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Abstract—Despite extensive research focused on
enabling QoS for grid users through economic and
intelligent resource provisioning, no consensus has
emerged on the most promising strategies. On top
of intrinsically challenging problems, the complexity
and size of data has so far drastically limited the
number of comparative experiments. An alternative
to experimenting on real, large, and complex data, is
to look for well-founded and parsimonious represen-
tations. This study is based on exhaustive information
about the gLite-monitored jobs from the EGEE grid,
representative of a significant fraction of e-science
computing activity in Europe. Our main contributions
are twofold. First we found that workload models
for this grid can consistently be discovered from
the real data, and that limiting the range of models
to piecewise linear time series models is sufficiently
powerful. Second, we present a bootstrapping strategy
for building more robust models from the limited
samples at hand.

I. I NTRODUCTION

Large-scale distributed computing systems, such
as EGEE (Enabling Grid for E-sciencE) [11], allo-
cate computing resources following the matchmak-
ing principle pioneered by Livny [32]: the providers
publish the characteristics of their resources, and
these are matched with the users’ requests. The
fundamental motivation for the matchmaking prin-
ciple is the federative nature of real-world grids.
On the other hand, grid users, or grid market par-
ticipants, seek for differentiated Quality of Service
(QoS): in the e-science context, physicists ask for
a different service for interactive analysis tasks
and for long running simulations; TeraGrid users
exploit the Batch Queue Predictor [3] capacities.

An extensive body of research e.g. to cite only
a few [21], [24], [27], [31] focuses on economic
and intelligent models of resource provisioning for
QoS, which sophisticate, but do not contradict, the
matchmaking principle. Despite this intense activity,
no consensus has emerged on the most promis-
ing strategies. For instance, the EGEE production
grid adopts an agnostic approach derived from the
Copernican principle [13] (“job is not special”);
even research grids are quite conservative when
production is concerned.

Scheduling for large-scale distributed systems
explores a very complicated landscape. Any job
dispatcher has to integrate a feedback loop with the
resource provider; the usage involveexternalities,
decisions which affects users and resources beyond
the resource consumer and producer; QoS should
not result in under-utilization, thus even the more
constrained models should state scheduling as a
multi-objective optimization problem. On top of
these intrinsic difficulties, two operational issues
contribute to challenge the researcher. First real
world experimentation is hardly possible. Second,
significant experiments with simulators or analysis
require large data sets. These data sets may be
publicly available, but comparative experiments are
rare in the grid community and experiments on
high level concepts such as autonomic programming
models [15], [22], are extremely difficult to conduct.
One of the reasons is probably to be found in the
well-known data-mining ratio: 80% of the effort
goes to pre-processing.

An alternative to experimenting on real, large,



and complex data is to look for well-founded and
parsimonious representations, with the unavoidable
approximations implied. The goal of this paper is
thus to explore explanatory and generative models
rather than predictive ones. We answer a set of
preliminary questions, which may help steering the
design of those along feasible paths: is it possible to
exhibit consistent models of the grid workload? If
such models do exist, which classes of models are
more appropriate considering both simplicity and
descriptive power? How can we actually discover
such models? And finally, how can we rigorously
assess the quality of these models?

Our main contributions are twofold. First, we
found that grid workload models can consistently
be discovered from the real data, and that limiting
the range of models to piecewise linear time series
models is sufficiently powerful. Second, we present
a bootstrapping strategy for building robust models
from the limited samples at hand. This study is
based on exhaustive information covering more than
a year of the flagship EU grid infrastructure EGEE,
and is representative of a significant fraction of e-
science computing activity in Europe.

The rest of the paper is organized as follows.
Section II describes the data set, its grid context,
and the derivation of the times-series workload
process from the empirical data. Section III de-
fines the piecewise AR model and describes a
model selection procedure. Section IV presents the
validation methodology. Section V discusses the
experimental results and presents the bootstrapping
strategy. Section VI discusses related work, before
the conclusion.

