curves with Z_{D2N} are difficult to distinguish.

We also consider the robustness with respect to the size of the jumps. We take as an example in Table 4.2 the case HPL2 with a ranging from 1 to 10^6. Using the criterion (3.5), in each subdomain two small eigenvectors are chosen to construct the
Z_{D2N} coarse space. We see that the iteration counts are almost constant as the size of the jump in the coefficients increases by six orders of magnitude.

<table>
<thead>
<tr>
<th>Jumps in coeff</th>
<th>1</th>
<th>10</th>
<th>10^2</th>
<th>10^3</th>
<th>10^4</th>
<th>10^5</th>
<th>10^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration counts</td>
<td>15</td>
<td>24</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 4.2

Case HPL2 with the Z_{D2N} coarse space for jumps in the coefficients ranging from 1 to 10^6. n_{domain}=32, n_{overlap}=3, n_{opt}=8, n_{ypt}=16.

In Figure 4.5, we plot the convergence curves for three successive refinements of the mesh. We see an increase in the number of iterations that can be related to the fact that the convergence rate of the Schwarz method depends on the physical size of the overlap. Here, we have a two element overlap and thus the physical size of the overlap decreases as the mesh is refined.

In Figure 4.6, we consider the test HPL1 with various sizes of overlap h, 2h and 3h solved with the Z_{D2N} coarse space or without any coarse space (JS). For both
methods, the iteration counts are improved as the overlap is increased. This is in agreement with the theory of the Schwarz method.

Fig. 4.6. HPL1 with various overlaps: h (cross), $2h$ (circle) and $3h$ (triangle), $n_{\text{domain}}=32$, $n_{\text{xpt}}=n_{\text{ypt}}=16$. Z_{D2N}: dotted lines, JS: solid lines.

From the residual curves, we see that our method is very efficient and robust.

4.1.3. Spectral analysis of the preconditioned system. In Figures 4.7 and 4.8, we display the spectra of CONST case and HPL5 case respectively for the original system, the one level method and the two level method with the D2N coarse grid using P_{ADEF2}. The spectrum of the preconditioned matrices has three characteristics:

- the eigenvalues are between 0 and 2;
- the spectrum is more clustered;
- for Z_{D2N} the smallest eigenvalue is well separated from the origin.

Since the small eigenvalues near the origin have a negative influence on the fast convergence, we check the minimum real part of eigenvalues of six cases (see Table 4.3).

Fig. 4.7. Spectra of CONST case. $n_{\text{domain}}=16$, $n_{\text{overlap}}=1$, $n_{\text{xpt}}=8$, $n_{\text{ypt}}=16$. The 3rd is the result of Z_{D2N} method with 1 small eigenvector of DtN taken into account in each subdomain.

4.2. General decompositions. We now solve the model problem (1.1) on the domain $\Omega = [0,1]^2$ discretized by a P_1 finite element method. The diffusion κ is
Fig. 4.8. Spectra of HPL5 case. $n_{\text{domain}}=16$, $n_{\text{overlap}}=1$, $n_{\text{xpt}}=8$, $n_{\text{ypt}}=16$. The 3rd is the result of Z_{D2N} method with 5 small eigenvectors of DtN taken into account in each subdomain. The number of small eigenvalues is determined by (3.5).

<table>
<thead>
<tr>
<th>Case</th>
<th>N_smeig</th>
<th>CONST</th>
<th>HPL1</th>
<th>HPL2</th>
<th>HPL3</th>
<th>HPL4</th>
<th>HPL5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$M_{JS}^{-1}A$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$P_{ADEF2}A$</td>
<td>0.23</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Table 4.3

The minimum real part of eigenvalues. A is the coefficient matrix of the extended system (2.2) and M_{JS} is the Jacobi-Schwarz preconditioner. $n_{\text{domain}}=16$, $n_{\text{overlap}}=1$, $n_{\text{xpt}}=8$, $n_{\text{ypt}}=16$. The test cases are defined in Table 4.1.

4.2.1. Homogeneous viscosity. In this case we have $\kappa = 1$ in the whole domain. As in the case of a one-way decomposition, the two preconditioning methods based on Nicolaides coarse grid and DtN eigenvectors, behave in quite a similar way whether AS or RAS are used when the viscosity is constant in the whole domain. Here we have chosen a 4 by 4 regular subdomain decomposition. Each subdomain has 40 nodes on each side and the overlap equals 2 elements. As expected, using the new algorithm, the number of eigenvectors contributed by each subdomain (which is calculated automatically) is always 1. Figure 4.9 shows all three convergence curves for both AS and RAS. This numerically asserts that in the constant coefficient case, the Z_{Nico} and Z_{D2N} are almost identical. The small differences lie in the fact that for Z_{Nico} the coarse space is defined analytically whereas for Z_{D2N} it is obtained via
a numerical procedure.

