
HAL Id: hal-00489023
https://hal.science/hal-00489023

Preprint submitted on 3 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing Virtualization-Based Infrastructure for
Providing On-demand HPC Software-based Service

Rodrigue Chakode, Jean-François Méhaut

To cite this version:
Rodrigue Chakode, Jean-François Méhaut. Designing Virtualization-Based Infrastructure for Provid-
ing On-demand HPC Software-based Service. 2010. �hal-00489023�

https://hal.science/hal-00489023
https://hal.archives-ouvertes.fr

Designing Virtualization-Based Infrastructure for Providing On-demand HPC
Software-based Service

Rodrigue Chakode, Jean-François Méhaut
INRIA Mescal Research Project - LIG Laboratory

University of Grenoble - France
Email: {Rodrigue.Chakode, Jean-Francois.Mehaut}@imag.fr

Abstract—The emerging of Internet-based computing,
namely cloud computing, has increased the possibility of
sharing remote resource. On the other hand, while the use-
fulness and how to use grid computing for sharing hardware
resource have been well studied, such studies do not seem to
be available concerning software. We propose in this paper
an on-demand service model to share software within grids.
Targeting performance, flexibility and resource use efficiency,
we discuss virtualization-enabled features to suggest an infras-
tructure model, and an implementation approach based on
service execution within virtual machines (VM). The study
show that, in spite of the potential performance overhead,
on which conventional wisdom has based its unsuitability for
HPC, virtualization can enable relevant features concerning
on-demand cloud-like service. The possibility to build flexible
and highly-reconfigurable infrastructure, and the possibility
to easily achieve efficiency-driven resource scheduling are
examples. Based on an OpenNebula infrastructure along with
Xen as VM Monitor backend, we implement a prototype,
and carry out experiments concerning performance using
the parsec benchmark. Our results show that, with suitable
tuning, VM can achieve near native performance, even when
applications run onto single node-hosted concurrent VMs.

Keywords-Cloud Computing; On-demand Scheduling; Per-
formance of Virtual Machines; Reconfigurability of Virtual
Clusters; Software-based Service;

I. INTRODUCTION

In grid virtual-organization, members usually share re-
source among them. Such resource can be hardware re-
source, or software. While how to share hardware resource
has been well studied, this does not seem to be the case
concerning software. The emerging of cloud computing has
enabled the possibility of remotely accessing software as
a service. This approach would be suitable to share spe-
cialized software within a grid. The service can be accessed
following a subscription, and/or an on-demand model, while
the latter would be suitable for service providers. Indeed,
they would like having an online control on the access
and the service use. In addition, the use can be charged to
users. In this case, it could be interesting to automatically
adapt the charging to service requirements, and the resource
availability.

Virtualization were originally led by the aim of consoli-
dating servers within data centers. Its main drawback has

been performance overhead, especially caused by virtual
machine management process, and mostly by I/O operations.
Naturally, this performance overhead has been a constraint
for the using of virtualization-based solutions within an
HPC context. Due to conventional wisdom, the constraint
still persists in spite of the work done these last years to
reduce this overhead. Virtualization enables relevant fea-
tures. Performance isolation among virtual machines (VM),
live migration of VM, and the possibility to suspend and
resume VM are examples. They enable node consolidation,
preemption and process migration, which can be useful for
achieving load balancing and/or energy-driven scheduling,
and for dynamically adapting the infrastructure configura-
tion. Besides, VMs can be automatically and easily tailored
to fill the needs of applications.

In this paper, we discuss an on-demand service model for
sharing software within grid virtual organization. Targeting
performance, flexibility and resource use efficiency, we
discuss features enabled by the virtualization to suggest an
infrastructure model, and an implementation approach based
on execution within virtual machine. In order to minimizing
potential performance overhead due to virtualization, our
design relies on two main concepts. A network-based appli-
cation repository called High-Speed Network Data Repos-
itory (HSNDR), and Smart Virtual Machines (SVM). An
HSNDR is repository through which applications within
VMs perform I/O, while a SVM is a lightweight VM capable
of automatically building service execution environment
(along with an HSNDR), and scheduling the execution.
We have implemented a prototype over an OpenNebula
infrastructure along with Xen as VM Monitor backend.
From this prototype, we carry out experiments concerning
performance using parsec benchmark. Basing on several VM
hardware configurations (number of cores, memory size, I/O
devices, etc.), we particularly investigate the performance of
concurrent VMs-based execution.

