Global Constraint Catalog
Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon

To cite this version:
Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon. Global Constraint Catalog. 2005. hal-00485396

HAL Id: hal-00485396
https://hal.archives-ouvertes.fr/hal-00485396
Submitted on 20 May 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Global Constraint Catalog

Nicolas Beldiceanu
École des Mines de Nantes
LINA, 4 rue Alfred Kastler
BP-20722, FR-44307 Nantes Cedex 3, France

Mats Carlsson
SICS, Box 1263, SE-16 429 Kista, Sweden

Jean-Xavier Rampon
LINA, 2 rue de la Houssinière
BP-92208, FR-44322 Nantes Cedex 3, France

SICS Technical Report T2005:08
ISSN: 1100-3154
ISRN: SICS-T–2005/08-SE

Abstract: This report presents a catalog of global constraints where each constraint is explicitly described in terms of graph properties and/or automata. When available, it also presents some typical usage as well as some pointers to existing filtering algorithms.

Keywords: global constraint, catalog, graph, meta-data.

May 13, 2005

1Corresponding author, Email: Nicolas.Beldiceanu@emn.fr
Contents

Preface i

1 Describing global constraints 1
 1.1 Describing the arguments of a global constraint 3
 1.1.1 Basic data types 3
 1.1.2 Compound data types 4
 1.1.3 Restrictions 5
 1.1.4 Declaring a global constraint 13
 1.2 Describing global constraints in terms of graph properties 14
 1.2.1 Basic ideas and illustrative example 14
 1.2.2 Ingredients used for describing global constraints 16
 1.2.3 Graph constraint 42
 1.3 Describing global constraints in terms of automata 51
 1.3.1 Selecting an appropriate description 51
 1.3.2 Defining an automaton 55

2 Description of the catalog 57
 2.1 Which global constraints are included? 57
 2.2 Which global constraints are missing? 58
 2.3 Searching in the catalog 58
 2.3.1 How to see if a global constraint is in the catalog? 58
 2.3.2 How to search for all global constraints sharing the same structure 59
 2.3.3 Searching all places where a global constraint is referenced 60
 2.4 Figures of the catalog 61
 2.5 Keywords attached to the global constraints 62

3 Further topics 111
 3.1 Differences from the 2000 report 111
 3.2 Graph invariants 114
 3.2.1 Graph classes 115
 3.2.2 Format of an invariant 116
 3.3 The electronic version of the catalog 160
Global constraint catalog

<p>| 4.1 all different from at least k pos | 172 |
| 4.2 all min dist | 174 |
| 4.3 alldifferent | 176 |
| 4.4 alldifferent between sets | 180 |
| 4.5 alldifferent except 0 | 182 |
| 4.6 alldifferent interval | 186 |
| 4.7 alldifferent modulo | 190 |
| 4.8 alldifferent on intersection | 194 |
| 4.9 alldifferent partition | 198 |
| 4.10 alldifferent same value | 200 |
| 4.11 allperm | 204 |
| 4.12 among | 206 |
| 4.13 among diff 0 | 208 |
| 4.14 among interval | 212 |
| 4.15 among low up | 214 |
| 4.16 among modulo | 218 |
| 4.17 among seq | 222 |
| 4.18 arith | 224 |
| 4.19 arith or | 228 |
| 4.20 arith sliding | 232 |
| 4.21 assign and counts | 234 |
| 4.22 assign and values | 238 |
| 4.23 atleast | 242 |
| 4.24 atmost | 246 |
| 4.25 balance | 250 |
| 4.26 balance interval | 252 |
| 4.27 balance modulo | 256 |
| 4.28 balance partition | 260 |
| 4.29 bin packing | 264 |
| 4.30 binary tree | 268 |
| 4.31 cardinality at least | 272 |
| 4.32 cardinality at most | 276 |
| 4.33 cardinality at most partition | 280 |
| 4.34 change | 284 |
| 4.35 change continuity | 288 |
| 4.36 change pair | 292 |
| 4.37 change partition | 302 |
| 4.38 circuit | 306 |
| 4.39 circuit cluster | 310 |
| 4.40 circular change | 314 |
| 4.41 clique | 318 |
| 4.42 colored matrix | 322 |
| 4.43 colored_cumulative | 324 |
| 4.44 colored_cumulatives | 328 |
| 4.45 common | 332 |
| 4.46 common interval | 336 |
| 4.47 common module | 338 |
| 4.48 common partition | 340 |
| 4.49 connect points | 342 |
| 4.50 correspondence | 346 |
| 4.51 count | 350 |
| 4.52 counts | 354 |
| 4.53 crossing | 358 |
| 4.54 cumulative | 362 |
| 4.55 cumulative product | 366 |
| 4.56 cumulative two | 370 |
| 4.57 cumulative with level of priority | 374 |
| 4.58 cumulatives | 378 |
| 4.59 cutset | 382 |
| 4.60 cycle | 386 |
| 4.61 cycle card on path | 390 |
| 4.62 cycle or accessibility | 394 |
| 4.63 cycle resource | 398 |
| 4.64 cyclic change | 402 |
| 4.65 cyclic change joker | 406 |
| 4.66 decreasing | 410 |
| 4.67 deepest valley | 414 |
| 4.68 derangement | 418 |
| 4.69 differ from at least k pos | 422 |
| 4.70 differ | 426 |
| 4.71 diffn column | 430 |
| 4.72 diffn include | 432 |
| 4.73 discrepancy | 434 |
| 4.74 disjoint | 436 |
| 4.75 disjoint tasks | 440 |
| 4.76 disjunctive | 444 |
| 4.77 distance between | 446 |
| 4.78 distance change | 448 |
| 4.79 domain constraint | 452 |
| 4.80 element | 456 |
| 4.81 element | 460 |
| 4.82 element greatered | 464 |
| 4.83 element lessed | 468 |
| 4.84 element matrix | 472 |
| 4.85 element sparse | 476 |
| 4.86 elements | 480 |
| 4.87 elements alldifferent | 482 |
| 4.88 elements sparse | 486 |
| 4.89 eq set | 490 |
| 4.90 exactly | 492 |
| 4.91 global cardinality | 496 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.92</td>
<td>global股本 cardinality low up</td>
<td>500</td>
</tr>
<tr>
<td>4.93</td>
<td>global股本 cardinality with costs</td>
<td>502</td>
</tr>
<tr>
<td>4.94</td>
<td>global股本 contiguity</td>
<td>506</td>
</tr>
<tr>
<td>4.95</td>
<td>golomb</td>
<td>508</td>
</tr>
<tr>
<td>4.96</td>
<td>graph交叉</td>
<td>512</td>
</tr>
<tr>
<td>4.97</td>
<td>group</td>
<td>516</td>
</tr>
<tr>
<td>4.98</td>
<td>group skip isolated股本</td>
<td>524</td>
</tr>
<tr>
<td>4.99</td>
<td>heighest peak</td>
<td>532</td>
</tr>
<tr>
<td>4.100</td>
<td>in</td>
<td>536</td>
</tr>
<tr>
<td>4.101</td>
<td>in relation</td>
<td>538</td>
</tr>
<tr>
<td>4.102</td>
<td>in same partition</td>
<td>542</td>
</tr>
<tr>
<td>4.103</td>
<td>in set</td>
<td>546</td>
</tr>
<tr>
<td>4.104</td>
<td>increasing</td>
<td>548</td>
</tr>
<tr>
<td>4.105</td>
<td>indexed sum</td>
<td>552</td>
</tr>
<tr>
<td>4.106</td>
<td>inflexion</td>
<td>554</td>
</tr>
<tr>
<td>4.107</td>
<td>int股本 value precede</td>
<td>556</td>
</tr>
<tr>
<td>4.108</td>
<td>int股本 value precede chain</td>
<td>558</td>
</tr>
<tr>
<td>4.109</td>
<td>interval and count</td>
<td>560</td>
</tr>
<tr>
<td>4.110</td>
<td>interval and sum</td>
<td>564</td>
</tr>
<tr>
<td>4.111</td>
<td>inverse</td>
<td>568</td>
</tr>
<tr>
<td>4.112</td>
<td>inverse set</td>
<td>572</td>
</tr>
<tr>
<td>4.113</td>
<td>ith posdifferent股本 from f</td>
<td>576</td>
</tr>
<tr>
<td>4.114</td>
<td>k cut</td>
<td>578</td>
</tr>
<tr>
<td>4.115</td>
<td>lex2</td>
<td>580</td>
</tr>
<tr>
<td>4.116</td>
<td>lex alldifferent</td>
<td>582</td>
</tr>
<tr>
<td>4.117</td>
<td>lex between</td>
<td>584</td>
</tr>
<tr>
<td>4.118</td>
<td>lex股本 chain less</td>
<td>588</td>
</tr>
<tr>
<td>4.119</td>
<td>lex股本 chain lesseq</td>
<td>592</td>
</tr>
<tr>
<td>4.120</td>
<td>lex different</td>
<td>596</td>
</tr>
<tr>
<td>4.121</td>
<td>lex greater</td>
<td>598</td>
</tr>
<tr>
<td>4.122</td>
<td>lex greatered</td>
<td>602</td>
</tr>
<tr>
<td>4.123</td>
<td>lex less</td>
<td>606</td>
</tr>
<tr>
<td>4.124</td>
<td>lex lesseq</td>
<td>610</td>
</tr>
<tr>
<td>4.125</td>
<td>link股本 set to booleans</td>
<td>614</td>
</tr>
<tr>
<td>4.126</td>
<td>longest股本 change</td>
<td>618</td>
</tr>
<tr>
<td>4.127</td>
<td>map</td>
<td>622</td>
</tr>
<tr>
<td>4.128</td>
<td>max股本 index</td>
<td>624</td>
</tr>
<tr>
<td>4.129</td>
<td>max股本 r</td>
<td>626</td>
</tr>
<tr>
<td>4.130</td>
<td>max股本股本 value</td>
<td>628</td>
</tr>
<tr>
<td>4.131</td>
<td>max股本股本 set of consecutive股本</td>
<td>632</td>
</tr>
<tr>
<td>4.132</td>
<td>maximum</td>
<td>634</td>
</tr>
<tr>
<td>4.133</td>
<td>maximum股本 module</td>
<td>638</td>
</tr>
<tr>
<td>4.134</td>
<td>min股本 index</td>
<td>640</td>
</tr>
<tr>
<td>4.135</td>
<td>min股本 r</td>
<td>644</td>
</tr>
<tr>
<td>4.136</td>
<td>min股本股本 value</td>
<td>646</td>
</tr>
<tr>
<td>4.137</td>
<td>min股本股本 set of consecutive股本</td>
<td>650</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.184</td>
<td>size_maximal_starting_sequence_alldifferent</td>
<td>784</td>
</tr>
<tr>
<td>4.185</td>
<td>sliding_card_skipped</td>
<td>786</td>
</tr>
<tr>
<td>4.186</td>
<td>sliding_distribution</td>
<td>790</td>
</tr>
<tr>
<td>4.187</td>
<td>sliding_sum</td>
<td>792</td>
</tr>
<tr>
<td>4.188</td>
<td>sliding_time_window</td>
<td>794</td>
</tr>
<tr>
<td>4.189</td>
<td>sliding_time_window_from_start</td>
<td>798</td>
</tr>
<tr>
<td>4.190</td>
<td>sliding_time_window_sum</td>
<td>802</td>
</tr>
<tr>
<td>4.191</td>
<td>smooth</td>
<td>806</td>
</tr>
<tr>
<td>4.192</td>
<td>soft_alldifferent_contraints</td>
<td>810</td>
</tr>
<tr>
<td>4.193</td>
<td>soft_alldifferent_variable</td>
<td>814</td>
</tr>
<tr>
<td>4.194</td>
<td>soft_same_interval_variable</td>
<td>818</td>
</tr>
<tr>
<td>4.195</td>
<td>soft_same_modulo_variable</td>
<td>820</td>
</tr>
<tr>
<td>4.196</td>
<td>soft_same_partition_variable</td>
<td>822</td>
</tr>
<tr>
<td>4.197</td>
<td>soft_same_variable</td>
<td>824</td>
</tr>
<tr>
<td>4.198</td>
<td>soft_used_by_interval_variable</td>
<td>828</td>
</tr>
<tr>
<td>4.199</td>
<td>soft_used_by_modulo_variable</td>
<td>832</td>
</tr>
<tr>
<td>4.200</td>
<td>soft_used_by_partition_variable</td>
<td>836</td>
</tr>
<tr>
<td>4.201</td>
<td>soft_used_by_variable</td>
<td>838</td>
</tr>
<tr>
<td>4.202</td>
<td>sort</td>
<td>842</td>
</tr>
<tr>
<td>4.203</td>
<td>sort_permutation</td>
<td>846</td>
</tr>
<tr>
<td>4.204</td>
<td>stage_element</td>
<td>850</td>
</tr>
<tr>
<td>4.205</td>
<td>stretch_circuit</td>
<td>854</td>
</tr>
<tr>
<td>4.206</td>
<td>stretch_path</td>
<td>858</td>
</tr>
<tr>
<td>4.207</td>
<td>strict_lex2</td>
<td>862</td>
</tr>
<tr>
<td>4.208</td>
<td>strictly_decreasing</td>
<td>864</td>
</tr>
<tr>
<td>4.209</td>
<td>strictly_increasing</td>
<td>866</td>
</tr>
<tr>
<td>4.210</td>
<td>strongly_connected</td>
<td>868</td>
</tr>
<tr>
<td>4.211</td>
<td>sum</td>
<td>870</td>
</tr>
<tr>
<td>4.212</td>
<td>sum_ctr</td>
<td>874</td>
</tr>
<tr>
<td>4.213</td>
<td>sum_of_weights_of_distinct_values</td>
<td>876</td>
</tr>
<tr>
<td>4.214</td>
<td>sum_set</td>
<td>880</td>
</tr>
<tr>
<td>4.215</td>
<td>symmetric_alldifferent</td>
<td>882</td>
</tr>
<tr>
<td>4.216</td>
<td>symmetric_cardinality</td>
<td>886</td>
</tr>
<tr>
<td>4.217</td>
<td>symmetric_gcc</td>
<td>890</td>
</tr>
<tr>
<td>4.218</td>
<td>temporal_path</td>
<td>892</td>
</tr>
<tr>
<td>4.219</td>
<td>tour</td>
<td>896</td>
</tr>
<tr>
<td>4.220</td>
<td>track</td>
<td>900</td>
</tr>
<tr>
<td>4.221</td>
<td>tree</td>
<td>902</td>
</tr>
<tr>
<td>4.222</td>
<td>tree_range</td>
<td>906</td>
</tr>
<tr>
<td>4.223</td>
<td>tree_resource</td>
<td>910</td>
</tr>
<tr>
<td>4.224</td>
<td>two_layer_edge_crossing</td>
<td>914</td>
</tr>
<tr>
<td>4.225</td>
<td>two_orth_are_in_contact</td>
<td>918</td>
</tr>
<tr>
<td>4.226</td>
<td>two_orth_column</td>
<td>922</td>
</tr>
<tr>
<td>4.227</td>
<td>two_orth_do_not_overlap</td>
<td>924</td>
</tr>
<tr>
<td>4.228</td>
<td>two_orth_include</td>
<td>928</td>
</tr>
<tr>
<td>4.229</td>
<td>used_by</td>
<td>930</td>
</tr>
</tbody>
</table>
CONTENTS