4.2.2. Highly heterogeneous viscosity. We will perform the same tests as before on two different configurations of highly heterogeneous viscosity. We consider the following situations:

- alternating viscosity: for \(y \) such that \([9y] \equiv 0 \pmod{2} \), \(\kappa = 10^6 \); and \(\kappa = 1 \) elsewhere. (See Figure 4.10 (left))

- skyscraper viscosity: for \(x \) and \(y \) such that \([9x] \equiv 0 \pmod{2} \) and \([9y] \equiv 0 \pmod{2} \), \(\kappa = 10^5 \cdot ([9y] + 1) \); and \(\kappa = 1 \) elsewhere. (See Figure 4.10 (right))

Here the number of eigenvectors considered in the construction of the coarse space is more important than in the homogeneous case (otherwise the global information cannot be correctly captured) and it may vary as a function of the number of subdomains. This is illustrated in Table 4.4 for the alternating case and Table 4.5 for the skyscraper case. Note that for each subdomain the total number of eigenvalues is equal to the number of nodes on the interface. In these cases, typical values are 2, 3 or 4. Table 4.6 shows that using the new method convergence highly improves convergence whether a uniform or Metis partition is used in this highly heterogeneous coefficient case. The Nicolaides preconditioner gives comparable results to the one level method.
Table 4.4

<table>
<thead>
<tr>
<th>subdomain</th>
<th>number of used eigenvalues</th>
<th>total number of eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>125</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>125</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>127</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>172</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>172</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>127</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>127</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>172</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>172</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>127</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>83</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>127</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>127</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>85</td>
</tr>
</tbody>
</table>

4 by 4 decomposition - Number of functions contributed to the coarse space by each subdomain for the 'alternating' test case.

Table 4.5

<table>
<thead>
<tr>
<th>subdomain</th>
<th>number of used eigenvalues</th>
<th>total number of eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>125</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>125</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>127</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>172</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>172</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>127</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>127</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>172</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>172</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>127</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>83</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>127</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>127</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>85</td>
</tr>
</tbody>
</table>

4 by 4 decomposition - Number of functions contributed to the coarse space by each subdomain for the 'skyscraper' test case.

4.2.3. A hard test case with inclusions and channels. In order to compare our method to existing codes we solve a test case with known difficulties: the diffusion coefficient κ takes values between 1 and approximately 1.5×10^6 and the distribution contains both inclusions and channels. The total number of nodes will always be 256 on each side of Ω. The decomposition will change however: we will successively
consider a 2×2 decomposition, a 4×4 decomposition and an 8×8 decomposition.

Figure 4.11 shows together the decomposition into subdomains and the jumps in κ, Figure 4.12 shows the convergence curves for the three methods using RAS and Table 4.7 gives in detail the number of eigenvalues per subdomain that were used to build the coarse grid in the case of a Metis decomposition. Again the number is often higher than 1 because the heterogeneities in κ impose that more global information on the solution be exchanged to avoid the plateau phenomenon. The convergence curves show that this strategy is a success.

4.2.4. Continuous variations of the coefficient. This time we take an analytical function for κ which is chosen as:

$$\kappa(x, y) = \kappa_M / 3 \sin(\omega \pi (x + y) + 0.1).$$

In our case $\kappa_M = 10^6$ and $\omega = 4$. We chose a 2 node overlap and a total of 160 nodes per side of the global domain. We study the 4×4 and 8×8 decompositions both with and without Metis. As an example, Figure 4.13 shows information for the 4×4 decomposition using Metis. Table 4.10 shows information on the approximate condition numbers of the preconditioned operators in the Metis 8×8 case. This was achieved using the Ritz values during the conjugate gradient iteration procedure when AS is used. As expected for D2N the smallest eigenvalue is larger than in the other cases which leads to a better condition number for the operator. Finally Table 4.11 shows the number of iterations needed to reach convergence for all three methods in all four cases. Again D2N performs significantly better.
Fig. 4.12. 4 × 4 subdomains, uniform (left) and Metis (right)- RAS convergence for the ‘hard’ test case

