Risk measures and multivariate extensions of Breiman's Theorem

Abstract : Modeling insurance risks is a task that received an increasing attention because of Solvency Capital Requirements. The ruin probability has become a standard risk measure to assess regulatory capital. In this paper we focus on discrete time models for nite time horizon. Several results are available in the literature allowing to calibrate the ruin probability by means of the sum of the tail probabilities of individual claim amounts. The aim of this work is to obtain asymptotics for such probabilities under multivariate regularly variation and, more precisely, to derive them from Breiman's Theorem extensions. We thus exhibit new situations where the ruin probability admits computable equivalents. Consequences are also derived in terms of the Value-at-Risk.
Type de document :
Article dans une revue
Journal of Applied Probability, Applied Probability Trust, 2012, 49 (2), pp.364-384. 〈10.1239/jap/1339878792〉
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00487860
Contributeur : Cécile Mercadier <>
Soumis le : lundi 31 mai 2010 - 12:07:57
Dernière modification le : samedi 11 novembre 2017 - 01:13:44
Document(s) archivé(s) le : vendredi 19 octobre 2012 - 15:12:02

Fichier

fougeres_mercadier.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Anne-Laure Fougères, Cécile Mercadier. Risk measures and multivariate extensions of Breiman's Theorem. Journal of Applied Probability, Applied Probability Trust, 2012, 49 (2), pp.364-384. 〈10.1239/jap/1339878792〉. 〈hal-00487860〉

Partager

Métriques

Consultations de la notice

336

Téléchargements de fichiers

185