M. Gembal, P. Gilon, and J. C. Henquin, Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells., Journal of Clinical Investigation, vol.89, issue.4, pp.1288-1295, 1992.
DOI : 10.1172/JCI115714

N. Sekine, V. Cirulli, R. Regazzi, L. J. Brown, E. Gine et al., Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic betacells . Potential role in nutrient sensing, J Biol Chem, vol.269, pp.4895-4902, 1994.

S. Malmgren, D. G. Nicholls, J. Taneera, K. Bacos, T. Koeck et al., Tight Coupling between Glucose and Mitochondrial Metabolism in Clonal ??-Cells Is Required for Robust Insulin Secretion, Journal of Biological Chemistry, vol.284, issue.47, pp.32395-32404, 2009.
DOI : 10.1074/jbc.M109.026708

F. Schuit, A. De-vos, S. Farfari, K. Moens, D. Pipeleers et al., Metabolic Fate of Glucose in Purified Islet Cells: GLUCOSE-REGULATED ANAPLEROSIS IN ?? CELLS, Journal of Biological Chemistry, vol.272, issue.30, pp.18572-18579, 1997.
DOI : 10.1074/jbc.272.30.18572

A. Khan, Z. C. Ling, and B. R. Landau, Quantifying the Carboxylation of Pyruvate in Pancreatic Islets, Journal of Biological Chemistry, vol.271, issue.5, pp.2539-2542, 1996.
DOI : 10.1074/jbc.271.5.2539

S. Farfari, V. Schulz, B. Corkey, and M. Prentki, Glucose-regulated anaplerosis and cataplerosis in pancreatic beta-cells: possible implication of a pyruvate/citrate shuttle in insulin secretion, Diabetes, vol.49, issue.5, pp.718-726, 2000.
DOI : 10.2337/diabetes.49.5.718

U. Fransson, A. H. Rosengren, F. C. Schuit, E. Renstrom, and H. Mulder, Anaplerosis via pyruvate carboxylase is required for the fuel-induced rise in the ATP:ADP ratio in rat pancreatic islets, Diabetologia, vol.54, issue.7, pp.1578-1586, 2006.
DOI : 10.1007/s00125-006-0263-y

Y. Q. Liu, T. L. Jetton, and J. L. Leahy, ??-Cell Adaptation to Insulin Resistance: INCREASED PYRUVATE CARBOXYLASE AND MALATE-PYRUVATE SHUTTLE ACTIVITY IN ISLETS OF NONDIABETIC ZUCKER FATTY RATS, Journal of Biological Chemistry, vol.277, issue.42, pp.39163-39168, 2002.
DOI : 10.1074/jbc.M207157200

D. Lu, H. Mulder, P. Zhao, S. C. Burgess, M. V. Jensen et al., 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS), Proceedings of the National Academy of Sciences, vol.99, issue.5, pp.2708-2713, 2002.
DOI : 10.1073/pnas.052005699

M. Odegaard, M. Becker, T. C. Sherry, A. D. Newgard, C. B. Hasan et al., Impaired Anaplerosis and Insulin Secretion in Insulinoma Cells Caused by Small Interfering RNA-mediated Suppression of Pyruvate Carboxylase, J. Biol. Chem, vol.283, pp.28048-28059, 2006.

T. C. Linn, F. H. Pettit, and L. J. Reed, ??-KETO ACID DEHYDROGENASE COMPLEXES, X. REGULATION OF THE ACTIVITY OF THE PYRUVATE DEHYDROGENASE COMPLEX FROM BEEF KIDNEY MITOCHONDRIA BY PHOSPHORYLATION AND DEPHOSPHORYLATION, Proceedings of the National Academy of Sciences, vol.62, issue.1, pp.234-241, 1969.
DOI : 10.1073/pnas.62.1.234

M. C. Sugden and M. J. Holness, Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs, American Journal of Physiology - Endocrinology And Metabolism, vol.284, issue.5, 2003.
DOI : 10.1152/ajpendo.00526.2002

M. C. Sugden and M. J. Holness, Therapeutic Potential of the Mammalian Pyruvate Dehydrogenase Kinases in the Prevention of Hyperglycaemia. Current Drug Targets -Immune, Endocrine & Metabolic Disorders, pp.151-165, 2002.