<table>
<thead>
<tr>
<th>subdomain</th>
<th>number of used eigenvalues</th>
<th>total number of eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>155</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>109</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>175</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>183</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>153</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>125</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>71</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>128</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>193</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>174</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>71</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>166</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>127</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>188</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>106</td>
</tr>
</tbody>
</table>

Table 4.7 Metis 4 by 4 decomposition - Number of functions contributed to the coarse space by each subdomain for the ‘hard’ test case

<table>
<thead>
<tr>
<th></th>
<th>AS</th>
<th>AS+Nico</th>
<th>AS+D2N</th>
<th>RAS</th>
<th>RAS+Nico</th>
<th>RAS+D2N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 × 2</td>
<td>103</td>
<td>110</td>
<td>22</td>
<td>70</td>
<td>70</td>
<td>14</td>
</tr>
<tr>
<td>2 × 2 with Metis</td>
<td>76</td>
<td>76</td>
<td>22</td>
<td>57</td>
<td>57</td>
<td>18</td>
</tr>
<tr>
<td>4 × 4</td>
<td>603</td>
<td>722</td>
<td>26</td>
<td>169</td>
<td>165</td>
<td>15</td>
</tr>
<tr>
<td>4 × 4 with Metis</td>
<td>483</td>
<td>425</td>
<td>36</td>
<td>148</td>
<td>142</td>
<td>23</td>
</tr>
<tr>
<td>8 × 8</td>
<td>461</td>
<td>141</td>
<td>34</td>
<td>205</td>
<td>95</td>
<td>21</td>
</tr>
<tr>
<td>8 × 8 with Metis</td>
<td>600</td>
<td>542</td>
<td>31</td>
<td>240</td>
<td>196</td>
<td>19</td>
</tr>
</tbody>
</table>

Table 4.8 Convergence results for the ‘hard’ test case
Fig. 4.13. Metis 4 × 4 subdomains - κ for the “Continuous” test case (left) and convergence history (right)

<table>
<thead>
<tr>
<th>subdomain</th>
<th>number of used eigenvalues</th>
<th>total number of eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>155</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>109</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>175</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>183</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>153</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>125</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>71</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>128</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>193</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>174</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>71</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>128</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>166</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>127</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>188</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>106</td>
</tr>
</tbody>
</table>

Table 4.9
Number of functions contributed to the coarse space by each subdomain for the “Continuous” test case and the 4 × 4 decomposition with Metis

4.2.5. Random κ distribution. In this section we propose a test with random coefficient. We use a log-normal distribution for the parameter κ. This distribution is calculated using the Gaussian Random field generator available at the web-page http://www-users.math.umd.edu/~bnk/bak/generate.cgi courtesy of Boris Kozintsev and Benjamin Kedem. We choose the exponential covariance family with parameters \(\theta_2 = 1 \) and \(\theta_1 = e^{-\lambda} \) with \(\lambda = 4\Delta x \) in order for the correlation \(r(l) \) between the values at two points separated by a distance \(l \) to be \(r(l) = e^{-\lambda} \). This gives us a normal distribution with mean value 0 of the random variable \(X \) at each grid point. We then define \(X' = \sigma X + \mu \) in order to have a \(\mu \) mean value and a \(\sigma \) standard deviation. In our example, \(\mu = 3 \) and \(\sigma = 2 \) (see Figure 4.14 (left)). Finally, we calculate \(\kappa = 10^{X'} \) giving us a log-normal random field with mean value \(\mu_\kappa = \mu \ln(10) \) and standard
Table 4.10
Condition numbers for the “Continuous” test case 8 × 8 decomposition with Metis

<table>
<thead>
<tr>
<th>Method</th>
<th>Condition number</th>
<th>Smallest eigenvalue</th>
<th>Largest eigenvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>4.566043e+03</td>
<td>8.760321e-04</td>
<td>4.000000e+00</td>
</tr>
<tr>
<td>AS + Nicolaides</td>
<td>1.127232e+02</td>
<td>3.547273e-02</td>
<td>3.998598e+00</td>
</tr>
<tr>
<td>AS + D2N</td>
<td>1.469540e+01</td>
<td>2.717523e-01</td>
<td>3.993508e+00</td>
</tr>
</tbody>
</table>

Table 4.11
Convergence for the “Continuous” test case

<table>
<thead>
<tr>
<th>Method</th>
<th>AS</th>
<th>AS+Nico</th>
<th>AS+D2N</th>
<th>RAS</th>
<th>RAS+Nico</th>
<th>RAS+D2N</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 × 4</td>
<td>57</td>
<td>46</td>
<td>32</td>
<td>48</td>
<td>35</td>
<td>23</td>
</tr>
<tr>
<td>4 × 4 with Metis</td>
<td>64</td>
<td>48</td>
<td>30</td>
<td>53</td>
<td>41</td>
<td>24</td>
</tr>
<tr>
<td>8 × 8</td>
<td>461</td>
<td>141</td>
<td>34</td>
<td>205</td>
<td>95</td>
<td>21</td>
</tr>
<tr>
<td>8 × 8 with Metis</td>
<td>600</td>
<td>542</td>
<td>31</td>
<td>240</td>
<td>196</td>
<td>19</td>
</tr>
</tbody>
</table>

deviation \(\sigma_n = \sigma \ln(10) \).

