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ABSTRACT 

This paper concerns project scheduling under resource constraints. Traditionally, the objective is to 

find a unique solution that minimizes the project makespan, while respecting the precedence 

constraints and the resource constraints. This work focuses on developing a model and a decision 

support framework for industrial application of the cumulative global constraint. For a given project 

scheduling, the proposed approach allows the generation of different optimal solutions relative to 

the alternate availability of outsourcing and resources. The objective is to provide a decision-maker 

an assistance to construct, choose, and define the appropriate scheduling program taking into 

account the possible capacity resources. The industrial problem under consideration is modeled as a 

Constraint Satisfaction Problem (CSP). It is implemented under the constraint programming 

language CHIP V5. The provided solutions determine values for the various variables associated to 

the tasks realized on each resource, as well as the curves with the profile of the total consumption of 

resources on time. 

Keywords: Production scheduling, constraint satisfaction problem, constraint programming, 

cumulative global constraint. 
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1. INTRODUCTION 

In the context of operation scheduling, the type of resource is traditionally considered to be a 

machine that can perform at most one operation at a time (disjunctive resource). A natural extension 

of the basic problems involves the presence of additional resources, where each resource has a 

limited capacity (cumulative resource) and each operation requires the use of a part of each resource 

during its execution. This leads us to the area of Resource-Constrained Project Scheduling Problem 

(RCPSP) which consists in scheduling activities on renewable resources available in limited 

quantities. A classical objective function consists in optimizing the end date of the project, while 

satisfying at the same time the precedence constraints between activities and the resource 

constraints, that is, at every time, the sum of the resource consumptions for the activities in process 

should not exceed the resource capacity. Also, Blazewicz et al. (1983) proved that the RCPSP, as a 

generalization of the job shop scheduling problem, is NP-hard in the strong sense.  

To solve the RCPSP, various types of methods have been used: linear programming, constraint 

programming, heuristics and metaheuristics, and tree search. For applications and classification of 

the RCPSP and its extensions, we refer to the surveys written in (Herroelen et al., 1998; Brucker et 

al., 1999; Kolisch and Padman, 2001; GOThA, 2006; Özdamar and Ulusoy, 1995).  

The constraint programming paradigm has been designed to express and solve problems 

involving constraints. That consists in finding among the possible values of a set of variables those 

which satisfy all the constraints simultaneously. Several published research (Baptiste and Le Pape, 

1997; Beldiceanu et al., 1996; Dorndorf et al., 1999) deal with the resolution of the RCPSP using 

constraint programming.  

The aim of this paper is to provide the decision-maker more flexibility and reactivity to define a 

scheduling program. Thus, we propose a decision support framework fitted to an industrial context.  
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The scheduling model developed integrates the application of the global cumulative constraint. It 

provides the optimal end date schedules for each capacity scenario, delivered in numerical form and 

in the form of curves tracing the profile of the total consumption of resources over time. 

This paper consists of four parts. In the first part (Section 2), we recall the basis principles of 

constraint programming and of the cumulative global constraint concept. Section 3 describes the 

industrial problem and formulates the scheduling model under resource constraints. On the basis of 

this model, Section 4 develops the decision support framework. In Section 5, the industrial case is 

used to implement, under the constraint programming language CHIP V5, the feasibility of the 

proposed approach. Finally, Section 6 is devoted to the concluding remarks and some future 

research directions. 

2. CONSTRAINT PROGRAMMING 

Constraint programming refers to the techniques dealing with constraint representation and 

exploitation. This paradigm combines methods of operations research (e.g., graph theory, 

mathematical programming, combinatorial optimization methods) with tools resulting from 

artificial intelligence (e.g., filtering algorithms, instantiation heuristics, search schemes). Research 

carried out on constraint satisfaction problems (CSPs) has resulted in the development of effective 

models which are now widely used in various domains such as computer vision, robot or agent 

planning, scheduling, human resources management, design, agronomy, diagnosis, or others 

(Gyssens et al., 1994; Van Hentenryck et al., 1992; Vargas, 1995). 

2.1. The CSP formalism 

A CSP is defined as a triplet (X, D, C) (Montanari, 1974; Dechter, 2003) with:  

• X = (X1, X2, ..., Xn) is the set of variables of the problem; 
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• (D = D1, D2, ..., Dn) is the set of domains. Each variable Xi ∈ X, 1 ≤ i ≤ n, is associated with one 

domain Di ∈  D which represents all the possible values for Xi. These domains are finite, but of any 

kind, symbolic or numerical; 

• C = (C1, C2, ..., Ck) is the set of constraints. Each constraint Cj is a relation between some 

variables of X. These constraints are of any kind, linear (e.g., X1 + X2 ≤ 4) or non-linear (e.g., X3 ≠ 

X4).  