4.230 used by interval .. 934
4.231 used by modulo .. 936
4.232 used by partition ... 938
4.233 valley ... 940
4.234 vec eq tuple ... 944
4.235 weighted partial alldiff ... 946

A Legend for the description .. 949

B Electronic constraint catalog .. 951
 B.1 all different from at least k pos 957
 B.2 all min dist .. 958
 B.3 alldifferent ... 959
 B.4 alldifferent_between_sets 960
 B.5 alldifferent_except .. 961
 B.6 alldifferent_interval .. 962
 B.7 alldifferent_modulo ... 963
 B.8 alldifferent_on_intersection 964
 B.9 alldifferent_partition .. 965
 B.10 alldifferent_same_value 967
 B.11 allperm .. 968
 B.12 among .. 969
 B.13 among diff 0 .. 971
 B.14 among_interval .. 973
 B.15 among low up .. 975
 B.16 among modulo ... 977
 B.17 among seq .. 979
 B.18 arith ... 981
 B.19 arith or .. 983
 B.20 arith sliding .. 985
 B.21 assign and counts ... 989
 B.22 assign and _nvalues ... 991
 B.23 atleast ... 993
 B.24 atmost .. 995
 B.25 balance ... 996
 B.26 balance_interval .. 997
 B.27 balance modulo .. 998
 B.28 balance partition ... 999
 B.29 bin Packing ... 1000
 B.30 binary tree ... 1001
 B.31 cardinality_atleast ... 1002
 B.32 cardinality_atmost ... 1003
 B.33 cardinality_atmost_partition 1004
 B.34 change .. 1005
 B.35 change continuity .. 1007
 B.36 change_pair .. 1012
CONTENTS

B.129max
B.130max
B.131max
B.132maximum
B.133maximum
B.134min
B.135min
B.136min
B.137min
B.138minimum
B.139minimum
B.140minimum
B.141minimum
B.142minimum
B.143nclass
B.144nequivalence
B.145next_element
B.146next_greater_element
B.147interval
B.148no_peak
B.149no_valley
B.150not_all_equal
B.151not_in
B.152pair
B.153set_of_consecutive_values
B.154value
B.155value_on_intersection
B.156values
B.157values_except_0
B.158one_tree
B.159orchard
B.160orth_link_ori_siz_end
B.161orth_on_the_ground
B.162orth_on_top_of_orth
B.163orths_are_connected
B.164path_from_to
B.165pattern
B.166peak
B.167period
B.168period_except_0
B.169place_in_pyramid
B.170polyomino
B.171product
B.172range
B.173relaxed_sliding_sum
B.174same
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B.175 same and global cardinality</td>
<td>1245</td>
</tr>
<tr>
<td>B.176 same intersection</td>
<td>1247</td>
</tr>
<tr>
<td>B.177 same interval</td>
<td>1248</td>
</tr>
<tr>
<td>B.178 same modulo</td>
<td>1249</td>
</tr>
<tr>
<td>B.179 same partition</td>
<td>1250</td>
</tr>
<tr>
<td>B.180 sequence folding</td>
<td>1251</td>
</tr>
<tr>
<td>B.181 set value precede</td>
<td>1253</td>
</tr>
<tr>
<td>B.182 shift</td>
<td>1254</td>
</tr>
<tr>
<td>B.183 size maximal_sequence_alldifferent</td>
<td>1256</td>
</tr>
<tr>
<td>B.184 size maximal_starting_sequence_alldifferent</td>
<td>1257</td>
</tr>
<tr>
<td>B.185 sliding card_skip0</td>
<td>1258</td>
</tr>
<tr>
<td>B.186 sliding distribution</td>
<td>1260</td>
</tr>
<tr>
<td>B.187 sliding sum</td>
<td>1262</td>
</tr>
<tr>
<td>B.188 sliding time_window</td>
<td>1263</td>
</tr>
<tr>
<td>B.189 sliding time_window_from_start</td>
<td>1264</td>
</tr>
<tr>
<td>B.190 sliding time_window_sum</td>
<td>1266</td>
</tr>
<tr>
<td>B.191 smooth</td>
<td>1268</td>
</tr>
<tr>
<td>B.192 soft_alldifferent_ctr</td>
<td>1270</td>
</tr>
<tr>
<td>B.193 soft_alldifferent_var</td>
<td>1271</td>
</tr>
<tr>
<td>B.194 soft_same_interval_var</td>
<td>1272</td>
</tr>
<tr>
<td>B.195 soft_same_modulo_var</td>
<td>1273</td>
</tr>
<tr>
<td>B.196 soft_same_partition_var</td>
<td>1274</td>
</tr>
<tr>
<td>B.197 soft_same_var</td>
<td>1276</td>
</tr>
<tr>
<td>B.198 soft_used_by_interval_var</td>
<td>1277</td>
</tr>
<tr>
<td>B.199 soft_used_by_modulo_var</td>
<td>1278</td>
</tr>
<tr>
<td>B.200 soft_used_by_partition_var</td>
<td>1279</td>
</tr>
<tr>
<td>B.201 soft_used_by_var</td>
<td>1281</td>
</tr>
<tr>
<td>B.202 sort</td>
<td>1282</td>
</tr>
<tr>
<td>B.203 sort_permutation</td>
<td>1283</td>
</tr>
<tr>
<td>B.204 stage element</td>
<td>1285</td>
</tr>
<tr>
<td>B.205 stretch circuit</td>
<td>1287</td>
</tr>
<tr>
<td>B.206 stretch path</td>
<td>1289</td>
</tr>
<tr>
<td>B.207 strict_lex2</td>
<td>1291</td>
</tr>
<tr>
<td>B.208 strictly_decreasing</td>
<td>1292</td>
</tr>
<tr>
<td>B.209 strictly_increasing</td>
<td>1294</td>
</tr>
<tr>
<td>B.210 strongly_connected</td>
<td>1296</td>
</tr>
<tr>
<td>B.211 sum</td>
<td>1297</td>
</tr>
<tr>
<td>B.212 sum ctr</td>
<td>1298</td>
</tr>
<tr>
<td>B.213 sum_of_weights_of_distinct_values</td>
<td>1299</td>
</tr>
<tr>
<td>B.214 sum set</td>
<td>1300</td>
</tr>
<tr>
<td>B.215 symmetric_alldifferent</td>
<td>1301</td>
</tr>
<tr>
<td>B.216 symmetric_cardinality</td>
<td>1302</td>
</tr>
<tr>
<td>B.217 symmetric_gcd</td>
<td>1304</td>
</tr>
<tr>
<td>B.218 temporal_path</td>
<td>1306</td>
</tr>
<tr>
<td>B.219 tour</td>
<td>1308</td>
</tr>
<tr>
<td>B.220 track</td>
<td>1310</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>B.221 tree</td>
<td>1312</td>
</tr>
<tr>
<td>B.222 tree range</td>
<td>1313</td>
</tr>
<tr>
<td>B.223 tree resource</td>
<td>1314</td>
</tr>
<tr>
<td>B.224 two layer edge crossing</td>
<td>1316</td>
</tr>
<tr>
<td>B.225 two orth are in contact</td>
<td>1318</td>
</tr>
<tr>
<td>B.226 two orth column</td>
<td>1320</td>
</tr>
<tr>
<td>B.227 two orth do not overlap</td>
<td>1322</td>
</tr>
<tr>
<td>B.228 two orth include</td>
<td>1324</td>
</tr>
<tr>
<td>B.229 used by</td>
<td>1326</td>
</tr>
<tr>
<td>B.230 used by interval</td>
<td>1327</td>
</tr>
<tr>
<td>B.231 used by modulo</td>
<td>1328</td>
</tr>
<tr>
<td>B.232 used by partition</td>
<td>1329</td>
</tr>
<tr>
<td>B.233 valley</td>
<td>1330</td>
</tr>
<tr>
<td>B.234 vec eq tuple</td>
<td>1332</td>
</tr>
<tr>
<td>B.235 weighted partial alldiff</td>
<td>1333</td>
</tr>
<tr>
<td>Bibliography</td>
<td>1335</td>
</tr>
<tr>
<td>Index</td>
<td>1349</td>
</tr>
</tbody>
</table>
Preface

This catalog presents a list of global constraints. It contains about 235 constraints, which are explicitly described in terms of graph properties and/or automata.

This *Global Constraint Catalog* is an expanded version of the list of global constraints presented in [1]. The principle used for describing global constraints has been slightly modified in order to deal with a larger number of global constraints. Since 2003, we try to provide an automaton that recognizes the solutions associated with a global constraint.

Writing a dictionary is a long process, especially in a field where new words are defined every year. In this context, one difficulty has been related to the fact that we want to express explicitly the meaning of global constraints in terms of meta-data. Finding an appropriate description that easily captures the meaning of most global constraints seems to be a tricky task.

Goal of the catalog. This catalog has four main goals. First, it provides an overview of most of the different global constraints that were gradually introduced in the area of constraint programming since the work of Jean-Louis Laurière on ALICE [2]. It also identifies new global constraints for which no existing published work exists. The global constraints are arranged in alphabetic order, and for all of them a description and an example are systematically provided. When available, it also presents some typical usage as well as some pointers to existing filtering algorithms.

Second, the global constraints described in this catalog are not only accessible to humans, who can read the catalog for searching for some information. It is also available to machines, which can read and interpret it. This is why there exists an electronic version of this catalog where one can get, for most global constraints, a complete description in terms of meta-data. In fact, most of this catalog and its figures were automatically generated from this electronic version by a computer program. This description is based on two complementary ways to look at a global constraint. The first one defines a global constraint as searching for a graph with specific properties [3], while the second one characterizes a global constraint in terms of an automaton that only recognizes the solutions associated to that global constraint [4, 5]. The key point of these descriptions is their ability to define explicitly in a concise way the meaning of most global constraints. In addition these descriptions can also be systematically turned into polynomial filtering algorithms.
Third, we hope that this unified description of apparently diverse global constraints will allow for establishing a systematic link between the properties of basic concepts used for describing global constraints and the properties of the global constraints as a whole.

Finally, we also hope that it will attract more people from the algorithmic community into the area of constraints. To a certain extent this has already started at places like CWI in Amsterdam, the Max-Planck für Informatik (Saarbrücken) or the university of Waterloo.

Use of the catalog. The catalog is organized into four chapters:

- Chapter 1 explains how the meaning of global constraints is described in terms of graph-properties or in terms of automata. On the one hand, if one wants to consult the catalog for getting the informal definition of a global constraint, examples of use of that constraint or pointers to filtering algorithms, then one only needs to read the first section of Chapter 1: Describing the arguments of a global constraint, page 3. On the other hand, if one wants to understand those entries describing explicitly the meaning of a constraint then all the material of Chapter 1 is required.

- Chapter 2 describes the content of the catalog as well as different ways for searching through the catalog. This material is essential.

- Chapter 3 covers additional topics such as the differences from the 2000 report [1] on global constraints, the generation of implied constraints that are systematically linked to the graph-based description of a global constraint, and the electronic version of the catalog. The material describing the format of the entries of a global constraint is mandatory for those who want to exploit the electronic version in order to write preprocessors for performing various tasks for a global constraint.

- Finally, Chapter 4 corresponds to the catalog itself, which gives the global constraints in alphabetical order.

Acknowledgments. Nicolas Beldiceanu was the principal investigator and main architect of the constraint catalog, provided the main ideas, and wrote a checker for the constraint descriptions and the figure generation program for the constraint descriptions.

Jean-Xavier Rampon provided the proofs for the graph invariants.

Mats Carlsson contributed to the design of the meta-data format, generated some of the automata, and wrote the program that created the \LaTeX{} version of this catalog from the constraint descriptions.

The idea of describing explicitly the meaning of global constraints in a declarative way has been inspired by the work on meta-knowledge of Jacques Pitrat.
We are grateful to Magnus Ågren, Abderrahmane Aggoun, Ernst Althaus, Grégory Baues, Christian Bessière, Éric Bourreau, Pascal Brisset, Hadrien Cambazard, Peter Chan, Philippe Charlier, Evelyne Contejean, Romuald Debruyne, Frédéric Deceus, Mehmet Dincbas, François Fage, Pierre Flener, Xavier Gandibleux, Yan Georget, David Hanak, Narendra Jussien, Irit Katriel, Waldemar Kocjan, Per Kreuger, Krzysztof Kuchcinski, Per Mildner, Michel Leconte, Michael Marte, Nicolas Museux, Justin Pearson, Thierry Petit, Emmanuel Poder, Guillaume Rochart, Xavier Savalle, Helmut Simonis, Péter Szeredi, Sven Thiel and Charlotte Truchet for discussion, information exchange or common work about specific global constraints.

Furthermore, we are grateful to Irit Katriel who contributed by updating the description of some filtering algorithms related to flow and matching of the catalog.

Finally, we want to acknowledge the support of SICS and EMN for providing excellent working conditions. The part of this work related to graph properties in Chapter 4 was done while the corresponding author was working at SICS.

Readers may send their suggestion via email to the corresponding author with catalog as subject.

Uppsala, Sweden, August 2003
Nantes, France, May 2005 — NB, MC, JXR
Chapter 1

Describing global constraints

Contents

1.1 Describing the arguments of a global constraint .. 3
 1.1.1 Basic data types .. 3
 1.1.2 Compound data types ... 4
 1.1.3 Restrictions .. 5
 1.1.4 Declaring a global constraint ... 13

1.2 Describing global constraints in terms of graph properties 14
 1.2.1 Basic ideas and illustrative example .. 14
 1.2.2 Ingredients used for describing global constraints 16
 Collection generators .. 17
 Elementary constraints attached to the arcs .. 22
 Simple arithmetic expression ... 22
 Arithmetic expressions .. 23
 Arc constraints .. 24
 Graph generators ... 26
 Graph properties .. 31
 Graph terminology and notations .. 31
 Graph characteristics .. 34

1.3 Describing global constraints in terms of automata 51
 1.3.1 Selecting an appropriate description ... 51
 1.3.2 Defining an automaton ... 55

We first motivate the need for an explicit description of global constraints and then present the graph-based as well as the automaton-based descriptions used throughout the catalog. On the one hand, the graph-based representation considers a global constraint as a subgraph of an initial given graph. This subgraph has to satisfy a set of...
required graph properties. On the other hand, the automaton-based representation denotes a global constraint as a hypergraph constructed from a given constraint checker. Both, the initial graph of the graph-based representation, as well as the hypergraph of the automaton-based representation have a very regular structure, which should give the opportunity for efficient filtering algorithms taking advantage of this structure.