We will discuss the suitability of an on-demand service
model for sharing software (Section II). We will then design
an infrastructure model (Section III), followed by a proto-
type implementation (Section IV). From which, we evaluate
the performance of applications running onto SVMs (Section
V). Finally, we will present our conclusion and future works.

II. SHARING HIGH PERFORMANCE SOFTWARE WITH
ON-DEMAND ACCESS

The usefulness of grid computing to aggregate and share
computional resource, including hardware, as well as soft-
ware has been well discussed [1], [2], [3]. However, almost
of these studies target the sharing of hardware resource. We
propose here an approach for sharing software.

A. On-demand Service Model for Sharing Software

A simple way to share software can consist in distributing
software binaries. However, this process could be an heavy
task since it has to be repeated at each software release.
Likewise, provider would like preserving software integrity.
Besises, specialized architecture (such as supercomputer, or
computers with specialized chips) could be required to run
software. It would be suitable in this case to provide the
software as a on-demand remote service [4].

In such a case, service consists in processing user-
provided data. The processing is scheduled onto the
provider’s infrastructure. An on-demand model requires a
prompt service activation after user request. The service use
can be charged to users. It has been showed that incentives
for sharing resource within grid rise when resource providers
can derive earnings [18], [19]. To be conformed with modern
grid infrastructure, the service can be requested through web
service, thereby being handleable by widespread used grid
scheduling tools, such as WSGRMS [5]. Since the service
providing relies on the provider’s infrastructure, resource
management can raise tricky issues as introduced in [1].

B. Resource Management

Several situations can happen when schedule the user
service requests. The arrival of simultaneous requests which
can not be scheduled at once. The arrival of requests when
resources are not longer available. Assuming that the service
use is charged, users need to be guaranteed with a well-
defined service quality level, which can be defined in term of
service delivery time, service cost, etc. We assume therefore
that the service provider’s jobs have less prioritized than
user’s jobs. Consequently, provider’s jobs should be only
scheduled onto idle resources, and have to be suspended
when users’ requests arrive (best effort scheduling). It would
be suitable to avoid the wasting of already-done computa-
tion, by implementing preemption and process migration for
instance.

Likewise, it is usual that computational power delivered
by a single node in today HPC clusters over-passes the
power required by a single application instance, according
to data and parallelism level. In order to maximizing node
throughput, consolidation should be enabled in order to
allow the execution of several instances onto a same node,
while guaranteeing isolation among the instances. Concern-
ing software-based service providing, this consolidation can
assist to optimizing the number of handleable requests. In

order to be efficient, the mechanisms of suspending and
restarting applications, as well as the mechanisms of consol-
idating nodes have to be easily achievable, and enable easy
automation (easy reconfigurability). What does not seem
possible with the existing tools within HPC environments.

1) Preemption and Process Migration in HPC context: In
order to schedule prioritized application, it can be necessary
to implement interrupt other applications. To avoid the
restarting of the latter at their beginnings, preemption and
process migration tools, such as BLCR [6], Condor [7],
Libckpt [8], and cocheck [9], enable the suspension and the
restarting of sequential, as well as distributed applications.
Nevertheless, the correctness of apllications can not be guar-
anteed when the associated processes has open pipes, open
files, and/or open sockets. In addition, these tools require the
gathering of low-level information, such as process identifier,
process session identifier, and/or process group identifier.

2) Consolidation Tools within HPC Context: Comput-
ing nodes in most of today clusters have more than four
CPU/cores along with a large amount of memory (can be
greater than 64GB). As previously mentioned, their delivered
computational powers often overpass the requirement of a
single instance of application. Consolidation tools, such as
Linux Control Group (cgroups) [10] along with cpusets,
or Solaris Containers [11] enable the correct running of
several application instances onto a single node, thereby
optimizing throughput and resource use. For safety and
coherency purposes, these instances are mutually isolated.
That is to say that each instance has its dedicated resource
frame, and can not access to resource located beyond its
frame. Although the aforementioned tools preserve isolation,
they require low level tuning of operating system, thereby
being suitable for permanent and/or long-term configuration.

C. Towards an Infrastructure for Sharing Software

In all, existing checkpointing and consolidation tools seem
to be not suitable for designing highly configurable environ-
ment. Such features can be enable by the virtualization[12]
in spite of its potential performance overhead. This point
of view is consolidated by researchers in [13], [14]. While
consolidation can be easily achieved by running applica-
tions within virtual machines (VM), checkpointing is also
achievable easily (typically, by saving the entire VM state).
Moreover, VMs can be migrated easily towards less or more
computing nodes in order to achieve load-balancing and/or
energy-efficient computing, which are relevant requirements
to modern data centers.