II. T HE WORKLOAD PROCESS

A. EGEE and gLite

For the sake of precision and because the ex-
perimental data set come from EGEE, this sec-
tion will describe its scheduling under gLite [10],
its major middleware. gLite integrates the sites’
computing resources through a set of middleware-
level services, the Workload Management System
(WMS). the WMS accepts jobs from users and
dispatches them to computational resources based
on the users requirements on one hand, and the

characteristics (e.g. hardware, software, localiza-
tion) and state of the resources on the other hand.
The Copernican principle applies to the derivation
of the Expected Response Time published by the
sites’ queues, named Computing Elements (CEs)
in the operational version of the Grid Informa-
tion Model (we skip here the fundamental issues
about the semantics of a CE analyzed in [12]). As
other high performance space-shared systems, most
EGEE sites implement their scheduling policies
through multiple FIFO queues and complex tuning
of configuration files.

B. Workload Definition

In grid context, workload is the equivalent of
backlog in queuing systems terminology. Backlog
at time t has two definitions a) the amount of
unfinished work in the system and b) the delay that
a job arriving at timet would experience before
starting execution. Our interpretation is the first one.
Formally, letTa(j) be the arrival date of jobj at a
CE, Ts(j) the date where jobj starts running, and
Te(j) the date where jobj finishes. The cumulative
running time of jobs that are accepted by the CE
up to timet is

CRA(t) =
∑

j:Ta(j)<t

Te(j) − Ts(j).

The cumulative running time of jobs that are started
by the system up to timet is

CRS(t) =
∑

j:Ts(j)<t

Te(j) − Ts(j).

The remaining running time of jobs that are started
by the system and not yet finished is

RR(t) =
∑

j:(Ts(j)<t)∧(Te(j)>t)

Te(j) − t.

The workload at timet is the total running time
of jobs that were accepted by CE and waiting to
start plus the remaining running time of jobs already
running and not finished yet.

W (t) = CRA(t) − CRS(t) + RR(t).

This definition implicitly assumes a homoge-
neous intra-CE system, by not referencing the dis-
patch algorithm. In fact, the actual running time



of jobs, as observed in the logs, depends on the
capacities of the machine on which they ran, thus
on the dispatch system, except if the machine panel
is fully homogeneous. The homogeneity assumption
would be grossly erroneous at the grid scale; as we
will consider the time series individually for each
CE, it is acceptable: the grid sites are institutional
ones, with reasonable coherency.

C. The data set

This study is based on exhaustive information
covering all the gLite monitored jobs in the EGEE
grid, from August 2008 to March 2009. The data is
collected by the Real Time Monitor project, and is
available through the Grid Observatory portal [1],
[20].

Significant preprocessing was required for build-
ing the workload process. First, jobs that fail to
be dispatched are reported with a zero timestamp,
and were excluded. Second, and more importantly,
as in any real-world large-scale experiment, mea-
surements may in exceptional cases not be accu-
rate. For instance, [36] reports situation where the
LogMonitor service become clogged, and is not
consistent with the time-stamps provided by the Lo-
cal Resource Management System (LRMS) service.
However, as LRMS information for the entrance in
the queue is not available, we choose to use the
uniform reporting system provided by LogMonitor.
Therefore, an outlier detection procedure had to be
applied in order to remove artifacts. Attempts to
fit the distributions with classical ones failed, thus
there was no theoretical basis for outlier detection.
Common knowledge in the EGEE community is
that execution times longer than one day should be
considered suspicious. Comparison of the LRMS
data and LogMonitor data confirmed this intuition,
leading to an exclusion threshold of one day. The
fractions of excluded outliers were close to 10%.

Descriptive Statistics:Table I presents the statis-
tics of the nine CEs featuring the largest total
load (the real names of the CEs are omitted for
privacy reason). The percentile refer to the wor-
load. Due to lack of space, we cannot detail the
statistics, but all criteria for very high variability
(variance, interquartile range, maximum) are met.

TABLE I
DESCRIPTIVE STATISTICS FOR THE TOPCES

Total Jobs percentile [days]
[years] q25% q50% q90%

CE-A 151.4 551K 0 10 303
CE-B 103.8 87K 16 1331 3999
CE-C 81.9 205K 0 26 408
CE-D 58.4 336K 0 0.20 203
CE-E 51.6 184K 0 2.8 150
CE-F 49.1 155K 0 0.6 87
CE-G 44.7 209K 0 0 73
CE-H 44.6 217K 0 0.1 78
CE-I 42.9 132K 0 3.6 83

For instance, considering the workload, the standard
deviation is between 1 and 3.5 times as large as
the mean. Moreover, variability as expressed by
the standard deviation is positively correlated with
the median (correlation coefficient 0.98) and the
mean (correlation coefficient 0.99). Similar results
are true for the interquartile range.
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Fig. 1. Time series of the workload for CE-A

Visual inspection of the workload time series
indicates that this variability is not uniform, but
corresponds to different regimes. Fig. 1 shows a
1, 400-day burst at day 60. Similar but lower, peaks
repeat afterwards, and the trace shows an irregular
alternation of quiet and loaded segments.

