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Embedding mapping class groups of orientable

surfaces with one boundary component

Llúıs Bacardit∗

Abstract

We denote by Sg,b,p an orientable surface of genus g with b boundary
components and p punctures. We construct homomorphisms from the
mapping class groups of Sg,1,p to the mapping class groups of Sg′,1,(b−1),
where b ≥ 1. These homomorphisms are constructed from branched or
unbranched covers of Sg,1,0 with some properties. Our main result is
that these homomorphisms are injective. For unbranched covers, this
construction was introduced by McCarthy and Ivanov [10]. They proved
that the homomorphisms are injective. A particular cases of our embed-
dings is a theorem of Birman and Hilden that embeds the braid group on
p strands into the mapping class group of S(p−2)/2,2,0 if p is even, or into
the mapping class group of S(p−1)/2,1,0 if p is odd. We give a short proof
of another result of Birman and Hilden [4] for surfaces with one boundary
component.

2000Mathematics Subject Classification. Primary: 20F34; Secondary: 20E05,
20E36, 57M99.
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Ends of groups.

1 Main results

We fix non-negative integers g, p and a positive integer b. We denote by Sg,b,p
an orientable surface of genus g with b boundary components and p punctures.

Our main theorem is the following.

Theorem 1.1. Suppose (g, p) 6= (0, 2). Let κ : Sg′,b,0 → Sg,1,0 be a finite index
regular cover with p branching points in Sg,1,0 which lift to q points in Sg′,b,0.
Suppose every branching point of Sg,1,0 lifts to the same number of points in

∗The research was funded by Conseil Régional de Bourgogne and the MIC (Spain) through
Project MTM2008-01550.
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Sg′,b,0. Let κ′ : Sg′,b,q → Sg,1,p be the corresponding unbranched cover. Let h
be a homeomorphism of Sg,1,p which fixes the boundary component pointwise.

Suppose h lifts to Sg′,b,q. Let ĥ be the lift of h which fixes the b-th boundary

component pointwise. Let f̂ be the extension of ĥ to Sg′,b,0. If the restriction

of f̂ to Sg′,1,(b−1) ⊆ Sg′,b,0 is isotopic to the identity relative to the boundary
component of Sg′,1,(b−1), then h is isotopic to the identity relative to the boundary
component of Sg,1,p.

Let Mg,b,p be the mapping class group of Sg,b,p relative to the bound-
ary components. That is, Mg,b,p is the group of homeomorphisms of Sg,b,p
which fix the boundary components pointwise modulo isotopy relative to the
boundary components of Sg,b,p. Since b ≥ 1, we are restricting ourselves to
orientation-preserving homeomorphims of Sg,b,p.

The following result is immediate from Theorem 1.1.

Corollary 1.2. Suppose (g, p) 6= (0, 2). Let κ : Sg′,b,0 → Sg,1,0 be a finite index
regular cover with p branching points in Sg,1,0 which lift to q points in Sg′,b,0.
Suppose every branching point of Sg,1,0 lifts to the same number of points in
Sg′,b,0. Let κ′ : Sg′,b,q → Sg,1,p be the corresponding unbranched cover. If every
homeomorphism of Sg,1,p which fixes the boundary component pointwise lifts to
a homeomorphism of Sg′,b,q, then Mg,1,p embeds in Mg′,1,(b−1).

In the literature there are results about embeddings of mapping class groups
constructed from branched covers. Let κ : Sg′,b,0 → Sg,c,0 be a branched cover
with p branching points in Sg,c,0 which lift to q branching points in Sg′,b,0. Birman
and Hilden [4] have results about these covers if (g, c) = (0, 1) or c = 0. For
(g, c) = (0, 1), Birman and Hilden [4, Theorem 5] consider the hyperelliptic
covers of the disc κ : S(p−2)/2,2,0 → S0,1,0 if p ≥ 4 is even, and κ : S(p−1)/2,1,0 →
S0,1,0 if p ≥ 3 is odd. Birman and Hilden prove that there are embeddings
M0,1,p →֒ M(p−2)/2,2,0 for p ≥ 4 even, and M0,1,p →֒ M(p−1)/2,1,0 for p ≥ 3 odd.
See Farb and Margalit [9, Section 9.4] for a short proof of these embeddings.
We will recover these embeddings in Example 3.1. We see Corollary 1.2 as
a generalization of these embeddings. For c = 0, Birman and Hilden prove [4,
Theorem 2]. From Theorem 1.1 we can prove the following analog of [4, Theorem
2] for surfaces with one boundary component. Notice that we do not need the
hypothesis that the group of deck transformations (or covering transformations)
is solvable.

Theorem 1.3. Suppose (g, p) 6= (0, 2). Let κ : Sg′,b,0 → Sg,1,0 be a finite index
regular cover with p branching points in Sg,1,0. Suppose every branching point of

Sg,1,0 lifts to the same number of points in Sg′,b,0. Let f̂ be a homeomorphism of
Sg′,b,0 which fixes the b-th boundary component pointwise and preserves the fibers

of κ : Sg′,b,0 → Sg,1,0. Then f̂ induces a homeomorphism f of Sg,1,0 such that

κf̂ = fκ. If f̂ is isotopic to the identity relative to the b-th boundary component,
then f is isotopic to the identity relative to the boundary.
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Proof. It is a general fact that if f̂ preserves the fibers of κ : Sg′,b,0 → Sg,1,0,

then f̂ induces a homeomorphism f of Sg,1,0 such that κf̂ = fκ. In particular,
f sends branching points to branching points.

Let κ′ : Sg′,b,q → Sg,1,p be the corresponding unbranched cover. Since f sends
branching points to branching points, f restricts to a homeomorphism h of Sg,1,p.

Let ĥ be the lift of h which fixes the b-th boundary component of Sg′,b,q pointwise.

Notice ĥ extends to a homeomorphism of Sg′,b,0. This extension of ĥ coincides

with f̂ . If f̂ is isotopic to the identity relative to the b-th boundary component,
then the restriction of f̂ to Sg′,1,(b−1) ⊆ Sg′,b,0 is isotopic to the identity relative to
the boundary component of Sg′,1,(b−1). Then, by Theorem 1.1, h is isotopic to the
identity relative to the boundary component of Sg,1,p. This isotopy extends to an
isotopy relative to the boundary component of Sg,1,0 from f to the identity.

In the literature there are results about embeddings of mapping class groups
constructed from unbranched covers. Let κ′ : Sg′,0,m → Sg,0,1 be a degree m
unbranched cover. Ivanov and McCarthy [10] construct embeddings if g ≥ 2
and the cover κ′ : Sg′,0,m → Sg,0,1 is characteristic. The condition that the cover
κ′ : Sg′,0,m → Sg,0,1 is characteristic ensures that every homeomorphism f of
Sg,0,1 lifts to a homeomorphism of Sg′,0,m. Then, there is a distinguished lift of f
by distinguishing one of the m punctures of Sg′,0,m. This gives a homomorphism
Mg,0,1 → Mg′,0,m. To see that this homomorphism is injective, the fundamental
group of Sg′,0,m, denoted π1(Sg′,0,m), is identified via the cover κ′ : Sg′,0,m → Sg,0,1
with an index m (characteristic) subgroup of π1(Sg,0,1). Then, the proof is com-
pleted by using some properties of π1(Sg,0,1). The strategy to prove Theorem 1.1
is very close to this point of view: Theorem 1.1 is for surfaces with one boundary
component as Ivanov and McCarthy construction is for once punctured surfaces.
We can see Corollary 1.2 as a generalization of Ivanov and McCarthy embed-
dings in the sense that we allow a finite set of branching points. The technical
difficulty of a branched cover κ : Sg′,b,0 → Sg,1,0 is that π1(Sg′,b,0) cannot be
identified via the cover with a subgroup of π1(Sg,1,0).

Aramayona, Leininger and Souto [1] construct embeddings Mg′,0,0 →֒ Mg,0,0

from unbranched covers κ′ : Sg′,0,0 → Sg,0,0 which satisfy some algebraic proper-
ties. These embeddings Mg′,0,0 →֒ Mg,0,0 follow the construction of Ivanov and
McCarthy. Using the algebraic properties of the cover κ′ : Sg′,0,0 → Sg,0,0, they
manage to avoid the presence of punctures. Aramayona and Souto [2] prove that
every non-trivial homomorphism Mg,c,p → Mg′,b,q, where g ≥ 6, g′ ≤ 2g − 1 and
q ≥ 1 if g′ = 2g−1, is induced by a geometric embedding Sg,c,p →֒ Sg′,b,q, that is,
a composition of forgetting punctures, deleting boundary components and sub-
surfaces embeddings. Corollary 1.2 does not fit in this situation since, in general,
g′ will be bigger than 2g − 1. Example 3.2.(a) shows that the embeddings of
Corollary 1.2 are not simple.
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2 The algebraic analog

In this section we translate into algebra Theorem 1.1 and Corollary 1.2. We
prove the algebraic analog of Theorem 1.1. Instead of dealing with Sg,b,p and
homeomorphisms of Sg,b,p which fix the boundary components pointwise, we will
deal with the fundamental group of Sg,b,p, denoted π1(Sg,b,p). Since b ≥ 1, we
choose the base point of π1(Sg,b,p) in the b-th boundary component. In this
way, a homeomorphism of Sg,b,p which fixes the boundary components pointwise
induces an automorphism of π1(Sg,b,p).

Notation 2.1. Let G be a group and let g, h be elements of G.
We denote by g the inverse of g. We write gh for the conjugate of g by

h, that is, gh = hgh. We denote by [g] the conjugacy class of G, that is,
[g] = {ga | a ∈ G}. We write [g, h] for the element ghgh of G. Let g1, g2, . . . , gk
be elements of G. We write Πk

i=1gi for the element g1g2 · · · gk of G.
We denote by Aut(G) the automorphism group of G and by Out(G) the

group of outer automorphisms of G. Given φ ∈ Aut(G), we write gφ for the
image of g by φ.

