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Abstract

Distributed applications, especially the ones being l/@rnive, often access the storage
subsystem in a non-sequential way (stride requests). Simtle behaviors lower the overall
system performance, many applications use parallel I/@iriks such as ROMIO to gather
and reorder requests. In the meantime, as cluster usages,gseweral applications are of-
ten executed concurrently, competing for access to st@agsystems and, thus, potentially
canceling optimizations brought by Parallel I/O libraries

ThealOLi project aims at optimizing the 1/O accesses within the eluahd providing a

simple POSIX API. This article presents an extensionl@fLi to address the issue of disjoint

*This work has been done within the ID laboratory jointly sagipd by CNRS, INPG, INRIA, and UJF and the
project LIPS between INRIA and BULL Lab. Computer resour@esprovided by the grid5000 french experimental
grid (ht t p: / / www. gri d5000. fr/).



accesses generated by different concurrent applicatioascluster. In such a context, good
trade-off has to be assessed between performance, famnesgesponse time. To achieve
this, an 1/0 scheduling algorithm together with r@guests aggregator» that take into account
both application access patterns and global system load, been designed and merged into
alOLi. This improvement led to the implementation of a new genkamework pluggable
into any /O file system layer. A test composed of two conqurt®R benchmarks showed
improvements on read accesses by a factor ranging from 3%with POSIX calls and from
3.3 to 5 with ROMIO, both reference benchmarks executed oadétibnal NFS server without

any additional optimizations.

1 Introduction

I/0O bottlenecks have always been a major issue in Computen&eand it is likely to continue as
performances increase slower for 1/O hardware than for QiRRlLhaemory. This gap is widened by
the increasing use of HPC platforms and the growing numbpauallel I/O intensive scientific ap-
plication. In this context, the I/O subsystem is stressdt by the overall throughput requirement
and the peculiar access patterns of parallel applicatibosinstance, disjoint requests delivered
at the same time may generate disk head movements, one ob#tdime consuming operations
in modern computers (approximately 9ms). But, as shown tbgraéstudies [6, 17], parallel I/O
accesses use recurrent determined patterns (based eanpsraimeters) that are good candidates
for optimizations. This is different from “database acesSsvhich depend on the selection criteria
and are usually more sparse.

In this article, we focus on multiple concurrent applicagdhat perform parallel I/O accesses
to the storage subsystem. This is a common situation onecusince most batch schedulers [9],
try to maximize the overall platform usage, leading to corent executions. In this case, each
application generates its own recurrent parallel acceerpa and parallel access patterns from
distinct applications are interleaved due to concurrentius, the 1/0 subsystem layer has to
perform optimizations that take advantage of regularitaatesses from each application while
balancing storage access between them. Our work focusesnothedlicated clusters where all ap-

plications are considered of equal importance. This tedaslinto multiple optimization criterion:



throughput, fairness and response time.
I/O parallel accesses optimization issues have been asdt by several researchers. Proposed

solutions can be classified in two main categories:

o Parallel File systems|[4, 21, 22] manage to exploit as efficiently as possible hardveapa-
bilities while taking into account distributed file systemnstraints (coherency, fault toler-
ance, remote accesses, ...). Most of these systems do nidOuseheduling strategies as
they are just built on schedulers located at block devicerléection 2.3). At this low level,
due to kernel and file system implementation (see sectionp&dhllel applications infor-
mation is not available and parallel I/O access patternaatane exploited for throughput

optimization.

e Parallel I/O Libraries are focused on parallel I/0 aspects and portability comgganside

a single application. They use a specific API to enable theldper to express I/O access
patterns. The underlying optimization algorithm expltiese patterns to aggregate indi-
vidual requests into larger ones (see section 2.1). Unfataly, beside the complexity of

the API of these systems, storage access balance betwel@aapps is not addressed by
I/O libraries. Moreover, individual application optimizans are likely to be canceled by

the interleaving of concurrent accesses made by distirmicagbions (see multi-applicative

MPI/10 tests in section 4).

When dealing with concurrent parallel applications, itngportant to handle requests in a
global manner to provide a good trade-off between perfonaamd balance between applications.
Performance alone could be optimized by handling all theéests from one application before
serving another one. This provides good throughput buvaesathe waiting applications. Such a
policy does not take into account response time and fairoet&sia which are mandatory in a
multiple applications environment.

We propose to design a high level infrastructure made of t@mroomponents: a transparent
parallel 1/0O aggregation mechanism for throughput optatian and a scheduling algorithm that
balance service provision between applications. Our mairtribution is to integrate these two
elements into a generic framework pluggable into any exgstiO system. This framework do

not require any change in the application code (it only mxtervith the I/O subsystem). It only
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requires a minimal change in the 1/O layer code to subscaolibeal OLi services (section 3.2).
To take advantage of a global view of all the accesses withoyinegative impact on scalability,
alOLi should be plugged into any already existing I/O centrailrapoint.

We implemented our proposal as a Linux module and evaluatetda Network File System
server. Even if NFS is not really suited to high performari€e it remains the standard configura-
tion for small and medium sized clusters. The server hasabwith huge amounts of simultaneous
requests, a good testbed to evaluate the interest of a highsieheduler like ours.