We now present our motivations for an explicit description of the meaning of global constraints. The current trend is to first use natural language for describing the meaning of a global constraint and second to work out a specialized filtering algorithm. Since we have a huge number of potential global constraints that can be combined in a lot of ways, this is an immense task. Since we are also interested in providing other services such as visualization [6], explanations [7], cuts for linear programming [8], moves for local search [9], soft global constraints [10], [11], [12], specialized heuristics for each global constraint this is even worse. One could argue that a candidate for describing explicitly the meaning of global constraints would be second order predicate calculus. This could perhaps solve our description problem but would, at least currently, not be useful for deriving any filtering algorithm. For a similar reason Prolog was restricted to Horn clauses for which one had a reasonable solving mechanism. What we want to stress through this example is the fact that a declarative description is really useful only if it also provides some hints about how to deal with that description.

Our first choice of a graph-based representation has been influenced by the following observations:

- The concept of graph takes its roots in the area of mathematical recreations (see for instance L. Euler [13], H. E. Dudeney [14], E. Lucas [15] and T. P. Kirkman [16]), which was somehow the ancestor of combinatorial problems. In this perspective a graph-based description makes sense.

- In one of the first book introducing graph theory [17], C. Berge presents graph theory as a way of grouping apparently diverse problems and results. This was also the case for global constraints.

- The characteristics associated with graphs are concrete and concise.

- Finally, it is well known that graph theory is an important tool with respect to the development of efficient filtering algorithms [18], [19], [20], [21], [22], [23], [24], [25], [26].

Our second choice of an automaton-based representation has been motivated by the following observation. Writing a constraint checker is usually a straightforward task. The corresponding program can usually be turned into an automaton. Of course an automaton is typically used on a fixed sequence of symbols. But, within the context of filtering algorithms, we have to deal with a sequence of variables. For this purpose we have shown [4] for some automata how to decompose them into a conjunction of smaller constraints. In this context, a global constraint can be seen as a hypergraph corresponding to its decomposition.

1 A constraint checker is a program that takes an instance of a constraint for which all variables are fixed and tests whether the constraint is satisfied or not.

2 This can be observed in all constraint manuals where the description of the meaning is always informal.
1.1 Describing the arguments of a global constraint

Since global constraints have to receive their arguments in some form, no matter whether we use the graph-based or the automaton-based description, we start by describing the abstract data types that we use in order to specify the arguments of a global constraint. These abstract data types are not related to any specific programming language like Caml, C, C++, Java or Prolog. If one wants to focus on a specific language, then one has to map these abstract data types to the data types that are available within the considered programming language. In a second phase we describe all the restrictions that one can impose on the arguments of a global constraint. Finally, in a third phase we show how to use these ingredients in order to declare the arguments of a global constraint.

1.1.1 Basic data types

We provide the following basic data types:

- **atom** corresponds to an atom. Predefined atoms are MININT and MAXINT, which respectively correspond to the smallest and to the largest integer.

- **int** corresponds to an integer value.

- **dvar** corresponds to a domain variable. A domain variable is a variable that will be assigned an integer value taken from an initial finite set of integer values.

- **sint** corresponds to a finite set of integer values.

- **svar** corresponds to a set variable. A set variable is a variable that will be assigned to a finite set of integer values.

- **mint** corresponds to a multiset of integer values.

- **mvar** corresponds to a multiset variable. A multiset variable is a variable that will be assigned to a multiset of integer values.

- **flt** corresponds to a float number.

- **fvar** corresponds to a float variable. A float variable is a variable that will be assigned a float number taken from an initial finite set of intervals.
1.1.2 Compound data types

We provide the following compound data types:

- **list**(T) corresponds to a list of elements of type T, where T is a basic or a compound data type.

- **c : collection**(A₁,A₂,...,Aₙ) corresponds to a collection c of ordered items, where each item consists of n > 0 attributes A₁,A₂,...,Aₙ. Each attribute is an expression of the form a − T, where a is the name of the attribute and T the type of the attribute (a basic or a compound data type). All names of the attributes of a given collection should be distinct and different from the keyword key, which corresponds to an implicit attribute. Its value corresponds to the position of an item within the collection. The first item of a collection is associated with position 1.

The following notations are used for instantiated arguments:

- A list of elements e₁,e₂,...,eₙ is denoted [e₁,e₂,...,eₙ].

- A finite set of integers i₁,i₂,...,iₙ is denoted {i₁,i₂,...,iₙ}.

- A multiset of integers i₁,i₂,...,iₙ is denoted {{i₁,i₂,...,iₙ}}.

- A collection of n items, each item having m attributes, is denoted by (a₁−v₁₁...aₘ−v₁ₘ, a₁−v₂₁...aₘ−v₂ₘ, ... , a₁−vₙ₁...aₘ−vₙₘ}. Each item is separated from the previous item by a comma.

- The iᵗʰ item of a collection c is denoted c[i].

- The number of items of a collection c is denoted |c|.

This attribute is not explicitly defined.
1.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT

EXAMPLE: Let us illustrate with three examples, the types one can create. These examples concern the creation of a collection of variables, a collection of tasks and a collection of orthotopes.

- In the first example we define VARIABLES so that it corresponds to a collection of variables. VARIABLES is for instance used in the alldifferent constraint. The declaration VARIABLES : collection(var – dvar) defines a collection of items, each of which having one attribute var that is a domain variable.

- In the second example we define TASKS so that it corresponds to a collection of tasks, each task being defined by its origin, its duration, its end and its resource consumption. Such a collection is for instance used in the cumulative constraint. The declaration TASKS : collection(origin – dvar, duration – dvar, end – dvar, height – dvar) defines a collection of items, each of which having the four attributes origin, duration, end and height which all are domain variables.

- In the last example we define ORTHOTOPES so that is corresponds to a collection of orthotopes. Each orthotope is described by an attribute orth. Unlike the previous examples, the type of this attribute does not correspond any more to a basic data type but rather to a collection of n items, where n is the number of dimensions of the orthotope. This collection, named ORTHOTOPE, defines for a given dimension the origin, the size and the end of the object in this dimension. This leads to the two declarations:

 - ORTHOTOPE – collection(ori – dvar, siz – dvar, end – dvar),
 - ORTHOTOPES – collection(orth – ORTHOTOPE).

ORTHOTOPE is for instance used in the diffn constraint.

\[a\] An orthotope corresponds to the generalization of a segment, a rectangle and a box to the n-dimensional case.

\[b\] 1 for a segment, 2 for a rectangle, 3 for a box,

1.1.3 Restrictions

When defining the arguments of a global constraint, it is often the case that one needs to express additional conditions that refine the type declaration of its arguments. For this purpose we provide restrictions that allow for specifying these additional conditions. Each restriction has a name and a set of arguments and is described by the following items:

- A small paragraph first describes the effect of the restriction,

- An example points to a constraint using the restriction,

- Finally, a ground instance, preceded by the symbol \triangleright, which satisfies the restriction is given. Similarly, a ground instance, preceded by the symbol $\triangleright\triangleright$, which violates the restriction is proposed. In this latter case, a bold font may be used for pointing to the source of the problem.

Currently the list of restrictions is:
• \texttt{in_list(\text{Arg}, \text{ListAtoms})}:

 – \text{Arg} is an argument of type \text{atom},

 – \text{ListAtoms} is a non-empty list of distinct atoms.

This restriction forces \text{Arg} to be one of the atoms specified in the list \text{ListAtoms}.

\begin{example}
An example of use of such restriction can be found in the \texttt{change (NCHANGE, VARIABLES, CTR)} constraint: \texttt{in_list(CTR, [=, \neq, <, \geq, >, \leq])} forces the last argument \text{CTR} of the \texttt{change} constraint to take its value in the list of atoms \([=, \neq, <, \geq, >, \leq] \).

\begin{verbatim}
> change (1, \{var – 4, var – 4, var – 4, var – 4, var – 6\}, \neq)
\end{verbatim}
\end{example}

• \texttt{in_list(\text{Arg}, \text{Attr}, \text{ListInt})}:

 – \text{Arg} is an argument of type \text{collection},

 – \text{Attr} is an attribute of type \text{int} of the collection denoted by \text{Arg},

 – \text{ListInt} is a non-empty list of integers.

This restriction enforces for all items of the collection \text{Arg}, the attribute \text{Attr} to take its value within the list of integers \text{ListInt}.

\begin{example}
An example of use of such restriction can be found in the \texttt{one_tree} constraint: \texttt{in_list(NODES, type, [2, 3, 6])} forces the attribute \text{type} of the \text{NODES} collection to take its value in the list of integers \([2, 3, 6] \).

\begin{verbatim}
> one_tree { id – a index – 1 type – 2 father – 1 depth1 – 1 depth2 – 0,
 id – b index – 2 type – 2 father – 2 depth1 – 0 depth2 – 0,
 id – c index – 3 type – 3 father – 2 depth1 – 0 depth2 – 0,
 id – d index – 4 type – 3 father – 2 depth1 – 0 depth2 – 0})
\end{verbatim}
\end{example}

• \texttt{in_attr(\text{Arg1}, \text{Attr1}, \text{Arg2}, \text{Attr2})}:

 – \text{Arg1} is an argument of type \text{collection},

 – \text{Attr1} is an attribute of type \text{dvar} of the collection denoted by \text{Arg1},

 – \text{Arg2} is an argument of type \text{collection},

 – \text{Attr2} is an attribute of type \text{int} of the collection denoted by \text{Arg2}.

Let \(S_2 \) denote the set of values assigned to the \text{Attr2} attributes of the items of the collection \text{Arg2}. This restriction enforces the following condition: For all items of the collection \text{Arg1}, the attribute \text{Attr1} takes its value in the set \(S_2 \).
1.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT

EXAMPLE: An example of use of such restriction can be found in the `cumulatives` (TASKS, MACHINES, CTR) constraint: in `attr(TASKS, machine, MACHINES, id)` enforces that the machine attribute of each task of the TASKS collection correspond to a machine identifier (i.e. an id attribute of the MACHINES collection).

```
<table>
<thead>
<tr>
<th>machine</th>
<th>id</th>
<th>capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>
```

```
[{machine: 1, origin: 2, duration: 2, end: 4, height: 2},
 {machine: 1, origin: 2, duration: 2, end: 4, height: 2},
 {machine: 2, origin: 1, duration: 4, end: 5, height: 5},
 {machine: 1, origin: 4, duration: 2, end: 6, height: 1}]
```

This restriction enforces that there be at least one attribute specified by `Attrs` with two distinct values.

distinct(Arg, Attrs):

- Arg is an argument of type collection.
- Attrs is an attribute of type int or a list of distinct attributes of type int of the collection denoted by Arg.

Let `n` and `m` respectively denote the number of items of the collection `Arg`, and the number of attributes of `Attrs`. For the `i`th item of the collection `Arg` let `t_i` denote the tuple of values `(v_{i,1}, v_{i,2}, \ldots, v_{i,m})` where `v_{i,j}` is the value of the `j`th attribute of `Attrs` of the `i`th item of `Arg`. The restriction enforces a strict lexicographical ordering on the tuples `t_1, t_2, \ldots, t_n`.

increasing_seq(Arg, Attrs):

- Arg is an argument of type collection.
- Attrs is an attribute of type int or a list of distinct attributes of type int of the collection denoted by Arg.
EXAMPLE: An example of use of such restriction can be found in the
\texttt{element_matrix} constraint:
\begin{verbatim}
increasing_seq(MATRIX, [i, j]) enforces that all items of the MATRIX collection be
sorted in strictly increasing lexicographic order on the pair (i, j).
\end{verbatim}
\begin{verbatim}
\texttt{element_matrix}(2, 2, 1, 2, \{i - 1 j - 1 v - 4, i - 1 j - 2 v - 7,
 i - 2 j - 1 v - 1, i - 2 j - 2 v - 1\}, 7)
\end{verbatim}

\begin{verbatim}
\texttt{element_matrix}(2, 2, 1, 2, \{i - 1 j - 2 v - 4, i - 1 j - 1 v - 7,
 i - 2 j - 1 v - 1, i - 2 j - 2 v - 1\}, 7)
\end{verbatim}

\begin{itemize}
 \item \texttt{required}(Arg, Attrs):
 \begin{itemize}
 \item Arg is an argument of type \texttt{collection},
 \item Attrs is an attribute or a list of distinct attributes of the collection denoted by Arg.
 \end{itemize}

This restriction enforces that all attributes denoted by Attrs be explicitly used within all items of the collection Arg.

\begin{verbatim}
\texttt{cumulative}(\texttt{TASKS}, \texttt{LIMIT}) constraint: \texttt{required}(\texttt{TASKS}, \texttt{height}) enforces that all
items of the \texttt{TASKS} collection mention the \texttt{height} attribute.
\end{verbatim}
\begin{verbatim}
\texttt{cumulative}(\{\texttt{origin} - 2 \texttt{duration} - 2 \texttt{end} - 4 \texttt{height} - 2,
 \texttt{origin} - 2 \texttt{duration} - 2 \texttt{end} - 4 \texttt{height} - 2,
 \texttt{origin} - 1 \texttt{duration} - 4 \texttt{end} - 5 \texttt{height} - 5,
 \texttt{origin} - 4 \texttt{duration} - 2 \texttt{end} - 6 \texttt{height} - 1\}, 12)
\end{verbatim}
\begin{verbatim}
\texttt{cumulative}(\{\texttt{origin} - 2 \texttt{duration} - 2 \texttt{end} - 4,
 \texttt{origin} - 2 \texttt{duration} - 2 \texttt{end} - 4 \texttt{height} - 2,
 \texttt{origin} - 1 \texttt{duration} - 4 \texttt{end} - 5 \texttt{height} - 5,
 \texttt{origin} - 4 \texttt{duration} - 2 \texttt{end} - 6 \texttt{height} - 1\}, 12)
\end{verbatim}

The \texttt{required} restriction is usually systematically used for every attribute of a collection. It is not used when some attributes may be implicitly defined according to other attributes. In this context, we use the \texttt{require_at_least} restriction, which we now introduce.

\begin{itemize}
 \item \texttt{require_at_least}(Atleast, Arg, Attrs):
 \begin{itemize}
 \item Atleast is a positive integer,
 \item Arg is an argument of type \texttt{collection},
 \item Attrs is a non-empty list of distinct attributes of the collection denoted by Arg. The length of this list should be strictly greater than Atleast.
 \end{itemize}

This restriction enforces that at least Atleast attributes of the list Attrs be explicitly used within all items of the collection Arg.
1.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT

EXAMPLE: An example of use of such restriction can be found in the `Cumulative` constraint:

```
require_at_least(2, TASKS, [origin, duration, end]) enforces that all items of the TASKS collection mention at least two attributes from the list of attributes [origin, duration, end]. In this context, this stems from the fact that we have the equality origin + duration = end. This allows for retrieving the third attribute from the values of the two others.
```

```
>cumulative({ origin - 2 duration - 2 height - 2, 
               origin - 2 end - 4 height - 2, 
               duration - 4 end - 5 height - 5, 
               origin - 4 duration - 2 end - 6 height - 1}, 12)
```

- `same_size(Arg, Attr)`:
 - `Arg` is an argument of type collection,
 - `Attr` is an attribute of the collection denoted by `Arg`. This attribute should be of type collection.