De-trending:Differenciation is a standard tool to
de-trend a series. The sampling frequency should be
high enough to make it possible for the analysis to
provide practically useful output, but should remain
close to the operational timescale of the analyzed



system. The average number of job arrivals within
an hour is in the range of 22 – 138 for the four
top CEs. This suggests a sampling frequency in the
order of 10−3 - 10−4 Hz because 1) each value
of the differenced series cover several hundred jobs
on average, and 2) the practical timescale of interest
was the behavior of the system in the order of hours
and above. The time seriesW (t) is obtained by this
subsampling.

III. M ODEL DISCOVERY THROUGHMDL

This section sketches theAuto-PARM method
proposed by Davis et al. [5] for structural estimation
of breakpoints in non-stationary time series.

An autoregressive model of orderp (AR(p)) is
defined by

W (t) = γ +φ1W (t−1)+ . . .+φpW (t−p)+σǫt,

whereǫt is white noise with mean 0 and variance 1.
W (t) is thus a linear combination of the previous
data, and a noise. A piecewise AR model describes
a finite length, discrete time, non-stationary time
series as consecutive segments of stationary time
series that each are independent AR processes. The
edges of the segments are thebreakpoints. An
important argument for focusing on piecewise AR
models is that they are dense in the class of locally
stationary processes with continuous spectral densi-
ties and because efficient algorithms exist for fitting
an AR model.

Given the breakpoints and the AR orders, the es-
timation of the model parameters for each segment
is straightforward using the Yule-Walker method.
Thus, finding a best fitting model from the piece-
wise AR class is equivalent to finding the number of
segmentsm, the locations of them breakpoints and
the AR orders(pi)i=1...m. [5] applies the Minimum
Description Length (MDL) principle [28] to select
the best model as the one that produces the shortest
code length completely describing the observed
data. The objective function is derived as

CL = log m + (m + 1) log n +

m+1∑

j=1

log pj +

m+1∑

j=1

pj + 2

2
log nj +

m+1∑

j=1

nj

2
log(2πσ̂2

j ),

where n is the total length of the series,nj is
the number of points in thejth segment, and̂σ2

j

is an estimate of the variance of thejth segment.
Minimizing the code length function requires a
tradeoff between the number of breakpoints and the
complexity of the segments: segments that extend
over different regimes will tend to require higher
order AR models, and more variability.

The search space for breakpoints is very large,
and the optimization problem is ill conditioned.
Davis proposes to tackle the optimization problem
by a genetic algorithm, which encodes a solution as
a set of chromosomes bearing the order of the AR
model for segmentj at the selected breakpoints.
This encoding is further constrained, so that the
length of the segment is large enough to provide
good estimates to the parameter of the related AR
process (min span parameter), and to limit the
order of the process. Termination is decided by
empirical convergence (identical best chromosome
along a fixed number of generations) or when a pre-
defined number of iterations is reached. To limit
the computational complexity, crossover is allowed
only inside sub-populations, with periodic migration
across the islands. The running time is characterized
by M , the number of migrations.

IV. M ODEL VALIDATION METHODOLOGY

The MDL procedure optimizes a target function
that captures both the segmentation (locations of the
breakpoints), and AR models inside each segment.
As it has been shown experimentally to be able
to correctly detect change of regimes in series
which are piecewise, but not AR on each segment,
the segment models and the segmentation should
be checked independently. The issue is to build
indicators that are detailed enough to capture the
potentially differentiated accuracy of the model in
various locations. For instance, the Mean Squared
Error, or any other cumulative indicator, does not
reveal which segments are correctly modeled. The
indicators should also be concise enough to provide
a quantitative measure of accuracy.

A. Model Accuracy

The AR model for each segment is validated by
checking first the stationarity of the fitted AR model



inside each segment, and second the independence
of the residuals, through appropriate statistical tests.