Assuming that VMs will be stood permanently, a VM-
based infrastructure will look like transitional cluster. Re-
source scheduling can thus be achieved through a traditional
resource manager such as OAR [15] and PBS [16]. In such
a case, the VMs’ configurations (hardware and/or, software)
have to be known in advance. However, using on-demand
model, VM configurations can vary according to execution

Figure 1. A middleware architecture and workflow description for
providing software-based service

data, for instance. Furthermore, as previously discussed in
[17], scheduling resource within such a context needs to be
flexible, and enables reconfigurability for guaranteeing the
efficiency of resource use. This implies challenge to dynam-
ically configure the suitable VMs for running services, and
to dynamically schedule these VMs onto physical nodes.

III. INFRASTRUCTURE MODEL FOR SCHEDULING
PARALLEL SERVICE ON-DEMAND

Functionally, the service execution is scheduled onto VM
which is then scheduled onto physical node. Contrary to
traditional resource managers, the cluster frontend does not
have to be directly accessed by users. Direct-access to cluster
can be unsafe, while the resource use can be unfair. Indeed,
several accesses have to be granted to users whom can be
malicious and/or selfish users. Deal with such users can
become increasingly complex according to their number.
Therefore, we assume that service is requested through web
service interface along with execution parameters, that ser-
vice provider enables mechanisms allowing users to upload
and/or download input and output data, where required.

Our design focuses three main points, (i) requests han-
dling, (i) resource scheduling, (iii) the minimization of the
potential overhead due to the virtualization.

A. Handling User Request

One of the most important things to deal with is to handle
user requests. We assume that software providers charge
the use of software. The service access can be auctioned
or bargained through a market-oriented grid system, such
as proposed in [20], integrated within the Request Handler
(RH) (see Figure 1), after a service request (a). This bargain-
ing or auctioning can take the state of available resource
(provided by the Infrastructure State Logger (b)) into ac-
count. Successful bargaining implies that there are sufficient
resources to schedule the service. This process constitutes

the on-demand access-model to service. For scheduling
purpose, the RH retrieves parameters from service request
to build the configurations of the virtual appliance (VA)
associated to the service, and stores them into the Virtual
Appliance Configuration Store (VACS) (c).

B. Request Scheduling

After handling request, two things have to be achieved
for scheduling the service: (i) create VAs with suitable
configuration and data, (ii) schedule these VAs onto physical
nodes. In order to guarantee an efficient use of the whole
system, this creation has to be achieved easily and fastly.
It has therefore to be achieved automatically and dynami-
cally, thereby avoiding human interactions, where possible.
For scheduling these VAs, the Virtual Appliance Scheduler
(VAS) relies on a virtual infrastructure (VI) manager [21]
(f). After successfully scheduling service request, the state
of available resources is updated into the Infrastructure State
Logger (e).

Basically, avoiding human interactions assumes however
mechanisms for automatically providing input to applica-
tions within VMs, for automatically retrieving output, while
preserving performance.

C. Dealing With Performance

Potentially, such an infrastructure can have performance
issues, mainly consisting of time to setup VM, overhead due
to VM Monitor (VMM), and overhead due to I/O operations
performed within VMs.

1) Dealing with I/O: Most of existing data centers use
manually-built VM software stacks also known as virtual
appliances (VA). VMs disks are often virtual block devices,
including raw hard-drive partitions, LVM partitions, and
file-backed VBD. The last is most used since it enables
easy customization. Indeed, it is easily duplicable using
basic file copy tools, and can also be mounted as directory
within file system. Its content can thus be modified easily.
Such a task can be automated when configuration and data
are known and available. According to the architecture
on Figure 1, such information can be retrieve from the
VACS database. However, although file-backed VBDs are
suitable for automating the setting of VAs, they can have
drawbacks. The main problem is performance overhead [22],
more significant when VM host data-intensive application.
Furthermore, VM setup time grows according to application
data size. Without choosing suitable disk size, it can be filled
during execution, thereby causing crash. Without knowledge
on the size of data, it seems difficult to avoid such a
crash, unless to always use large disks, and often waste
unused space. Furthermore, copying data to and/or from
VM requires disk- and network accesses, which consume
time. The scheduling of distributed applications can require
multiple copies of same data within VMs depending to the
number of coopering VMs.