This restriction enforces that all collections denoted by `Attr` have the same number of items.

```
>diffn({ orth - {ori - 2 siz - 2 end - 4, ori - 1 siz - 3 end - 4}, 
         orth - {ori - 4 siz - 4 end - 8, ori - 3 siz - 3 end - 3}, 
         orth - {ori - 9 siz - 2 end - 11, ori - 4 siz - 3 end - 7}}
```

- `Term1 Comparison Term2`:
 - `Term1` is a term. A term is an expression that can be evaluated to one or possibly several integer values. The expressions we allow for a term are defined in the next paragraph.
 - `Comparison` is one of the following comparison operators \(\leq, \geq, <, >, =, \neq\).
 - `Term2` is a term.
Let \(v_{1,1}, v_{1,2}, \ldots, v_{1,n_1} \) and \(v_{2,1}, v_{2,2}, \ldots, v_{2,n_2} \) be the values respectively associated with Term\(_1\) and with Term\(_2\). The restriction \(\text{Term}\(_1\) \) Comparison \(\text{Term}\(_2\)\) forces \(v_{1,i} \) Comparison \(v_{2,j} \) to hold for every \(i \in [1, n_1] \) and every \(j \in [1, n_2] \).

A term is one of the following expressions:

- \(e \), where \(e \) is an integer. The corresponding value is \(e \).
- \(|c| \), where \(c \) is an argument of type collection. The value of \(|c| \) is the number of items of the collection denoted by \(c \).

Example: This kind of expression is for instance used in the restrictions of the `atleast\([N, \text{VARIABLES, VALUE}]\)` constraint: \(N \leq |\text{VARIABLES}| \) restricts \(N \) to be less than or equal to the number of items of the \(\text{VARIABLES} \) collection.

\[\triangleright \text{atleast}[2, \{ \text{var} - 5, \text{var} - 8, \text{var} - 5 \}, 5] \]

\[\triangleright \text{atleast}[4, \{ \text{var} - 5, \text{var} - 8, \text{var} - 5 \}, 5] \]

- \(\min_size(c, a) \), where \(c \) is an argument of type collection and \(a \) an attribute of \(c \) of type collection. The value of \(\min_size(c, a) \) is the smallest number of items over all collections denoted by \(a \).

Example: This kind of expression is for instance used in the restrictions of the `in_relation\([\text{VARIABLES, TUPLES_OF_VARS}]\)` constraint: \(\min_size(\text{TUPLES_OF_VARS}, \text{tuple}) = |\text{VARIABLES}| \) forces the smallest number of items associated with the \(\text{tuple} \) attribute to equal the number of items of the \(\text{VARIABLES} \) collection.

\[\triangleright \text{in_relation} \{(\text{var} - 5, \text{var} - 3, \text{var} - 3), \]
\[\{\text{tuple} - \{\text{val} - 5, \text{val} - 2, \text{val} - 3\}, \]
\[\text{tuple} - \{\text{val} - 5, \text{val} - 2, \text{val} - 6\}, \]
\[\text{tuple} - \{\text{val} - 5, \text{val} - 3, \text{val} - 3\}\} \]

\[\triangleright \text{in_relation} \{(\text{var} - 5, \text{var} - 3, \text{var} - 3), \]
\[\{\text{tuple} - \{\text{val} - 5, \text{val} - 2\}, \]
\[\text{tuple} - \{\text{val} - 5, \text{val} - 2, \text{val} - 6\}, \]
\[\text{tuple} - \{\text{val} - 5, \text{val} - 3, \text{val} - 3\}\} \]

- \(\max_size(c, a) \), where \(c \) is an argument of type collection and \(a \) an attribute of \(c \) of type collection. The value of \(\max_size(c, a) \) is the largest number of items over all collections denoted by \(a \).

Example: This kind of expression is for instance used in the restrictions of the `in_relation\([\text{VARIABLES, TUPLES_OF_VARS}]\)` constraint: \(\max_size(\text{TUPLES_OF_VARS}, \text{tuple}) = |\text{VARIABLES}| \) forces the largest number of items associated with the \(\text{tuple} \) attribute to equal the number of items of the \(\text{VARIABLES} \) collection.

\[\triangleright \text{in_relation} \{(\text{var} - 5, \text{var} - 3, \text{var} - 3), \]
\[\{\text{tuple} - \{\text{val} - 5, \text{val} - 2, \text{val} - 3\}, \]
\[\text{tuple} - \{\text{val} - 5, \text{val} - 2, \text{val} - 6\}, \]
\[\text{tuple} - \{\text{val} - 5, \text{val} - 3, \text{val} - 3\}\} \]

\[\triangleright \text{in_relation} \{(\text{var} - 5, \text{var} - 3, \text{var} - 3), \]
\[\{\text{tuple} - \{\text{val} - 5, \text{val} - 2, \text{val} - 8, \text{val} - 2\}, \]
\[\text{tuple} - \{\text{val} - 5, \text{val} - 2, \text{val} - 6\}, \]
\[\text{tuple} - \{\text{val} - 5, \text{val} - 3, \text{val} - 3\}\} \]
1.1. DESCRIBING THE ARGUMENTS OF A GLOBAL CONSTRAINT

- \(t \), where \(t \) is an argument of type \(\text{int} \). The value of \(t \) is the value of the corresponding argument.

EXAMPLE: This kind of expression is for instance used in the restrictions of the `atleast(N, VARIABLES, VALUE)` constraint: \(N \geq 0 \) forces the first argument of the `atleast` constraint to be greater than or equal to 0.

\[
\text{atleast}(2, \{\text{var} - 5, \text{var} - 8, \text{var} - 5\}, 5)
\]

- \(v \), where \(v \) is an argument of type \(\text{dvar} \). The value of \(v \) will be the value assigned to variable \(v \).

EXAMPLE: This kind of expression is for instance used in the restrictions of the `among(NVAR, VARIABLES, VALUES)` constraint: \(NVAR \geq 0 \) forces the first argument of the `among` constraint to be greater than or equal to 0.

\[
\text{among}(2, \{\text{var} - 5, \text{var} - 8, \text{var} - 5\}, \{\text{val} - 1, \text{val} - 5\})
\]

- \(c.a \), where \(c \) is an argument of type \(\text{collection} \) and \(a \) an attribute of \(c \) of type \(\text{int} \) or \(\text{dvar} \). The values denoted by \(c.a \) are all the values corresponding to attribute \(a \) for the different items of \(c \). When \(c.a \) designates a domain variable we consider the value assigned to that variable.

EXAMPLE: This kind of expression is for instance used in the restrictions of the `cumulative(TASKS, LIMIT)` constraint: \(TASKS.\text{duration} \geq 0 \) enforces for all items of the `TASKS` collection that the duration attribute be greater than or equal to 0.

\[
\text{cumulative}\{\text{origin} - 2 \text{ duration} - 2 \text{ end} - 4 \text{ height} - 2, \\
\text{origin} - 2 \text{ duration} - 2 \text{ end} - 4 \text{ height} - 2, \\
\text{origin} - 1 \text{ duration} - 4 \text{ end} - 5 \text{ height} - 5, \\
\text{origin} - 2 \text{ duration} - 2 \text{ end} - 6 \text{ height} - 1\}, 12\)
\]

- \(c.a \), where \(c \) is an argument of type \(\text{collection} \) and \(a \) an attribute of \(c \) of type \(\text{sint} \) or \(\text{svar} \). The values denoted by \(c.a \) are all the values belonging to the sets corresponding to attribute \(a \) for the different items of \(c \). When \(c.a \) designates a set variable we consider the values that finally belong to that set.

4This stems from the fact that restrictions are defined on the ground instance of a global constraint.
1. Describing Global Constraints

- \(\min(t_1, t_2) \) or \(\max(t_1, t_2) \), where \(t_1 \) and \(t_2 \) are terms. Let \(\mathcal{V}_1 \) and \(\mathcal{V}_2 \) denote the sets of values respectively associated with the terms \(t_1 \) and \(t_2 \). Let \(\min(\mathcal{V}_1) \), \(\max(\mathcal{V}_1) \) and \(\min(\mathcal{V}_2) \), \(\max(\mathcal{V}_2) \) denote the minimum and maximum values of \(\mathcal{V}_1 \) and \(\mathcal{V}_2 \). The value associated with \(\min(t_1, t_2) \) is \(\min(\min(\mathcal{V}_1), \min(\mathcal{V}_2)) \), while the value associated with \(\max(t_1, t_2) \) is \(\max(\max(\mathcal{V}_1), \max(\mathcal{V}_2)) \).

- \(t_1 \text{ op } t_2 \), where \(t_1 \) and \(t_2 \) are terms and op one of the operators \(+, -, * \) or \(/ \). Let \(\mathcal{V}_1 \) and \(\mathcal{V}_2 \) denote the sets of values respectively associated with the terms \(t_1 \) and \(t_2 \). The set of values associated with \(t_1 \text{ op } t_2 \) is \(\mathcal{V}_{12} = \{ v : v = v_1 \text{ op } v_2, v_1 \in \mathcal{V}_1, v_2 \in \mathcal{V}_2 \} \).

- Finally, we can also use a constraint \(C \) of the catalog for expressing a restriction as long as that constraint is not defined according to the constraint under consideration. The constraint \(C \) should have a graph-based or an automaton-based description so that its meaning is explicitly defined.

\(^5\) denotes an integer division, a division in which the fractional part is discarded.
1.1. Describing the Arguments of a Global Constraint

EXAMPLE: An example of use of such restriction can be found in the `sort_permutation` (FROM, PERMUTATION, TO) constraint: `alldifferent` (PERMUTATION) is used to express the fact that the variables of the second argument of the `sort_permutation` constraint should take distinct values.

1.1.4 Declaring a global constraint

Declaring a global constraint consists of providing the following information:

- A term `ctr(A_1, A_2, \ldots, A_n)`, where `ctr` corresponds to the name of the global constraint and `A_1, A_2, \ldots, A_n` to its arguments.

- A possibly empty list of type declarations, where each declaration has the form `type:type_declaration;` where `type` is the name of the new type we define and `type_declaration` is a basic data type, a compound data type or a type previously defined.

- An argument declaration `A_1:T_1, A_2:T_2, \ldots, A_n:T_n` giving for each argument `A_1, A_2, \ldots, A_n` of the global constraint `ctr` its type. Each type is a basic data type, a compound data type, or a type that was declared in the list of type declarations.

- A possibly empty list of restrictions, where each restriction is one of the restrictions described in Section 1.1.3 (page 5).

EXAMPLE: The arguments of the `all_differ_from_at_least_k_pos` constraint are described by:

<table>
<thead>
<tr>
<th>Constraint</th>
<th>all_differ_from_at_least_k_pos(K, VECTORS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type(s)</td>
<td>VECTOR — collection(var — dvar)</td>
</tr>
<tr>
<td>Argument(s)</td>
<td>K — int</td>
</tr>
<tr>
<td></td>
<td>VECTORS — collection(vec — VECTOR)</td>
</tr>
<tr>
<td>Restriction(s)</td>
<td>required(VECTOR, var)</td>
</tr>
<tr>
<td></td>
<td>K \geq 0</td>
</tr>
<tr>
<td></td>
<td>required(VECTORS, vec)</td>
</tr>
<tr>
<td></td>
<td>same_size(VECTORS, vec)</td>
</tr>
</tbody>
</table>

The first line indicates that the `all_differ_from_at_least_k_pos` constraint has two arguments: `K` and `VECTORS`. The second line declares a new type `VECTOR`, which corresponds to a collection of variables. The third line indicates that the first argument `K` is an integer, while the fourth line tells that the second argument `VECTORS` corresponds to a collection of vectors of type `VECTOR`. Finally the four restrictions respectively enforce that:

- All the items of the `VECTOR` collection mention the `var` attribute,
- `K` be greater than or equal to 0,
- All the items of the `VECTORS` collection mention the `vec` attribute,
- All the vectors have the same number of components.
1.2 Describing global constraints in terms of graph properties

Through a practical example, we first present in a simplified form the basic principles used for describing the meaning of global constraints in terms of graph properties. We then give the full details about the different features used in the description process.

1.2.1 Basic ideas and illustrative example

Within the graph-based representation, a global constraint is represented as a digraph where each vertex corresponds to a variable and each arc to a binary arc constraint between the variables associated with the extremities of the corresponding arc. The main difference with classical constraint networks [28], stems from the fact that we don’t force any more all arc constraints to hold. We rather consider this graph from which we discard all the arc constraints that do not hold and impose one or several graph properties on this remaining graph. These properties can for instance be a restriction on the number of connected components, on the size of the smallest connected component or on the size of the largest connected component.

Figure 1.1: Illustration of the link between graph-properties and global constraints
1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES

EXAMPLE: We give an example of interpretation of such graph properties in terms of global constraints. For this purpose we consider the sequence s of values $1\ 3\ 1\ 2\ 8\ 2\ 3\ 6\ 8\ 8\ 3$ from which we construct the following graph G:

- To each value associated with a position in s corresponds a vertex of G,
- There is an arc from a vertex v_1 to a vertex v_2 if these vertices correspond to the same value.

Figure 1.1 depicts graph G. Since G is symmetric, we omit the directions of the arcs. We have the following correspondence between graph properties and constraints on the sequence s:

- The number of connected components of G corresponds to the number of distinct values of s.
- The size of the smallest connected component of G is the smallest number of occurrences of the same value in s.
- The size of the largest connected component of G is the largest number of occurrences of the same value in s.

As a result, in this context, putting a restriction on the number of connected components of G can been seen as a global constraint on the number of distinct values of a sequence of variables. Similar global constraints can be associated with the two other graph properties.

We now explain how to generate the initial graph associated with a global constraint. A global constraint has one or more arguments, which usually correspond to an integer value, to one variable or to a collection of variables. Therefore we have to describe the process that allows for generating the vertices and the arcs of the initial graph from the arguments of a global constraint under consideration. For this purpose we will take a concrete example.

Consider the constraint $\text{nvalue}(\text{NVAL}, \text{VARIABLES})$ where NVAL and VARIABLES respectively correspond to a domain variable and to a collection of domain variables \{\text{var} = V_1, \text{var} = V_2, \ldots, \text{var} = V_m\}. This constraint holds if NVAL is equal to the number of distinct values assigned to the variables V_1, V_2, \ldots, V_m. We first show how to generate the initial graph associated with the nvalue constraint. We then describe the arc constraint associated with each arc of this graph. Finally, we give the graph characteristic we impose on the final graph.

