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Improved Method for Optimum Choice of Free
Parameter in Orthogonal Approximations

N. Tanguy, R. Morvan, P. Vilb´e, and L. C. Calvez

Abstract—We report on our investigations to choose a free parameter
to minimize the error energy when approximating a given signal with
orthogonal basis functions. This method requires limited knowledge of
the signal to be approximated and has a low computational cost.

Index Terms—Modeling, orthogonal functions, parameter estimation.

I. INTRODUCTION

Any arbitrary causal signal of finite energy can be expanded into
an infinite series of complete orthogonal functions that often involve
a free parameter. In theory, when an infinite number of terms is
used in the expansion, the choice of the free parameter is somewhat
arbitrary. In practice, however, a truncated series is used, and an
immediate design problem consists in an optimal selection of the free
parameter to minimize the truncation error. Such problems are often
raised in model reduction and information compression. Scientists
have investigated two different approaches. In the first one, the error
energy is minimized; in the particular case of Laguerre functions,
for example, Masnadi-Shirazi and Ahmed [1], [2] have developed
an analytical approach that requires finding roots of possibly high-
order polynomials. Reports have dealt with similar results obtained in
an optimal pole position of Laguerre filters with arbitrary inputs [4]
and [5]. Later, the optimality conditions for truncated Kautz series
and networks involving two parameters have been presented [6], [7].
Such an approach generally entails an excessive computational cost.
The alternative approach considered here will consist of minimizing
an upper bound for the error energy. The case of continuous-time
Laguerre functions has been previously studied in [8] and [9]. More
recently, an intuitive suboptimal procedure to determine the poles
of discrete-time Laguerre functions was presented [10], [11]. This
last technique has the great merit that the derivation of a solution
requires knowledge of only few numerical characteristics of the signal
under consideration. A key point in the development of the proposed
method is that several continuous- or discrete-time functions used
in signal modeling satisfy a noteworthy equation. In [12] and [13],
we considered a usual but particular form of it closely related to
Laguerre, Charlier, and Meixner functions. Here, we will first state
a generalized form of the noteworthy equation and, second, obtain a
better upper bound for the quadratic error. Therefore, the purpose of
the present correspondence is to show how the free parameter value
is improved by a reiterated use of the noteworthy equation in the
general case of orthogonal basis functions.

II. DEVELOPMENT

In this correspondence, we will consider a set of discrete-time or
continuous-time real orthogonal functions'n(t; �) depending on a
free parameter� to be optimally selected. The orthogonality of the
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functions 'n(t; �) can be notedh'n; 'mi = �2n(�)�n;m, where
�2n(�) is the orthonormality constant,�n;m is the Kronecker symbol,
and the inner product is defined according to the nature of the problem
under consideration through

hf; gi
�
=

t

t

$(t)f(t)g(t) dt

(continuous case)

hf; gi
�
=

I

i=0

$(ti)f(ti)g(ti) (discrete case)

whereti(i = 0; 1; � � � ; I) denotes discrete points in[t0; tI ] and$(t)
a non-negative weighting function.

Let us suppose thatf(t) is a well-behaved real-valued signal,
which can be represented by the infinite expansion as

f(t) =

1

n=0

cn(�)'n(t;�); cn(�) = hf; 'ni=�
2

n(�) (1)

wherecn(�) results from the classical theory of orthogonal expan-
sions.

Let us consider the practical truncated series~f(t) =
�N�1
n=0 cn(�)'n(t; �), which, for a given �, is known to be

the bestN -terms approximation tof(t) in the sense of minimizing

the relative weighted quadratic errorqN(�)
�
= k ~f � fk2=kfk2 =

�1n=N �2n(�)c
2

n(�)=kfk
2, wherekfk2

�
= hf; fi: We should note

that qN(�) depends on�. It is then clear that the quadratic error
can be reduced by properly choosing�:

A key point in this development is that several continuous- or
discrete-time orthogonal functions satisfy the noteworthy equation

L�'n(t; �) = �(n)'n(t; �) (2)

where�(n) is a non-negative nondecreasing sequence independent
of time, andL� denotes a linear operator on timet, which can be
put into the following form:

L�f(t) =

J

j=0

hj(t; �)Hj;�f(t) (3)

where the coefficientshj(t; �) depend ont and� but are independent
of n: Hj;� denotes linear operators, i.e., delay, derivative, or integral
operators, operating on time.