Stationarity: For the AR(p) model to be station-
ary, the roots of the characteristic polynomial of the
AR modelΦ(z) = 1− φ1z − . . .− φpz

p should lie
outside the unit circle. Technically the Yule-Walker
estimation procedure for the coefficients ensures
that this condition is met. It is however known that
when characteristic polynomial has root(s) close to
unity, the fitted model is at the limit of being station-
ary and therefore should be examined carefully. The
null-hypothesis of the Phillips-Perron test is that
there is a unit root of the characteristic polynomial.
Thus, we used this test to analyze the stationarity
independently of the goodness of fit.

Independence of the residuals:Given an AR
model, the residuals in each segment should be
white noise. Testing for white noise amounts to
checking the autocorrelation of the residuals at
all lags. Choosing the appropriate statistics is not
a closed question [4], and should take into ac-
count the specific properties of the data distribution.
We choose to use a combination of Ljung-Box
and Dufour-Roy tests. The Ljung-Box test is the
classical parametric test, and is considered to be
reliable when the size of the data set is large
enough, because the estimates of the correlation are
asymptotically a gaussian white noise. Dufour-Roy
(a rank test) makes it possible to examine more
precisely which part of the data does the AR model
not explain.

B. Model Stability

The fitted model is not stable when repeating the
model selection leads to heavily different models.
The distribution of results from the internal random-
ization of the genetic algorithm may give a hint, but
is not an independent indicator. We thus evaluated
the stability of the segmentation throughparametric
bootstrapping[8]. This procedure createsk samples
of the piecewise AR model, namely the breakpoint
locations and the parameter vectors; the size of each
sample isn, the size of the original series. Then,
Auto-PARMis applied to each sample. Thesek seg-
mentations provide statistics (e.g. mean, variance)
and confidence intervals for the breakpoint locations

and AR orders.

V. EXPERIMENTAL RESULTS

A. Experimental setting

AutoParm features internal randomization (deci-
sion on mutation etc.). Thus, for each experiment,
the procedure is repeated 20 times and the results
providing the smallest description length is selected.
The parameters are as follows: 100 islands of size
50, the 2 best chromosomes on islandn migrates to
island(n+1) mod 100 at every5th offspring. The
convergence criterion is the stability of the overall
best chromosome for 10 consecutive migrations,
and was met in all experiments. The complexity of
the optimization landscape translates to a high com-
putational complexity: 1 hour is typically required
for one model selection.

B. First examples

We first go through the results of one run of
AutoParm on CE-A and CE-B, which correspond
to two different modes of grid usage, as seen
in Section II-C. Fig. 2 displays the differentiated
workload and the breakpoints, together with the
AR orders. Table II gives the parameters of the
models. For CE-A, the first result is that low-order
AR models are the most frequent: seven segments
are white noises (i.e. AR(0)) and six are AR(1).
White noises totalize 49% of the whole measure-
ments. These weak correlations, and the fact that the
estimated variance for most segments is very high,
typically twenty times larger than the mean, can be
interpreted as the result of a poor, but effectively
mixing, load balancing policy, or as an intrinsic
feature of the job arrival process. It is important to
notice that the size of the corresponding segments
is large enough to have authorized for a much
higher order (e.g. themin spanparameter is 20 for
order 6). Segments 18, 19 and 20 actually exhibit
higher orders (respectively 6, 5 and 5), showing that
the procedure is able to discover more correlated
models when adequate. CE-B involves much more
long jobs than CE-A and the resulting workload
model is more complex, both with respect to the
number of breakpoints (30 instead of 21), and to
the AR orders: for instance, the third segment is
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Fig. 2. Representation of the AR model for CE-A (upper) and
CE-B (lower): the horizontal axis is time, the left verticalaxis
is the differentiated series, the right vertical axis is theorder of
the model in the next segment; e.g. the AR order for the 6th
segment is 3 in the upper graph.

AR(13), indicating a correlation with three days old
load. Nonetheless, the order of half of the segments
is 0 or 1, comforting the diagnostic of a weakly
correlated load.