To each variable of the collection VARIABLES corresponds a vertex of the initial graph. We generate an arc between each pair of vertices. To each arc, we associate an equality constraint between the variables corresponding to the extremities of that arc. We impose that NVAL, the variable corresponding to the first argument of nvalue, be equal to the number of strongly connected components of the final graph. This final graph consists of the initial graph from which we discard all arcs such that the corresponding equality constraint does not hold.

Part (A) of Figure 1.2 shows the graph initially generated for the constraint $\text{nvalue}(\text{NVAL}, \{\text{var} = V_1, \text{var} = V_2, \text{var} = V_3, \text{var} = V_4\})$, where $\text{NVAL}, V_1, V_2, V_3$ and V_4 are domain variables. Part (B) presents the final graph associated with the ground instance $\text{nvalue}3, \{\text{var} = 5, \text{var} = 5, \text{var} = 1, \text{var} = 8\}). For each vertex of the initial and final

6\text{var} corresponds to the name of the attribute used in the collection of variables.
graph we respectively indicate the corresponding variable and the value assigned to that variable. We have removed from the final graph all the arcs associated to equalities that do not hold. The constraint $nvalue(3, \{\text{var} - 5, \text{var} - 5, \text{var} - 1, \text{var} - 8\})$ holds since the final graph contains three strongly connected components, which, in the context of the definition of the $nvalue$ constraint, can be reinterpreted as the fact that $NVAL$ is the number of distinct values assigned to variables V_1, V_2, V_3, V_4.

Figure 1.2: Initial and final graph associated with $nvalue$

Now that we have illustrated the basic ideas for describing a global constraint in terms of graph properties, we go into more details.

1.2.2 Ingredients used for describing global constraints

We first introduce the basic ingredients used for describing a global constraint and illustrate them shortly on the example of the $nvalue$ constraint introduced in the previous section (page 15). We then go through each basic ingredient in more detail. The graph-based description is founded on the following basic ingredients:

- **Data types and restrictions** used in order to describe the arguments of a global constraint. Data types and restrictions were already described in the previous section (from page 3 to page 13).

- **Collection generators** used in order to derive new collections from the arguments of a global constraint for one of the following reasons:
 - Collection generators are sometimes required since the initial graph of a global constraint cannot always be directly generated from the arguments of the global constraint. The $nvalue(NVAL, VARIABLES)$ constraint did not require any collection generator since the vertices of its initial graph were directly generated from the VARIABLES collection.
 - A second use of collection generators is for deriving a collection of items for different set of vertices of the final graph. This is sometimes required when we use set generators (see the last item of the enumeration).

- **Elementary constraints** associated with the arcs of the initial and final graph of a global constraint. The $nvalue$ constraint was using an equality constraint, but other constraints are usually required.
1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES

- **Graph generators** employed for constructing the initial graph of a global constraint. In the context of the `nvalue` constraint the initial graph was a *clique*. As we will see later, other patterns are needed for generating an initial graph.

- **Graph characteristics** used for constraining the final graph we want to obtain. In the context of the `nvalue` constraint we were using the number of *strongly connected components* for expressing the fact that we want to count the number of distinct values.

- **Set generators** which may be used for generating specific sets of vertices of the final graph on which we want to enforce a given constraint. Since the `nvalue` constraint enforces a graph property on the final graph (and not on subparts of the final graph) we did not use this feature.

We first start to explain each ingredient separately and then show how one can describe most global constraints in terms of these basic ingredients.

Collection generators

The vertices of the initial graph are usually directly generated from collections of items that are arguments of the global constraint \(G \) under consideration. However, it sometimes happens that we would like to derive a new collection from existing arguments of \(G \) in order to produce the vertices of the initial graph.

EXAMPLE: This is for instance the case of the `element` \(\text{INDEX}, \text{TABLE}, \text{VALUE} \) constraint, where \(\text{INDEX} \) and \(\text{VALUE} \) are domain variables that we would like to group as a single item \(I \) (with two attributes) of a new derived collection. This is in fact done in order to generate the following initial graph:

- The item \(I \) as well as all items of \(\text{TABLE} \) constitute the vertices,
- There is an arc from \(I \) to each item of the \(\text{TABLE} \) collection.

We provide the following mechanism for deriving new collections:

- In a first phase we declare the name of the new collection as well as the names of its attributes and their respective types. This is achieved exactly in the same way as those collections that are used in the arguments of a global constraint (see page 4).

EXAMPLE: Consider again the example of the `element` \(\text{INDEX}, \text{TABLE}, \text{VALUE} \) constraint. The declaration `ITEM = collection(index = dvar, value = dvar)` introduces a new collection called `ITEM` where each item has an `index` and a `value` attribute. Both attributes correspond to domain variables.

- In a second phase we give a list of patterns that are used for generating the items of the new collection. A pattern \(o - \text{item}(a_1 - v_1, a_2 - v_2, \ldots, a_n - v_n) \) or \(\text{item}(a_1 - v_1, a_2 - v_2, \ldots, a_n - v_n) \) specifies for each attribute \(a_i (1 \leq i \leq n) \) of the new collection how to fill \(v_i \). This is done by providing for each attribute \(a_i \) one of the following element \(v_i \):

\[v_i \] is one of the comparison operators \(=, \neq, <, \geq, >, \leq \). When omitted its default value is \(= \).
CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

- A constant,
- A parameter of the global constraint \(G \),
- An attribute of a collection that is a parameter of the global constraint \(G \),
- An attribute of a derived collection that was previously declared.

This element \(v_i \) must be compatible with the type declaration of the corresponding attribute of the new collection.

EXAMPLE: We continue the example of the \(\text{element INDEX, TABLE, VALUE} \) constraint and the derived collection \(\text{ITEM} \) collection \((\text{index} \ dvar, \text{value} \ dvar) \). The pattern \(\text{item}(\text{index} = \text{INDEX}, \text{value} = \text{VALUE}) \) indicates that:

- The index attribute of the \(\text{ITEM} \) collection will be generated by using the \(\text{INDEX} \) argument of the \(\text{element} \) constraint. Since \(\text{INDEX} \) is a domain variable, it is compatible with the declaration \(\text{ITEM} \) collection \((\text{index} \ dvar, \text{value} \ dvar) \) of the new collection.
- The value attribute of the \(\text{ITEM} \) collection will be generated by using the \(\text{VALUE} \) argument of the \(\text{element} \) constraint. \(\text{VALUE} \) is also compatible with the declaration statement of the new collection.

We now describe how we use the pattern for generating the items of a derived collection. We have the following two cases:

- If the pattern \(o \item(a_1 - v_1, a_2 - v_2, \ldots, a_n - v_n) \) does not contain any reference to an attribute of a collection then we generate one single item for such pattern. In this context the value \(v_i \) of the attribute \(a_i \ (1 \leq i \leq n) \) corresponds to a constant, to an argument of the global constraint or to a new derived collection.

- If the pattern \(o \item(a_1 - v_1, a_2 - v_2, \ldots, a_n - v_n) \), where \(o \) is one of the comparison operators \(=, \neq, <, \geq, >, \leq \), contains one or several references to an attribute of a collection we denote by:
 - \(k_1, k_2, \ldots, k_m \) the indices of the positions corresponding to the attribute of a collection within \(\text{item}(a_1 - v_1, a_2 - v_2, \ldots, a_n - v_n) \),
 - \(c_{\alpha_1}, c_{\alpha_2}, \ldots, c_{\alpha_m} \) the corresponding collections,
 - \(a_{\alpha_1}, a_{\alpha_2}, \ldots, a_{\alpha_m} \) the corresponding attributes.

 For each combination of items \(c_{\alpha_1}[i_1], c_{\alpha_2}[i_2], \ldots, c_{\alpha_m}[i_m] \) such that:
 \[i_1 \in [1, |c_{\alpha_1}|], i_2 \in [1, |c_{\alpha_2}|], \ldots, i_m \in [1, |c_{\alpha_m}|] \] and \(i_1 \circ i_2 \circ \ldots \circ i_n \)

 we generate an item of the new derived collection \((a_1 - w_1 a_2 - w_2 \ldots a_n - w_n) \) defined by:

 \[
 w_j (1 \leq j \leq n) = \left\{ \begin{array}{ll}
 c_{\alpha_p}[i_p] a_{\alpha_p} & \text{if } j \in \{k_1, k_2, \ldots, k_m\}, j = k_p \\
 v_j & \text{if } j \notin \{k_1, k_2, \ldots, k_m\}
 \end{array} \right.
 \]

\[8\text{In this first case the value of } o \text{ is irrelevant.}\]

\[9\text{This collection is a parameter of the global constraint or corresponds to a newly derived collection.}\]
1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES

We illustrate this generation process on a set of examples. Each example is described by providing:

- The global constraint and its arguments,
- The declaration of the new derived collection,
- The pattern used for creating an item of the new collection,
- The items generated by applying this pattern to the global constraint,
- A comment about the generation process.

We first start with four examples that don’t mention any references to an attribute of a collection. A box surrounds an argument of a global constraint that is mentioned in a generated item.

EXAMPLE

CONSTRAINT: `element(INDEX, TABLE, VALUE)`

DERIVED COLLECTION: `ITEM - collection(index - dvar, value - dvar)`

PATTERN(S): `item(index - INDEX, value - VALUE)`

GENERATED ITEM(S): `{index - INDEX, value - VALUE}`

We generate one single item where the two attributes `index` and `value` respectively take the first argument `INDEX` and the third argument `VALUE` of the `element` constraint.

EXAMPLE

CONSTRAINT: `lex_lesseq(VECTOR1, VECTOR2)`

DERIVED COLLECTION: `DESTINATION - collection(index - int, x - int, y - int)`

PATTERN(S): `item(index - 0, x - 0, y - 0)`

GENERATED ITEM(S): `{index - 0, x - 0, y - 0}`

We generate one single item where the three attributes `index`, `x`, and `y` take value 0.

EXAMPLE

CONSTRAINT: `in_relation(VARIABLES, TUPLES_OF_VALS)`

DERIVED COLLECTION: `TUPLES_OF_VARS - collection(vec - TUPLE_OF_VARS)`

PATTERN(S): `item(vec - VARIABLES)`

GENERATED ITEM(S): `{vec - VARIABLES}`

We generate one single item where the unique attribute `vec` takes the first argument of the `in_relation` constraint as its value.
EXAMPLE

CONSTRAINT : domain_constraint(VAR, VALUES)

DERIVED COLLECTION: VALUE — collection(var01 – int, value – dvar)

PATTERN(S) : item(var01 – 1, value – VAR)

GENERATED ITEM(S) : {var01 – 1 value – VAR}

We generate one single item where the two attributes var01 and value respectively take value 1 and the first argument of the domain constraint.

We continue with three examples that mention one or several references to an attribute of some collections. We now need to explicitly give the items of these collections in order to generate the items of the derived collection.

EXAMPLE

CONSTRAINT : lex_less VECTOR1 VECTOR2

VECTOR1 : {var – 5, var – 2, var – 3, var – 1}

VECTOR2 : {var – 5, var – 2, var – 6, var – 2}

DERIVED COLLECTION: COMPONENTS — collection(index – int, x – dvar, y – dvar)

PATTERN(S) : item(index – VECTOR1.key, x – VECTOR1.var, y – VECTOR2.var)

GENERATED ITEM(S) : {index – 1 x – 5 y – 5, index – 2 x – 2 y – 2, index – 3 x – 3 y – 6, index – 4 x – 1 y – 2}

The pattern mentions three references VECTOR1.key, VECTOR1.var and VECTOR2.var to the collections VECTOR1 and VECTOR2 used in the arguments of the lex_less constraint. ∀i1 ∈ [1, |VECTOR1|], ∀i2 ∈ [1, |VECTOR2|] such that i1 = i2 we generate an item index – v1 x – v2 y – v3 where:

v1 = i1, v2 = VECTOR1[i1].var, v3 = VECTOR2[i1].var.

This leads to the four items listed in the GENERATED ITEM(S) field.

As defined in Section 1.1.2 page 4, key is an implicit attribute corresponding to the position of an item within a collection.

We use an equality since this is the default value of the comparison operator o when we don’t use a pattern of the form o – item(…).
1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES

EXAMPLE

CONSTRAINT : `cumulatives(TASKS, MACHINES, CTR)`

TASKS :
- machine 1 origin 1 duration 5 end 6 height 1,
- machine 1 origin 4 duration 2 end 6 height 3,
- machine 1 origin 2 duration 3 end 5 height 2,
- machine 2 origin 5 duration 2 end 7 height 2

DERIVED COLLECTION: `TIME_POINTS` - collection(idm int,
 duration dvar, point dvar)

PATTERN(S) :
- item(idm - TASKS.machine,
 duration - TASKS.duration, point - TASKS.origin)
- item(idm - TASKS.machine,
 duration - TASKS.duration, point - TASKS.end)

GENERATED ITEM(S) :
- idm 1 duration 4 point 1,
- idm 1 duration 2 point 4,
- idm 1 duration 3 point 2,
- idm 2 duration 2 point 5,
- idm 1 duration 4 point 5,
- idm 1 duration 2 point 6,
- idm 1 duration 3 point 5,
- idm 2 duration 2 point 7

The two patterns mention the references `TASKS.machine`, `TASKS.duration`, `TASKS.origin` and `TASKS.end` of the `TASKS` collection used in the arguments of the `cumulatives` constraint. For each index $i \in [1, |TASKS|]$, we generate two items:
- $idm - u_1 \text{ duration} - u_2 \text{ point} - u_3$, $idm - v_1 \text{ duration} - v_2 \text{ point} - v_3$

where:
- $u_1 = TASKS[i].machine$, $u_2 = TASKS[i].duration$, $u_3 = TASKS[i].origin$,
- $v_1 = TASKS[i].machine$, $v_2 = TASKS[i].duration$, $v_3 = TASKS[i].end$.

This leads to the eight items listed in the `GENERATED ITEM(S)` field.
EXAMPLE

CONSTRAINT: \texttt{golomb(}VARIABLES\texttt{)}

VARIABLES: \{var \texttt{0, var \texttt{1, var \texttt{4, var \texttt{6)}}}\}

DERIVED COLLECTION: PAIRS \texttt{= collection(x - dvar, y - dvar)}

PATTERN(S): \texttt{> -item(x - VARIABLES.var, y - VARIABLES.var)}

GENERATED ITEM(S): \{x - 1 y - 0, x - 4 y - 0, x - 4 y - 1, x - 6 y - 0, x - 6 y - 1, x - 6 y - 4\}

The pattern mentions two references VARIABLES.var and VARIABLES.var to the VARIABLES collection used in the arguments of the \texttt{golomb} constraint. \(\forall i_1 \in [1, |\text{VARIABLES}|], \forall i_2 \in [1, |\text{VARIABLES}|] \text{ such that } i_1 > i_2\) we generate the item \(x - u_1 y - u_2\) where:

\[u_1 = \text{VARIABLES}[i_1].\text{var}, \quad u_2 = \text{VARIABLES}[i_2].\text{var}. \]

This leads to the six items listed in the \texttt{GENERATED ITEM(S)} field.