To avoid such issues, we propose to store application data
into a network-based data repository, hereafter referred by
Application Data Repository (ADR). An ADR is linked to
VM’s file system as a network-attached storage. Although
basically, this configuration avoids duplication, the perfor-
mance of an ADR-based application also depends on the
underlying network. In [23], researchers suggest that by
performing I/O operations through high-speed networks such
as InfiniBand and Giga Ethernet-based TCP, the performance
of VM-based data-intensive applications can be significantly
improved, while better performance are achieved using In-
finiBand. Although this result was achieved with a specific
visualization tool, it can be applied with other tools. Indeed,
it basically relies on a generic mechanism, the Virtual
Machine Monitor-Bypass or OS-Bypass mechanism. It can
be implemented in several ways. PCI passthrough [24] which
is implementation independent, is another example of the
bypass mechanism implementation.

2) Setting Up Virtual Machine: Instead of packing all
application data into VM image, we propose to use Smart
Virtual Appliances (SVA). A SVA is a lightweight VM image
along with minimal software stacks, capable of setting cus-
tom execution environment up, from configurations. Relying
on an ADR Repository, SVA’s Init Scripts and configuration
files are altered to achieve this customization at startup of
SVM (Smart Virtual Machine). Such customization consists
in configuring access to ADR, setting user and files accesses,
scheduling commands, etc. By using SVA, multiple data
copies can be avoided, thereby reducing time required to
set VM up. A SVM is configured so to automatically shuts
down as soon as scheduled tasks are ended, thereby freeing
physical node.

IV. IMPLEMENTATION

The original context of this work is CILOE1, an industrial
project supported by the business cluster Minalogic2. The
project aims at fostering access to HPC technologies, in-
cluding methodologies, softwares, and security mechanisms,
to small and medium enterprises. It is a pilot project
aiming at developing open components for providing on
demand software-based service over clusters of multi-core
machines. CILOE involves nine partners (four small and
medium software editors, three research institutions, one
computer manufacturer, and one consulting company). The
current implementation is a footstep following a theoretical-
preliminary study [17].

A. Break in Virtualization Technologies for Making Choices
Virtualization is an essential solution for allocating com-

putational resources tailored to the needs of an applica-
tion. Virtual machines (VMs) enable the specialization of

1http://ciloe.minalogic.net
2http://www.minalogic.com. This work is supported by Minalogic

through the project CILOE. We express our thankfulness to the CILOE
partners for their collaborations.

operating systems towards particular tasks, with hardware
resources safely and transparently multiplexed by the VM
monitor (VMM). Virtualization allows the decoupling of the
physical computational infrastructure management from the
management of the user-visible virtual computing facility.

1) About Virtualization and Service-Oriented Computing:
Virtualization has fostered a new paradigm of computing,
namely service computing which is also known as cloud
computing [4]. Cloud services can be grouped in three cat-
egories, namely Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), and Software as a Service (SaaS).
They are located at different levels in an infrastructural and
service hierarchy as illustrated on Figure 2. At the physical
node level (low level), VMMs including Xen [25], KVM
[26], and VMware [27] enable features, consolidation, (live-
)migration of VM, as well as the possibility of suspending
and restarting VMs. As previously mentioned (first section),
these features can be interesting within an HPC context,
although virtualization suffers of performance overhead.
At the infrastructure level (middle level), virtual infras-
tructure managers, such as OpenNebula [28], Eucalyptus
[28], Globus Nimbus [29], Amazon EC2 [30], and VMware
vSphere rely on VMMs as backend to provide virtual
clusters (cluster of network-interconnected VMs). According
to VI managers, several algorithms and/or policies can be
provided to schedule VMs onto physical nodes (immediate
provisioning, best-effort, advance reservation, etc). Some of
VI managers (e.g. OpenNebula) can enable the possibility of
using custom scheduling algorithms [31]. IaaS clouds rely
basically on VI managers. At the service level (top level),
tools can be built over VI managers to provide PaaS, as well
as SaaS clouds.

2) Technology Choices: Formally, a Virtual Appliance
Scheduling Middleware (VASM) (see Figure 1) encapsu-
lates three layers. The software service layer relies on
the platform layer, which is deployed on an infrastructure
layer. Concerning implementation, we would like building
open framework. It would be therefore based on open
components. VM technology choices are restricted to non-
proprietary solutions. Other selection criteria are respectively
performance, useful features, and flexibility. At the node
level, there are studies concerning VMMs performance.
[25], and [32] move Xen and KVM in forward, while
none of them do not really differentiate KVM and Xen
concerning all kind of applications. [33] suggests however
that the Xen paravirtualization approach versus the KVM
full virtualization approach, allow the building of lightweight
VM images (without hardware drivers). Paravirtualized VMs
seem to be more customizable than fully virtualized ones. At
the infrastructure level, [31] provides a survey concerning
existing VI managers. OpenNebula differentiates itself by
enabling relevant features, such as an easy customization of
scheduling algorithm, and the possibility of contextualizing
VMs.