Given a CSP (X, D, C), its resolution is to instantiate all the variables, so that all constraints are 

simultaneously satisfied.  

 

2.2. CSP solving 

General CSPs belong to the class of NP-complete problems. Their solving is based on the 

application of constraint propagation techniques (filtering phase) and on tree search (resolution 

phase). 

Filtering phase: It consists in removing the values of the variables which have no chance to be 

among a solution. Within the filtering algorithms, the arc-consistency (AC) is probably the most 

used. This algorithm checks the consistency of a constraint between two variables of a CSP. Since 

the seminal AC-3 (Mackworth, 1977), many more powerful versions have been proposed (Mohr 

and Henderson, 1986; Bessière, 1994). However, the easy implementation of AC-3, its adaptability 

to broader frameworks than the classical CSP, as well as recent improvements of the basic version 

(Zhang and Yap, 2001; Bessière et al., 2005) make this algorithm a widely used filtering technique.  

Resolution phase: It consists in finding a complete instantiation (a solution) respecting all 

constraints. The resolution is carried out by means of various algorithms based on tree search (e.g., 

Backtrack (Bitner and Reingold, 1975), Limited Discrepancy Search (Harvey and Ginsberg, 1995), 

Randomization & Restart (Gomes et al., 1998). Some of them are hybrid algorithms in the sense 
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they perform a certain level of filtering on each variable instantiation in the tree expansion 

(Forward-Checking, Real-Full-Look-Ahead (Nadel, 1989), Maintaining Arc-Consistency (Sabin 

and Freuder, 1994).  

Last, let us mention that scanning the search space can be improved by ordering heuristics (order of 

the variable instantiations and choice of a value for a given variable).  

2.3. The global cumulative constraint  

Combinatorial problems generally present independent substructures easily identifiable, all of 

which being formulated by a group of constraints. This is the reason for introducing the concept of 

“global constraint”. A global constraint is a subset of constraints, corresponding to a substructure of 

the original problem. Several types of global constraints have been developed: alldifferent, diffn, 

cycle, sequence, cumulative, etc. In the example of the global constraint “alldifferent (X1, ...., Xn)”, 

each of the variables X1, ..., Xn must take a different value, i.e., X1 ≠ X2 ≠… ≠ Xn. To each global 

constraint, at least one specific filtering algorithm is associated. A global constraint takes into 

account the group of constraints as a whole, in a more effective manner than standard propagation 

techniques applied to separate constraints. In this work, we apply the cumulative global constraint: 

Cumulative ([S1, ..., Sn], [p1, ..., pn], [E1,k, ..., Em,k], [r1,k, ..., rm,k], Rk, Z1). 

A set of n tasks (activities) has to be scheduled; Si is the start time of task i, pi its processing time, 

Ei,k the energy required, ri,k the number of units of resource k needed for its execution, Rk the 

number of resource k available at every time.  

The origin of cumulative global constraint results from the work of Lahrichi (1982). The associated 

filtering algorithms (Caseau, 1994; Hooker, 2000; Baptiste et al., 2001) were the topic of advanced 

and varied studies. They are, moreover, in constant improvement. The cumulative global constraint 

found in the RCPSP a particularly favorable field of application. It consists in the evaluation, for a 
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given interval, of the number of resources required to perform the activities; if this number exceeds 

the number of available resources then a contradiction is detected.  

3. THE SCHEDULING MODEL UNDER RESOURCE CONSTRAINTS 

The RCPSP under study is composed of m resources. As already mentioned, Rk is the number of 

resource k available. A set of n tasks is to be scheduled. Each task i has a duration pi per unit of 

resource and requires for its realization a number r i,k of resource k.  

We distinguish the time constraints that are mainly defined by the precedence relations between 

tasks, and the resource constraints which require that, at every time and for each resource, the total 

demand does not exceed the availability.  

The proposed model consists in building the production planning starting from the identification of 

the parameters, the variables and the constraints translating the various characteristics related on 

times, the products and the physical system. A solution consists in assigning a start time to each 

task by satisfying all the constraints. 

3.1. Industrial problem description 

The study is related to a workshop composed of 4 sections: cutting, assembly, painting, and 

finishing. The various products are prepared in the cutting section, then transferred to the assembly 

section. Once the products are assembled, they are transferred to the painting section and finally to 

the finishing section. The passing of products through the cutting machines depends on their 

specific process plan. The overall flow of production is shown below. 