R. Gudi, M. M. Bowker-kinley, N. Y. Kedishvili, Y. Zhao, and K. M. Popov, Diversity of the Pyruvate Dehydrogenase Kinase Gene Family in Humans, Journal of Biological Chemistry, vol.270, issue.48, pp.28989-28994, 1995.
DOI : 10.1074/jbc.270.48.28989

J. Rowles, S. W. Scherer, T. Xi, M. Majer, D. C. Nickle et al., Cloning and characterization of PDK4 on 7q21.3 encoding a fourth pyruvate dehydrogenase kinase isoenzyme in human, J Biol Chem, vol.271, pp.22376-22382, 1996.

L. I. Nicholls, E. K. Ainscow, and G. A. Rutter, Glucose-Stimulated Insulin Secretion Does Not Require Activation of Pyruvate Dehydrogenase: Impact of Adenovirus-Mediated Overexpression of PDH Kinase and PDH Phosphate Phosphatase in Pancreatic Islets, Biochemical and Biophysical Research Communications, vol.291, issue.4, pp.1081-1088, 2002.
DOI : 10.1006/bbrc.2002.6567

J. Xu, J. Han, P. N. Epstein, and Y. Q. Liu, Regulation of PDK mRNA by high fatty acid and glucose in pancreatic islets, Biochemical and Biophysical Research Communications, vol.344, issue.3, pp.827-833, 2006.
DOI : 10.1016/j.bbrc.2006.03.211

G. W. Cline, R. L. Lepine, K. K. Papas, R. G. Kibbey, and G. I. Shulman, C NMR Isotopomer Analysis of Anaplerotic Pathways in INS-1 Cells, Journal of Biological Chemistry, vol.279, issue.43, pp.44370-44375, 2004.
DOI : 10.1074/jbc.M311842200

M. C. Sugden, K. Bulmer, D. Augustine, and M. J. Holness, Selective Modification of Pyruvate Dehydrogenase Kinase Isoform Expression in Rat Pancreatic Islets Elicited by Starvation and Activation of Peroxisome Proliferator-Activated Receptor-??: Implications for Glucose-Stimulated Insulin Secretion, Diabetes, vol.50, issue.12, pp.2729-2736, 2001.
DOI : 10.2337/diabetes.50.12.2729

Y. P. Zhou, C. G. Ostenson, Z. C. Ling, and V. Grill, Deficiency of pyruvate dehydrogenase activity in pancreatic islets of diabetic GK rats, Endocrinology, vol.136, pp.3546-3551, 1995.

Y. Zhou, B. P. Grill, and V. , A fatty acid-induced decrease in pyruvate dehydrogenase activity is an important determinant of beta-cell dysfunction in the obese diabetic db/db mouse, Diabetes, vol.45, issue.5, pp.580-586, 1996.
DOI : 10.2337/diabetes.45.5.580

M. M. Bowker-kinley, W. I. Davis, P. Wu, R. A. Harris, and K. M. Popov, Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex, Biochemical Journal, vol.329, issue.1, pp.191-196, 1998.
DOI : 10.1042/bj3290191

H. E. Hohmeier, H. Mulder, G. Chen, R. Henkel-rieger, M. Prentki et al., Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion, Diabetes, vol.49, issue.3, pp.424-430, 2000.
DOI : 10.2337/diabetes.49.3.424

C. Fernandez, U. Fransson, E. Hallgard, P. Spégel, C. Holm et al., Metabolomic and Proteomic Analysis of a Clonal Insulin-Producing ??-Cell Line (INS-1 832/13), Journal of Proteome Research, vol.7, issue.1, pp.400-411, 2008.
DOI : 10.1021/pr070547d