Elementary constraints attached to the arcs

This section describes the constraints that are associated with the arcs of the initial graph of a global constraint. These constraints are called \textit{arc constraints}. To each arc one can associate one or several arc constraints. An arc will belong to the final graph if and only if all its arc constraints hold. An arc constraint from a vertex \(v_1\) to a vertex \(v_2\) mentions variables and/or values associated with \(v_1\) and \(v_2\). Before defining an \textit{arc constraint}, we first need to introduce \textit{simple arithmetic expressions} as well as \textit{arithmetic expressions}. Simple arithmetic expressions and arithmetic expressions are defined recursively.

Simple arithmetic expressions A \textit{simple arithmetic expression} is defined by one of the five following expressions.

- \(I\): \(I\) is an integer.
- \(Arg\): \(Arg\) is an argument of the global constraint of type \texttt{int} or \texttt{dvar}.
- \(Arg\): \(Arg\) is a formal parameter provided by the arc generator\(^{10}\) of the graph-constraint.
- \(Col.Attr\): \(Col\) is a formal parameter provided by the arc generator or the collection used in the \texttt{For all items of iterator}\(^{11}\). \(Attr\) is an attribute of the collection referenced by \(Col\).

\(^{10}\)Arc generators are described in Section 1.2.2 (page 26).

\(^{11}\)The \texttt{For all items of iterator} is described in Section 1.2.3 (page 43).
1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES

EXAMPLE: As an example consider the first graph-constraint associated with the global cardinality constraint and its arc constraint variables.var = VALUES.val. Both, variables.var as well as VALUES.val are simple arithmetic expressions of the form Col.Attr:

- In variables.var, variables corresponds to the formal parameter provided by the arc generator SELF \rightarrow collection(variables), while var is an attribute of the VARIABLES collection.
- In VALUES.val, VALUES corresponds to the collection denoted by the For all items of iterator, while val is an attribute of the VALUES collection.

\[\text{Col[Expr].Attr} \]

Col[Expr].Attr is an argument of type collection, Attr one attribute of Col and Expr an arithmetic expression.

Col[Expr].Attr denotes the value of attribute Attr of the Expr\(^{th}\) item of the collection denoted by Col.

EXAMPLE: As an example consider the global cardinality constraint and its second graph-constraint, which defines the COST variable. The expression MATRIX[(variables.key - 1) * |VALUES| + values.key], c is a simple arithmetic expression of the form Col[Expr].Attr:

- MATRIX is a collection of items collection(i - int, j - int, c - int) where all items are sorted in increasing order on attributes i, j (because of the restriction increasing_seq(MATRIX, [i, j])).
- MATRIX[(variables.key - 1) * |VALUES| + values.key], c denotes the value of attribute c of an item of the MATRIX collection. The position of this item within the MATRIX collection depends on the position of a variable of the VARIABLES collection as well as on the position of a value of the VALUES collection.

Arithmetic expressions

An arithmetic expression is recursively defined by one of the following expressions:

- A simple arithmetic expression.

- Exp\(_{1}\) Op Exp\(_{2}:
 - Exp\(_{1}\) is an arithmetic expression,
 - Op is one of the following symbols +, -, *, /\(^{12}\)
 - Exp\(_{2}\) is an arithmetic expression.

- |Collection|:
 - Collection is an argument of type collection and |Collection| denotes the number of items of that collection.

\(^{12}\) denotes an integer division, a division in which the fractional part is discarded.
CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

- \(|\text{Exp}|\):
 - Exp is an *arithmetic expression*, and \(|\text{Exp}|\) denotes the absolute value of this expression.

- \(\text{sign}(\text{Exp})\):
 - Exp is an *arithmetic expression*, and \(\text{sign}(\text{Exp})\) the sign of Exp (-1 if Exp is negative, 0 if Exp is equal to 0, 1 if Exp is positive).

EXAMPLE: An example of use of \(\text{sign}\) can be found in the last part of the arc constraint of the \textit{crossing} constraint:
\[
\text{sign}((s2.ox - s1.ex) * (s1.ey - s1.oy) - (s1.ex - s1.ox) * (s2.oy - s1.ey)) \neq \text{sign}((s2.ex - s1.ex) * (s2.oy - s1.oy) - (s2.ox - s1.ox) * (s2.ey - s1.ey))
\]

- \(\text{card_set}(\text{Set})\):
 - Set is a reference to a set of integers or to a set variable. \(\text{card_set}(\text{Set})\) denotes the number of elements of that set.

EXAMPLE: An example of use of \(\text{card_set}\) can be found in the \textit{symmetric gcc} constraint: \texttt{vars.nocc = card_set(vars.var)}.

- \(\text{SimpleExp}_1 \text{ mod } \text{SimpleExp}_2\), \(\text{min}(\text{SimpleExp}_1, \text{SimpleExp}_2)\) or \(\text{max}(\text{SimpleExp}_1, \text{SimpleExp}_2)\):
 - \(\text{SimpleExp}_1\) is a *simple arithmetic expression*,
 - \(\text{SimpleExp}_2\) is a *simple arithmetic expression*.

Arc constraints Now that we have introduced *simple arithmetic expressions* as well as *arithmetic expressions* we define an *arc constraint*. An *arc constraint* is recursively defined by one of the following expressions:

- \(\text{TRUE}\):
 This stands for an arc constraint that always holds. As a result, the corresponding arc always belongs to the final graph.

EXAMPLE: An example of use of \(\text{TRUE}\) can be found in the \texttt{sum_ctr VARIABLES, CTR, VAR} constraint, where it is used in order to enforce keeping all items of the \texttt{VARIABLES} collection in the final graph.

- \(\text{Exp}_1 \text{ Comparison Exp}_2\):
 - \(\text{Exp}_1\) is an *arithmetic expression*,
 - \(\text{Comparison}\) is one of the comparison operators \(\leq, \geq, <, >, =, \neq\),
 - \(\text{Exp}_2\) is an *arithmetic expression*.
1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES

EXAMPLE: As an example of such arc constraint, the second graph-constraint of the cumulative (TASKS, LIMIT) constraint uses the following arc constraints:
- tasks1.duration > 0,
- tasks2.origin ≤ tasks1.origin,
- tasks1.origin < tasks2.end.

The conjunction of these three arc constraints can be interpreted in the following way: An arc from a task tasks1 to a task tasks2 will belong to the final graph if and only if tasks2 overlaps the origin of tasks1.

- Exp₁ SimpleCtr Exp₂:
 - Exp₁ is an arithmetic expression,
 - SimpleCtr is an argument of type atom that can only take one of the values ≤, ≥, <, >, =, ≠,
 - Exp₂ is an arithmetic expression.

EXAMPLE: An example of use of such an arc constraint can be found in the change (NCHANGE, VARIABLES, CTR) constraint: variables1.var CTR variables2.var. Within this expression, variables1 and variables2 correspond to consecutive items of the VARIABLES collection.

- Exp₁ ¬SimpleCtr Exp₂:
 - Exp₁ is an arithmetic expression,
 - SimpleCtr is an argument of type atom that can only take one of the values ≤, ≥, <, >, =, ≠,
 - Exp₂ is an arithmetic expression.

EXAMPLE: An example of use of such an arc constraint can be found in the change_continuity (NB_PERIOD_CHANGE, NB_PERIOD_CONTINUITY, MIN_SIZE_CHANGE, MAX_SIZE_CHANGE, MIN_SIZE_CONTINUITY, MAX_SIZE_CONTINUITY, NB_CHANGE, NB_CONTINUITY, VARIABLES, CTR) constraint: variables1.var ¬CTR variables2.var. Within this expression, variables1 and variables2 correspond to consecutive items of the VARIABLES collection.

- Ctr(Exp₁,...,Expₙ):
 - Ctr is a global constraint defined in the catalog for which there exists a graph-based and/or an automaton-based representation,
 - Exp₁,...,Expₙ correspond to the arguments of the global constraint Ctr. Each argument should be a simple arithmetic expression that is compatible with the type declaration of the argument of Ctr.
CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

EXAMPLE: An example of such arc constraint can be found in the definition of `diffn` (ORTHOTOPES) uses the `two_orth_do_not_overlap` global constraint for defining its arc constraint. Since ORTHOTOPES is a collection of type `collection(ori = dvar, siz = dvar, end = dvar)` and since both ORTHOTOPE1 and ORTHOTOPE2 correspond to items of ORTHOTOPES there is no type compatibility problem between the call to `two_orth_do_not_overlap` and its definition.

- ArcCtr1 LogicalConnector ArcCtr2:
 - ArcCtr1 is an arc constraint,
 - LogicalConnector is one of the logical connectors \(\land, \lor, \Rightarrow, \Leftrightarrow \),
 - ArcCtr2 is an arc constraint.

EXAMPLE: As shown by the following example, `minimum.MIN.VARIABLES` uses this kind of arc constraint: `variables1 = variables2 \lor variables1.var < variables2.var`, where variables1 and variables2 correspond to items of the VARIABLES collection, holds if and only if one of the following conditions holds:
 - variables1 and variables2 correspond to the same item of the VARIABLES collection,
 - The var attribute of variables1 is strictly less than the var attribute of variables2.

Graph generators

This section describes how to generate the initial graph associated with a global constraint. Initial graphs correspond to directed hypergraphs \([29]\), which have a very regular structure. They are defined in the following way:

- The vertices of the directed hypergraph are generated from collections of items such that each item corresponds to one vertex of the directed hypergraph. These collections are either collections that arise as arguments of the global constraint, or collections that are derived from one or several arguments of the global constraint. In this latter case these derived collections are computed by using the collection generators previously introduced (see Section 1.2.2, page 17).

- To all arcs of the directed hypergraph corresponds the same arc constraint that involves vertices in a given order.\(^{13}\) These arc constraints, which are mainly unary and binary constraints, were described in the previous section (see Section 1.2.2, page 22). We describe all the arcs of an initial graph with a set of predefined arc generators, which correspond to classical regular structures one can find in the graph literature \([30]\) pages 140–153]. An arc generator of arity \(a\)

\(^{13}\) Usually the edges of a hypergraph are not oriented \([29]\) pages 1–2]. However for our purpose we need to define an order on the vertices of an edge since the corresponding arc constraint takes its arguments in a given order.
1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES

takes \(n \) collections of items, denoted \(c_i (1 \leq i \leq n) \), as input and returns the corresponding hypergraph where the vertices are the items of the input collections \(c_i (1 \leq i \leq n) \) and where all arcs involve \(a \) vertices. Specific arc generators allow for giving an \(a \)-ary constraint for which \(a \) is not fixed, which means that the corresponding hypergraph contains arcs involving various number of vertices.

Each arc generator has a name and takes one or several collections of items as input and generates a set of arcs. Each arc is made from a sequence of items \(i_1, i_2, \ldots, i_a \) and is denoted by \((i_1, i_2, \ldots, i_a) \). \(a \) is called the \textit{arity} of the arc generator. We have the following types of arc generators:

- **Arc generators with a fixed predefined arity.** In fact most arc generators have a fixed predefined arity of 2. The graphs they generate correspond to digraphs.
- **Arc generators that can be used with any arity \(a \) greater than or equal to 1.** These arc generators generate directed hypergraphs where all arcs consist of \(a \) items.
- **Arc generators that generate arcs that don’t involve the same number of items.**

We now give the list of arc generators, listed in alphabetic order, and the arcs they generate. For each arc generator we point to a global constraint where it is used in practice. Finally, Figure 1.4 illustrates the different arc generators. At present the following arc generators are in use:

- **CHAIN** has a predefined arity of 2. It takes one collection \(c \) and generates the following arcs:

\[
- \forall i \in [1, |c| - 1]: (c[i], c[i + 1]), \quad - \forall i \in [1, |c| - 1]: (c[i + 1], c[i]).
\]

EXAMPLE: The arc generator \textit{CHAIN} is for instance used in the \textit{groupSkipIsolatedItem} constraint.

- **CIRCUIT** has a predefined arity of 2. It takes one collection \(c \) and generates the following arcs:

\[
- \forall i \in [1, |c| - 1]: (c[i], c[i + 1]), \quad - (c[|c|], c[1]).
\]

EXAMPLE: The arc generator \textit{CIRCUIT} is for instance used in the \textit{circularChange} constraint.

- **CLIQUE** can be used with any arity \(a \) greater than or equal to 2. It takes one collection \(c \) and generates the arcs: \(\forall i_1 \in [1, |c|], \forall i_2 \in [1, |c|], \ldots, \forall i_a \in [1, |c|] : (c[i_1], c[i_2], \ldots, c[i_a]). \)

EXAMPLE: The arc generator \textit{CLIQUE} is usually used with an arity \(a = 2 \). This is for instance the case of the \textit{alldifferent} constraint.

\(^{14}\)As defined in Section 1.1.2 (page 4) we use the following notation: For a given collection \(c \), \(|c| \) and \(c[i] \) respectively denote the number of items of \(c \) and the \(i^{th} \) item of \(c \).
• **CLIQUE(Comparison)**, where Comparison is one of the comparison operators $\leq, \geq, <, >, =, \neq$, can be used with any arity a greater than or equal to 2. It takes one collection c and generates the arcs:

$$
\forall i_1 \in [1, |c|], \\
\forall i_2 \in [1, |c|] \text{ such that } i_1 \text{ Comparison } i_2, \\
\ldots \\
\forall i_a \in [1, |c|] \text{ such that } i_{a-1} \text{ Comparison } i_a : (c[i_1], c[i_2], \ldots, c[i_a]).
$$

EXAMPLE: The orchard (TREES) constraint is an example of constraint that uses the CLIQUE($<$) arc generator with an arity $a = 3$. It generates an arc for each set of three trees.

• **GRID($[d_1, d_2, \ldots, d_n]$)** takes a collection c consisting of $d_1 \cdot d_2 \cdot \ldots \cdot d_n$ items and generates the arcs $(c[i], c[j])$ where i and j satisfy the following condition. There exists a natural number α ($0 \leq \alpha \leq n - 1$) such that (1) and (2) hold:

$$
(1) \quad |i - j| = \prod_{1 \leq k \leq \alpha} d_k \quad \text{(when } \alpha = 0 \text{ we have } \prod_{1 \leq k \leq \alpha} d_k = 1), \\
(2) \quad \prod_{i \leq k \leq \alpha + 1} d_k = [\prod_{1 \leq k \leq \alpha + 1} d_k].
$$

EXAMPLE: The connect_points constraint uses the GRID arc generator.

• **LOOP** has a predefined arity of 2. It takes one collection c and generates the arcs: $\forall i \in [1, |c|]: (c[i], c[i])$. LOOP is usually used in order to generate a loop on some vertices, so that they don’t disappear from the final graph.