Figure 2. Hierarchy of Virtualization-based Services

B. Implementation of the VASM Components

The implementation of the VASM is at prototype stage.
This prototype does not implements the negotiation within
the RH, yet ongoing. It assumes that resources are available
for scheduling service as requested. Otherwise, if a VM
associated to service request is scheduled when there are not
sufficient resources available on physical node, it will fail
at startup. This behavior is inherent to the backend VMM,
namely Xen. The prototype is implemented as a command
line program allowing arguments. It already enables the
handling and the scheduling of requests from command line.
The VASM arguments consist of a service name (program
alias) along with execution parameters which consist of
program arguments, and hardware requirements (number of
cores, memory size). Further details about the implementa-
tion of each component are given hereafter.

1) Physical Architecture: For the implementation, we
consider a typical cluster with a frontend and computing
nodes interconnected through a network as illustrated on
Figure 3. Such a network, usually a Ethernet network, is
use for operating tasks. In addition, computing nodes com-
municate through an HPC-dedicated high speed network, for
instance an InfiniBand (IB) fabric. In such a configuration,
the VASM stack is hosted onto the frontend, from which
service requests are submitted. The Ethernet network is
used for scheduling and other miscellaneous tasks, such
the migration of VMs. Images of VMs are stored into
a Ethernet-based NFS Repository, enabling live migration,
while centralizing images management tasks.

2) ADR Repository: It is implemented as a NFS file
system over IB. However, instead of implementing IB drivers
within VMs, the support of IPoIB (IP over IB) is enabled
within privileged domains (Dom0). Indeed, their kernels are
compiled by enabling IB support, and IB drivers including
IPoIB stack are installed from a OFED stack [34]. On Figure
3, bold lines are associated to the IPoIB network, which are
dedicated to computation. Each Dom0 is configured as an
ADR router for its guest domains (DomU).

Figure 3. A physical architecture for running software-based service

Figure 4. Overview of Service Configuration File

3) Request Handler: Request Handling consists in pars-
ing request command line, and automatically building the
associated virtual appliances (VA). This task is achieved
from configuration files, and relies on template-based con-
textualization feature enabled by OpenNebula. For under-
standing purpose, an OpenNebula VM template includes
various directives. Some of these directives are used to spec-
ify hardware configuration (number of CPU/cores, memory
size), as well as context files. Such files are archived within
an ISO image, and then attached into VM’s file system as a
block device.

Our implementation defines a VA configuration as a set
of files consisting of a VM template, context scripts (to
automatically schedule service execution onto VM), as well
as scripts (to schedule VM onto computing node). For
creating this configuration, a generic template tailored for
this purpose, is duplicated and altered basing on request pa-
rameters. Scripts necessary for scheduling service execution,
as well as other contextualization files are generated from
request parameters and the services configuration file. As
illustrated on Figure 4, this file lists all available services
along with parameters necessary to setting execution envi-
ronment. For instance, the configuration provides for each
service, directives for indicating Executable Files, an ADR
Repository, and an User with suitable rights on data. All
generated files are stored into the VACS directory, whose
its path is also specified in the services configuration file.

4) Request Scheduler: As mentioned in the previous
section, scheduling virtual machine onto physical node is
a fairly easy task consisting in running the RH-generated

scripts. Other tasks are scheduled within smart virtual ap-
pliances.

5) Smart Virtual Appliance: It is implemented from a
basic image of VM, whose Init Scripts are altered to achieve
the following algorithm when the associated virtual machine
starts. (i) Mount the context files ISO image into a temporary
directory, (ii) Move to this directory, (iii) Read the virtual
appliance-configuration file. (iv) Configure access to the
associated ADR Repository and setting file accesses, (v)
Switch to suitable User, (vi) Schedule service execution,
(vii) Waiting for the service execution end, (viii) Save the
execution exit status into the ADR, (ix) Unconf access to
ADR, (x) Shut down virtual machine.

V. EVALUATION

In this section we evaluate the performance of VASM’s
Components in order to validate our design. We evaluate
the performance of HSNDR-based SVMs, focusing first on
time required to configure and to start up virtual machines
according to application data size. We compare these time
with those required when application data (binaries and data)
are copied within VMs. To evaluation the performance of
applications running onto HSNDR-based SVMs, we use a
representative benchmark concerning emerging applications,
namely [35]. Indeed, benchmarks, such as NPB [36], used
in prior works [25], [23], [32] seem to be old regarding the
new generations of software. Parsec focuses on emerging
workloads and was designed to be representative of next-
generation shared-memory programs for multi-core chips.
This evaluation brings out three other contributions. We
evaluate the overhead due to virtualization when appli-
cations are running onto multicore VMs. We investigate
the performance of applications running onto single node-
hosted concurrent VMs. We finally evaluate the impact of
I/O operations (performed within VMs) on virtual machine
monitor.