P. Spégel, A. P. , K. Bacos, C. L. Nagorny, and T. Moritz, Metabolomic analysis of a human oral glucose tolerance test reveals fatty acids as reliable indicators of regulated metabolism, Metabolomics, vol.296, issue.214, 2009.
DOI : 10.1007/s11306-009-0177-z

J. Trygg, E. Holmes, and T. Lundstedt, Chemometrics in Metabonomics, Journal of Proteome Research, vol.6, issue.2, pp.469-479, 2007.
DOI : 10.1021/pr060594q

K. Eto, Y. Tsubamoto, Y. Terauchi, T. Sugiyama, T. Kishimoto et al., Role of NADH Shuttle System in Glucose-Induced Activation of Mitochondrial Metabolism and Insulin Secretion, Science, vol.283, issue.5404, pp.981-985, 1999.
DOI : 10.1126/science.283.5404.981

D. F. Rolfe and G. C. Brown, Cellular energy utilization and molecular origin of standard metabolic rate in mammals, Physiol. Rev, vol.77, pp.731-758, 1997.

W. M. Teague, F. H. Pettit, S. J. Yeaman, and L. J. Reed, Function of phosphorylation sites on pyruvate dehydrogenase, Biochemical and Biophysical Research Communications, vol.87, issue.1, 1979.
DOI : 10.1016/0006-291X(79)91672-3

L. G. Korotchkina and M. S. Patel, Site Specificity of Four Pyruvate Dehydrogenase Kinase Isoenzymes toward the Three Phosphorylation Sites of Human Pyruvate Dehydrogenase, Journal of Biological Chemistry, vol.276, issue.40, pp.37223-37229, 2001.
DOI : 10.1074/jbc.M103069200

P. Wu, J. Sato, Y. Zhao, J. Jaskiewicz, K. M. Popov et al., Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart, Biochemical Journal, vol.329, issue.1, pp.197-201, 1998.
DOI : 10.1042/bj3290197

L. L. Spriet, R. J. Tunstall, M. J. Watt, K. A. Mehan, M. Hargreaves et al., Pyruvate dehydrogenase activation and kinase expression in human skeletal muscle during fasting, Journal of Applied Physiology, vol.96, issue.6, pp.2082-2087, 2004.
DOI : 10.1152/japplphysiol.01318.2003

M. J. Macdonald, Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. Further implication of cytosolic NADPH in insulin secretion, J Biol Chem, vol.270, 1995.

R. Ivarsson, R. Quintens, S. Dejonghe, K. Tsukamoto, P. Veld et al., Redox Control of Exocytosis: Regulatory Role of NADPH, Thioredoxin, and Glutaredoxin, Diabetes, vol.54, issue.7, pp.2132-2142, 2005.
DOI : 10.2337/diabetes.54.7.2132

S. M. Ronnebaum, O. Ilkayeva, S. C. Burgess, J. W. Joseph, D. Lu et al., A Pyruvate Cycling Pathway Involving Cytosolic NADP-dependent Isocitrate Dehydrogenase Regulates Glucose-stimulated Insulin Secretion, Journal of Biological Chemistry, vol.281, issue.41, pp.30593-30602, 2006.
DOI : 10.1074/jbc.M511908200

P. E. Macdonald, A. M. Salapatek, and M. B. Wheeler, Temperature and redox state dependence of native Kv2.1 currents in rat pancreatic ??-cells, The Journal of Physiology, vol.51, issue.2, pp.647-653, 2003.
DOI : 10.1113/jphysiol.2002.035709

M. Prentki and B. E. Corkey, Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes, pp.273-283, 1996.

J. T. Deeney, J. Gromada, M. Hoy, H. L. Olsen, C. J. Rhodes et al., Acute Stimulation with Long Chain Acyl-CoA Enhances Exocytosis in Insulin-secreting Cells (HIT T-15 and NMRI beta -Cells), Journal of Biological Chemistry, vol.275, issue.13, pp.9363-9368, 2000.
DOI : 10.1074/jbc.275.13.9363

D. Newgard and C. B. , Overexpression of a modified human malonyl-CoA, 2001.