The parameters of the test case are the following: 4 by 4 subdomains, 20 nodes per subdomain edge using a Metis partition. For these values \(\lambda = 4 \times \frac{1}{4 \times 20} = 0.05 \). The size of the overlap will be successively 1, 2 and 3 and we will compare the restricted additive Schwarz (RAS) and additive Schwartz methods (AS). The size of the overlap does not have a significant influence on the comparison between methods as showed in Table 4.14. In order to improve the condition number (Table 4.13) as many as 9 out of 99 eigenvectors are used to build the coarse space, with success.

5. Conclusions. We have considered the extended (2.2) and the original (2.1) linear systems arising from the domain decomposition method with overlapping. We applied the two-level preconditioner using the Schwarz algorithm and the coarse grid correction. The coarse grid space is based on the low frequency modes of the local DtN map. Its size automatically adapts to the difficulty of the problem. With this coarse space, we can obtain fast convergence for problems with large discontinuities (even along the interface) and arbitrary domain decompositions. The method has the potential to be extended to other systems of equations like elasticity but it requires further investigations.

REFERENCES

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure4.14.png}
\caption{\(\log(\kappa)\) for the 'random' test case (left) and convergence history (right) for AS with an overlap of 2.}
\end{figure}

\begin{table}
\begin{tabular}{|c|c|c|}
\hline
subdomain & number of used eigenvalues & total number of eigenvalues \\
\hline
1 & 7 & 61 \\
2 & 3 & 36 \\
3 & 8 & 98 \\
4 & 7 & 61 \\
5 & 6 & 68 \\
6 & 5 & 58 \\
7 & 7 & 101 \\
8 & 6 & 72 \\
9 & 9 & 99 \\
10 & 6 & 80 \\
11 & 8 & 78 \\
12 & 3 & 39 \\
13 & 6 & 94 \\
14 & 5 & 53 \\
15 & 6 & 101 \\
16 & 5 & 63 \\
\hline
\end{tabular}
\caption{Number of functions contributed to the coarse space by each subdomain for the 'random' test case and the 2 element overlap}
\end{table}

\begin{thebibliography}{13}

\end{thebibliography}
<table>
<thead>
<tr>
<th></th>
<th>Condition number</th>
<th>Smallest eigenvalue</th>
<th>Largest eigenvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>5.765809e+02</td>
<td>6.937447e-03</td>
<td>4.000000e+00</td>
</tr>
<tr>
<td>AS + Nicolaides</td>
<td>1.665329e+02</td>
<td>2.401928e-02</td>
<td>4.000000e+00</td>
</tr>
<tr>
<td>AS + D2N</td>
<td>1.635163e+01</td>
<td>2.445822e-01</td>
<td>3.999317e+00</td>
</tr>
</tbody>
</table>

Table 4.13
Condition numbers for the 'random' test case and overlap = 2

<table>
<thead>
<tr>
<th></th>
<th>AS</th>
<th>AS+Nico</th>
<th>AS+D2N</th>
<th>RAS</th>
<th>RAS+Nico</th>
<th>RAS+D2N</th>
</tr>
</thead>
<tbody>
<tr>
<td>overlap = 1</td>
<td>89</td>
<td>82</td>
<td>30</td>
<td>79</td>
<td>78</td>
<td>22</td>
</tr>
<tr>
<td>overlap = 2</td>
<td>59</td>
<td>57</td>
<td>27</td>
<td>50</td>
<td>52</td>
<td>33</td>
</tr>
<tr>
<td>overlap = 3</td>
<td>45</td>
<td>46</td>
<td>22</td>
<td>36</td>
<td>40</td>
<td>24</td>
</tr>
</tbody>
</table>

Table 4.14
Convergence for the random test case (4 x 4 decomposition with Metis)

[14] G. Karypis, V. Kumar, METIS - Unstructured Graph Partitioning and Sparse Matrix Ordering System.