Discovering Piecewise Linear Models of Grid Workload

Tamas Elteto 1 Cecile Germain-Renaud 1, 2 Pascal Bondon 3 Michèle Sebag 1, 2
1 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : Despite extensive research focused on enabling QoS for grid users through economic and intelligent resource provisioning, no consensus has emerged on the most promising strategies. On top of intrinsically challenging problems, the complexity and size of data has so far drastically limited the number of comparative experiments. An alternative to experimenting on real, large, and complex data, is to look for well-founded and parsimonious representations. This study is based on exhaustive information about the gLite-monitored jobs from the EGEE grid, representative of a significant fraction of e-science computing activity in Europe. Our main contributions are twofold. First we found that workload models for this grid can consistently be discovered from the real data, and that limiting the range of models to piecewise linear time series models is sufficiently powerful. Second, we present a bootstrapping strategy for building more robust models from the limited samples at hand.
Type de document :
Communication dans un congrès
10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, May 2010, Melbourne, Australia. IEEE Computer Society, pp.474-484, 2010
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00491562
Contributeur : Cecile Germain <>
Soumis le : samedi 12 juin 2010 - 20:36:54
Dernière modification le : mardi 2 octobre 2018 - 15:14:03
Document(s) archivé(s) le : jeudi 30 juin 2011 - 13:00:05

Fichier

ElGeBoSaFinalV2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00491562, version 1

Collections

Citation

Tamas Elteto, Cecile Germain-Renaud, Pascal Bondon, Michèle Sebag. Discovering Piecewise Linear Models of Grid Workload. 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, May 2010, Melbourne, Australia. IEEE Computer Society, pp.474-484, 2010. 〈hal-00491562〉

Partager

Métriques

Consultations de la notice

563

Téléchargements de fichiers

223