The rest of this paper is organized as follows: section 2flgrigresents the available 1/0
optimizations and their limits. Section 3 is focused on thehéecture of our framework: the
interest of a higher level scheduler, the architecture efdlrrent version oélOLi and the two
integrated mechanisms are introduced. Section 4 gives sxperimental results. Eventually,
section 5 describes future extensions as well as possipi®iraments and section 6 concludes the

paper.

2 Background

In this section we present main ideas used in parallel fisgesys, in parallel I/O libraries or both.
Most of them aim at optimizing I/O throughput for one parkdipplication (collective approaches,
prefetch) while other do not take advantage of accessesarégyscheduling). The goal of this
section is to give an overview of I/O optimizations in getharad to explain why they are not suited

to the multi-applicative context.

2.1 Collective Approaches

Different processes of a parallel application usually serahy small, non-contiguous requests
simultaneously to the 1/0O server without checking for aggten opportunities. Collective 1/0
methods solve this problem by merging different requegtsarbigger one and issuing an aggre-
gated request. This concept can be applied at differentdagea distributed architecture: at disk
level [12], at server side [23] or also at client side [25].

The resulting performance of collective approaches dementhe underlying architecture

(middleware, network interconnection and file system impatation) and the use of specific
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“tuning” routines MPI I/O hints functions) is often required. Furthermore, as pointed Jngdch
approaches imply expensive synchronization mechanismshel case of writes, Ma et al. pro-
posed to use active buffering with threads [15] to overl& With computation efficiently. This
lessen the impact of synchronization but require a modif@iRO library.

Overall the collective approaches do not take into accdumirtterleaving of non contiguous
access resulting from concurrent execution of severaiegns. As shown in section 4 this lead

to severe performance degradation.

2.2 Cacheand Prefetching

Caching is a widespread technique used to reduce the nurhbec@sses to hard drives and thus
improve performance of the 1/0 system (see [3] for instanbeentralized/local systems, cache
management is not very difficult, it significantly differs dmstributed and parallel environments
where strict coherency protocols are complex and impadbpeance. Some systems avoid this
problem by sacrificing the client side file caching and kegmiaching only on I/O nodes. Collec-
tive caching [27] is another method to improve I/O perforoeaf parallel applications. Itis based
on the idea that all processes running the same applicdtaridbe considered as a single client of
a parallel file system. A modified MPI version provides ussel file caching by distributing the
cached data equally between processes. Unfortunatedypiachanism requires a first step, where
data are redistributed to different nodes to build the cagis¢em. This step can be expensive for
large workloads.

Usually, as mentioned in [26], several levels of cache cdeddl to inefficiency if, for each
cache request, a cache miss occurs. Overall, caching caonfigireed withal OLi but it do not
solve the same problem: multi-applications balancing artal fetch of data are not addressed.

Prefetching techniques are based on implicit or explicit anticipatidri/@ requests. Some
parallel intensive 1/0O programs reduce 1/O congestion liyavng explicitly data in a sequential
way from one client (in a synchronous or asynchronous maug)yedistribute them to all partici-
pants. Such an approach leads to good performance in a mmohcent environment thanks to the
gain provided by th&ead Ahead technique[7]. Daniel Ellard and Margo Seltzer [8] modifibé t
FreeBSD 4.6 NFS server to improve the read-ahead heutiisitegy. Their new algorithm handle



stride access patterns in a better way.
Unfortunately, in multi applications environments, thesefetching methods generate parallel
I/O problems. As in the case of collective approaches, tlbayad take into account the interleaving

of non contiguous access resulting from concurrent execwti several applications.

2.3 1/0 Sheduling Strategies

Several scheduling algorithms were proposed to minimigectimpletion time of a batch of I/O

operations. These algorithms usually fall in two categorgisk scheduling [24] and parallel 1/0
scheduling [5, 11]. The first one tends to limit disk head rmogats while the other one distributes
parallel I/O operations to different I/O servers to minimthe overall response time.

Disk scheduling algorithms, because they are all impleetkat a low level, cannot have a
good overview of distributed applications accessing tledyistem. Besides being limited by the
size for their queues, they are strictly dependent on théementation of the upper file system:
for instance, if the file system is synchronous and monacatied, only one request can be handled
at the same time which limits potential optimizations (&etB.1 for more details). As a direct
consequence, such approaches are not suited to large agskienerated by HPC Intensive 1/0
applications.

Parallel 1/0O scheduling, in contrast to low level schedsiléry to exploit parallel 1/O access
patterns. In PVFS [20] a model for predicting performanca afystem for a given workload is
used. Based on this model, the system can choose dynanticallyjost appropriate scheduling
algorithm. In the Clusterfile parallel file system [10], a edbling heuristic tries to involve all
the I/O servers in the system at the same time to maximize titibzation. However, to the best
of our knowledge, these systems do not address the interteal’ multiple applications. Hence,
they suffer from concurrent disjoint access resulting frithi simultaneous execution of several

applications.