When assuming that'n(t; �) satisfies (2), applying the linear
operatorL� to (1) and using the linearity property of the inner
product, which is assumed to exist, lead to the relation

hf;L�fi =

1

n=0

�(n)�2n(�)c
2

n(�)

� �(N)

1

n=N

�2n(�)c
2

n(�) (4)

which gives an upper bound forqN(�)

qN(�) � F (�)=�(N) for �(N) � F (�) (5)

where

F (�)
�
= hf;L�fi=kfk

2 (6)

One should note that asqN(�) cannot be greater than unity, the
condition on�(N) is added in (5). Therefore, when the specification
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of the signalf(t) is limited to the knowledge ofF (�), inequality (5)
implies that the best choice for� is the value�0 that minimizesF (�),
and the maximum error inf(t) approximation is thenF (�0)=�(N):
It is worth noting that the optimal parameter�0 is independent of
the number of basis functions to be used.

Example: Let us consider the functions

'n(t; �)
�
= e�(� t =2)Hn(�t) (7)

whereHn(t) denotes the Hermite polynomials [14], and� is a strictly
positive time-scale parameter to be optimally selected. The functions
'n(t; �) are orthogonal on]�1; +1[ with the weight function
$(t) = 1

h'n; 'mi = 2nn!
p
�

�
�n;m:

Using the well-known differential equation verified by the Hermite
polynomialsy = Hn(t):

y00 � 2ty0 + 2ny = 0

with y0
�
= dy=dt, it is a standard exercise to show that the following

relation holds:

� 1

�2
'00n(t; �) + (�t)2'n(t; �) = (2n+ 1)'n(t; �): (8)

Thus, defining the operatorL� as

L�f(t) �
= � 1

�2
f 00(t) + (�t)2f(t) (9)

yields

L�'n(t; �) = �(n)'n(t; �): �(n) = 2n+ 1:

A well-behaved real-valued functionf(t) of finite energy being
given, using (9), (6), ands+1

�1
ff 00 dt = �s+1

�1
f 2 dt leads to

F (�) =
1

�2
kf 0k2
kfk2 + �2

ktfk2
kfk2 :

Thus, in the case of approximation with Hermite functions, the
optimal �-value minimizingF (�) and, therefore, the upper bound
for qN(�), is

�0 =
kf 0k
ktfk : (10)

Note that the optimal value�0 given by (10) always exists and is
very simple to compute.

Remark: L� has no real meaning. Nevertheless, many orthogonal
functions satisfy a well-known differential equation (in continuous-
time case) or a recurrence relation (in discrete-time case) from which
L� can be readily derived [14], [15].

III. REITERATED USE OF THE OPERATOR

With a view to obtain a better upper bound for the quadratic error,
the proposed method may be improved by applying theL� operator
m times to the functions'n(t; �); therefore, we get

Lm� 'n(t; �) = �m(n)'n(t; �) (11)

which yields the new relation

qN(�) � Fm(�)=�m(N) for �m(N) � Fm(�) (12)

with

Fm(�)
�
= hf;Lm� fi=kfk2: (13)

This technique increases the exponent of�(N) in (12), and thus,
for N great enough, it yields a better upper bound for the quadratic
error.

Remark: N can be selected to guaranteeqN(�) � ": In this way,
we first calculate�0, which is independent ofN , and second, we
determineN so thatFm(�0)=�

m(N) � ":

IV. I LLUSTRATIVE EXAMPLE

In order to illustrate the method, the discrete Laguerre functions
will be used as basis functions. The first point consists of determining
an analytic expression for the upper bound for the quadratic error
using characteristic components of the function to be modeled.

Let 'n(k; a)
�
= bkln(k; a) be the weighted discrete Laguerre

functions, whereln(k; a) stands for the Laguerre functions used in
[1]–[3]. Functions'n(k; a) are orthonormal on[0;1[ with respect
to the weight function$(k) = b�2k, anda is a free parameter to be
optimized. Using, for example, theZ transform

1

k=0

'n(k; a)z
�k =

z
p
1� a2

z � ab

b� az

z � ab

n

it is a standard exercise to show that the following relation holds:

La'n(k; a) = n'n(k; a) (14)

where

Laf(k) = �1

b(1� a2)
f(k+ 1)af(k + 1)