Notation 2.2. Let Fg,b,p be the rank 2g+(b−1)+p free group with generating set
{xi, yi}1≤i≤g ∪ {zl}1≤l≤(b−1) ∪ {tk}1≤k≤p. We identify Fg,b,p with π1(Sg,b,p, ∗), the
fundamental group of Sg,b,p based at a point ∗ in the b-th boundary component.
In addition, for every 1 ≤ l ≤ (b − 1), zl represents a loop around the l-th
boundary component; for every 1 ≤ k ≤ p, tk represents a loop around the
k-th puncture, and (Πg

i=1[xi, yi]Π
b−1
l=1zlΠ

p
k=1tk)

−1 represents a loop around the
b-th boundary component.

Let f be a homeomorphim of Sg,b,p which fixes the boundary components
pointwise. Then f induces an automorphism f∗ of Fg,b,p which fixes the set
of conjugacy classes of t1, t2, . . . , tp. Since f fixes the boundary components of
Sg,b,p pointwise, we see that f∗ fixes (Πg

i=1[xi, yi]Π
b−1
l=1zlΠ

p
k=1tk)

−1 and the conju-
gacy class of zl, for all 1 ≤ l ≤ b − 1. Two isotopic homeomorphisms of Sg,b,p
induce the same automorphism of Fg,b,p. Recall we consider isotopies relative to
the boundary components. Notice the Dehn twist with respect a loop around
a boundary component is isotopic to the identity, but it is not isotopic to the
identity relative to the boundary. To capture this fact, we associate to f an au-
tomorphism of Fg,b,p∗〈e1, e2, . . . , e(b−1) | 〉 which maps Fg,b,p to itself and respects
the following sets

(2.2.1)

(i) {Πg
i=1[xi, yi]Π

b−1
l=1zlΠ

p
k=1tk},

(ii) {z e11 }, {z e22 }, . . . , {z
e(b−1)

(b−1) },

(iii) {[ tk]}1≤k≤p.

Recall zl represents a loop around the l-th boundary component which is
based at a point in the b-boundary component. For every 1 ≤ l ≤ (b − 1),
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we view el as an arc from the base point in the b-th boundary component to
a chosen point in the l-th boundary component. We view elzlel = zell as a
loop around the l-boundary component and based at the chosen point in the
l-boundary component. Since the homeomorphism f fixes the l-boundary com-
ponent pointwise, the automorphism f∗ fixes z ell . For example, the Dehn twist
with respect to the loop represented by zell gives the following automorphism of
Fg,b,p ∗ 〈e1, e2, . . . , e(b−1) | 〉

{

el 7→ zlel,
a 7→ a, a ∈ {xi, yi}1≤i≤g ∪ {tk}1≤k≤p ∪ {zl}1≤l≤b ∪ {el′}1≤l′≤b, l′ 6=l.

Definition 2.3. We denote by AMg,b,p the subgroup of
Aut(Fg,b,p ∗ 〈e1, e2, . . . , eb−1 | 〉) consisting of all the automorphisms of Fg,b,p ∗
〈e1, e2, . . . , e(b−1) | 〉 which map Fg,b,p to itself and respect the sets of (2.2.1).

We call AMg,b,p the algebraic mapping class group of Sg,b,p, an orientable
surface of genus g with b boundary components and p punctures.

The mapping class group of Sg,b,p, denoted Mg,b,p, is defined as the group of
homeomorphisms of Sg,b,p modulo isotopy relative to the boundary components.
The above discussion shows that there exists a map Mg,b,p → AMg,b,p. By
Dehn-Nielsen-Baer Theorem for surfaces with boundary, Mg,b,p ≃ AMg,b,p, see
[8, Theorem 9.6] and [9, Chapter Eight]. See [8] for a background on algebraic
mapping class groups, with some changes of notation.

For (g, b) = (0, 1) and p ≥ 1, AM0,1,p is isomorphic to the p-string braid
group. We have AM0,1,p = 〈σ1, σ2, . . . , σp−1〉, where for all 1 ≤ i ≤ (p − 1),
σi ∈ Aut(F0,1,p) is defined by

(2.3.1) Fi :=







ti 7→ ti+1,

ti+1 7→ t
ti+1

i ,
tk 7→ tk, for all 1 ≤ k ≤ p, k 6= i, i+ 1.

Let d ∈ Z, d ≥ 2.

Notation 2.4. Let Nd be the normal closure of td1, t
d
2, . . . , t

d
p in Fg,1,p. We denote

by Fg,1,p(d) the group Fg,1,p/Nd. For every 1 ≤ k ≤ p, we denote by τk the image
of tk by the natural homomorphism Fg,1,p → Fg,1,p(d).

Notice that if p = 0, then Nd = 1 and Fg,1,p(d) = Fg,1,p.

Definition 2.5. Let AMg,1,p(d) denote the group of all automorphisms of Fg,1,p(d)
that respect the sets

{Πg
i=1[xi, yi]Π

p
k=1τk}, {[τk]}1≤k≤p.
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Since the sets {Πg
i=1[xi, yi]Π

p
k=1tk}, {[ tk]}1≤k≤p are respected by elements of

AMg,1,p, the natural homomorphism Fg,1,p → Fg,1,p(d) induces a natural homo-
morphism

ψ : AMg,1,p → AMg,1,p(d).

Notice that if p = 0, then Fg,1,p = Fg,1,p(d) and ψ is the identity.

Theorem 2.6. The homomorphism ψ : AMg,1,p → AMg,1,p(d) is injective.

We prove Theorem 2.6 in Section 4.

For the rest of this section we consider a regular cover κ : Sg′,b,0 → Sg,1,0 of
index m with p branching points in Sg,1,0 which lift to q points in Sg′,b,0 such
that every branching point of Sg,1,0 lifts to the same number of points in Sg′,b,0.
We denote by κ′ : Sg′,b,q → Sg,1,p the corresponding unbranched cover. Recall
that Fg,1,p is the fundamental group of Sg,1,p with base point ∗ in the boundary
component and Fg′,b,q is the fundamental group of Sg′,b,q with base point ∗̂ a
lift of ∗ in the b-th boundary component. We identify Fg′,b,q with κ′∗(Fg′,b,q).
Hence, Fg′,b,q is a normal subgroup of Fg,1,p of index m. In Remark 2.7 we define
a basis {x̂i, ŷi}1≤i≤g′ ∪ {ẑl}1≤l≤(b−1) ∪ {t̂k}1≤k≤p of Fg′,b,q. From this basis, we
deduce two technical results: Lemma 2.8 and Proposition 2.10. In Remark 2.11
we discuss the embeddings Sg′,b,q →֒ Sg′,1,(b−1)+q and Sg′,1,(b−1)+q →֒ Sg′,1,(b−1)

in terms of fundamental groups and the basis {x̂i, ŷi}1≤i≤g′ ∪ {ẑl}1≤l≤(b−1) ∪
{t̂k}1≤k≤p. Finally, we state and prove the algebraic analog of Theorem 1.1 and
we state the algebraic analog of Corollary 1.2.

Remark 2.7. We set G := Fg,1,p/Fg′,b,q the group of deck transformations of the
unbranched cover κ′ : Sg′,b,q → Sg,1,p.

Let ̺ be the image of Πg
i=1[xi, yi]Π

p
k=1tk by the natural homomorphism

Fg,1,p → Fg,1,p/Fg′,b,q = G. Let c be the order of ̺ in G. Since ̺c = 1 in
G, we see that (Πg

i=1[xi, yi]Π
p
k=1tk)

c ∈ Fg′,b,q. Notice that (Πg
i=1[xi, yi]Π

p
k=1tk)

−c

represents a loop around the b-th boundary component. We take a basis
{x̂i, ŷi}1≤i≤g′ ∪ {ẑl}1≤l≤(b−1) ∪ {t̂k}1≤k≤q of Fg′,b,q such that

Πg′

i=1[x̂i, ŷi]Π
b−1
l=1 ẑlΠ

q
k=1t̂k = (Πg

i=1[xi, yi]Π
p
k=1tk)

c.

Recall G has cardinality m. The subgroup 〈̺〉 ≤ G has index b = m/c. For
every 1 ≤ l ≤ b− 1, we take wl ∈ Fg,1,p − Fg′,b,q such that

ẑl = wl(Π
g
i=1[xi, yi]Π

p
k=1tk)

−cwl.

Let ρl be the image of wl by the natural homomorphism Fg,1,p → Fg,1,p/Fg′,b,q =
G. Then G = 〈̺〉ρ1∪〈̺〉ρ2 · · ·∪〈̺〉ρ(b−1)∪〈̺〉. That is, the boundary components
of Sg′,b,p are image by deck transformations of the b-th boundary component.

For every 1 ≤ k ≤ p, let ̺k be the image of tk by the natural homomorphism
Fg,1,p → Fg,1,p/Fg′,b,q = G. Let dk be the order of ̺k in G. Since tk corresponds
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to a branching point, we see tk /∈ Fg′,b,q and dk ≥ 2. Since ̺dkk = 1 in G =
Fg,1,p/Fg′,b,q, we see that tdkk ∈ Fg′,b,q. Notice that tdkk represents a loop around a
lift of the k-th puncture of Sg,1,p. The subgroup 〈̺k〉 has index m/dk in G. Since
all the branching point of Sg,1,0 lift to the same number of points in Sg′,b,0,m/d1 =
m/dk for all 2 ≤ k ≤ p. Hence, d1 = dk for all 2 ≤ k ≤ p. Let d = d1. We have
G = 〈̺k〉ρ1,k∪〈̺k〉ρ2,k∪· · ·∪〈̺k〉ρm/d,k, where ρj,k = uj,kFg′,b,q ∈ G = Fg,1,p/Fg′,b,q
for all 1 ≤ j ≤ m/d. Notice that (tdk)

u1,k , (tdk)
u2,k , . . . , (tdk)

um/d,k represent loops
around the m/d lifts of the k-th puncture. We choose u1,k, u2,k, . . . , um/d,k ∈
Fg,1,p such that {(tdk)

u1,k , (tdk)
u2,k , . . . , (tdk)

um/d,k} ⊆ {t̂1, t̂2, . . . , t̂q}. Then

(2.7.1) {t̂1, t̂2, . . . , t̂q} =

p
⋃

k=1

{(tdk)
u1,k , (tdk)

u2,k , . . . , (tdk)
um/d,k}.

Recall Nd is the normal closure of td1, t
d
2, . . . , t

d
p in Fg,1,p.

Lemma 2.8. With the above notation, Nd is equal to the normal closure of
t̂1, t̂2, · · · , t̂q in Fg′,b,q.

Proof. By (2.7.1), the normal closure of t̂1, t̂2, · · · , t̂q in Fg′,b,q is a subgroup of
Nd.

Let 1 ≤ k ≤ p and w ∈ Fg,1,p. By (2.7.1), it is enough to prove (tdk)
w =

(tdk)
uj,kv for some 1 ≤ j ≤ (m/d) and v ∈ Fg′,b,q. Recall G = Fg,1,p/Fg′,b,q, ̺k =

tkFg′,b,q ∈ G and G = 〈̺k〉ρ1,k∪〈̺k〉ρ2,k∪· · ·∪〈̺k〉ρm/d,k, where ρj,k = uj,kFg′,b,q ∈
G for all 1 ≤ j ≤ (m/d). Let 1 ≤ j ≤ (m/d) such that wFg′,b,q ∈ 〈̺k〉ρj,k. Let
1 ≤ r ≤ d such that wFg′,b,q = ̺rkρj,k = trkuj,kFg′,b,q. Then w = trkuj,kv, for some
v ∈ Fg′,b,q and (tdk)

w = (tdk)
trkuj,kv = (tdk)

uj,kv.

Recall Fg,1,p/Nd = Fg,1,p(d), and for every 1 ≤ k ≤ p, we denote by τk the
image of tk by the natural homomorphism Fg,1,p → Fg,1,p(d).

Notation 2.9. Let H ≤ Fg,1,p be a normal subgroup of finite index such that
Nd ≤ H . Notice H/Nd ≤ Fg,1,p(d). We set

AMg,1,p(H) = {φ ∈ AMg,1,p | H
φ = H},

and
AMg,1,p(d)(H/Nd) = {φ̃ ∈ AMg,1,p(d) | (H/Nd)

φ̃ = H/Nd}.

Proposition 2.10. Suppose (g, p, d) 6= (0, 2, 2). Let H ≤ Fg,1,p be a normal
subgroup of finite index such that Nd ≤ H. Let ψ : AMg,1,p → AMg,1,p(d) be
as in Definition 2.5 and φ ∈ AMg,1,p(H). Then ψ(φ) ∈ AMg,1,p(d)(H/Nd). If
ψ(φ)|H/Nd

= 1, then φ = 1.
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Proof. Since Nd and H are φ-invariant, we see H/Nd is ψ(φ)-invariant. Since
ψ(φ) ∈ AMg,1,p(d), we have ψ(φ) ∈ AMg,1,p(H/Nd)

Since H has finite index in Fg,1,p, there exists r ∈ Z, r ≥ 1, such that

(Πg
i=1[xi, yi]Π

p
k=1tk)

r ∈ H.

Fix 1 ≤ k ≤ p. Since H is normal in Fg,1,p, we see

tk(Π
g
i=1[xi, yi]Π

p
k′=1tk′)

rtk ∈ H.

If ψ(φ)|H/Nd
= 1, in Fg,1,p(d),

τ k(Π
g
i=1[xi, yi]Π

p
k′=1τk′)

rτk

=(τ k(Π
g
i=1[xi, yi]Π

p
k′=1τk′)

rτk)
ψ(φ)

=τ
ψ(φ)
k (Πg

i=1[xi, yi]Π
p
k′=1τk′)

rτ
ψ(φ)
k .

Then, in Fg,1,p(d), τ
ψ(φ)
k τk commutes with (Πg

i=1[xi, yi]Π
p
k′=1τk′)

r. Recall
Fg,1,p(d) = Fg,1,p/Nd. Hence, Fg,1,p(d) ≃ Fg,1,0 ∗ 〈τ1, τ2, . . . , τp | τd1 , τ

d
2 , . . . , τ

d
p 〉.

Hence, τ
ψ(φ)
k τ k ∈ 〈Πg

i=1[xi, yi]Π
p
k′=1τk′〉, and,

(2.10.1) τ
ψ(φ)
k = (Πg

i=1[xi, yi]Π
p
k′=1τk′)

r′τk,

for some r′ ∈ Z. Recall [τ
ψ(φ)
k ] = [τj ], for some 1 ≤ j ≤ p. If (g, p) 6= (0, 1), and

if (g, p, d) 6= (0, 2, 2), then (2.10.1) implies r′ = 0 and τ
ψ(φ)
k = τk.

Fix a ∈ {xi, yi}1≤i≤g. Since H has finite index in Fg,1,p, there exists s ∈
Z, s ≥ 1, such that as ∈ H . If ψ(φ)|H/Nd

= 1, then (as)ψ(φ) = as, and, aψ(φ) = a.

Since Fg,1,p(d) ≃ Fg,1,0 ∗ 〈τ1, τ2, . . . , τp | τd1 , τ
d
2 , . . . , τ

d
p 〉, a

ψ(φ) = a for all a ∈

{xi, yi}1≤i≤g, and, τ
ψ(φ)
k = τk for all 1 ≤ k ≤ p; we see ψ(φ) = 1. By Theorem 2.6,

φ = 1.

Remark 2.11. Let φ ∈ AMg,1,p. Suppose Fg′,b,q is φ-invariant. Then φ induces
an automorphisms of Fg′,b,q by restriction. In Fg,1,p we have

(i) Πg′

i=1[x̂i, ŷi]Π
(b−1)
l=1 ẑlΠ

q
k=1t̂k = (Πg

i=1[xi, yi]Π
p
k=1tk)

c;

(ii) ẑl is conjugate to (Πg
i=1[xi, yi]Π

p
k=1tk)

−c, for all 1 ≤ l ≤ (b− 1);

(iii) t̂k is conjugate to tdj , 1 ≤ j ≤ p, for all 1 ≤ k ≤ q.

If we identify Fg′,b,q with Fg′,1,(b−1)+q by identifying ẑl with t̂l, for all 1 ≤ l ≤
(b − 1), and t̂k with t̂(b−1)+k, for all 1 ≤ k ≤ q; then the restriction of φ to
Fg′,1,(b−1)+q lies inside AMg′,1,(b−1)+q.

Let h be the homeomorphism of Sg,1,p which fixes the boundary component
pointwise and h∗ = φ. Since Fg′,b,q is φ-invariant, h lifts to a homeomorphism
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ĥ of Sg′,b,q which fixes the b-th boundary component pointwise. Since ĥ may

not fix the first (b − 1) boundary components pointwise, ĥ does not represent
an element of Mg′,b,q, but it represents an element of Mg′,1,(b−1)+q, that is, we

have to convert the first (b− 1) boundary components into punctures. If ĥ fixes
the boundary components pointwise, we can conserve the first (b− 1) boundary
components. Algebraically, if we want to have an element of AMg′,b,q, we have to
define the image of ê1, ê2, . . . , ê(b−1). Since Fg′,b,q is φ-invariant, we see φ induces
an automorphism of G = Fg,1,p/Fg′,b,q. If φ induces the identity of G, we can
define an element of AMg′,b,q from φ.

Recall Nd is the normal closure in Fg,1,p of td1, t
d
2, . . . , t

d
p. By Lemma 2.8, Nd

is the normal closure in Fg′,b,q of t̂1, t̂2, · · · , t̂q. Hence, Fg′,b,0 = Fg′,b,q/Nd. We
identify Fg′,b,0 with Fg′,1,(b−1) by identifying ẑl with t̂l for all 1 ≤ l ≤ (b − 1).
Hence, Fg′,1,(b−1) = Fg′,b,q/Nd. Since Fg′,b,q is φ-invariant, by Proposition 2.10,

there exists the restriction ψ(φ)|Fg′,1,(b−1)
: Fg′,1,(b−1) → Fg′,1,(b−1). Recall ĥ is a

homeomorphism of Sg′,b,q. Since h∗ = φ, we have ĥ∗ = φ|Fg′,b,q
. Notice ĥ extends

to a homeomorphism f̂ of Sg′,b,0. Notice f̂ restricts to a homeomorphism of

Sg′,1,(b−1) ⊆ Sg′,b,0. Since ĥ∗ = φ|Fg′,b,q
and Fg′,1,(b−1) = Fg′,b,q/Nd, the restriction

of f̂ to Sg′,1,(b−1) ⊆ Sg′,b,0 induces the automorphism ψ(φ)|Fg′,1,(b−1)
.

We, now, can state and prove the algebraic analog of Theorem 1.1.

Theorem 2.12. Suppose (g, p) 6= (0, 2). Let κ : Sg′,b,0 → Sg,1,0 be a finite
index regular cover with p branching points in Sg,1,0 which lift to q points in
Sg′,b,0. Suppose every branching point of Sg,1,0 lifts to the same number of points
in Sg′,b,0. Let κ′ : Sg′,b,q → Sg,1,p be the corresponding unbranched cover. Let
ψ : AMg,1,p → AMg,1,p(d) be as in Definition 2.5 and φ ∈ AMg,1,p. Suppose
Fg′,b,q is φ-invariant. If ψ(φ)|Fg′,1,(b−1)

= 1, then φ = 1.

Proof. Since Fg,1,p(d) = Fg,1,p/Nd, the natural homomorphism Fg,1,p → Fg,1,p(d)
restricts to the natural homomorphism Fg′,b,q → Fg′,1,(b−1).

Since ψ : AMg,1,p → AMg,1,p(d) is given by the natural homomorphism
Fg,1,p → Fg,1,p(d), we see ψ(φ) : Fg,1,p(d) → Fg,1,p(d) completes the following com-
mutative square

Fg,1,p
φ

−→ Fg,1,p
↓ ↓

Fg,1,p(d)
ψ(φ)
−→ Fg,1,p(d)

where the vertical arrows are the natural homomorphisms. Notice
ψ(φ)|Fg′,1,(b−1)

: Fg′,1,(b−1) → Fg′,1,(b−1) completes the following commutative
square

Fg′,b,q
φ|F

g′,b,q
−→ Fg′,b,q

↓ ↓

Fg′,1,(b−1)

ψ(φ)|F
g′,1,(b−1)
−→ Fg′,1,(b−1)

9



where the vertical arrows are the natural homomorphisms. By Proposition 2.10,
if ψ(φ)|Fg′,1,(b−1)

= 1, then φ = 1.

We state the algebraic analog of Corollary 1.2.

Corollary 2.13. Suppose (g, p) 6= (0, 2). Let κ : Sg′,b,0 → Sg,1,0 be a finite
index regular cover with p branching points in Sg,1,0 which lift to q points in
Sg′,b,0. Suppose every branching point of Sg,1,0 lifts to the same number of points
in Sg′,b,0. Let κ′ : Sg′,b,q → Sg,1,p be the corresponding unbranched cover. If
Fg′,b,q is AMg,1,p-invariant, then AMg,1,p embeds in AMg′,1,(b−1). In fact, the
embedding is given by φ 7→ ψ(φ)|Fg′,1,(b−1)

, where ψ : AMg,1,p → AMg,1,p(d) is as
in Definition 2.5.

3 Examples

We fix g, p such that (g, p) 6= (0, 2). Let Ŝ be the universal cover of Sg,1,p. The

fundamental group of Sg,1,p, denoted Fg,1,p, acts on Ŝ. Let H be a subgroup of

Fg,1,p of index m. Suppose H is AMg,1,p-invariant. The quotient space Ŝ/H is an
orientable surface, denoted Sg′,b,q. We identify the fundamental group of Sg′,b,q,

denoted Fg′,b,q, with H . The cover Ŝ → Sg,1,p induces a cover Sg′,b,q → Sg,1,p with
group of deck transformation G := Fg,1,p/Fg′,b,q. If tk /∈ Fg′,b,q for all 1 ≤ k ≤ p,
then the corresponding cover Sg′,b,0 → Sg,1,0 has p branching points in Sg,1,0
which lift to q points in Sg′,b,0. Since H is AMg,1,p-invariant, it can be seen that
every branching point of Sg,1,p lifts to the same number of points in Sg′,b,0. By
Corollary 2.13, we have an embedding AMg,1,p →֒ AMg′,1,(b−1). By choosing
an appropriated basis of H/Nd, we can compute elements in the image of this
embedding from elements of AMg,1,p.

Example 3.1 is Birman and Hilden [4]. In Example 3.2.(a), we give a basis
of Fg′,1,(b−1) and compute elements in the image of AMg,1,p →֒ AMg′,1,(b−1).

Example 3.1. Let H be the kernel of the homomorphism F0,1,p → 〈γ | γ2〉 such
that tk 7→ γ for all 1 ≤ k ≤ p. It is standard to see that H is a free group of rank
2p− 1 with basis t21, t1t2, t1t3, . . . , t1tp, t1t2, t1t3, . . . , t1tp. It is easy to see that H
is invariant by the generators of AM0,1,p given in (2.3.1). For 1 ≤ k ≤ p, notice
that ̺k = tkH has order 2 in G := F0,1,p/H ≃ 〈γ | γ2〉. Hence, 〈̺k〉 has index 1
in G and the k-th puncture in Sg,1,p lifts to one puncture in Sg′,b,q. Thus, q = p.

(a). If p is odd, then Πp
k=1tk /∈ H and ̺ = Πp

k=1tkH has order 2 in G. Hence,
〈̺〉 has index 1 in G and b = 1. Since Fg′,b,q has rank 2g′ + b− 1+ q and H
has rank 2p−1, we have 2g′+1−1+p = 2p−1 and g′ = (p−1)/2. Hence,
AM0,1,p →֒ AM(p−1)/2,1,0, if p is odd. See [3, 9.2 Example] for a basis of
F(p−1)/2,1,0.
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(b). If p is even, then Πp
k=1tk ∈ H and ̺ = Πp

k=1tkH has order 1 in G. Hence,
〈̺〉 has index 2 in G and we have b = 2. Since Fg′,b,q has rank 2g′+ b−1+ q
and H has rank 2p− 1, we have 2g′+2− 1+ p = 2p− 1 and g′ = (p− 2)/2.
Hence, AM0,1,p →֒ AM(p−2)/2,1,1, if p is even. See [3, 9.3 Example] for a
basis of F(p−2)/2,1,1.

Example 3.2. Let F3 := 〈a1, a2, a3 | 〉. LetH be the kernel of the homomorphism
F3 → 〈γ1 | γ

2
1〉 × 〈γ2 | γ

2
2〉 × 〈γ3 | γ

2
3〉 such that ak 7→ γk for all 1 ≤ k ≤ 3. It is

standard to see that H is a free group of rank 17. It can be shown that H is a
characteristic subgroup of F3.

(a). We identify F0,1,3 with F3 by putting tk ↔ ak for all 1 ≤ k ≤ 3. Notice that
̺ = t1t2t3H has order 2 in G := F0,1,3/H ≃ 〈γ1 | γ

2
1〉 × 〈γ2 | γ

2
2〉 × 〈γ3 | γ

2
3〉.

Hence, 〈̺〉 has index 4 in G and b = 4. On the other hand, for all 1 ≤ k ≤ 3,
̺k = tkH has order 2 in G. Hence, for all 1 ≤ k ≤ 3, 〈̺k〉 has index 4 in
G and the k-th puncture in S0,1,3 lifts to 4 punctures in Sg′,b,q. Thus,
q = 12. Since Fg′,b,q has rank 2g′ + b − 1 + q and H has rank 17, we have
2g′+4−1+12 = 17 and g′ = 1. Hence, AM0,1,3 →֒ AM1,1,3. It is well-known
that AM0,1,3 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉, where

σ1 :=







t1 7→ t2,
t2 7→ tt21 ,
t3 7→ t3,

σ2 :=







t1 7→ t1,
t2 7→ t3,
t3 7→ tt32 .

Let N2 be the normal closure of t21, t
2
2, t

2
3 in F0,1,3. Then F0,1,3/N2 =

F0,1,3(2) = 〈τ1, τ2, τ3 | τ 21 , τ
2
2 , τ

2
3 〉 and H/N2 ≃ F1,1,3. We take the following

basis of H/N2: x̂ = τ2τ3τ1τ3τ2τ1, ŷ = τ1τ2τ1τ2, t̂1 = (τ3τ2τ1τ3τ2τ1)
τ3 , t̂2 =

(τ3τ2τ1τ3τ2τ1)
τ3τ1τ3 , t̂3 = (τ3τ2τ1τ3τ2τ1)

τ1τ3 . Then [x̂, ŷ]t̂1t̂2t̂3 = (τ1τ2τ3)
2 and

σ̂1 :=



























x̂ 7→ ŷ−1x̂ŷt̂1t̂2t̂
−1
1 ŷ−1,

ŷ 7→ ŷ,
t̂1 7→ t̂1,
t̂2 7→ t̂3,

t̂3 7→ t̂
t̂−1
1 ŷ−1x̂−1ŷ−1x̂ŷt̂1 t̂2 t̂3
2 ,

σ̂2 :=



























x̂ 7→ x̂,
ŷ 7→ x̂ŷẑ1t̂2,
t̂1 7→ t̂3,

t̂2 7→ t̂
t̂−1
1 ŷ−1x̂ŷt̂1 t̂2 t̂3
2 ,

t̂3 7→ t̂ŷ
−1x̂ŷt̂1 t̂2 t̂3

1 .

(b). We identify F1,1,1 with F3 by putting x ↔ a1, y ↔ a2 and t ↔ a3. Notice
that ̺ = [x, y]tH has order 2 in G := F1,1,1/H ≃ 〈γ1 | γ

2
1〉 × 〈γ2 | γ

2
2〉 × 〈γ3 |

γ23〉. Hence, 〈̺〉 has index 4 in G and b = 4. On the other hand, ̺1 = tH has
order 2 in G. Hence, 〈̺1〉 has index 4 in G and the puncture in S1,1,1 lifts
to 4 punctures in Sg′,b,q. Thus, q = 4. Since Fg′,b,q has rank 2g′ + b− 1 + q
and H has rank 17, we have 2g′ + 4 − 1 + 4 = 17 and g′ = 5. Hence,
AM1,1,1 →֒ AM5,1,3.
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4 Proof of Theorem 2.6

Definition 4.1. An element of Fg,1,p is said to be t-squarefree if, in its reduced
expression, no two consecutive terms in {tk, tk}1≤k≤p are equal; for example:
x1x1t2t3 is t-squarefree; x1t2t2y1 is non-t-squarefree.

To prove Theorem 2.6 we need the following theorem (compare with [3, 7.6
Corollary]).

Theorem 4.2. For every φ ∈ AMg,1,p, the elements of {xφi , y
φ
i }1≤i≤g∪{tφk}1≤k≤p

are t-squarefree.

Proof. (of Theorem 2.6) If p = 0, then ψ : AMg,1,p → AMg,1,p(d) is the identity
and nothing needs to be said.

Suppose p ≥ 1. Recall Fg,1,p(d) ≃ Fg,1,0 ∗ 〈τ1, τ2, . . . , τp | τd1 , τ
d
2 , . . . , τ

d
p 〉. Let

a ∈ {xi, yi}1≤i≤g ∪ {tk}1≤k≤p. If φ is an element of the kernel of ψ : AMg,1,p →
AMg,1,p(d), then ψ(φ) is the identity of Aut(Fg,1,p(d)). Hence, aφ and a have the
same image by the natural homomorphism Fg,1,p → Fg,1,p(d). On the other hand,
by Theorem 4.2, aφ is t-squarefree. Hence, aφ has the same normal form in Fg,1,p
as in Fg,1,p(d). Thus, a

φ = a.

The rest of the paper is dedicated to prove Theorem 4.2. Notice Theorem 4.2
is trivial for p = 0. We will suppose p ≥ 1. To prove Theorem 4.2 we will use
ends of Fg,1,p, that is, reduced right-infinite words of Fg,1,p. We will recall that
there is an action of Aut(Fg,1,p) on the set of ends of Fg,1,p. In particular, there
is an action of AMg,1,p ≤ Aut(Fg,1,p) on the set of ends of Fg,1,p.

The strategy to prove Theorem 4.2 is the following. We define a subset A of
the set of ends of Fg,1,p such that:

(a) A is AMg,1,p-invariant,

(b) every non-t-squarefree end of Fg,1,p (see Definition 7.1) lies in A,

(c) for (g, p) 6= (0, 1), (0, 2) and a ∈ {tp} ∪ {xi, yi, xi, yi}1≤i≤g, the end of Fg,1,p
a(Πg

i=1[xi, yi]Π
p
k=1tk)

∞ does not lie in A.

From (a) and (c) we see that for (g, p) 6= (0, 1), (0, 2) the set A does
not intersect the AMg,1,p-orbit of a(Πg

i=1[xi, yi]Π
p
k=1tk)

∞, where a ∈ {tp} ∪
{xi, yi, xi, yi}1≤i≤g. Then, by (b), for (g, p) 6= (0, 1), (0, 2) the elements of the
AMg,1,p-orbit of a(Π

g
i=1[xi, yi]Π

p
k=1tk)

∞ are t-squarefree. From this fact, and an
easy analysis in the special cases (g, p) = (0, 1), (0, 2), we prove Theorem 4.2.

The subset A is defined via a linear ordering of the set of ends of Fg,1,p.
To prove (a) above we need the fact that this ordering is respected by the
AMg,1,p-action. To prove (b) and (c) above, we have to check same inequalities
with respect to this ordering.

In Section 5 and Section 6 we define the ordering of the set of ends of Fg,1,p
and we show that this ordering is respected by the AMg,1,p-action. In Section 7
we prove (a), (b) and (c) above.
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5 McCool’s Groupoid

For the rest of the paper we suppose p ≥ 1.

In this section we define McCool’s groupoid via Whitehead’s graphs, we
remark that AMg,1,p is a subgroup of McCool’s groupoid and we recall that
McCool’s groupoid is generated by Nielsen elements. These facts will be useful
to see that the ordering that we will define on the set of ends of Fg,1,p is respected
by the AMg,1,p-action.

Let n := 2g + p, and, let Fn be the free group on X , where X is a set with n
elements.

Notation 5.1. Let w ∈ Fn. In this section we will denote by [w] the cyclic word
of w.

Definitions 5.2. Let T be a set of words and cyclic words of Fn. Suppose the
elements of T are reduced and cyclically reduced, respectively. We define the
Whitehead graph of T as the graph with vertex set X ∪X, and, one edge from
a ∈ X ∪X to b ∈ X ∪X for every subword ab which appears in w or [u], where
w and [u] are elements of T . We say that a is the initial vertex and b is the
terminal vertex of the edges corresponding to the subword ab. Repetitions have
to be considered. For example, since the subword ab appears twice in abab, the
Whitehead graph of {abab} has 2 edges from a to b (and one edge from b to a).
A word Πk

i=1ai produces k − 1 edges in the Whitehead graph. A cyclic word
[Πk

i=1ai] produces k edges in the Whitehead graph. For example, the Whitehead
graph of {a} does not have any edge and the Whitehead graph of {[a]} has one
edge from a to a.

We say that T is a surface word set if the Whitehead graph of T is an oriented
segment, that is, the Whitehead graph of T is connected with exactly 2n − 1
edges, every vertex but one is the initial vertex of exactly one edge, and, every
vertex but one is the terminal vertex of exactly one edge.

Example 5.3. Let F4 := 〈a, b, c, d | 〉.

(i). Let T := {adcb, [ db], [ca]}. The Whitehead graph of T is

a→ c→ b→ d→ c→ a→ d→ b.

Hence, T is a surface word set.

(ii). Let T := {adcb, db, [ca]}. The Whitehead graph of T is

a→ c→ b d → c→ a→ d→ b.

Hence, T is not a surface word set.
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(iii). Let T := {adcb, dc, [ db], [ca]}. The Whitehead graph of T is

a→ c→ b→ d⇉ c→ a→ d→ b.

Hence, T is not a surface word set.

We illustrate the following remarks with examples in F4 = 〈a, b, c, d | 〉.

Remarks 5.4. Let T be a surface word set.

(i) The Whitehead graph of T defines a sequence (ak)1≤k≤2n which lists the
element of X ∪X such that for all 1 ≤ k ≤ (2n−1), the Whitehead graph
of T has exactly one edge with initial vertex ak and terminal vertex ak+1,
equivalently, akak+1 is a subword that appears exactly once in T . We say
that (ak)1≤k≤2n is the associated sequence of T .

In Example 5.3(i), the associated sequence of T is (a, c, b, d, c, a, d, b).

(ii) We can recover T from the associated sequence of T . The process to
recover T from its associated sequence is the inverse process to construct
the Whitehead graph. We give two examples below. From this process, it
is easy to see that T has exactly one word, and, all other elements of T
are cyclic words.

In F4, from the sequence (a, b, c, d, a, b, c, d) we have the surface word set
{abcd abcd}, and, from the sequence (a, b, c, d, d, c, b, a) we have the surface
word set {a, [ba], [cb ], [dc], [ d ]}.

(iii) Let p be the cardinality of T minus one. We say that T is a (g, p)-surface
word set, where g = (n − p)/2. By induction on n, it can be seen that
n ≥ p and n− p is even. Hence, g is a non-negative integer.

Definition 5.5. Let φ ∈ Aut(Fn).
We say that φ is a type-1 Nielsen automorphism if φ restricts to a permutation

of X ∪X .
We say that φ is a type-2 Nielsen automorphism if there exist a, b ∈ X ∪X

such that a 6= b, b and

φ :=

{

a 7→ ab,
c 7→ c for all c ∈ X, c 6= a±1.

We denote φ by (a 7→ ab) or (a 7→ ba).

Definition 5.6. Let Gg,p be the groupoid with objects (g, p)-surface word sets,
and, given T1, T2 two (g, p)-surface word sets

Hom(T1, T2) := {φ ∈ Aut(Fn) | T
φ
1 = T2},

where T φ1 := {wφ, [uφ] | w, [u] ∈ T1}. Here, wφ is reduced and [uφ] is cyclically
reduced. Hence, [v] = [uφ] means that v and uφ are conjugate.
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We say that (T1, T2, φ) ∈ Hom(T1, T2) is a type-1 Nielsen element of Gg,p if φ
is a type-1 Nielsen automorphism. Similarly, for type-2 Nielsen automorphisms.
We say that (T1, T2, φ) ∈ Hom(T1, T2) is a Nielsen element if it is either a type-1
Nielsen or a type-2 Nielsen.

We illustrate the following remarks with examples in F4 = 〈a, b, c, d | 〉.

Remark 5.7. Let (T1, T2, φ) be a Nielsen of Gg,p.

(i) If (T1, T2, φ) is a type-1 Nielsen, then the associated sequence of T2 is
obtained from the associated sequence of T1 by applying the permutation
φ to every element of the sequence.

In F4, let T1 = {ad bc, [ ab], [ cd]}. Notice the associated sequence of T1
is (a, b, c, d, b, a, d, c). If φ : = (a 7→ b, b 7→ c, c 7→ a, d 7→ d), then the
associated sequence of T2 = T φ1 = {bdc a, [bc], [ad]} is (b, c, a, d, c, b, d, a).

(ii) Suppose (T1, T2, φ) is a type-2 Nielsen. Then φ = (ai 7→ bai) for some
1 ≤ i ≤ 2n, b ∈ X ∪ X such that ai 6= b, b. Since in the Whitehead
graph of T2 there are exactly 2n− 1 edges, there exists w ∈ T1 or [u] ∈ T1
such that applying φ to w or [u] produces a cancellation. If the cancellation
appears from the subword ai−1ai, then b = ai−1. If the cancellation appears
from the subword aiai+1, then b = ai+1. Hence, either φ = (ai 7→ ai−1ai)
for some 2 ≤ i ≤ 2n, ai 6= ai−1; or φ = (ai 7→ aiai+1) for some 1 ≤ i ≤
(2n − 1), ai 6= ai+1. In the former case the associated sequence of T2 is
obtained from the associated sequence of T1 by moving ai from immediately
after ai−1 to immediately before ai−1. In the later case the associated
sequence of T2 is obtained from the associated sequence of T1 by moving
ai from immediately before ai+1 to immediately after ai+1.

In F4, let T1 = {abcd abcd}. Notice the associated sequence of T1 is
(a, b, c, d, a, b, c, d). If φ : = (b 7→ ab), then the associated sequence of
T2 = T φ1 is (a, c, d, b, a, b, c, d). In fact (abcd abcd)(b7→ab) = ab acdbcd. If φ :=
(a 7→ ab), then the associated sequence of T2 = T φ1 is (b, c, d, a, b, a, c, d).

In fact (abcd abcd)(a7→ab) = babcd a cd.

Remark 5.8. It is easy to see that {Πg
i=1[xi, yi]Π

p
k=1tk, [ t1], [ t2], . . . , [ tp]} is a

(g, p)-surface word set of Fg,1,p. Its associated sequence is

(x1, y1, x1, y1, x2, y2, x2, y2, . . . , xg, yg, xg, yg, t1, t1, t2, t2, . . . , tp, tp).

We say that {Πg
i=1[xi, yi]Π

p
k=1tk, [ t1], [ t2], . . . , [ tp]} is the standard (g, p)- surface

word set of Fg,1,p.

Remark 5.9. AMg,1,p = Hom(T, T ), where T is the standard (g, p)-surface
word set of Fg,1,p.

Theorem 5.10 (McCool [11],[7]). Gg,p is generated by Nielsen elements.
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6 Ends of free group

In this section we define, for every (g, p)-surface word set, an ordering of the set
of ends of Fn, where n = 2g + p. In particular, we define an ordering for the
standard (g, p)-surface word set, called the ordering of the set of ends of Fg,1,p.
There is an action of AMg,1,p on the set of ends of Fg,1,p. We show that the
ordering of the set of ends of Fg,1,p is respected by the AMg,1,p-action. We use
shadows of the set of ends of Fn and results of Section 5.

Recall n := 2g + p and Fn is the free group on X , where X is a set with n
elements.

Notation 6.1. Let Πk
i=1ai be the normal form for w ∈ Fn. Then we say that w

has length k, denoted |w| = k . The set of elements of Fn whose normal forms
have Πk

i=1ai as an initial subword is denoted (w⋆); and, the set of elements of Fn
whose normal forms have Πk

i=1ai as a terminal subword is denoted (⋆w). The
elements of (w⋆) are said to begin with w, and the elements of (⋆w) are said to
end with w.

Definition 6.2. An end of Fn is a right-infinite word Πk≥1ak = a1a2 · · · where
ak ∈ X ∪X and ak+1 6= ak for every k ≥ 1.

We denote the set of ends of Fn by ∂Fn.
For each w ∈ Fn, we define the shadow of w in ∂Fn to be

(w◭) := {Πk≥1ak ∈ ∂Fn | Π
|w|
k=1ak = w}.

Thus, for example, (1◭) = ∂Fn.

Definition 6.3. Let T be a surface word set. We now give ∂Fn an ordering,
<T , with respect to T as follows. Let (ak)1≤k≤2n be the associated sequence of
T . Recall (ak)1≤k≤2n is a listing of the elements of X ∪ X . For each w ∈ Fn,
we assign an ordering, <T , to a partition of (w◭) into 2n or 2n − 1 subsets,
depending as w = 1 or w 6= 1, as follows. We set

(a1◭) <T (a2◭) <T (a3◭) <T · · · <T (a2n−1◭) <T (a2n◭).

If 1 ≤ i ≤ n and w ∈ (⋆ai), then we set

(wai+1◭) <T (wai+2◭) <T (wai+3◭) <T · · ·

· · · <T (wa2n−1◭) <T (wa2n◭) <T (wa1◭) <T (wa2◭) <T (wa3◭) <T · · ·

· · · <T (wai−2◭) <T (wai−1◭).

Hence, for each w ∈ Fn, we have an ordering <T of a partition of (w◭) into 2n
or 2n− 1 subsets.

If Πk≥1bk and Πk≥1ck are two different ends, then there exists j ∈ Z, j ≥ 0,
such that Πj

k=1bk = Πj
k=1ck and bj+1 6= cj+1. Let w = Πj

k=1bk = Πj
k=1ck in
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Fn. Then Πk≥1bk and Πk≥1ck lie in (w◭), but lie in different elements of the
partition of (w◭) into 2n or 2n− 1 subsets. We then order Πk≥1bk and Πk≥1ck
using the ordering of the elements of the partition of (w◭) that they belong to.
This completes the definition of the ordering <T of ∂Fn.

Remark 6.4. Let w be the non-cyclic element of T . In (∂Fn, <T ), the smallest
element is w∞ and the largest element is w∞.

For example, in F4 = 〈a, b, c, d | 〉 we take the surface word set T =
{ad bc, [ab], [cd]}. The associated sequence of T is (a, b, c, d, b, a, d, c). In
(∂F4, <T ), the smallest element is (ad bc)∞, and, the largest element is (cbda)∞.

Notation 6.5. We denote by < the ordering of ∂Fg,1,p with respect to the
standard (g, p)-surface word set of Fg,1,p.

Review 6.6. Let Ŝ be the universal cover of Sg,1,p. Suppose Sg,1,p has negative

Euler characteristic, that is, 2g+ p ≥ 2. Then Ŝ can be identified with a convex
region of the hyperbolic plane H

2. Let ∂Ŝ be the boundary of Ŝ. Then ∂Ŝ is
a union of geodesic segments of the hyperbolic plane H

2. The union of ∂Ŝ and
the set of geodesic rays of Ŝ, denoted ∂Ŝ−, can be identified with the boundary
of a disc, that is, R∪{∞}. Let ∗ be the point in ∂Ŝ corresponding to ∞ by this
identification. By work of Nielsen-Thurston [5], [12], there is an action of Mg,1,p

on ∂Ŝ ∪ ∂Ŝ− which fixes ∗ ∈ ∂Ŝ ∪ ∂Ŝ−. This action is defined as follows. There
is a bijection between point of ∂Ŝ and geodesic segments of Ŝ with starting
point ∗ and endpoint in ∂Ŝ. There is a bijection between geodesic rays of Ŝ and
infinite geodesic segments of Ŝ starting at ∗. Let γ̂ be such a (finite or infinite)
geodesic segment. Let γ be the projection of γ̂ in S. Let [f ] ∈ Mg,1,p. We can
suppose that f is an isometry of S. Then, f(γ) is a geodesic segment. Define
[f ] · γ̂ as the lift of f(γ) with starting point ∗. Notice this lift defines a point of
∂Ŝ ∪ ∂Ŝ− and ∗ ∈ ∂Ŝ is fixed by this action. Hence, there exists an action of
Mg,1,p on R. By [12] or [6, Chapter 7], this action respects the usual ordering of
R. Corollary 6.8 gives the analog statement for AMg,1,p and ∂Fg,1,p.

Let φ ∈ Aut(Fn). It is proved in [5] that (Πk≥1ak)
φ = limk→∞(Πk

i=1ai)
φ

defines a map ∂Fn → ∂Fn, which we still denote by φ.

Proposition 6.7. Let T1, T2 be surface word sets of Fn and (T1, T2, φ) ∈
Hom(T1, T2). Then φ : (∂Fn,≤T1) → (∂Fn,≤T2) respects the orderings.

Proof. By Theorem 5.10, we can restrict ourselves to the case where (T1, T2, φ)
is a Nielsen.

By Remark 5.7(i), the result is clear if (T1, T2, φ) is a type-1 Nielsen. Hence,
we suppose (T1, T2, φ) is a type-2 Nielsen.

Let (ak)1≤k≤2n be the associated sequence of T1. Then either φ = (ai 7→
ai−1ai) for some 2 ≤ i ≤ 2n, ai 6= ai−1; or, φ = (ai 7→ aiai+1) for some 1 ≤ i ≤
(2n− 1), ai 6= ai+1.
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Suppose φ = (ai 7→ ai−1ai) for some 2 ≤ i ≤ 2n, ai 6= ai−1.

The following correspondence by the action of (ai 7→ ai−1ai) is clear.

(ai 7→ ai−1ai)

(⋆ aiai−1) −→ (⋆ ai),

(⋆ ai−1)− (⋆ aiai−1) −→ (⋆ ai−1),

(⋆ ai) −→ (⋆ ai),

(⋆ ak) −→ (⋆ ak), ak 6= a±1
i−1, a

±1
i ,

(⋆ ai−1) −→ (⋆ ai−1)− (⋆aiai−1),

(⋆ ai) −→ (⋆ aiai−1).

The following correspondence by the action of (ai 7→ ai−1ai) is clear.

(ai 7→ ai−1ai)

(ai−1 ◭) −→ (ai−1 ◭)− (ai−1ai ◭),

(ai ◭) −→ (ai−1ai ◭),

(ak ◭) −→ (ak ◭), ak 6= a±1
i−1, a

±1
i ,

(ai−1ai ◭) −→ (ai ◭),

(ai−1 ◭)− (ai−1ai ◭) −→ (ai−1 ◭),

(ai ◭) −→ (ai ◭).

From the first row of the first table and the second table we deduce the
following table.

(ai 7→ ai−1ai)

(⋆ aiai−1)(ai−1 ◭) −→ (⋆ ai)[(ai−1 ◭)− (ai−1ai ◭)],

(⋆ aiai−1)(ai ◭) −→ (⋆ ai)(ai−1ai ◭),

(⋆ aiai−1)(ak ◭) −→ (⋆ ai)(ak ◭), ak 6= a±1
i−1, a

±1
i ,

(⋆ aiai−1)(ai ◭) −→ (⋆ ai)(ai ◭).

Notice the cases (⋆aiai−1)(ai−1ai ◭) and (⋆aiai−1)[(ai−1 ◭)− (ai−1ai ◭)] do
not have to be considered since they are not in reduced form.

Let e, f ∈ ∂Fn such that e = (waiai−1)e
′, f = (waiai−1)f

′ and the first letter
of e′ is different from the first letter of f′. Let 1 ≤ j ≤ 2n such that aj = ai−1.
By the third table, e(ai 7→ai−1ai) = (uai)e

′′, f(ai 7→ai−1ai) = (uai)f
′′ in reduced form.

Let (bk)1≤k≤2n be the associated sequence of T2. Recall (bk)1≤k≤2n is obtained
from (ak)1≤k≤2n by moving ai from immediately after ai−1 to immediately before
aj = ai−1. There are two cases according to j < i− 1 or i− 1 < j.

If j < i− 1, then

(bk)1≤k≤(j−1) = (ak)1≤k≤(j−1),
(bj) = (ai),
(bk)(j+1)≤k≤i = (ak)j≤k≤(i−1),
(bk)(i+1)≤k≤2n = (ak)(i+1)≤k≤2n.
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The partition with respect to (ak)1≤k≤2n of (aj ◭) = (ai−1 ◭) is (aj+1 ◭),
(aj+2 ◭), . . . , (ai−1 ◭), (ai ◭), (ai+1 ◭), . . . , (a2n ◭), (a1 ◭), (a2 ◭), . . . ,
(aj−1 ◭). The partition with respect to (bk)1≤k≤2n of (ai ◭) is (aj ◭),
(aj+1 ◭), . . . , (ai−1 ◭), (ai+1 ◭), (ai+2 ◭), . . . , (a2n ◭), (a1 ◭), (a2 ◭), . . . ,
(aj−1 ◭). By the third table,

(ai 7→ ai−1ai)

(waiai−1)(aj+1 ◭) −→ (uai)(aj+1 ◭),

(waiai−1)(aj+2 ◭) −→ (uai)(aj+2 ◭),
...

(waiai−1)(ai−2 ◭) −→ (uai)(ai−2 ◭),

(waiai−1)(ai−1 ◭) −→ (uai)[(ai−1 ◭)− (ai−1ai ◭)],

(waiai−1)(ai ◭) −→ (uai)(ai−1ai ◭),

(waiai−1)(ai+1 ◭) −→ (uai)(ai+1 ◭),
...

(waiai−1)(a2n ◭) −→ (uai)(a2n ◭),

(waiai−1)(a1 ◭) −→ (uai)(a1 ◭),

(waiai−1)(a2 ◭) −→ (uai)(a2 ◭),
...

(waiai−1)(aj−1 ◭) −→ (uai)(aj−1 ◭).

Since aj = ai−1, the first column is ordered with respect to T1. On the other
hand, aj = ai−1 implies that the partition of (uai)(ai−1 ◭) with respect to T2
ends with (uai)(ai−1ai ◭). Then, the second column of this table is ordered with
respect to T2. Hence, if (waiai−1)e

′ <T1 (waiai−1)f
′ then (uai)e

′′ <T2 (uai)f
′′.

If i− 1 < j, then

(bk)1≤k≤(i−1) = (ak)1≤k≤(i−1),
(bk)i≤k≤(j−2) = (ak)(i+1)≤k≤(j−1),
(bj−1) = (ai),
(bk)j≤k≤2n = (ak)j≤k≤2n.

The partition with respect to (ak)1≤k≤2n of (aj ◭) = (ai−1 ◭) is (aj+1 ◭),
(aj+2 ◭), . . . , (a2n ◭),(a1 ◭), (a2 ◭), . . . , (ai−1 ◭), (ai ◭), (ai+1 ◭), . . . , (aj−1 ◭).
The partition with respect to (bk)1≤k≤2n of (ai ◭) is (aj ◭), (aj+1 ◭), . . . , (a2n ◭),
(a1 ◭), (a2 ◭), . . . , (ai−1 ◭), (ai+1 ◭), (ai+2 ◭), . . . , (aj−1 ◭). By the third table,
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(ai 7→ ai−1ai)

(waiai−1)(aj+1 ◭) −→ (uai)(aj+1 ◭),

(waiai−1)(aj+2 ◭) −→ (uai)(aj+2 ◭),
...

(waiai−1)(a2n ◭) −→ (uai)(a2n ◭),

(waiai−1)(a1 ◭) −→ (uai)(a1 ◭),

(waiai−1)(a2 ◭) −→ (uai)(a2 ◭),
...

(waiai−1)(ai−2 ◭) −→ (uai)(ai−2 ◭),

(waiai−1)(ai−1 ◭) −→ (uai)[(ai−1 ◭)− (ai−1ai ◭)],

(waiai−1)(ai ◭) −→ (uai)(ai−1ai ◭),

(waiai−1)(ai+1 ◭) −→ (uai)(ai+1 ◭),
...

(waiai−1)(aj−1 ◭) −→ (uai)(aj−1 ◭).

Since aj = ai−1, the first column is ordered with respect to T1. On the other
hand, aj = ai−1 implies that the partition of (uai)(ai−1 ◭) with respect to T2
ends with (uai)(ai−1ai ◭). Then, the second column of this table is ordered with
respect to T2. Hence, if (waiai−1)e

′ <T1 (waiai−1)f
′ then (uai)e

′′ <T2 (uai)f
′′.

For every row of the first table, there is a case which needs to be considered.
Similarly, in all these cases, it can be shown that if e <T1 f, then e(ai 7→ai−1ai) <T2

f(ai 7→ai−1ai).

The case φ = (ai 7→ aiai+1) for some 1 ≤ i ≤ (2n − 1), ai 6= ai+1, is
similar.

Since AMg,1,p is the subgroup of McCool’s groupoid based at the standard
(g, p)-surface word set, see Remark 5.9, we have the following.

Corollary 6.8. The AMg,1,p acts on (∂Fg,1,p,≤) respecting the ordering.

7 t-squarefreeness

In this section we define a subset A of ∂Fg,1,p such that A is AMg,1,p-invariant,
every non-t-squarefree end of Fg,1,p (see Definition 7.1) lies in A and for (g, p) 6=
(0, 1), (0, 2) the end a(Πg

i=1[xi, yi]Π
p
k=1tk)

∞, where a ∈ {tp}∪ {xi, yi, xi, yi}1≤i≤g,
does not lie in A. From these, and studying the special cases (g, p) =
(0, 1), (0, 2), we complete the proof of Theorem 4.2. We use the ordering of
∂Fg,1,p and results of Section 6.

Recall 2g + p = n and Fg,1,p is the free group on {xi, yi}1≤i≤g ∪ {tk}1≤k≤p.

The following definition extends Definition 4.1 to Fg,1,p ∪ ∂Fg,1,p.
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Definition 7.1. An element of Fg,1,p ∪ ∂Fg,1,p is said to be t-squarefree if, in its
reduced expression, no two consecutive terms in {tk, tk}1≤k≤p are equal.

Notation 7.2. Recall that if G is a group and g1, g2, . . . , gk ∈ G, then Πk
i=1gi =

g1g2 · · · gk. We use the notation Πi=k
1 gi = gkgk−1 · · · g1.

In the standard surface word set, we denote

z1 = Πg
i=1[xi, yi]Π

p
k=1tk = [x1, y1][x2, y2] · · · [xg, yg]t1t2 · · · tp,

z1 = Πk=p
1 tkΠ

i=g
1 [yi, xi] = tptp−1 · · · t1[yg, xg][yg−1, xg−1] · · · [y1, x1].

From Remark 6.4, the smallest element of (∂Fg,1,p, <) is z
∞
1 and the largest el-

ement of (∂Fg,1,p, <) is z
∞
1 . We denote by min(∂Fg,1,p) = z∞

1 and max(∂Fg,1,p) =
z∞1 these facts.

Given two ends e, f ∈ ∂Fg,1,p, we write

[e, f] := {g ∈ ∂Fg,1,p | e ≤ g ≤ f}.

Definition 7.3. For every 1 ≤ k ≤ p, let

Ak =
⋃

w∈Fg,1,p−(⋆tk)−(⋆tk)

[wtkw(z
∞
1 ), wtkw(z

∞
1 )] ⊆ ∂Fg,1,p.

Let
A =

⋃

1≤k≤p

Ak ⊆ ∂Fg,1,p.

Lemma 7.4. The set A ⊆ ∂Fg,1,p is AMg,1,p-invariant.

Proof. Let φ ∈ AMg,1,p. By definition, φ permutes the set of conjugacy classes
[ t1], [ t2], . . . , [ tp]. Hence, φ fixes the sets

{wtkw | 1 ≤ k ≤ p, w ∈ Fg,1,p − (⋆tk)− (⋆tk)} ⊆ Fg,1,p,

and
{wtkw | 1 ≤ k ≤ p, w ∈ Fg,1,p − (⋆tk)− (⋆tk)} ⊆ Fg,1,p.

By definition, φ fixes z1 = Πg
i=1[xi, yi]Π

p
k=1tk. Hence, φ fixes the sets

{wtkw(z
∞
1 ) | 1 ≤ k ≤ p, w ∈ Fg,1,p − (⋆tk)− (⋆tk)} ⊆ ∂Fg,1,p,

and
{wtkw(z

∞
1 ) | 1 ≤ k ≤ p, w ∈ Fg,1,p − (⋆tk)− (⋆tk)} ⊆ ∂Fg,1,p.

Now, Corollary 6.8 completes the proof.

Lemma 7.5. Let 1 ≤ k0 ≤ p and w ∈ Fg,1,p− (⋆tk0)− (⋆tk0). Then the following
hold in (∂Fg,1,p,≤):
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(i). wtk0w(z
∞
1 ) ≤ wtk0((Π

p
k=k0

tkΠ
g
i=1[xi, yi]Π

k0−1
k=1 tk)

∞) = min(wtk0tk0 ◭);

(ii). max(wtk0tk0 ◭) < min(wtk0tk0 ◭);

(iii). max(wtk0tk0 ◭) = wtk0((Π
k=k0
1 tkΠ

i=g
1 [yi, xi]Π

k=p
k0+1tk)

∞) ≤ wtk0w(z
∞
1 ).

Hence, (wtk0tk0 ◭) ∪ (wtk0tk0 ◭) ⊆ [wtk0w(z
∞
1 ), wtk0w(z

∞
1 )]. In particular Ak0

contains all non-tk0-squarefree ends of Fg,1,p and A contains all non-t-squarefree
ends of Fg,1,p.

Proof. Recall < is the ordering with respect to the sequence

(x1, y1, x1, y1, x2, y2, x2, y2, · · · , xg, yg, xg, yg, t1, t1, t2, t2, · · · , tp, tp).

(i). It is straightforward to see that

wtk0((Π
p
k=k0

tkΠ
g
i=1[xi, yi]Π

k0−1
k=1 tk)

∞) = min(wtk0tk0 ◭).

Let a ∈ X ∪X be such that w((Πg
i=1[xi, yi]Π

p
k=1tk)

∞) ∈ (a ◭). Note a 6= tk0 .
If a 6= tk0, then (wtk0a ◭) < (wtk0tk0 ◭), and we have

wtk0w(z
∞
1 ) = wtk0w((Π

g
i=1[xi, yi]Π

p
k=1tk)

∞) < min(wtk0tk0).

If a = tk0, then w is completely canceled in w((Πg
i=1[xi, yi]Π

p
k=1tk)

∞), and, more-
over,

wtk0w(z
∞
1 ) = wtk0w((Π

g
i=1[xi, yi]Π

p
k=1tk)

∞)

= wtk0((Π
p
k=k0

tkΠ
g
i=1[xi, yi]Π

k0−1
k=1 tk)

∞)

= min(wtk0tk0 ◭).

(ii). It is clear.

(iii). It is straightforward to see that

max(wtk0tk0 ◭) = wtk0((Π
k=k0
1 tkΠ

i=g
1 [yi, xi]Π

k=p
k0+1tk)

∞).

Let a ∈ X ∪X be such that w((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞) ∈ (a ◭). Note a 6= tk0 .
If a 6= tk0, then (wtk0tk0 ◭) < (wtk0a ◭), and we have

max(wtk0tk0 ◭) < wtk0w((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞) = wtk0w(z
∞
1 ).

If a = tk0, then w is completely canceled in w((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞), and, more-
over,

wtk0w(z
∞
1 ) = wtk0w((Π

k=p
1 tkΠ

i=g
1 [yi, xi])

∞)

= wtk0((Π
k=k0
1 tkΠ

i=g
1 [yi, xi]Π

k=k0+1
p tk)

∞)

= max(wtk0tk0 ◭).
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Lemma 7.6. Let 1 ≤ k0 ≤ p and w ∈ Fg,1,p − (⋆tk0)− (⋆tk0). Suppose (g, p) 6=
(0, 1), (0, 2). Then one of the followings holds in (∂Fg,1,p,≤):

(i) tp(z
∞
1 ) > wtk0w(z

∞
1 );

(ii) tp(z
∞
1 ) < wtk0w(z

∞
1 ).

Hence, tp(z
∞
1 ) /∈ [wtk0w(z

∞
1 ), wtk0w(z

∞
1 )]. In particular, tp(z

∞
1 ) /∈ Ak0 and

tp(z
∞
1 ) /∈ A.

Proof. Recall < is the ordering with respect to the sequence

(x1, y1, x1, y1, x2, y2, x2, y2, · · · , xg, yg, xg, yg, t1, t1, t2, t2, · · · , tp, tp).

By Lemma 7.5,

wtk0w((Π
g
i=1[xi, yi]Π

p
k=1tk)

∞) < wtk0w((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞).

Case 1. w = 1. Since (tpx1 ◭) ∪ (tpt1 ◭) > (tk0tp ◭), we see

tp(z
∞
1 ) = tp((Π

g
i=1[xi, yi]Π

p
k=1tk)

∞) > tk0((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞) = tk0(z
∞
1 ).

Thus, (i) holds.

Case 2. w /∈ (tp⋆) ∪ {1}. Since (tp ◭) > (wtk0 ◭), we see

tp(z
∞
1 ) = tp((Π

g
i=1[xi, yi]Π

p
k=1tk)

∞)

> wtk0w((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞) = wtk0w(z
∞
1 ).

Thus, (i) holds.

Case 3. w ∈ (tptp⋆). Since (tpx1 ◭) ∪ (tpt1 ◭) > (wtk0 ◭), we see

tp(z
∞
1 ) = tp((Π

g
i=1[xi, yi]Π

p
k=1tk)

∞)

> wtk0w((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞) = wtk0w(z
∞
1 ).

Thus, (i) holds.

Case 4. w ∈ (tp⋆)− (tptp⋆).
Here,

wtk0w(z
∞
1 ) = wtk0w((Π

g
i=1[xi, yi]Π

p
k=1tk)

∞) ∈ (wtk0 ◭) ⊂ (tp ◭)− (tptp ◭).

Hence,

tp((Π
g
i=1[xi, yi]Π

p
k=1tk)

∞) = min((tp ◭)− (tptp ◭))

≤ wtk0w((Π
g
i=1[xi, yi]Π

p
k=1tk)

∞).
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To prove (ii) holds, it remains to show that

tp((Π
g
i=1[xi, yi]Π

p
k=1tk)

∞) 6= wtk0w((Π
g
i=1[xi, yi]Π

p
k=1tk)

∞),

that is, (Πg
i=1[xi, yi]Π

p
k=1tk)

∞ 6= tpwtk0w((Π
g
i=1[xi, yi]Π

p
k=1tk)

∞), that is,
tpwtk0w /∈ 〈Πg

i=1[xi, yi]Π
p
k=1tk〉. We can write w = tpu where u /∈ (tp⋆). Then

tpwtk0w = utk0utp, in normal form. Thus it suffices to show

utk0utp /∈ 〈Πg
i=1[xi, yi]Π

p
k=1tk〉.

If u = 1, then utk0utp /∈ 〈Πg
i=1[xi, yi]Π

p
k=1tk〉, since (g, p) 6= (0, 1), (0, 2).

If u 6= 1, then utk0utp /∈ 〈Πg
i=1[xi, yi]Π

p
k=1tk〉, since utk0utp does not lie in

the submonoid of Fg,1,p generated by Πg
i=1[xi, yi]Π

p
k=1tk, nor in the submonoid

generated by Πk=p
1 tkΠ

i=g
1 [yi, xi].

Lemma 7.7. Let 1 ≤ k0 ≤ p, w ∈ Fg,1,p − (⋆tk0) − (⋆tk0) and 1 ≤ i0 ≤ g. If
a ∈ {xi0 , xi0 , yi0, yi0}, then one of the following holds in (∂Fg,1,p,≤):

(i). a(z∞1 ) > wtk0w(z
∞
1 );

(ii). a(z∞1 ) < wtk0w(z
∞
1 ).

Hence, a(z∞1 ) /∈ [wtk0w(z
∞
1 ), wtk0w(z

∞
1 )]. In particular, a(z∞1 ) /∈ Ak0 and

a(z∞1 ) /∈ A.

Proof. Recall < is the ordering with respect to the sequence

(x1, y1, x1, y1, x2, y2, x2, y2, · · · , xg, yg, xg, yg, t1, t1, t2, t2, · · · , tp, tp).

Let a ∈ {xi0 , xi0 , yi0, yi0}.

Case 1. w = 1. Since (a ◭) < (tk0 ◭), we see

a(z∞1 ) = a((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞) < tk0((Π
g
i=1[xi, yi]Π

p
k=1tk)

∞) = tk0(z
∞
1 ).

Thus, (ii) holds.

Case 2. w /∈ (a⋆) ∪ {1}.

If (a ◭) > (w ◭), then (a ◭) > (w ◭) ⊃ (wtk0 ◭) and

a(z∞1 ) = a((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞)

> wtk0w((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞) = wtk0w(z
∞
1 ).

Thus, (i) holds.

If (a ◭) < (w ◭), then (a ◭) < (w ◭) ⊃ (wtk0 ◭) and

a(z∞1 ) = a((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞)

< wtk0w((Π
g
i=1[xi, yi]Π

p
k=1tk)

∞) = wtk0w(z
∞
1 ).
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Thus, (ii) holds.

Case 3. w ∈ (atp⋆).

Since a((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞) = max(atp ◭), we see

a(z∞1 ) = a((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞)

≥ wtk0w((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞) = wtk0w(z
∞
1 ).

To prove (i) holds, it remains to show that

a((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞) 6= wtk0w((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞),

that is, (Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞ 6= awtk0w((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞), that is
awtk0w /∈ 〈Πk=p

1 tkΠ
i=g
1 [yi, xi]〉. We can write w = atpu where u /∈ (tp⋆). Then

awtk0w = tputk0utpa, in normal form. Thus it suffices to show that

tputk0utpa /∈ 〈Πk=p
1 tkΠ

i=g
1 [yi, xi]〉,

which is clear since tputk0utpa does not lie in the submonoid of Fg,1,p generated

by Πk=p
1 tkΠ

i=g
1 [yi, xi], nor in the submonoid generated by Πg

i=1[xi, yi]Π
p
k=1tk.

Case 4. w ∈ (a⋆)− (atp⋆), |w| ≥ 2.
If (atp ◭) > (w ◭), then (atp ◭) > (w ◭) ⊃ (wtk0 ◭) and

a(z∞1 ) = a((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞)

> wtk0w((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞) = wtk0w(z
∞
1 ).

Thus, (i) holds.

If (atp ◭) < (w ◭), then (atp ◭) < (w ◭) ⊃ (wtk0 ◭) and

a(z∞1 ) = a((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞)

< wtk0w((Π
g
i=1[xi, yi]Π

p
k=1tk)

∞) = wtk0w(z
∞
1 ).

Thus, (ii) holds.

Case 5. w = a.
Since a(z∞1 ) = max(atp ◭), (atp ◭) ⊃ (atpygxg ◭) and (atpygxg ◭) >

(atk0atp ◭), we see

a(z∞1 ) = a((Πk=p
1 tkΠ

i=g
1 [yi, xi])

∞)

> atk0a((Π
k=p
1 tkΠ

i=g
1 [yi, xi])

∞) = atk0a(z
∞
1 ).

Thus, (i) holds.

Proposition 7.8. If (g, p) 6= (0, 1), (0, 2) then the following hold for each
φ ∈ AMg,1,p:
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(i). t
φ
p (z

∞
1 ) is a t-squarefree end,

(ii). for every 1 ≤ i0 ≤ g and every a ∈ {xi0 , xi0 , yi0, yi0}, a
φ(z∞1 ) is a t-

squarefree end.

Proof. (i). By Lemma 7.4, A is AMg,1,p-invariant. By Lemma 7.6, tp(z
∞
1 ) /∈ A.

By Lemma 7.5, A contains all non-t-squarefree ends of ∂Fg,1,p. Thus, t
φ
p(z

∞
1 ) =

(tp(z
∞
1 ))φ is a t-squarefree end of Fg,1,p.

(ii). By Lemma 7.4, A is AMg,1,p-invariant. By Lemma 7.7, a(z∞1 ) /∈ A.
By Lemma 7.5, A contains all non-t-squarefree ends of ∂Fg,1,p. Thus, a

φ(z∞1 ) =
(a(z∞1 ))φ is a t-squarefree end of Fg,1,p.

Proof. (of Theorem 4.2) The case (g, p) = (0, 1) is clear since AM0,1,1 = 1.
Recall (2.3.1). AM0,1,2 = 〈σ1〉, and

{tφ2 | φ ∈ AM0,1,2} = {t
σ2m1
2 , t

σ2m+1
1

2 | m ∈ Z} = {t
(t1t2)m

2 , t
(t1t2)m

1 | m ∈ Z}

Thus, every element of {tφ2 | φ ∈ AM0,1,2} is t-squarefree.

Suppose, now, (g, p) 6= (0, 1), (0, 2). Let 1 ≤ i0 ≤ g and a ∈ {xi0 , yi0}.
By Proposition 7.8(ii), aφ(z∞1 ) = aφ((Πk=p

1 tkΠ
i=g
1 [yi, xi])

∞) is a t-squarefree end.
Hence, either aφ is t-squarefree or aφ = utktkv in normal form, and tkv is can-
celed in aφ(z∞1 ) = utktkv(z

∞
1 ); moreover utk, tkv are t-squarefree. By Proposi-

tion 7.8(ii),
aφ(z∞1 ) = aφ((Πk=p

1 tkΠ
i=g
1 [yi, xi])

∞)

is a t-squarefree end. Hence, aφ 6= vtktku.

Since φ permutes the set {[ tk]}1≤k≤p, we can write t
φ
p = t

wp

pπ , where π is a
permutation of {1, 2, . . . , p} and wp ∈ Fg,1,p − (tpπ⋆)− (tpπ⋆). It is not difficult
to see that

t
φ
p(z

∞
1 ) = wptpπwp((Π

g
i=1[xi, yi]Π

p
k=1tk)

∞) ∈ (wp ◭).

By Proposition 7.8(i), t
φ
p(z

∞
1 ) is a t-squarefree end. Hence, wp is t-squarefree.

Since wp is t-squarefree, t
φ
p = wptpwp is also t-squarefree. Hence, tφp is t-

squarefree.

Suppose, now, p ≥ 2. Let 1 ≤ k ≤ p. Since tk is in the AMg,1,p-orbit of tp,

we see tφk is t-squarefree for all φ ∈ AMg,1,p.
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