3 System Overview

The firstimplementation of thal OLi prototype [13] provided an efficient transparent managémen

of parallel I/O for one application within a SMP node. All I/@quests, before being sent to a
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remote server, were analyzed to find aggregation posghbikind reordered to favor sequentiality.
The encouraging results of this first implementation havévated the study of similar approaches
but at cluster level [14]. In this intermediate work, we ch@sclient/server model comparable to
the PANDA architecture [23]. Unfortunately, the lack of bd memory and global clock made
the management difficult and the expected improvements mareeached.

In this new study, we opted to moaOLi from the applications to the storage system layer in
order to collect more informations both about applicatiand global system load. Indeed, one of
the main idea of this new proposition is to exploit the exigtcentralization point of file system
architectures to plug our new framework. Theref@ak)Li do not compromise the I/O system

scalability by adding new bottlenecks.

3.1 Preiminary study

As mentioned in former sections, low-level scheduler dadvawe a global view of the 1/0O accesses
made by a parallel application. This is due to limitationsha queues size and in the 1/0O server
implemented on top of them.

We checked aggregation capabilities of these schedulerg tree IOR benchmark presented
in section 4.3. The experiments consists in evaluating |@& 82 MPI instances decomposing a
4GB file on a Linux NFS server exporting an ext3 file-systemextan a single IDE disk (57MB/s
peak). This is the same hardware configuration as in section 4

Test have been performed on each Linux I/O low level schedulaking the file access granu-
larity vary from 8KB to 4096KB and by using POSIX API. To prde more aggregation opportu-
nities to the scheduler, the number of actiMesd daemons ranged from 8 (default configuration)
to 512 (more incoming simultaneous requests). The restdtsimilar whatever the 1/0 scheduler
in use, we only present the default one: anticipatory scleedun the right of figure 1 (the results
for all the other schedulers can be found ondh@Li websiteht t p: //ai ol i . i mag. fr).

As we can notice, the greater the number of daemons, the bie¢t@erformances are. Nev-
ertheless, even with 512 daemons, the low-level schedaléonmance is far from sequential per-

formance (around 50MB/sec) in most cases.
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Figure 1: low scheduler impacts on a traditional NFS sermdraaNFS server plugged with alOLi
4 GBytes file decomposition (IOR benchmark) on 32 MPI instandeployed on 32 nodes.
Usual NFS using 8 to 512 daemons on top of the anticipatorgdidbr (left) and plugged taOLi (right).

3.2 A High Leve 1/0 Scheduling Framewor k

The purpose of thalOLi framework is to provide generalized 1/0 scheduling stragegdepen-
dent of any storage medium or 1/O subsystem. The latestorerdial OLi can extend almost any
existing I/0 management system using a simple pluggin nresima

This version uses a new architecture (figure 2) in whichab®Li client can be the whole
kernel 1/0O subsystem, a single remote file system or any dtBantensive service. Each client is
connected to aalOLi 1/O controller which implements the interface to #€®Li framework. All

theal OLi client should be able to react to the two following events:

e anew request is delivered to the client. In this case, tlemtihould posts this new request

to the queue of the relatedOLi I/O controller.

e thealOLi I/O controller notifies the client that one or more of its regis can be processed.

The client then should process it.

We choose to let the clients process themselves the regbegtposted. This wawl OLi remains
generic and independent, it just acts as an aggregator Aedwing service.
An alOLi I/O controller can be in charge of scheduling requests fromar several clients at

the same time. For instance, on a remote NFS server whichitex@oExt3 partition, aalOLi I/O
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Figure 2: Architecture of the alOLi system
Clients (I/O systems) put their incoming requests in thateglal OLi queues and are notified when any of

them should be processed. To prevent coherency issuadsai@nain in charge of this processing.

controller can be used to schedule both requests incomitigethlFS server and local requests to
the file-system. In this case, the NFS server and the Ext3ystem will be two clients associated
to the same 1/O controller. This allove$OLi to be plugged where needed (on an independant file-
system or on the /O layer of the whole system) to perform fipgntizations at the appropriate
level.

An alOLi scheduler has to be chosen when initializing an 1/0O comrolThese schedulers
exploit file id, request size and start offset to chose the@pmate issue order. Thus, they deeply
differ from low level schedulers mainly based on disk seglacement (section 2.3). Currently,
alOLi ships with two different scheduletsa simple FIFO and a MLF variant discussed in section
3.4. Additional scheduling algorithms are easy to add eithectly to alOLi or as an external
kernel module.

Regarding coherency, to prevent any issue, an unique tmgsis associated to each incoming
request. Using these timestamps, the strict order betwegse and read accesses for the same
resource can be enforced. Currently, all requests follgwimvrite to the same file are blocked by

the system until the completion of this write. This methodlddbe easily improved by using a

1A third one focusing on the interactivity criterion is undivelopmentWeighted SIF [14].



finer locking mechanism such as the well-knoByte-Range-Locking.

alOLi, which was formerly a library, is now a pluggable 1/0 schedulThis change makes
extensible and flexible: it is completely independant frgplecations and can be plugged into any
existing 1/0 management system. T&l©Li is now a high-level 1/0O scheduler : it only requires
generic informations for the requests it handles (offset sime). Our framework also includes a
statistics collector which gather informations about I/Orkers (number of requests proceeded,

number of aggregation, average, etc.) eithepfmst mortem or on-line analysis.