� [k(1 + a2) + a2]bf(k) + kab2f(k � 1)g (15)

according to (3) witht = k (discrete time). The use of expression (15)
for Laf(k) yields a first good method to choose the free parameter
a [13]. In some cases, however, providing a better upper bound for
the quadratic error is important. Thus, the operatorL2a can be used
to improve the method described. Using (14) leads to

L2a'n(k; a) = n2'n(k; a):

Therefore, withm = 2 in (13), it can be easily shown that the
following relation holds:

F2(a) =
1

(1� a2)2
[(m3 + 2m1 + 1)a4 � (4m4 + 6m2)a

3

+ (2m5 + 4m3 + 4m1 + 1)a2 � (4m4 + 2m2)a+m3]

with

m1
�
=

1

k=0

kb�2kf2(k)=kfk2

m2
�
=

1

k=0

kb�(2k�1)f(k � 1)f(k)=kfk2

m3
�
=

1

k=0

k2b�2kf2(k)=kfk2

m4
�
=

1

k=0

k(k� 1)b�(2k�1)f(k � 1)f(k)=kfk2

m5
�
=

1

k=0

k(k� 1)b�(2k�2)f(k � 2)f(k)=kfk2

denoting “moments.” To determine the optimal parametera, setting
the derivative ofF (a) with respect toa equal to 0, and simplifying
the resulting equation gives

(2m4 + 3m2)a
4 � (2m5 + 6m3 + 8m1 + 3)a3

+ (12m4 + 12m2)a
2 � (2m5 + 6m3 + 4m1 + 1)a

+ 2m4 +m2 = 0: (16)
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Fig. 1. Discrete Laguerre model withb = 1:

Remark: Note that the term1=(1 � a2) in (15) implies that for

discrete-time Laguerre functions,Fm(a)
�
= hf;Lm

a
fi=kfk2 will be

always in the formFm(a) = P2m(a)=(1 � a2)m, whereP2m(a)
is a 2m-degree polynomial. Because�1<a< 1 and (12),Fm(a)
is always positive or equal to zero, andlima!�1 Fm(a) = +1
(except forf [k] � 0). Therefore, there is always a value in]� 1; 1[
for the parametera that minimizesFm(a):

V. NUMERICAL EXAMPLE

The stated problem consists of determining the optimum eighth-
order discrete Laguerre model (Fig. 1 usingb = 1) for an ”unknown”
plant, which here is simulated by the discrete rational transfer function
corresponding to [3, Example 3.2]:

F (z) =
z(z3 � 3:8z2 + 1:96z � 0:297)

(z � 0:2) (z � 0:3) (z + 0:5) (z � 0:9)
:

All calculations will be based only on the knowledge of the samples
of F (z) impulse response. The optimal value for the parametera
computed in [3] isa0 = 0:4305: The quadratic error is reduced to
q = 0:0149, which can be compared withq = 0:1071 obtained
with the arbitrary valuea = 0:7: This result shows the importance
of optimizing the free parameter in Laguerre modeling. Whereas the
above optimization requires root-finding of polynomial equations of
degrees 31 and 35, our technique reduces the amount of calculus
drastically while retaining a good optimization. Usingb = 1 enables
us to compute the moments from the numerical values of the impulse
responsef(k); they are obtained askfk2 = 16:6454; m1 = 3:4002;
m2 = 2:9155; m3 = 29:2896; m4 = 28:3785; m5 = 32:3523,
which lead to the roots of (16):2:3007; 0:6992� 0:6530i; 0:4326:
Therefore, the proposed method yieldsa00 = 0:4326: This value,
obtained via the resolution of a degree-4 polynomial equation, has
to be compared with the optimal valuea0 = 0:4305, whereas we
previously [13] hada0 = 0:4492 with m = 1 in (13).

VI. CONCLUSION

This correspondence presents a general technique for choosing
a free parameter in orthogonal approximations. It is divided into
two steps. The first one provides an analytical expression for the
upper bound for the quadratic error; the obtained expression only
depends on the free parameter of the basis functions. The second
is the applicative phase and consists of minimizing this analytical
expression in order to optimize the free parameter of the basis
functions. Analytical results in Hermite and Laguerre cases are
derived, and a numerical example is presented. We showed that
the proposed procedure requires much less calculus than an optimal
method and can provide a result very close to the optimal one. We
simply and successfully implemented this technique on fixed-point
processors.
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