<Figure 1 to be inserted here> 

In this study, we are particularly interested to define a scheduling program under resource 

constraints in the cutting section. This section contains 7 resource types. For the 11 products 

traversing the cutting section, we have finally 33 different tasks to process. 



Submitted to Computers and Industrial Engineering 

7 
 

- Elementary period of time t. It is the unit of time in terms of scheduling, 

- Decision horizon H, t∈[1, H]. It is the period over which the scheduling considers data production 

and makes decisions,  

- The set of products P: P = (A, B, C, D, E, F, G, M, W, Y, K),  

- The set of tasks T: T = (A1, A4, A5, A7, B1, B7, C1, D1, D4, D5, D7, E3, E4, E5, E7, F3, F7, G1, 

M3 , M4, M5, M7, W1, W4, W5, O3, O4, O5, O7, K3, K4, K5, K7),  

The achievement of each product requires the processing of a set of tasks. Each task is performed 

on a different resource. Example: Product B requires the realization of 2 tasks: (B1, B7). B1 and 

B7 are respectively carried out on resource 1 and resource 7.  

- Energy required Ei,k : It denotes the energy required to perform the task i on resource k. 

- Resource capacity Rk: It represents the number of each resource k available during periods t.  

R1 = 4 / R2 = 2 / R3 = 4 / R4 = 3 / R5 = 3 / R6 = 1 / R7=3.  

3.2. Variables  

The variables involved in the model are:  

- Start time Si : corresponds to the start time of task i.  

- r i,k : corresponds to the number of resource k allocated to task i.  

- Duration pi : corresponds to the duration of task i.  

- Completion times Zk : corresponds to the completion times of all tasks on resource k.  

Zk = maxi,k ( Si + pi )                                                                                                                         (1) 

Example:  

Z1 = max (SA1 + pA1, SB1 + pB1, SC1 + pC1, SD1 + pD1, SG1 + pG1, SW1 + pW1).  

- Total completion time Z (makespan): it is the completion time for all tasks on all resources. 

 Z = max ( Zk )                                                                                                                                   (2) 

The objective is to determine a schedule with minimum makespan Z.  
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3.3. Constraints  

In this section, we present the three types of constraints to satisfy, in order to produce feasible 

solutions: 

- Task energy constraints: 

pi * r i,k = Ei,k = Constant                                                                                                                  (3) 

This corresponds to the energy consumption of a task on a resource (Lopez et al., 1992). Figure 2 

shows an example of a task A1 with Ei,k = 6. In this case, the possible values of pi and r i,k are: 

((2.3), (3.2), (6.1)). The solution (2.3) means that task i requires 3 resources during 2 time units. 

<Figure 2 to be inserted here> 

- Capacity resource constraints: For each resource k, they express the fact that, at every time, the 

total number of resources used by a set of tasks processed at time t (Si ≤ t ≤ Si
 + pi) does not 

exceed a certain capacity Rk. It is used to model the cumulative resource constraint. For a given 

scheduling, the whole tasks that consume resource k at t are such that: 

Tk(t) = { i} i=1..n with t ∈ [ti, ti + pi[  

Rkki,   r ≤
∈
∑

(t)T  i k       

Precedence Constraints: The precedence constraints between tasks are of two types. Those 

corresponding to the process plan of a product and those from the delivery of some products. They 

have the form i → j, prohibiting the start of the second task, j, before the end of the first, i.  

 

Process plan constraints: for each product a process plan sets a sequence of tasks necessary for its 

realization.  

Sj ≥ Si + pi                                                                                                                                                                                                                (5) 

(4) 
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For example, the process plan of product A is: (A1, A4, A5, A7). The associated precedence 

constraint states: A4 → A5: SA5 ≥ SA4 + pA4.  

Delivery constraints: some products must be processed before others (constraints imposed by the 

order of delivery products). These inter-products constraints are expressed as follows:  

G → E: SE3 ≥ SG1 + pG1                                                                                                                                                                                (6) 

4. DECISION SUPPORT FRAMEWORK 

The objective of the proposed model is to find an optimal solution that minimizes the project 

makespan. However, if the resolution did not generate any solution respecting the delivery deadline, 

the project manager may modify his problem and then consider some constraint relaxations. These 

relaxations will be taken into account in the resolution phase with the display of a new solution. If 

the project manager accepts this solution, the modifications realized will be considered, otherwise 

and if it is possible, other relaxations are carried out (Lizarralde, 2007). 