3.3 Agqggregation and Virtual Aggregation

The first prototype oflOLi [13], was a library dedicated to the optimization of I/O iniagie
node. Since we were within a single node (only one operatystem), coherency mechanisms
were provided by the underlying file-system stack (singl#dowcache) and we implemented a
physical aggregation mechanism: small contiguous reguweste merged into a larger one which
was sent by the kernel to the remote file system.

In a distributed environment, the implementation of suctcima@isms becomes tedious (be-
cause of data replication, cache invalidation, etc.). Mwoee, few file-system provide routines to
access to a group of disjoint file parts (I/O vector). To rengenericalOLi is able to perform
its optimization using only simple access requests. Thi&l aggregation” mechanism consists
in deciding on an execution order for several requests drtideactual execution of 1/0 calls to
clients. For instance, the three following requestsr(30,40), read(20,30), read(10,20)?, should
be reordered and executed in the following ordesad(10,20), read(20,30), read(30,40). This
way, all the accesses become contiguous.

When /0O systems provide specific routines to handle 1/OorsctalOLi will use them and
thus apply a “real aggregation”. But, our experiments shuat the “virtual aggregation” mecha-
nism is sufficient to reach near-optimal performance: theegeity does not imply a performance

degradation.

2r ead(x, y) : read from offset x to offset y in the same file
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3.4 Scheduling of 1/0 Requestson a Cluster

alOLi provides scheduling strategies to efficiently share thesli@system among all applications
running on the cluster. As mentioned in section 1, in our cag&eaim at providing scheduling

strategies optimizing throughput first, but with a concennféirness and response time.

3.4.1 Base Scheduling Algorithm

We want both to maximize the overall performance by usinglperl/O aggregation techniques
and maintain a good balance among applications. Unforlypaihroughput, fairness and response
time are incompatible: to be fair and responsive 1/0 resmacess has to be switched regularly
between applications thereby breaking the contiguity akases required to reach the maximal
throughput. Thus, our scheduling strategies will consishe best compromise between perform-
ing maximal aggregation and serving each application in.tWihis I/O requests scheduling in our
context is an on-line problem: jobs (requests) keep oniagiduring the scheduling process and
the total size of the access (total number of requests) ikmawn in advance [2].

The base of our algorithm is a variant of the Multilevel Fesdbalgorithm (MLF) [18]. The
MLF algorithm is designed to optimize average response wmié avoiding starvation by grant-
ing to individual waiting requests an adaptive time quanfamaccessing resources (a quantum
that grows with time). We modified MLF to integrate into its chanics the virtual aggregation

mechanisms. The resulting algorithm can be described asv&il

1. incoming requests are sorted by type (read or write) aseriad into two separate queues

for each file accessed.
2. each request is assigned an initial quantum of zero up@mnal in the system.

3. aggregation is performed on requests of both queues &ma@advrite): the queues are tra-
versed in offset order and contiguous requests are aggce@gato larger virtual requests

which quantum is the sum of individual requests quantum.

4. the quantum of each request is then increased by a fixed @Bu(which is rather small to

favor interactivity).
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5. the first request, in offset order within a file and FIFO oiloietween files, which quantum is

large enough to enable its completion is selected for el@tut

I(gcn?jnglilr:a?r ';?Su;?s Internal state after pre—processing s:)izes?ilfgh?s:g tfjoffrset)
0 0 128K Q=32K Q=32K 0
file 2 file 3
0 32K 0Q=32K 0Q=32K Step 1
worllar a] ||
160K Q=64K Q=64K 0
file 2 file 3|
Q=64K Step 2
64K 32K 96K Q=96K 0
file 2 file 3
Q=96K Q=32K Step 3
fle 1
Q=128K 64K
file 2 file 3
Q=64K Step 4
fo 1
32K 192K Q=32K 32K
file 2 file 3
Q=32K Q=96K Step 5
fe 1
224K Q=64K 32K
file 2 file 3 t
Q=64K Step6 ¥

Figure 3: A variant of the Multiple Level Feedback algorithm

The figure 3 presents the behavior of our algorithm on a toyngk@ made of two processes
(Al and A2) accessing a file (file 1) in a stride like manner lvgtrides of 128K long) and two
processes (A3 and A4) accessing two files (file 2 and file 3) ipn@lgonous way (one request
after the other). In this example all the accesses are 32¢Kdmd QB equals 32K. As with MLF,
the use of small quantum that increase with time gives pyiooi small requests (not aggregated).
Thus, big virtual requests will remain for some time in thetsyn giving it opportunities for more
aggregation (in other words, throughput optimizationpd@ssing request in their size order is the
optimal strategy to minimize the average response time mgar algorithm good for interactive
tasks. Nevertheless, because we bound aggregation andahtum increases regularly, waiting
aggregated requests will never starve and a decent faim#édse maintained. Notice that our

algorithmis a compromise. Indeed, we could improve thrgugby removing the quantum system
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and stick to the offset order, but this would degrade resptinge and fairness as requests would

possibly be delayed for a long time by other ones.