EXAMPLE: The global_contiguity (VARIABLES) constraint is an example of constraint that uses the LOOP arc generator so that each variable of the VARIABLES collection belongs to the final graph.

• **PATH** can be used with any arity a greater than or equal to 1. It takes one collection c, and generates the following arcs: $\forall i \in [1, |c| - a + 1]: (c[i], c[i + 1], \ldots, c[i + a - 1])$.

EXAMPLE: PATH is for instance used in the sliding_sum LOW, UP, SEQ, VARIABLES constraint with an arity SEQ, where SEQ is an argument of the sliding_sum constraint.

• **PATH+1** generates arcs that don’t involve the same number of items. It takes one collection c, and generates the following arcs: $(c[1]), (c[1], c[2]), \ldots, (c[1], c[2], \ldots, c[|c|])$.

EXAMPLE: PATH+1 is used in the size_maximal_starting_sequence_all_different constraint.
1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES

- **PATH_\text{N}** generates arcs that don't involve the same number of items. It takes one collection \(c \), and generates the following arcs: \(\forall i \in [1, |c|], \forall j \in [i, |c|] : (c[i], c[i+1], \ldots, c[j]) \).

 EXAMPLE: \(\text{PATH_N} \) is for instance used in the \text{size_maximal_sequence_all_different} constraint.

- **PRODUCT** has a predefined arity of 2. It takes two collections \(c_1, c_2 \) and generates the arcs: \(\forall i \in [1, |c_1|], \forall j \in [1, |c_2|] : (c_1[i], c_2[j]) \).

 EXAMPLE: \(\text{PRODUCT} \) is for instance used in the \text{enus_VARIABLES1, VARIABLES2} constraint for generating an arc from every item of the VARIABLES1 collection to every item of the VARIABLES2 collection.

- **PRODUCT**(Comparison), where Comparison is one of the comparison operators \(\leq, \geq, <, >, =, \neq \), has a predefined arity of 2. It takes two collections \(c_1, c_2 \) and generates the arcs: \(\forall i \in [1, |c_1|], \forall j \in [1, |c_2|] \) such that \(\text{Comparison}_j : (c_1[i], c_2[j]) \).

 EXAMPLE: \(\text{PRODUCT}(\text{=}) \) is for instance used in the \text{dif_from_at_least_k_pos}(k, \text{VECTOR1}, \text{VECTOR2}) constraint in order to generate an arc between the \(i^{th} \) component of \text{VECTOR1} and the \(j^{th} \) component of \text{VECTOR2}.

- **SELF** has a predefined arity of 1. It takes one collection \(c \) and generates the arcs: \(\forall i \in [1, |c|] : (c[i]) \).

 EXAMPLE: \(\text{SELF} \) is for instance used in the \text{len_\text{N}, \text{VARIABLES, VALUES}} constraint in order to generate a unary arc constraint \(\text{in_variables.var, VALUES} \) for each variable of the VARIABLES collection.

- **SYMMETRIC_PRODUCT** has a predefined arity of 2. It takes two collections \(c_1, c_2 \) and generates the following arcs: \(\forall i \in [1, |c_1|], \forall j \in [1, |c_2|] : (c_1[i], c_2[j]) \) and \((c_2[j], c_1[i]) \). **SYMMETRIC_PRODUCT** is currently not used.

- **SYMMETRIC_PRODUCT**(Comparison), where Comparison is one of the comparison operators \(\leq, \geq, <, >, =, \neq \), has a predefined arity of 2. It takes two collections \(c_1, c_2 \) and generates the arcs: \(\forall i \in [1, |c_1|], \forall j \in [1, |c_2|] \) such that \(\text{Comparison}_j : (c_1[i], c_2[j]) \) and \((c_2[j], c_1[i]) \).

 EXAMPLE: The \text{two_orth_do_not_overlap} constraint is an example of constraint that uses the \text{SYMMETRIC_PRODUCT}(\text{=}) arc generator.

- **VOID** takes one collection and does not generate any arc.

 EXAMPLE: \(\text{VOID} \) is for instance used in the \text{lex_lesseq} constraint.
Finally, we can combine the PRODUCT arc generator with the arc generators from the following set $\text{Generator} = \{\text{Circuit, Chain, CLIQUE, LOOP, PATH, VOID}\}$. This is achieved by using the construction $\text{PRODUCT}(G_1, G_2)$ where G_1 and G_2 belong to Generator. It applies G_1 to the first collection c_1 passed to PRODUCT and G_2 to the second collection c_2 passed to PRODUCT. Finally, it applies PRODUCT on c_1 and c_2. In a similar way the PRODUCT(Comparison) arc generator is extended to PRODUCT($G_1, G_2; \text{Comparison}$).

Example: As an illustrative example, consider the alldifferent_same_value($\text{NSAME, VARIABLES1, VARIABLES2}$) constraint, which uses the arc generator PRODUCT(CLIQUE, LOOP, =) on the collections VARIABLES1 and VARIABLES2. It generates the following arcs:

- Since the first argument of PRODUCT is CLIQUE it generates an arc between each pair of items of the VARIABLES1 collection.
- Since the second argument of PRODUCT is LOOP it generates a loop for each item of the VARIABLES2 collection.
- Since the third argument is the comparison operator $=$ it finally generates an arc between an item of the VARIABLES1 collection and an item of the VARIABLES2 collection when the two items have the same position.

Figure 1.3 shows the generated graph under the hypothesis that VARIABLES1 and VARIABLES2 have respectively 3 and 3 items.

Figure 1.4 illustrates the different arc generators. On the one hand, for those arc generators that take one single collection, we apply them on the collection of items $\{i-1, i-2, i-3, i-4\}$. On the other hand, for those arc generators that take two collections, we apply them on $\{i-1, i-2\}$ and $\{i-3, i-4\}$. We use the following pictogram for the graphical representation of a constraint network:

- A line for an arc constraint of arity 1,
- An arrow for an arc constraint of arity 2,
- A closed line for an arc constraint with an arity strictly greater than 2. In this last case, since the vertices of an arc are ordered, a black circle at one of the extremities indicates the direction of the closed line. For instance consider the
1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES

example of PATH_3 in Figure 1.4. The closed line that contains vertices 1, 2 and 3 means that a 3-ary arc constraint involves items 1, 2, and 3 in this specific order.

Dotted circles represent vertices that don’t belong to the graph. This stems from the fact that the arc generator did not produce any arc involving these vertices. The leftmost lowest corner indicates the arity of the corresponding arc generator:

- An integer if it has a fixed predefined arity,
- n if it can be used with any arity greater than or equal to 1,
- * if it generates arcs that don’t necessarily involve the same number of items.

Graph properties

We represent a global constraint as the search of a subgraph (i.e. a final graph) of a known initial graph, so that this final graph satisfies a given set of graph properties. Most graph properties have the form $\text{Char Comparison Exp}$ or the form $\text{Char} \notin [\text{Exp}_1, \text{Exp}_2]$, where Char is a graph characteristic [17], [31]. Comparison is one of the comparison operators $=, <, >, \leq, \neq$, and $\text{Exp}_1, \text{Exp}_2$ are expressions that can be evaluated to an integer. Before defining each graph characteristic, let’s first introduce some basic vocabulary on graphs.

Graph terminology and notations A digraph $G = (V(G), E(G))$ is a pair where $V(G)$ is a finite set, called the set of vertices, and where $E(G)$ is a set of ordered pairs of vertices, called the set of arcs. The arc, path, circuit and strongly connected component of a graph G correspond to oriented concepts, while the edge, chain, cycle and connected component are non-oriented concepts. However, as reported in [17, page 6] an undirected graph can be seen as a digraph where to each edge we associate the corresponding two arcs. Parts (A) and (B) of Figure 1.5 respectively illustrate the terms for undirected graphs and digraphs.

- We say that e_2 is a successor of e_1 if there exists an arc that starts from e_1 and ends at e_2. In the same way, we say that e_2 is a predecessor of e_1 if there exists an arc that starts from e_2 and ends at e_1.

- A vertex of G that does not have any predecessor is called a source. A vertex of G that does not have any successor is called a sink.

- A sequence (e_1, e_2, \ldots, e_k) of edges of G such that each edge has a common vertex with the previous edge, and the other vertex common to the next edge is called a chain of length k. A chain where all vertices are distinct is called an elementary chain. Each equivalence class of the relation “e_i is equal to e_j or there exists a chain between e_i and e_j” is a connected component of the graph G.
Figure 1.4: Examples of arc generators

<table>
<thead>
<tr>
<th>CIRCUIT</th>
<th>LOOP</th>
<th>PRODUCT (<>)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><img src="image" alt="PRODUCT (<>)" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAIN</th>
<th>PATH</th>
<th>PRODUCT (PATH, VOID)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLIQUE</th>
<th>PATH_1</th>
<th>SELF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLIQUE (<>)</th>
<th>PATH_N</th>
<th>SYMMETRIC_PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="CLIQUE (<>)" /></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLIQUE (=>)</th>
<th>PRODUCT</th>
<th>SYMMETRIC_PRODUCT (<=)</th>
</tr>
</thead>
<tbody>
<tr>
<td>)" /></td>
<td></td>
<td><img src="image" alt="SYMMETRIC_PRODUCT (<=)" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLIQUE (<)</th>
<th>PRODUCT (<=)</th>
<th>SYMMETRIC_PRODUCT (>=)</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="CLIQUE (<)" /></td>
<td><img src="image" alt="PRODUCT (<=)" /></td>
<td>=)" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLIQUE (>)</th>
<th>PRODUCT (>=)</th>
<th>SYMMETRICPRODUCT (<)</th>
</tr>
</thead>
<tbody>
<tr>
<td>)" /></td>
<td>=)" /></td>
<td><img src="image" alt="SYMMETRICPRODUCT (<)" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLIQUE (<=)</th>
<th>PRODUCT (<)</th>
<th>SYMMETRIC_PRODUCT (>)</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="CLIQUE (<=)" /></td>
<td><img src="image" alt="PRODUCT (<)" /></td>
<td>)" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRID ([2,2])</th>
<th>PRODUCT (>)</th>
<th>SYMMETRIC_PRODUCT (=)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>) Diagram" /></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CYCLE</th>
<th>PRODUCT (=)</th>
<th>SYMMETRIC_PRODUCT (<>)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><img src="image" alt="SYMMETRIC_PRODUCT (<>)" /></td>
</tr>
</tbody>
</table>
1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES

- A sequence \((e_1, e_2, \ldots, e_k)\) of arcs of \(G\) such that for each arc \(e_i\) \((1 \leq i < k)\) the end of \(e_i\) is equal to the start of the arc \(e_{i+1}\) is called a path of length \(k\). A path where all vertices are distinct is called an elementary path. Each equivalence class of the relation “\(e_i\) is equal to \(e_j\) or there exists a path between \(e_i\) and \(e_j\)” is a strongly connected component of the graph \(G\).

- A chain \((e_1, e_2, \ldots, e_k)\) of \(G\) is called a cycle if the same edge does not occur more than once in the chain and if the two extremities of the chain coincide. A cycle \((e_1, e_2, \ldots, e_k)\) of \(G\) is called a circuit if for each edge \(e_i\) \((1 \leq i < k)\), the end of \(e_i\) is equal to the start of the edge \(e_{i+1}\).

- Given a graph \(G\), we define the reduced graph \(R(G)\) of \(G\) as follows: To each strongly connected component of \(G\) corresponds a vertex of \(R(G)\). To each arc of \(G\) that connects different strongly connected components corresponds an arc in \(R(G)\).

- The rank function associated with the vertices \(V(G)\) of a graph \(G\) that does not contain any circuit is defined in the following way:

 - The rank of the vertices that do not have any predecessor (i.e. the sources) is equal to 0,

 - The rank \(r\) of a vertex \(v\) that is not a source is the length of longest path \((e_1, e_2, \ldots, e_r)\) such that the start of the arc \(e_1\) is a source and the end of arc \(e_r\) is the vertex \(v\).

We now present the different notations used in the catalog:

- \([k]\) corresponds to \(\{1, \ldots, k\}\) for \(k\) any positive integer.

- Given a set \(X\), \(|X|\) is the number of its elements.

- Given two sets \(X\) and \(Y\), \(X \cup Y\) denotes the union of the two sets when they are disjoint.

- Given a digraph \(G\) and \(x \in V(G)\), \(d^+_G(x) = |\{y : y \in V(G) : (x, y) \in E(G)\}|\) and \(d^-_G(x) = |\{y : y \in V(G) : (y, x) \in E(G)\}|\).
CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

• Given a digraph G and X a subset of $V(G)$, the subdigraph of G induced by X is the digraph $G[X]$ where $V(G[X]) = X$ and $E(G[X]) = X^2 \cap E(G)$. By aim of simplicity, we denote $G[V(G) - X]$ by $G - X$. Moreover, if $X = \{x\}$, we use $G - x$ instead of $G - \{x\}$.

• Given two digraphs G_1 and G_2 such that $V(G_1) \cap V(G_2) = \emptyset$, $G_1 \oplus G_2$ denotes the graph whose vertices set is $V(G_1) \cup V(G_2)$ and whose arcs set is $E(G_1) \cup E(G_2)$.

• Given a graph characteristic $CH \in \{\text{NCC, NSCC}\}$, a digraph G and an integer k, $CH(G, k)$ is the number of connected components (respectively strongly connected components) of G with cardinal k.

Given a graph characteristic, for instance the number of connected components, $\text{NCC}_{initial}$ will denote the number of connected components of the initial graph (i.e. the graph induced by the constraint under consideration), NCC will denote the number of connected components of the final graph (i.e. a subgraph of the initial graph). The use of $\text{NCC}(G)$ will denote the number of connected components of the digraph G.

Given a global constraint C, and a graph characteristic GC used in the description of C, $\overline{\text{GC}}$ (resp. $\underline{\text{GC}}$) denotes a lower bound (resp. upper bound) of GC among all possible final graphs compatible with the current status of C.

Graph characteristics We list in alphabetic order the different graph characteristics we consider for a final graph $G_f = (V(G_f), E(G_f))$ associated with a global constraint and give an example of constraint where they are used:

• MAX_{DRG} : largest distance between sources and sinks in the reduced graph associated with G_f (adjacent vertices are at a distance of 1).

 EXAMPLE: We don’t provide any example since MAX_{DRG} is currently not used.

• MAX_{ID} : number of predecessors of the vertex of G_f that has the maximum number of predecessors without counting an arc from a vertex to itself.

 EXAMPLE: The circuit constraint uses the graph property $\text{MAX}_{ID} = 1$ in order to force each vertex of the final graph to have at most one predecessor.

• MAX_{NCC} : number of vertices of the largest connected component of G_f.