A. Experimental Environment

We use Bull R422-E1 servers as physical computing
nodes. Each node consists of 8 GB of memory, 2 quad
cores Intel Xeon CPU (2.5Ghz, 6MB of cache size), 1 SATA
disk, and 2 network interface cards (NIC). The first NIC is
connected to a Gigabit Ethernet network, and the other to
an InfiniBand fabric through 20G HCA (Mellanox ConnectX
IB 4X DDR MT26418). The VASM middleware is deployed
over OpenNebula 1.4, while the HSNDR and the VM image
repositories are configured as NFS v3 file systems over
SATA disks. The NFS servers are managed by native Linux,
and are respectively accessible through the IPoIB and the
Ethernet network. Each physical node includes Xen 3.4.2
and OFED 1.4.2, and is configured to work as OpenNebula
node. DomO and DomU kernels was compiled separately.

B. Performance and Benefits of HSNDR-based SVMs

We evaluate the three parsec’s OpenMP applications,
Bodytrack (image tracking), Blackscholes (option simula-
tion), and Freqmine (word frequence mining). While the
weight of disk I/O is fairly high in the first, it is slight
in the second, and low in the third. Before evaluating
their performances, we evaluate the raw performance of I/O
device using the iozone benchmark [37]. Such an evaluation
aims at validating the choice of I/O device.

Running iozone, the maximum of measured read speed
over VBD or HSNDR is about 45% less than the maximum
over native SATA disk (Figure 5-(b)). However, Due to NFS
write cache, the maximum of measured write speed over
HSNDR is about 192% greater than the maximum over
native SATA or VBD (c). Concerning execution time, while
their performances are slightly equal when running single
instance (first cluster on Figure 5-(c)), HSNDR shows well
scalability than VBD devices. This result can be justified
by looking the behavior of Dom0s when one of their hosted
VMs computes iozone. The response time of a Dom0 hosting
VBD-based DomUs is unpredictable. As shown on Figure
7, its often behaves as its load has been multiplied by about
150. These response time consist of the time to compute
remote ls commands onto each Dom0, using ssh from
another node. Concurrent instances over raw SATA cause
crash along with SIGFAULT signal.

Benchmarks from parsec applications show that, isolated
mono- and multi-core VMs achieve near native performance
(less than 3% of overhead). However, significant overhead
can appear with single node-hosted concurrent VMs-based
executions (over 50% with 8 concurrent 1-threaded instances
of Bodytrack), see Figure 6. Due to swapping, concurrent
instances of fremine achieve poor performance onto native
system (over 700% of overhead), while instances based on
concurrent VMs perform near native performance (0.01%
of overhead). It can be observed that performance overhead
varies considerably according to the number of concurrent
DomUs (inducing high a load on Dom0), and the weight of
I/O operations within applications (inducing high load on the
underlying disk). This overhead can be significantly reduced,
for instance, by tuning the underlying network and/or disks,
or by choosing a suitable number of concurrent VMs along
with suitable hardware configuration, etc.

Concerning time to get VMs ready to compute, HSNDR-
based SVMs require a low and constant time. Using 500MB
image, about 18 seconds are required for duplication, and
setup (see on Figure 8). This represents less than 10% of
compute time for applications requiring more than 3 minutes
of execution time. Contrariwise, packed data-based VMs
require linear time according to data size. Up to 10 minutes
are required for packing 10GB of data. Ten Gigabytes is not
surrealist. For example, JivaroD [38], an application within
the CILOE context can process more than 15GB of input.