Considering the problem of resource capacity, the project manager will be able, and according to 

the availability of subcontracting for each type of resource, to relax the corresponding cumulative 

constraint (Figure 3). Thus, he can classify the cumulative constraints by ascending order of 

importance. This process of decision support is presented in the following figure. 

<Figure 3 to be inserted here> 

The relaxation is performed on the first constraint on the list until the definition of a consistent 

solution. When a feasible solution is found, the project manager will undertake the necessary action 

for the new scheduling program. If the new solution is not accepted, the planned relaxation should 

be reduced and the process continues by the relaxation of the next cumulative constraint until the 

definition of an optimal scheduling program taking into account the possibilities of outsourcing. 
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5. EXPERIMENTS 

5.1. Model implementation with CHIP V5  

Various propagation and resolution algorithms of the CSP have been integrated into Constraint 

Programming languages. Many environments have been developed and distributed. Among these 

environments, some are commercial (e.g., CHIP, ILOG-Solver), other are academic tools (e.g., Oz, 

Gnu-Prolog, CIAO SICStus). The scheduling model we developed was implemented with CHIP 

V5. The programming consists to declare the domain variables (decision), to post the constraints, 

and finally to enumerate and/or optimize the solutions. The variables are declared as domain 

variables that take their values in finite sets of integers. The constraints implemented are of two 

types. The first, relative to precedence constraints, are written in form of arithmetic linear 

constraints. The second cumulative global constraint provides a significant level of abstraction. It 

allows the modeling of a set of classical constraints in a more concise way. Therefore, it was used to 

integrate two constraint types: the cumulative constraints and the energy consumptions.  

Thus, we associated to each resource a corresponding cumulative global constraint. We present this 

mechanism below relating to the tasks processed on resource 1.  

Cumulative (Si, pi, Ei,1, ri,1, R1, Z1)  

The variables: Si = [SA1, SB1, SC1, SD1, SG1, SW1], pi = [pA1, pB1, pC1, pD1, pG1, pW1], Ei,1 = [EA1,1, EB1,1, 

EC1,1, ED1,1, EG1,1, EW1,1] corresponding respectively to start times Si, durations pi, and energy 

required Ei,1 of tasks A1, B1, C1, D1, G1, W1. The cumulative constraint imposes to satisfy the 

number of resources r i,1 consumed r i,1 = [rA1,1, rB1,1, rC1,1, rD1,1, rG1,1, rW1,1] respective to tasks A1, 

B1, C1, D1, G1, W1 and the capacity of resource R1. Z1 is relative to the calculation of the 

completion time of the five tasks on resource 1. 

According to its commercial description, the processing of cumulative global constraints in CHIP 

V5 is performed by about twenty of methods. Among the known and effective methods, we can 

particularly note the energy reasoning and the timetable constraints. The first allows, on the basis of 
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balance between the consumptions of a resource by activities over a time interval and the energy 

offered by this resource on the same interval, to determine a lower bound on the amount of the 

resource which can be used (Lopez et al., 1992). The second has the same goal, but it gets on the 

basis of constraints called timetable, based on the concept of mandatory part (Lahrichi, 1982), 

interval of time when the task is necessarily carried out.  

5.2. Illustration of the decision support 

For any solution, the visualization of the consumption on each resource is information making it 

possible to follow the satisfaction of cumulative global constraints. The presentation of the results 

wants to be didactic; we then present as an example only the cumulative curve of resource 1. The 

curve and analysis presented in this section relate to the optimal solution.  

The capacity of resource 1 is equal to 4. It realizes the 6 tasks: A1, B1, C1, D1, G1, and W1. The 

following table presents the values of the optimal solution. 

<Table 1 to be inserted here> 

The cumulative curve of resource 1 is presented in Figure 4. The X-axis presents the time (in hours) 

and the Y-axis the number of resources. The profile visualizes the evolution of resource 

consumption over time. The horizontal line indicates the maximum capacity of the resource (R1=4).

<Figure 4 to be inserted here> 

The curve is composed by stacked rectangles associated to tasks A1, G1, W1, B1, D1, and C1 

realized on resource 1. Each rectangle is characterized by one duration pi and a number of 

consumed resource r i,k. The combination of these rectangles gives the profile of the total 

consumption over time. It corresponds to the distribution presented in Figure 5.  

<Figure 5 to be inserted here> 
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To allow the manager to choose an optimal solution favoring the maximal and balanced occupation 

of the resources, the cumulative curve indicates, with a vertical white line (see Figures 4 & 5), the 

possibility to smooth the resource assignment without exceeding available resources capacity and 

minimum makespan Z found for the scheduling. In the case of resource 1, task C1 presents this 

alternative provided to the manager. Indeed, the processing of task C1 offers the possibility to 

choose one or two resources consumption, equivalent to Z1max = 53 and Z1min = 41: 

- If C1 consumes 1 resource:  

then rC1,1 = 1 → EC1,1 = 24h → SC1 = 29  → pC1 = 24h → Z1 = 53h (Figure 5); 

- If C1 consumes 2 resources:  

then rC1,1 = 2 → EC1,1 = 24h → SC1 = 29  → pC1 = 12h → Z1 = 41h (Figure 6). 

<Figure 6 to be inserted here> 

The cumulative curve in Figure 6 depicts the second alternative corresponding to the choice of two 

resources (pC1 = 12), and the distribution of all the tasks on resource 1 for this alternative. 

Another interesting issue would be to consider the resource flexibility in project scheduling, which 

could permit to propose multiple assignments and switch possibilities. To that aim, one way is to 

consider tasks that may be processed according to several modes; the modes determine different 

amounts of resources required and corresponding processing time. An alternative, which occurs 

when considering staff members, is to associate the notion of skill to resources. Since this is not the 

subject of our paper, we will not discuss it much further. We refer the interested reader to 

(Bellenguez-Morineau and Néron, 2008; Heimerl and Kolisch, 2010) to know more about Multi-

Mode and Multi-Skill RCPSPs. 

In our industrial case, the problem is solved to obtain the optimal solution under internal resource 

constraints. The results for resource 1 are presented above (Z1max = 53, Z1min = 41). The decision 

support framework presented in Section 4 provides more flexibility and reactivity to find the 

appropriate scheduling program. In practical situations, this optimal solution was generally used as 
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a starting point of an appropriate solution. In the case where the delivery deadline could not be 

respected, the project manager can relax one by one (resource by resource) the cumulative 

constraints according an ordered list of outsourcing availabilities. The application of this procedure 

for the case problem at resource 1 level, passing from a capacity of 4 to a capacity of 5 (outsourcing 

one unit capacity), provides the cumulative curve of resource presented in Figure 7 (Z1max = 48, 

Z1min = 36).  

<Figure 7 to be inserted here> 

To reduce the total completion time Z, the project manager can simulate the outsourcing 

possibilities for the different resources. In real-world situations, the values of the capacity 

subcontracted can be adjusted subjectively based on the partnership with the subcontractors.  

6. CONCLUSIONS 

The proposed scheduling model is based on a constraint satisfaction approach. It formalizes a set of 

decision variables to be managed and a set of constraints to be satisfied. In this framework, we have 

implemented the concept of cumulative global constraint. With a concise formulation, it allowed to 

combine two types of constraints: the cumulative constraints of and the task energy equations. Thus, 

the solutions obtained take into account the existing alternatives to the duration pi of a task i 

according to the number of resources r i,k used for its realization, while respecting the capacity 

limitation of resource Rk. It also provides a decision support framework under these constraints as a 

margin of cooperation/negotiation with subcontractors. The different elements presented in the 

model were implemented through the constraint programming system CHIP V5. The results are 

delivered in numerical form and in the form of curves tracing, for a given resource, the profile of 

the total consumption of resources over time. 

Further works plan to take account of the dynamic features of scheduling. That leads us to adopt an 

approach which is based on the Dynamic Constraint Satisfaction Problem formalism. The objective 
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is to avoid starting again research from zero after each change of the problem. Moreover, the more 

or less precise knowledge of the decision variables implies their controllability. This leads us to 

consider Conditional Constraint Satisfaction Problems with variables and constraints dependent on 

a situation and having conditions of presence.  
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Task 
 
i 

Start times 
 

Si 
 

Energy required 
 

Ei,k 
 

Task duration 
 

pi 
 

Resource number 
 

r i,k 

 
A1 6 24 8 3 
B1 14 19 19 1 
C1 29 24 24 1 
D1 6 29 29 1 
G1 1 15 5 3 
W1 14 30 15 2 

 

Table 1. Values of the variables tasks realized on resource 1 (optimal) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Overall flow of production 
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Figure 2. Example of a task A1 (EA1,1 = 6, pA1 = 2, rA1, 1 = 3)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Decision support process 
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Figure 4. Cumulative curve resource 1 (R1 = 4) 
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Figure 5. Detailed cumulative curve resource 1 (R1 = 4, rC1,1 = 1) 
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Figure 6. Detailed cumulative curve resource 1 (R1 = 4, rC1,1 = 2) 
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Figure 7. Cumulative curve resource 1 (R1 = 5) 

 