C. The optimization landscape

The repeated runs (restarts) of AutoParm provide
a first approximation of the optimization landscape
for each data set. A complete sensitivity analysis
would have to run experiments with different initial-
ization values; due to the high computational cost of
the method, we focus on the internal randomization.
Table III presents the summary statistics for the four
CEs. The values both for the algorithm indicators
and for the model parameters are clearly consistent
inside each experiment, and this holds for the four

TABLE II
THE MODEL PARAMETERS FORCE-A AND B

j : SEGMENT INDEX, nj : SEGMENT LENGTH, pj : AR ORDER,
γj : SEGMENT MEAN

CE-A
j nj pj γj

1 274 0 0.00E+00
2 26 0 -5.98E+02
3 98 0 5.98E+01
4 60 2 2.93E+04
5 47 1 1.69E+05
6 180 3 -3.18E+04
7 26 0 0.00E+00
8 20 2 -2.40E+01
9 21 0 0.00E+00
10 51 7 5.68E+01
11 36 2 0.00E+00
12 12 1 -6.99E+00
13 120 1 3.18E+03
14 82 1 4.82E+04
15 74 1 -3.66E+04
16 71 0 0.00E+00
17 12 0 -3.94E+01
18 89 6 3.61E+02
19 22 5 3.17E+03
20 500 5 -4.68E+03
21 74 1 -2.55E+03

CE-B
j nj pj γj

1 14 0 4.98E+05
2 12 0 0.00E+00
3 171 13 2.96E+05
4 42 2 -1.07E+06
5 68 2 -2.71E+05
6 60 0 3.86E+05
7 54 3 -3.96E+05
8 15 0 0.00E+00
9 33 4 4.78E+03
10 16 0 0.00E+00
11 16 3 2.41E+04
12 44 1 -3.85E+03
13 13 1 1.35E+05
14 21 2 0.00E+00
15 31 5 8.92E+05
16 63 4 -3.16E+05
17 70 1 3.36E+05
18 86 2 -2.52E+05
19 17 3 -6.82E+05
20 12 1 -4.22E+05
21 60 0 -1.56E-01
22 18 0 6.08E+05
23 32 5 0.00E+00
24 21 1 -3.73E+04
25 418 5 2.66E+04
26 17 1 -1.82E+05
27 15 1 2.10E+01
28 30 8 -2.98E+05
29 124 1 6.97E+04
30 49 2 -2.95E+05
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Fig. 3. Results of each restart for CE-A and B . The horizontal
axis is the restart number ordered by increasing CL, the vertical
axis corresponds to all parameters after standardization



TABLE III
MEAN AND STANDARD DEVIATION (BRACKETED) OF THE MODEL PARAMETERS AND ALGORITHM INDICATORS, RESCALED

(SEE TEXT) OVER THE RESTARTS OF THEGA. m IS THE NUMBER OF SEGMENTS, p IS THE AVERAGE AR ORDER, CL IS THE

CODE LENGTH, M IS THE NUMBER OF MIGRATIONS.

CE-A CE-B CE-C CE-D

m 20.25 (1.41) 27.65 ( 2.17) 29.60 (1.96) 20.65 (1.68)
p 1.57 (0.31) 2.12 (0.40) 1.95 (0.35) 1.49 (0.45)

CL 2.04E+04 (4.45E+01) 2.17E+04 (6.56E+01) 1.84E+04 (7.55E+01) 1.75E+04 (3.93E+01)
M 128 (17.7) 150 (16.8) 156 (26.8) 118 (16.8)

experiments. Fig. 3 plots the detailed results for CE-
A and B, together with the number of migrations.
The values have been standardized (transformed to
zero average and unit variance) in order to visu-
alize the trends; the restarts have been ordered by
increasing CL, thus the first points are the best fits.
The rightmost (worst) five restarts for CE-A show
a significantly larger code length, together with a
smaller number of segments and a smaller number
of migrations. In these cases, AutoParm gets soon
stuck into sub-optimal solutions where the variance
of the noise is high. This confirms the need for the
restart procedure. From this point, the results are
reported only for the best restart.

Fig. 4 shows the p-values of the Ljung-Box
test for the whiteness of the residuals considering
the whole segments. The null hypothesis is that
the neighboring residuals are uncorrelated, thus the
larger p-value, the better. The segments too short to
run the tests are omitted (1% of the measurement
time for CE-A and 9% for CE-B). The p-values are
typically far from 0 therefore the whiteness hypoth-
esis cannot be rejected for most of the segments.
Nevertheless, the results for a number of segments
lead to the rejection of the whiteness hypothesis at
the 5% significance level. In these cases, the AR
model is likely to be an approximation of a more
complex model. These results are confirmed by a
more detailed analysis with the Dufour-Roy test,
omitted here by lack of space, and available in [26].

As there is no obvious relationship between the
AR order of the segments and the test results, it
is unlikely that the MDL method is in this case
biased against high order models. There is some
relationship with the length of the segments. In
Table IV column 5% (resp. 10% and 20%) contains

the fraction of the total length of the time-serie
formed by the segments for which the p-value is
above or equal .95 (resp .90 and .80); column≥
50% contains the sum of the length of the segments
for which the p-value is less than .50. Except for
CE-A, the p-value of the test results is over 0.80
for the largest part of the traces.

TABLE IV
FRACTION OF THE TRACE COVERED BY SEGMENTS WITH

HYPOTHESIS OF UNCORRELATED RESIDUALS NOT REJECTED

AT SIGNIFICANCE LEVEL 1 − α

α 5% 10% 20% ≥ 50%

CE-A 41.1% 47.4% 50.6% 11.7%
CE-B 52.3% 64.1% 74.7% 16.1%
CE-C 45.2% 48.7% 68.0% 9.1%
CE-D 16.7% 50.2% 74.6% 18.7%

D. Stability

The previous results show that the piecewise AR
model adequately describes a significant part of
the experimental data. The question is now if the
descriptions are not exceedingly accurate: would
a small change in the experimental data induce
significant changes in the model? In this case, the
procedure would have over-fitted the data, and the
model will be considered to beunstable. Yet the
motivations for possible variability are multiple, for
instance because the scheduler randomly break ties,
and also because of the possible transient errors
in measurements, thus testing stability is required
to further validate the models. In this section, we
will assess the stability of the segmentation itself:
how frequent is a breakpoint across the segmented
samples? We will also analyze the variability of the
order parameters.
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Fig. 4. Independence of the residuals: the Ljung-Box test
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Fig. 5. Stability analysis. Upper graphs: frequency of the breakpoints. Lower graphs: AR order± one standard deviation. The
horizontal axes show the time in days



TABLE V
DISTANCE BETWEEN NEAREST NEIGHBOR BREAKPOINTS IN

THE BOOTSTRAPPED SAMPLE FROM THE FOURCES

Distance Frequency

CE-A CE-B CE-C CE-D
0 63.35% 46.22% 46.51% 59.55%
1 21.99% 15.97% 20.93% 8.99%
2 2.09% 5.04% 5.43% 3.37%
3 1.05% 3.36% 1.55% 3.37%
4 1.05% 2.52% 0.78% 0.00%
5 0.00% 3.36% 0.78% 1.12%
6 0.00% 0.84% 0.00% 0.00%
7 0.00% 0.00% 0.00% 1.12%
8 0.00% 1.68% 0.78% 0.00%
9 0.00% 0.84% 0.00% 0.00%
10 0.52% 0.00% 1.55% 0.00%

> 10 9.95% 20.17% 21.71% 22.47%

Evaluating stability would require other samples
of the load process but no other realization of
the experimental data is available. To cope with
this difficulty, we have at least to assume that the
experimental data are a reasonable representation
of the “population” of scheduling actions and mea-
surements. If this hypothesis holds, bootstrapping
creates a sample of mock realizations of the pro-
cess. In general, bootstrapping [8] is the technique
which resamples from original data with replace-
ment, assuming that the experimental data faithfully
describe the population. Given the size, lack of
homogeneity, and intrinsic correlation structure of
the series (which is precisely the motivation for the
piecewise model), naive resampling would not cre-
ate a reasonable realization. Parametric bootstrap-
ping can: new and truly piecewise AR processes
are created from the model, namely the breakpoints,
segment lengths and parameter estimates, the vari-
ability coming from the truly white residuals. Each
of these realizations is then segmented with the
AutoParm procedure, with restarts. The final result
is an ensemble of models

S = {mi, (n
j
i ), (p

j
i ), 1 ≤ i ≤ k, 1 ≤ j ≤ mi}

wherek is the number of samples,mi is the number
of breakpoints in samplei, n

j
i the size of segment

j in samplei and so on.
Breakpoints defined byS can be very close,

but not identical across the bootstrapped samples.