3.4.2 Performance Tuning

Although the preceding algorithm has a good overall belagiatimizing for several antagonist
criteria at once, it is not able to completely detect and @xglome widespread specific accesses

behavior of common applications:

synchronous accesses applications such asat make their access in a synchronous fashion, one
byte at a time, waiting for the result before performing te&traccess. In that case, it should
be advantageous for the server to wait for the next accelse aht of the request processing.
This could be done by giving the request a quantum largerrbagured for its completion:

the extra time can then be used to wait and aggregate consex@guests as they arrive.

very large accesses most applications generally make either very large or vemalsaccesses
to files. In the case of large accesses, the linear increéseftahe quantum in the base
algorithm does not exploit sufficiently aggregation oppoities. Thus, it should be advan-
tageous to give a larger quantum to consecutive requesteteame file, as long as this

guantum is fully exploited.

very small accesses In the case of small accesses, the quantum given to requéghs Ipe too
large (especially for requests of size lower than the basetgm size or requests that have
stayed too long in the system). The issue is that if we usestttira quantum duration to wait

for aggregation opportunities, this only ends up in uselietay.

To address these issues, we take advantage of file accessmy hnd we adapt dynamically the
guantum size to applications specific behavior. For eaclaib@ssed, we store the utilization rate
of the quantum given to the last access. If this rate is highave likely to perform a large or
synchronous access. In that case we expand the size of thiiqugiven to requests to this file by
a multiplicative factor. On the contrary, if this utilizati rate is low, we are likely to perform small
accesses and we reduce the quantum size accordingly. Asialssese, when the utilization rate
is very low the end of the file should have been reached. Incthed, we simply reset the history

information.
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4 Experiments

Our testing system is a part of the machines from the “gri@3®@roject located at the INRIA
Sophia-Antipolis site. Each node, an IBM eServer 325, isposed of two AMD Opteron (2GHz)
CPUs, 2GB RAM and a 80GB IDE hard-drive (bandwidth estimatef7MB/s by thendpar m
command). The cluster is interconnected by a gigabit edteretwork. All nodes were running a
Debian GNU/Linux system with a 2.6.15 kernel. A dedicatedSNierver (version 3, TCP, 32Kb
read/write size, sync, cache disabled) on top of an extZ¥it#em and several client SMP nodes
have been used.

In a first part, we evaluated the overhead of alOLi and its ichpa scalability for both non
HPC and HPC workloads. Then, we focused our experiments @mtliti-application criteria.

The IOR benchmark has been used to evaluate real I/O ineeR$NC applications.

4.1 Implemented al OLi clients

Theal OLi s public interface is composed by three main functions (@wbonal complete the API).
Any clientalOLi client has to call the initialization function with at ledsto callback functions
as arguments: theead andwr i t e functions from the host I/O system. These functions will be
called wheral OLi decide on the execution of one ore more requests. Additaptadnal callbacks
can be given t@lOLi to handle “real aggregation”.

Unfortunately, the client code has to be slightly modifiduaftis the 1/0 system layer): to
redirect incoming request @ OLI, it is necessary to add@ost call. This is the only intrusive
step when plugginglOLi to a client. Up to now, we did not discover a completely tramspt
approach.

So far, twoalOLi clients have been developed. The first one is a NFS (netwerlsystem)
server based on the source code from the 2.6.15 Linux kefinel.second one is an extension of
the Linux Virtual File System which handle all I/O operatsoon a single node. Both of them are
shipped with theal OLi source code distributién Their evaluation led us to the same conclusion.

Therefore, due to space considerations, only NFS expetswéh be discussed in this article.

Shtt p: //wwv. gri d5000.fr/ .
“http://aioli.img.fr
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4.2 Overhead and Scalability | mpact
4.2.1 Bonniet+

Bonnie++ is a popular and widely used benchmark to evaluate hard drigefile-system per-
formances. It tests writes, reads and creation of files. Tiike west consists of three phases : a
file is first written byte by byte, then it is overwritten in aolsk manner and finally it is read and
overwritten block by block. The two-phase read test is sinti the first two phases of write test.
Although Bonnie++ is often used as a benchmark for clusters,not really suited to this task
because: no HPC application access data using a fine grim(ibgte by byte) and stride accesses
are not tested.

Nevertheless, we decided to benchma®Li with Bonnie++ anyway to prove that our system
does not have a negative impact on fine grained sequentfarpamce. Our test consists of two
parts: a first test with one client, then a second test withdbents. Both parts use one NFS server.
We configured Bonnie++ to use 4 GB files (twice the RAM size) smskip the file creation test.

Results are presented in the table 1.

Write Read
char | block | rewrite || char | block

MB/s | MB/s | MB/s || MB/s | MB/s

NFS (1 client) 21.69| 28.40| 2.00 | 34.84| 43.54
alOLi (1 client) || 19.80| 28.29| 2.03 || 37.45| 48.81

NFS (4 clients) || 8.26 | 8.78 | 1.68 || 3.55 | 3.02
aloLi (4 clients)|| 7.41 | 959 | 1.68 | 4.74 | 13.39

Table 1: Bonnie ++ evaluation
As we can noticeal OLi does not have a significant impact on I/O accesses at a finalgran

In this case, requests are mostly satisfied by the NFS cachaedethe server make access of 32KB
anyway (our si ze parameter). ThuslOLi has no room for further optimizations. It does not
benefit to sequential writes either as they are already bdralynchronously by the system. But,
the performance is greatly improved when four concurreignts make simultaneous read at a
coarse granularity. In this case the adaptive quantum mésthaused inalOLi (section 3.4.2)

shows its strenght.

SBonnie benchmark suiteht t p: / / www. coker . com au/ bonni e++
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4.2.2 b _eff 10 benchmark
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Figure 4: scalability impact: usual NFS server (left) and3\#erver plugged with alOLi (right)

To test the impact on scalability of our system, we have ubedHffective /0O Bandwidth
Benchmark[19] (b_eff_io), which provide two tests: thetfagaluates the average 1/0 bandwidth
achievable when using the MPI-1/O library and the seconteyadetailed informations depending

on the access patterns and buffers length.
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The benchmark tests “first write”, “rewrite” and “read” rauts using several combinations
for its parameters such as: various parallel access paftéifferent kinds of stride like patterns),
collective / non collective accesses, aligned / unaligraxsses. In this test, similar to a single
parallel application, the 1/0O operations are already ot by the MPI-I/O library anclOLi
is not likely to produce further improvements. The goal isyado see the impact odlOLi on
a heavily loaded system. The number of clients varied frora 26 (a high load for usual NFS
servers).

The results are presented in figure 4. Regarding the writ®qmmeance, because the system
handle write requests asynchronously)Li has few room for improvements. As a consequence,
the optimizations it provides are compensated by the oaertod the scheduler. The resulting
performance is roughly the same and scalability is not dkxgta

Regarding read performance, thanks to its schedulingeglyal OLi performs clearly better
than the NFS server alone. The slight performance degmadathen the number of clients in-
creases is due to the CPU cost of processing a RPC requesivas ish[16]. We do not present
results for the rewrite test which are similar to the readgrerance results. Overall, this test
shows thatlOLi does not have any negative impact on I/O system scalabiiycan even bring

some improvements when aggregation opportunities statex

4.3 Multi-application criteria

In this part, experimentations focus on parallel appla@aand multi-application aspects. The I/O
Stress Benchmark Codelsas been exploited to emulate the behavior of a parallelriténsive
application. It consists in a parallel file system code davetl by the Scalable 1/0O project at
Lawrence Livermore National Laboratory. This parallel gnam performs parallel writes and
reads to/from a file using the POSIX or MPI-IO API and repdnts throughput rates.

In a preliminary part, we check that parallel access areieflity managed by our framework
(aggregation for one application). Indeed, this is neggsasour main objective is to efficiently
manage I/O in presence of multiple and concurrent parafiplieations. Then, we evaluate the

impact of one application on another one: 1./ we evaluateléggadation implied by one parallel

510R benchmarkht t p: / / www. | | nl . gov/ asci / pur pl e/ benchmarks/ | i mited/ior/
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I/O intensive application on a less I/O dependant prograhwg. analyse the behavior of two
concurrent I/O intensive applications. Finally, the perfances of a traditional NFS Server and a

server exploitingl OLi are compared using a workload composed by ten distinctagins.

4.3.1 Multi-node coordination

In this experiment, one IOR instance has been deployed om82 processor nodes. The file size

has been set to 4GBytes and the file access granularity rénoge8KBytes to 4MBytes.
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Read decomposition Write decomposition

Figure 5: 1 IOR - Validation of aggregation mechanisms iasitOLi
4 GBytes file decomposition (IOR benchmark) on 32 MPI instandeployed on 32 nodes.

The figure 5 presents the performance provided by the usualdékver accessed with POSIX
(“Posix” curve), the usual NFS server accessed with calledlPI 1/0O API (“MPI-I/O” curve)
and the POSIX API on top of an NFS server plugged toal@l i framework (“alOLi” curve).

On this test, MPI-I/O has been ran without file view but theutesswith file view are similar.
The “Posix-Ref” curve has been obtained by prefetching &ta ftom one node. From the point of
view of the NFS server this match a large sequential syncdu®access (like @at ). The dashed
line is the hard drive sustained bandwidth (obtained withhtipar mcommand), it is an upper
bound for the performance of our NFS server. NFS Version @iges two modes for write access:
synchronous and asynchronous, both were evaluated. Heless, we only present results for the
asynchronous write mode as the performance in synchronods s poor for all the compared

systems and is not suited to HPC computing.
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Regarding the read performance, thanks to its adaptiveitigg alOLi provides clearly bet-
ter performance than Posix and MPI-1/O. It even surpasse#ef when a sufficient number of
aggregation opportunities exists. The only situationsmesix-ref performs better is when the
granularity is between 64KB and 512KB : greater than the Né&®ss granularity (32KB in our
case). In this case, each client access is resolved by weMFS requests and because of concur-
rency these requests are disjoints. Because of the low nuohbequests, the scheduling window
on whichalOLi works is too small and optimizations are limited. The prablgoes not appear
neither with fine granularities (thanks &OLi offset order policy) nor with coarse granularities
(because the scheduling windows is sufficiently large to diggregation opportunities).

Regarding the write performance, once agdidLi performs better than Posix and MPI-IO. In
this case its performance is very close to the performané®six-ref. This is because Posix-ref
write in asynchronous mode and benefit from write-behinécgol

Overall,alOLi is still better than any other system in most cases. In géneiscomparable

to Posix-ref and clearly better than both Posix and MPI-1/0O.

4.3.2 Several applications

In this part, experiments focus on the mutual hindering cgeee by several applications execut-
ing concurrently. These experiments are composed of twis:pérstly a parallel 1/0 intensive
application and a non 1/O intensive program started dutsgxecution and secondly, two similar
I/O intensive applications striving for resources acca$ss test aim at demonstrating the balanc-
ing capabilities ofalOLi: no application is sacrificed to another one and all benedinfal OLi

optimizations. Time completion is measured as it is moreviaeit when applications are different.

Impact of an /0 intensive application on a lessintensive one
The parallel I/O intensive applications consist in one |@Btance deployed on 32 single pro-
cessor nodes. The file size has been set to 4GBytes and thed#dssagranularity ranges from
8KBytes to 4MBytes. For this application, there are two sase case one, Posix calls are used
for accesses and in the second case, MPI-1/O is used forsesces
The non I/O intensive program iscat -like program retrieving sequentially a 16MB file on a

single node using granularities ranging from 8KB to 512KRBislatter application is small (run
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Figure 6: Impact of an I/O intensive application on a lessexr 0

alone, it completes in roughly 2s) and is started during Ree@tion of the first one (15s after its
beginning). For this application, Posix is always used faregses. As all the results lead to the
same conclusion, we only present tests using a cat gratydéB82KB’. Due to the large difference
between the completion times, a log scale for the Y axis haa heed. The figure 6 presents the
results of this test.

On the left, the parallel I/O intensive application use tlESPX routines. As we can sea,OLi
improves the efficiency for both applications. For smalleamglarities and due to the adaptive
window, the IOR application benefits more than tteg program. Indeed, as we mentioned in the
former sectional OLi optimizes sequential accesses when large granularigesxg@toited.

On the right, the parallel 1/0 intensive application hasrbeinched with the MP1 I/O optimi-
sations (theat program was still based on the POSIX API). First, we can nudeal OLi under
POSIX (curve IOR-alOLi on the left) provides better perfamse than the MPI I/O under usual
NFS server (curve IOR-NFS on the right) for the IOR benchmftkreover, as we expected, the
MPI1/O routines reduce congestion issues on the NFS seidendich lead to better performance
for thecat program (curve cat-NFS on the left vs cat-NFS on the rightwelver, when we com-
pare the IOR-NFS and IOR-alOLi on the right, we can see @hat.i does not benefit from the
MPI I/O optimization. Indeed the synchronisation overheaglied by MPI I/O is added tal OLi

performance.

other results can be found on thEOLi website: http://aioli.imag.fr.
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I mpact of two 1/0 intensive applications

made of 32 process deployed on a distinct groups of 16 simgtepsor nodes.
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Figure 7: Impact of an I/O intensive application on a secamel o

As expected in figure 7, the execution of two I/O intensiveli@pfions degrades performances
for all instances, bualOLi minimizes this phenomenon while balancing the 1/0 accelsstgeen
them. Even, if the collective MPI 1/O performances show gtglimprovement for small granular-
ities, they quickly reach the POSIX ones for granularitiesager than 128Kb. Moreover, even if
the MPI I/O collective approach is improved BJOLi (alOLi curves on the right), the best result
is provided by the standard API POSIX und®Li (alOLi curves on the left)al OLi takes advan-
tage of all the freedom given by Posix without synchron@averhead, this is why it performs
better than MPI-IO. For the smallest granularity, Posixuisgs more than 1 hour and half, MPI
I/O needs 11 minutes and 30 seconds wheaé@ki only takes 2 minutes and 35 seconds.

Regarding the fairness, the 2 IOR benchmarks have beenhadrat the same time: at worst,
the gap between the two completion time is 8.5 seconds forl@Kkwith a 35 times improvement
for POSIX and near 5 for MPI 1/0. By choosing more specific quamvalue for each accessed
file, it is possible to set up a desired quality of service facreparallel application running on the

cluster. In our case, the quantum variations are similathfetwo IOR benchmark.
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High concurrency

In this last part, the completion time of 10 distinct applicas launched under a NFS server and

a NFS server plugged to alOLi are discussed. 96 nodes wereatied for this experiment. The

table 2 summarizes all values. The description of each egan is given : 4 applications worked

on the file in a parallel way and 6 others in sequential. Thelevhize of data represents 6GBytes.

Completion time
Application description NFS NFS+alOLi
POSIX | MPI 1O | POSIX | MPI' IO
Read decomposition: 2GB over 32 nodes (granularity=128K) 490 840 134 500
Write Decomposition: 2GB over 32 nodes (granularity=123KB 409 815 107 604
Read decomposition: 256MB over 16 nodes (granularity=8KB%95.5 728 104 415
Write decomposition: 128MB over 8nodes (granularity=64KB 51 257 14.5 247
Sequential read: 32MB on 1 node (granularity=4KB) 531 9 48.5 3
Sequential write: 32MB from 1 node (granularity=4KB) 208 9 47 6
Sequential read: 4MB on 1 node (granularity=32KB) 57 15 6 1
Sequential write: 4MB from 1 node (granularity=32KB) 39 2 19 2
Sequential read: 1GB on 1 node (granularity=2MB) 558 59 143.5 54
Sequential write: 512MB from 1 node (granularity=2MB) 192 71 84 61.5

Table 2: Cluster workloads - completion time for NFS and Nigjged to alOLi

Values are given in second

On a traditional NFS server, the MPI I/O mechanisms exploitside the parallel 1/0 inten-

sive applications favor the sequential program: the oi@tnons are done on the client side which

tends to reduce congestion issue on the NFS and thus enapleseed the smaller tasks. Unfortu-

nately, these optimizations are not well suited for a majtiplicative environment and the overhead

generated by internal MPI /0O mechanisms becomes impofegarding the NFS server plugged

to alOLi, both POSIX and MPI I/O performances are signifibaimhproved for all the applica-

tions. The executions of all applications requires less thaninutes and 23 seconds for alOLi

whereas POSIX needs closed to 10 minutes and MPI 1/O takesiridtes. Finally, once again,
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the optimizations made by MPI 1/O for parallel applicatidagor on the one hand the sequential

programs but on the other hand add an useless overhead delg&Deintensive programs.

5 FutureWork

During the performance evaluation of our extended NFS semeefound an unusual behavior due
to the file system protocol granularity and file system immatation. When several processes are
deployed on the same node, they they strive to access the IMRSlayer which results in some
starvation problems between them. To solve this problemmeesl to force the file system client
part to proceed the request in the order we choose. This cdori®by issuing only one request
at a time. In that case, even if requests are divided intolemahes, they still are issued in the
aggregation ordeal OLi already has the required internal structure to supporttieishanism. We
just need to insert it into the Linux Virtual File System orettlient side and to launch another
instance oflOLi on the server side to make it work. Moreover, we observedabragestion issue
on the server side is reduced by the MPI I/O optimizationser@uthe client side. An approach
made of two alOLi modules may also moderate the load of thedifeer.

This kind of approach will end up in a multi-level schedul@n the local nodeal OLi chooses
the best requests order according to the knowledge of alllipgn/O operations generated by
local processes. On the server sid&Li schedules requests taking into account the global traffic
coming from all the nodes. Finally, an I/O scheduler in theux operating system chooses the
most suitable requests order according to the layout ofatathe physical storage medium. At the
end of the day, each I/O operation is handled by many conse@ahedulers working at different
levels and optimizing at different access granularity. \&# this scheduling methodascading
scheduling. A similar idea consists of exploiting theeta node concept used by several modern
file systems (GPFS, NFSV4, Lustre, etc.) to provide consest®n files. Each time a process
accesses a file for the first time, it becomes the meta nodaiffile and will be in charge of the
coherency for this file. Our proposal is to add #1©Li scheduler at the same level. Thus, the
meta node will schedule I/O requests for this file. Thscading scheduling is thus deployed and

well balanced on several nodes on the cluster which redwregestion issues.
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6 Conclusion

In this article, we presenteglOLi , a framework for high performance file access in distributed
multi-applications environments. We emphasized all thgimal characteristics that make the
strength ofalOLi : it is transparent to the applications because it is set émtwthem and the
underlying I/O subsystems, it maximizes the file systemughput by taking advantage of aggre-
gation opportunities despite the distributed context,aintains fairness between applications by
using a quantum-based scheduling algorithm and it doesagrsade interactive tasks behavior by
deriving the scheduling algorithm from the MLF algorithm.

We validatedal OLi by conducting experiments: first on the widespread Bonnaigtb_eff io
to observe overhead and scalability and second on IOR bear&srandt at -like programs to eval-
uate efficiency. Results show that our approach dramaticaproves performances when several
distributed applications make simultaneous access tmdidtles. Furthermore, as expected, our
solution maintains fairness between applications and dogsignificantly degrade interactivity.

Future work will includecascading scheduling, the integration of specialized schedulers at
different levels in the 1/O resolving process.

We plan to build a hierarchical scheduling infrastructurghval OLi master nodes using a re-
mote server, typically a NFS one, integratialOLi too. Together with thelOLi part on each
client, this would lead to a cascading scheduler that coalarite congestion point in the architec-
ture to avoid bottlenecks no matter the granularity value.

We will also extendal OLi to enable it efficient use with parallel file systems, by takinto
account the distributed data layout. We currently study Bi®Li could be connected to a parallel

version of NFS and to Lustre.
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