Short Time Uniqueness Results for Solutions of Nonlocal and Non-monotone Geometric Equations

Abstract : We describe a method to show short time uniqueness results for viscosity solutions of general nonlocal and non-monotone second-order geometric equations arising in front propagation problems. Our method is based on some lower gradient bounds for the solution. These estimates are crucial to obtain regularity properties of the front, which allow to deal with nonlocal terms in the equations. Applications to short time uniqueness results for the initial value problems for dislocation type equations, asymptotic equations of a FitzHugh-Nagumo type system and equations depending on the Lebesgue measure of the fronts are presented.
Type de document :
Article dans une revue
Mathematische Annalen, Springer Verlag, 2012, 352 (2), pp.409-451. <10.1007/s00208-011-0648-1>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00486802
Contributeur : Olivier Ley <>
Soumis le : mercredi 26 mai 2010 - 17:28:45
Dernière modification le : mercredi 12 juillet 2017 - 01:15:35
Document(s) archivé(s) le : jeudi 16 septembre 2010 - 15:50:18

Fichiers

uniqueness-BLM.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Guy Barles, Olivier Ley, Hiroyoshi Mitake. Short Time Uniqueness Results for Solutions of Nonlocal and Non-monotone Geometric Equations. Mathematische Annalen, Springer Verlag, 2012, 352 (2), pp.409-451. <10.1007/s00208-011-0648-1>. <hal-00486802>

Partager

Métriques

Consultations de
la notice

321

Téléchargements du document

121