For instance, in CE-A, some samples provide the
segment [46.18, 53.13], while other provide [46.06,
53.24] (the unit is the day). These segments should
be considered as variants of the same one. On
the other hand, some segmented samples feature
a breakpoint in the range 34.84-35.30, while the
other samples find no breakpoint between 32.00
and 46.06, denoting a true disagreement between
the segmentation results. The distances between one
breakpoint and its closest neighbor (coming from
possibly another sample), are shown in Table V
for CE-A, B, C and D. There are clearly two
regimes, small distances (variants) and large ones
(true breakpoints). The close breakpoints must be
clustered before deciding which breakpoints are
frequent. The clustering threshold is conservatively
fixed at 10 points, as it is the lower bound for fitting
the simplest AR models (0 or 1) with statistical
significance. Note that the physical unit depends
on the sampling frequency, but is consistent across
the k bootstrapped samples of the same series.
Fig. 5 (upper graph) displays the frequency of
the breakpoints after clustering, for CE-A and CE-
B. Despite their notable difference concerning the
suspicion on the independence of residuals, they
are remarkably stable: only 2 or 3 breakpoints are
not recognized in all samples. Finally, Fig. 5 (lower
graph) shows the variability of the AR order.

E. Building robust models

As we have seen in the previous results, the seg-
mentation of the bootstrapped samples are generally
in good accordance, but not identical. Moreover, the
AR order may show significant variability. Boot-
strapped aggregation, orbagging[2] gives theoret-
ical foundations to model reconciliation, either by
averaging or voting. Here, the number of models
k is bound to be small due to computational time,
thus voting should be preferred [17]. The choice of
the best voting strategy is (and is likely to remain)
an open question; in our case, the simple majority
voting will be used, with a random choice for
breaking ties. Fig. 6 gives the parameters (order
reported at breakpoint locations) of the resulting
models.
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Fig. 6. Bagged model for CE-A (upper) and CE-B (lower)

VI. RELATED WORK

Explanatory models of the workload in HPC
systems [7], [29] characterize the distributional
properties of the quantities of interest for job be-
havior (e.g. inter-arrival time, queuing delay, or
execution time) using different parametric models.
More recently, efforts [14], [18], [19], [23], [30]
address grid systems along the same path. Another
extensive literature targetspredictivemodels, either
by time series analysis methods [6], [18], [25], [34]
or statistical ones [3], [16], [35]. This direction
of research selects a specific view of the system
(short time range for time-series, or features of
the job and target execution support) in order to
improve the predictive accuracy at the expense of a
general model. Finally, in the context of Data Cen-
ter, research in Reinforcement Learning scheduling
[31], [33] creates an implicit model of the offered
workload inside the value function discovered by
the learner.

Our work shares the explanatory goal of the

first approach, and the techniques of time-series
analysis of some of the second one. It differs in
two significant ways, which as far as we know
have not yet been explored. First, we aim at dis-
covering the structural breaks in the model, and
we exploit an unified method for discovering both
the model and its ruptures, rather than assuming
stationary processes or decoupling the models and
discovery techniques for changes of regime and
intra-regime behavior. Second, the bootstrapping
strategy addresses the lack of confidence associated
with the uncertainties and non-reproducibility of the
acquisition process.

VII. C ONCLUSION

We have presented a workload measurement ob-
tained from the Grid Observatory. We evaluated
the performance of MDL-based model selection
for the workload of the four most heavily loaded
CEs. The results were validated by whiteness and
autoregressive model tests. Also, a parametric boot-
strap method was proposed for analyzing the sta-
bility of the model. The main contribution of our
evaluation is to show that our workload can be
explained by piecewise autoregressive models to a
large extent. Moreover, the order of the models is
mostly low to moderate. Finally, we showed that the
bootstrapped samples can be reconciliated through
bagging. These conclusions apply to the EGEE
workload. Future work will explore their validity
on the activity profiles of other infrastructures and
research communities, in particular those provided
by the Grid Workloads Archive [9].

The most significant limitation of the method is
the poor scalability of the genetic algorithm with
respect to the length of the time series. Systematic
exploitation, on all sites and at various time scales,
or transposition to the prediction context, calls for
much faster model selection. We are currently ex-
ploring an alternative optimization algorithm along
the same MDL principle. We will then propose a
continuous segmentation of the grid traffic as part
of the building behavioral modelsactivity of the
Grid Observatory.
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