 EXAMPLE: The longest_change (SIZE, VARIABLES, CTR) constraint uses the graph property $\text{MAX}_{NCC} = \text{SIZE}$ in order to catch in SIZE the maximum number of consecutive variables of the VARIABLES collection for which constraint CTR holds.
1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES

- **MAX_NSCC**: number of vertices of the largest strongly connected component of G_f.

 EXAMPLE: The tree constraint covers a digraph by a set of trees in such a way that each vertex belongs to a distinct tree. It uses the graph-property $\text{MAX_NSCC} \leq 1$ in order to avoid to have any circuit involving more than one vertex.

- **MAX_OD**: number of successors of the vertex of G_f that has the maximum number of successors without counting an arc from a vertex to itself.

 EXAMPLE: The tour constraint enforces to cover a graph with a Hamiltonian cycle. It uses the graph-property $\text{MAX_OD} = 2$ to enforce that each vertex of G_f have at most two successors.

 *Since the tour constraint uses the $\text{CLIQUE}(\#)$ arc generator the vertices of G_f don’t have any loop.

- **MIN_DRG**: smallest distance between sources and sinks in the reduced graph associated with G_f (adjacent vertices are at a distance of 1).

 EXAMPLE: We don’t provide any example since MIN_DRG is currently not used by any constraint.

- **MIN_ID**: number of predecessors of the vertex of G_f that has the minimum number of predecessors without counting an arc from a vertex to itself.

 EXAMPLE: The tour constraint enforces to cover a graph with a Hamiltonian cycle. It uses the graph-property $\text{MIN_ID} = 2$ to enforce that each vertex of G_f have at most two predecessors.

 *Since the tour constraint uses the $\text{CLIQUE}(\#)$ arc generator the vertices of G_f don’t have any loop.

- **MIN_NCC**: number of vertices of the smallest connected component of G_f.

 EXAMPLE: Within the group constraint, each connected component of G_f corresponds to a maximum sequence of consecutive variables that take their value in a given set of values. Therefore, the graph-property $\text{MIN_NCC} = \text{MIN_SIZE}$ enforces that the smallest sequence of such variables consist of MIN_SIZE variables.
• **MIN_NS CC**: number of vertices of the smallest strongly connected component of G_f.

EXAMPLE: The $\text{circuit}(\text{NODES})$ constraint enforces covering a digraph with one circuit visiting once all its vertices. The graph-property $\text{MIN_NS CC} = |\text{NODES}|$ enforces that the smallest strongly connected component of G_f contain $|\text{NODES}|$ vertices. Since $|\text{NODES}|$ also corresponds to the number of vertices of the initial graph this means that G_f is a strongly connected component involving all the vertices. This is clearly a necessary condition for having a circuit visiting once all vertices.\\
\text{\footnote{Of course, this is not enough, and the description of the circuit constraint asks for some other properties.}}

• **MIN_OD**: number of successors of the vertex of G_f that has the minimum number of successors without counting an arc from a vertex to itself.

EXAMPLE: The tour constraint enforces to cover a graph with a Hamiltonian cycle. It uses the graph-property $\text{MIN OD} = 2$ to enforce that each vertex of G_f have at most two successors.\\
\text{\footnote{Since the tour constraint uses the CLIQUE(\neq) arc generator the vertices of G_f don’t have any loop.}}

• **NARC**: cardinality of the set $E(G_f)$.

EXAMPLE: The $\text{disjoint}(\text{VARIABLES1}, \text{VARIABLES2})$ constraint enforces that each variable of the collection VARIABLES1 take a value that is distinct from all the values assigned to the variables of the collection VARIABLES2. This is imposed by creating an arc from each variable of VARIABLES1 to each variable of VARIABLES2. To each arc corresponds an equality constraint involving the variables associated to the extremities of the arc. Finally, the graph property $\text{NARC} = 0$ forces G_f to be empty so that no value is both assigned to a variable of VARIABLES1 as well as to a variable of VARIABLES2.

• **NARC_NO_LOOP**: cardinality of the set $E(G_f)$ without considering the arcs linking the same vertex (i.e. a loop).

EXAMPLE: The constraint $\text{all_different_same_value}$ uses the NARC_NO_LOOP graph-property.
1.2. **DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES**

- **NCC**: number of connected components of G_f.

 EXAMPLE: The *tree* constraint covers a digraph by NTREES trees in such a way that each vertex belongs to a distinct tree. It uses the graph-property $\text{NCC} = \text{NTREES}$ in order to state that G_f is made up from NTREES connected components.

- **NSCC**: number of strongly connected components of G_f.

 EXAMPLE: The constraint $\text{nvalue}(\text{NVAL}, \text{VARIABLES})$ forces NVAL to be equal to the number of distinct values assigned to the variables of the collection VARIABLES. This is enforced by using the graph-property $\text{NSCC} = \text{NVAL}$. Each strongly connected component of the final graph corresponds to the variables that are assigned to the same value.

- **NSINK**: number of vertices of G_f that do not have any successor.

 EXAMPLE: The constraint $\text{samevar}(\text{C}, \text{VARIABLES1}, \text{VARIABLES2})$ enforces that the variables of the VARIABLES1 collection correspond to the variables of the VARIABLES2 collection according to a permutation. We first create an arc from each variable of VARIABLES1 to each variable of VARIABLES2. To each arc corresponds an equality constraint involving the variables associated with the extremities of the arc. We use the graph-property $\text{NSINK} = |\text{VARIABLES2}|$ in order to express the fact that each value assigned to a variable of VARIABLES2 should also be assigned to a variable of VARIABLES1.

- **NSINK_NSOURCE**: sum over the different connected components of G_f of the minimum of the number of sinks and the number of sources of a connected component.

 EXAMPLE: The constraint $\text{soft_same_var}(\text{C}, \text{VARIABLES1}, \text{VARIABLES2})$ constraint enforces C to be the minimum number of values to change in the VARIABLES1 and the VARIABLES2 collections of variables, so that the variables of VARIABLES2 correspond to the variables of VARIABLES1 according to a permutation. A connected component C_var of the final graph G_f corresponds to all variables that are assigned to the same value val: the sources and the sinks of C_var respectively correspond to the variables of VARIABLES1 and to the variables of VARIABLES2 that are assigned to val. For a connected component, the minimum of the number of sources and sinks expresses the number of variables for which we don’t need to make any change. Therefore we use the graph-property $\text{NSINK_NSOURCE} = |\text{VARIABLES1}| - \text{C}$ for encoding the meaning of the *soft_same_var* constraint.

Both collections have the same number of variables.
• **N SOURCE** : number of vertices of G_f that do not have any predecessor.

EXAMPLE: The constraint $\text{variables1, variables2}$ enforces that the variables of the variables1 collection correspond to the variables of the variables2 collection according to a permutation. We first create an arc from each variable of variables1 to each variable of variables2. To each arc corresponds an equality constraint involving the variables associated with the extremities of the arc. We use the graph-property $\text{N SOURCE} = |\text{variables1}|$ in order to express the fact that each value assigned to a variable of variables1 should also be assigned to a variable of variables2.

• **N TREE** : number of vertices of G_f that do not belong to any circuit and for which at least one successor belongs to a circuit. Such vertices can be interpreted as root nodes of a tree.

EXAMPLE: The constraint $\text{cycle, ncycle, nodes}$ enforces that ncycle equal the number of circuits for covering an initial graph in such a way that each vertex belongs to one single circuit. The graph-property $\text{N TREE} = 0$ enforces that all vertices of the final graph belong to a circuit.

• **N VERTEX** : cardinality of the set $V(G_f)$.

EXAMPLE: The constraint $\text{cutset, size_cutset, nodes}$ considers a digraph with n vertices described by the nodes collection. It enforces that the subset of kept vertices of cardinality $n - \text{size_cutset}$ and their corresponding arcs form a graph without a circuit. It uses the graph-property $\text{N VERTEX} = n - \text{size_cutset}$ for enforcing that the final graph G_f contain the required number of vertices.

• **RANGE_DRG** : difference between the largest distance between sources and sinks in the reduced graph associated with G_f and the smallest distance between sources and sinks in the reduced graph associated with G_f.

EXAMPLE: The constraint tree_range enforces to cover a digraph in such a way that each vertex belongs to a distinct tree. In addition it forces the difference between the longest and the shortest paths of G_f to be equal to the variable \mathbb{R}. For this purpose it uses the graph-property $\text{RANGE_DRG} = \mathbb{R}$.
1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES

- **RANGE_NCC**: difference between the number of vertices of the largest connected component of G_f and the number of vertices of the smallest connected component of G_f.

 EXAMPLE: We don’t provide any example since **RANGE_NCC** is currently not used by any constraint.

- **RANGE_NSCC**: difference between the number of vertices of the largest strongly connected component of G_f and the number of vertices of the smallest strongly connected component of G_f.

 EXAMPLE: The **BALANCE** constraint forces **BALANCE** to be equal to the difference between the number of occurrence of the value that occurs the most and the value that occurs the least within the collection of variables **VARIABLES**. Each strongly connected component of G_f corresponds to the variables that are assigned to the same value. The graph property **RANGE_NSCC** = **BALANCE** allows for expressing this definition.

- **ORDER**(rank, default, attr):
 - rank is an integer or an argument of type integer of the global constraint,
 - default is an integer,
 - attr is an attribute corresponding to an integer or to a domain variable that occurs in all the collections that were used for generating the vertices of the initial graph.

 We explain what is the value associated with **ORDER**(rank, default, attr). Let \mathcal{V} denote the vertices of rank rank of G_f from which we remove any loops.

 - When \mathcal{V} is not empty, it corresponds to the values of attribute attr of the items associated with the vertices of \mathcal{V},
 - Otherwise, when \mathcal{V} is empty, it corresponds to the default value default.

 EXAMPLE: The **MINIMUM**(MIN, **VARIABLES**) forces **MIN** to be the minimum value of the collection of domain variables **VARIABLES**. There is an arc from a variable var_1 to a variable var_2 if and only if $\text{var}_1 < \text{var}_2$. The graph-property **ORDER**(0, **MAXINT**, var) = **MIN** expresses the fact that **MIN** is equal to the value of the source of G_f (since $\text{rank} = 0$).

- **PATH_FROM_TO**(attr, from, to):
– \texttt{attr} is an attribute corresponding to an integer or to a domain variable that occurs in all the collections that were used for generating the vertices of the initial graph,

– \texttt{from} is an integer or an argument of type integer of the global constraint,

– \texttt{to} is an integer or an argument of type integer of the global constraint.

Let \mathcal{F} (respectively \mathcal{T}) denote the vertices of G_f such that \texttt{attr} is equal to \texttt{from} (respectively \texttt{to}). \texttt{PATH_FROM_TO(attr, from, to)} is equal to 1 if there exists a path between each vertex of \mathcal{F} and each vertex of \mathcal{T}, and 0 otherwise.

\begin{example}

The constraint \texttt{lex_lesseq} uses the \texttt{PATH_FROM_TO} graph-property.

\end{example}

\begin{itemize}

\item \texttt{PRODUCT(col, attr)}

\texttt{col} is a collection that was used for generating the vertices of the initial graph,

\texttt{attr} is an attribute corresponding to an integer or to a domain variable of the collection \texttt{col}.

Let \mathcal{V} be the set of vertices of G_f that were generated from the items of the collection \texttt{col}.

– If \mathcal{V} is not empty, \texttt{PRODUCT(col, attr)} corresponds to the product of the values of attribute \texttt{attr} associated with the vertices of \mathcal{V},

– Otherwise, if \mathcal{V} is empty, \texttt{PRODUCT(col, attr)} is equal to 1.

\begin{example}

The constraint \texttt{product ctr VARIABLES, CTR, VAR} forces the product of the variables of the \texttt{VARIABLES} collection to be equal, less than or equal, ... to a given domain variable \texttt{VAR}.

To each variable of \texttt{VARIABLES} corresponds a vertex of the initial graph. Since we want to keep all the vertices of the initial graph we use the \texttt{SELF} arc generator together with the \texttt{TRUE} arc constraint. Finally, \texttt{PRODUCT(VARIABLES, CTR VAR} \texttt{CTR} \texttt{VAR} expresses the required condition. In this expression \texttt{Var} and \texttt{CTR} respectively corresponds to the attribute of the collection \texttt{VARIABLES} (a domain variable) and to the condition we want to enforce. Since the final graph G_f contains all the vertices of the initial graph, the expression \texttt{PRODUCT(VARIABLES, VAR)} corresponds to the product of the variables of the \texttt{VARIABLES} collection.

\end{example}

\item \texttt{RANGE(col, attr)}:

\texttt{col} is a collection that was used for generating the vertices of the initial graph,
1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES

- attr is an attribute corresponding to an integer or to a domain variable of the collection col.

Let \(\mathcal{V} \) be the set of vertices of \(G_f \) that were generated from the items of the collection \(\text{col} \).

- If \(\mathcal{V} \) is not empty, RANGE(col, attr) corresponds to the difference between the maximum and the minimum values of attribute attr associated with the vertices of \(\mathcal{V} \),

- Otherwise, if \(\mathcal{V} \) is empty, RANGE(col, attr) is equal to 0.

EXAMPLE: The constraint \(\text{range}_\text{ctr}(\text{VARIABLES}, \text{CTR}, \text{VAR}) \) forces the difference between the maximum value and the minimum value of the variables of the VARIABLES collection to be equal, less than or equal, ..., to a given domain variable VAR. To each variable of VARIABLES corresponds a vertex of the initial graph. Since we want to keep all the vertices of the initial graph we use the SELF arc generator together with the TRUE arc constraint. Finally, RANGE(VARIABLES, var) CTR VAR expresses the required condition. In this expression var and CTR respectively corresponds to the attribute of the collection VARIABLES (a domain variable) and to the condition we want to enforce. Since the final graph \(G_f \) contains all the vertices of the initial graph, the expression RANGE(VARIABLES, var) corresponds to the difference between the maximum value and the minimum value of the variables of the VARIABLES collection.

- SUM(col, attr):

 - col is a collection that was used for generating the vertices of the initial graph,

 - attr is an attribute corresponding to an integer or to a domain variable of the collection col.

Let \(\mathcal{V} \) be the set of vertices of \(G_f \) that were generated from the items of the collection \(\text{col} \).

- If \(\mathcal{V} \) is not empty, SUM(col, attr) corresponds to the sum of the values of attribute attr associated with the vertices of \(\mathcal{V} \),

- Otherwise, if \(\mathcal{V} \) is empty, SUM(col, attr) is equal to 0.
EXAMPLE: The constraint \(\text{SUM} \text{CTR} (\text{VARIABLES}, \text{CTR}, \text{VAR}) \) forces the sum of the variables of the VARIABLES collection to be equal, less than or equal, \ldots to a given domain variable \text{VAR}.

To each variable of \text{VARIABLES} corresponds a vertex of the initial graph. Since we want to keep all the vertices of the initial graph we use the \text{SELF} arc generator together with the \text{TRUE} arc constraint. