Skip to Main content Skip to Navigation
Journal articles

A Practical Visual Servo Control for an Unmanned Aerial Vehicle

Abstract : An image-based visual servo control is presented for an Unmanned aerial vehicle (UAV) capable of stationary or quasi-stationary flight with the camera mounted on board the vehicle. The target considered consists of a finite set of stationary and disjoint points lying in a plane. Control of the position and orientation dynamics are decoupled using a visual error based on spherical centroid data, along with estimations of the linear velocity and the gravitational inertial direction extracted from image features and an embedded IMU. The visual error used compensates for poor conditioning of the image Jacobian matrix by introducing a non-homogeneous gain term adapted to the visual sensitivity of the error measurements. A nonlinear controller, that ensures exponential convergence of the system considered, is derived for the full dynamics of the system using control Lyapunov function design techniques. Experimental results on a quad-rotor UAV, developed in the French Atomic Energy Commission (CEA), demonstrate the robustness and performance of the proposed control strategy.
Document type :
Journal articles
Complete list of metadata

Cited literature [33 references]  Display  Hide  Download
Contributor : Tarek Hamel <>
Submitted on : Tuesday, June 1, 2010 - 7:03:00 PM
Last modification on : Tuesday, March 30, 2021 - 9:24:18 AM
Long-term archiving on: : Thursday, June 30, 2011 - 12:53:54 PM


Files produced by the author(s)




Nicolas Guenard, Tarek Hamel, Robert Mahony. A Practical Visual Servo Control for an Unmanned Aerial Vehicle. IEEE Transactions on Robotics, IEEE, 2008, 24 (2), pp.331-340. ⟨10.1109/TRO.2008.916666⟩. ⟨hal-00488385⟩



Record views


Files downloads