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

S
p

ee
d

 (
M

b
y

te
s/

s)

File size (kbytes)

(b) Device Read Speed

Raw SATA disk
VBD over SATA disk

IPoIB-based NFS over SATA disk

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

S
p

ee
d

 (
M

b
y

te
s/

s)

File size (kbytes)

(a) Device Write Speed

Raw SATA disk
VBD over SATA disk

IPoIB-based NFS over SATA disk

 0

 20

 40

 60

 80

 100

 120

 140

Isolated Instance Two Concurrent VMs Three Concurrent VMs

E
x
e
c
u
ti

o
n

 w
a
ll

ti
m

e
 t

im
e
 (

m
in

)

(c) Walltime of Concurrent Iozone Instances

Raw SATA
VBD-based device

IPoIB NFS-based device

Figure 5. Device Bandwidth and Scalability

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 Thread 2 Threads 4 Threads 6 Threads 8 Threads

W
a
ll

ti
m

e
 t

im
e
 (

m
in

)

Blackscholes

Isolated Instance onto Raw Linux
Conccurent Instance onto Raw Linux

Instance onto Isolated VBD-based VM
Instance onto Isolated HSNBDR-based VM

Instance onto Concurrent HSNBDR-based VM

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 Thread 2 Threads 4 Threads 6 Threads 8 Threads

W
al

lt
im

e
ti

m
e

(m
in

)

Bodytrack

Isolated Instance onto Raw Linux
Conccurent Instance onto Raw Linux

Instance onto Isolated VBD-based VM
Instance onto Isolated HSNBDR-based VM

Instance onto Concurrent HSNBDR-based VM

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 Thread 2 Threads 4 Threads 6 Threads 8 Threads

W
al

lt
im

e
ti

m
e

(m
in

)

Freqmine

Isolated Instance onto Raw Linux
Conccurent Instance onto Raw Linux

Instance onto Isolated VBD-based VM
Instance onto Isolated HSNBDR-based VM

Instance onto Concurrent HSNBDR-based VM

Figure 6. Performance of HSNDR-based VMs running Parsec Applications

avg1 = 0.094 ->

avg2 = 14.834 ->

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10

R
ep

o
n

se
 t

im
e

(s
ec

)

Probing date (min)

Idle Dom0
Dom0 hosting VBD-based VM

Dom0 hosting HSNDR-based VM

Figure 7. Dom0 Response time when I/O are performed within DomU

VI. CONCLUSION

We have proposed an infrastructure model for imple-
menting on-demand software-based service, aiming at en-
abling software sharing within grids. Targeting performance,
flexibility, and resource use efficiency, the model relies on
smart virtual machines for on-the-fly scheduling service
execution onto virtual machines (scheduling on-demand),
and an high-speed network-based data repository through
which applications within virtual machine (VM) perform
I/O. Relying on an OpenNebula infrastructure along with
Xen as VM Monitor backend, we implemented a prototype,
from which virtualization overhead have been evaluated

18s

2m18.43s

4m42.14s

7m3.14s

9m37s

 0

 100

 200

 300

 400

 500

 600

0.5 1 2.5 5 7.5 0 2 4 6 8 10

S
et

u
p
 t

im
e

(s
ec

)

VM Image size (GB)

Packed data-based SVM
HSNDR-based SVM

Figure 8. VM setup time. SVM achieves low and constant setup time

using parsec-benchmark’s applications. Our results show that
VMs can achieve near native performance, while otherwise,
the overhead can be significantly reduced with suitable tun-
ing. Besides, this model can also be suitable for enabling the
implementation of highly reconfigurable on-demand PaaS
Clouds. As future work, we plan to complete the imple-
mentation, including the components for load balancing
(considering energy consummation and/or server load), and
invoicing.

REFERENCES

[1] C. Kesselman and I. Foster, The GRID: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 1999.

[2] G. Fox, A. J.G. Hey, and F. Berman, Grid Computing: Making
The Global Infrastructure a Reality, pp. 9–47. Wiley, 2003.

[3] S. Mukherjee, J. Mustafi, and A. Chaudhuri, Grid Comput-
ing: The Future of Distributed Computing for High Perfor-
mance Scientific and Business Applications, vol. 2571/2002.
Springer.

[4] L. M. Vaquero, L. Rodero-M., J. Caceres, and M. Lindner, “A
break in the clouds: towards a cloud definition,” SIGCOMM
Comput. Commun. Rev., vol. 39, no. 1, pp. 50–55, 2009.

[5] W. Guan and G. Sun, “Web service grid resource management
system,” in CSIE ’09: Proceedings of the 2009 WRI World
Congress on Computer Science and Information Engineering,
pp. 424–427, IEEE Computer Society, 2009.

[6] J. Duell, “The design and implementation of Berkeley Lab’s
linux Checkpoint/Restart,” tech. rep., 2003.

[7] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny,
“Checkpoint and Migration of UNIX Processes in the Con-
dor Distributed Processing System,” Tech. Rep. UW-CS-TR-
1346, University of Wisconsin - Madison Computer Sciences
Department, April 1997.

[8] J. Plank, J. S. Plank, M. Beck, M. Beck, G. Kingsley,
G. Kingsley, K. Li, and K. Li, “Libckpt: Transparent check-
pointing under unix,” pp. 213–223, 1995.

[9] G. Stellner, “Cocheck: Checkpointing and process migration
for mpi,” in in Proceedings of the 10th International Parallel
Processing Symposium (IPPS’96, pp. 526–531, 1996.

[10] http://www.kernel.org/doc/Documentation/cgroups/.

[11] “System Administration Guide: Solaris Containers-Resource
Management and Solaris Zones.” http://dlc.sun.com/pdf/817-
1592/817-1592.pdf.

[12] http://www.vmware.com/pdf/virtualization.pdf.

[13] M. F. Mergen, V. Uhlig, O. Krieger, and J. Xenidis, “Vir-
tualization for high-performance computing,” SIGOPS Oper.
Syst. Rev., vol. 40, no. 2, pp. 8–11, 2006.

[14] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott,
“Proactive fault tolerance for HPC with Xen virtualization,”
in ICS ’07: Proceedings of the 21st annual international
conference on Supercomputing, pp. 23–32, ACM, 2007.

[15] N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin,
G. Mouni, P. Neyron, and O. Richard, “A batch scheduler
with high level components,” in Cluster computing and Grid
2005 (CCGrid05), 2005.

[16] V. M. H. Feng and D. Rubenstein, “PBS: a unified priority-
based scheduler,” in SIGMETRICS, pp. 203–214, 2007.

[17] R. Chakode, J.-F. Méhaut, and F. Charlet, “High Performance
Computing on Demand: Sharing and Mutualization of Clus-
ters,” in AINA ’10: Proceedings of the 24th IEEE Interna-
tional conference on Advanced Information Networking and
Applications, pp. 126–133, 2010.

[18] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger, “Eco-
nomic Models for Resource Management and Scheduling in
Grid Computing,” The Journal of Concurrency and Compu-
tation: Practice and Experience (CCPE), 2002.

[19] “Grid Economics and Business Models,” in GECON (J. Alt-
mann and D. Veit, eds.), vol. 4685 of Lecture Notes in
Computer Science, Springer, 2007.

[20] P. Chacin, X. León, R. Brunner, F. Freitag, and L. Navarro,
“Core services for grid markets,” in The CoreGRID Sympo-
sium (CGSYMP 2008), August 2008.

[21] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster,
“Virtual Infrastructure Management in Private and Hybrid
Clouds,” IEEE Internet Computing, vol. 13, pp. 14–22, 2009.

[22] A. Asosheh and M. H. Danesh, “Comparison of OS level
and hypervisor server virtualization,” in Proceedings of the
8th conference on Systems theory and scientific computation,
pp. 241–246, World Scientific and Engineering Academy and
Society (WSEAS), 2008.

[23] W. Yu and J. S. Vetter, “Xen-Based HPC: A Parallel I/O
Perspective,” Cluster Computing and the Grid, IEEE Inter-
national Symposium on, vol. 0, pp. 154–161, 2008.

[24] “Linux virtualization and pci passthrough.” http://www.ibm.-
com/developerworks/linux/library/l-pci-passthrough/.

[25] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in SOSP ’03: Proceedings of the nineteenth
ACM symposium on Operating systems principles, pp. 164–
177, ACM, 2003.

[26] “Kernel based virtual machine.” http://www.linux-kvm.org/.

[27] http://www.vmware.com/.

[28] http://www.eucalyptus.com/.

[29] http://www.nimbusproject.org/.

[30] http://aws.amazon.com/ec2/.

[31] B. Sotomayor, R. S. Montero, and I. Foster, “An Open Source
Solution for Virtual Infrastructure Management in Private
and Hybrid Clouds,” Preprint ANL/MCS-P1649-0709, vol. 13,
2009.

[32] T. Deshane, Z. Shepherd, J. Matthews, M. Ben-Yehuda,
A. Shah, and B. Rao, “Quantitative comparison of xen and
kvm,” in Xen summit, USENIX association, June 2008.

[33] A. Whitaker, M. Shaw, and S. D. Gribble, “Denali:
Lightweight Virtual Machines for Distributed and Networked
Applications,” in In Proceedings of the USENIX Annual
Technical Conference, 2002.

[34] http://www.openfabrics.org/.

[35] http://parsec.cs.princeton.edu/.

[36] http://www.nas.nasa.gov/Resources/Software/npb.html.

[37] http://www.iozone.org/.

[38] “JivaroD Home.” hhttp://www.edxact.com/prod jivd.html.

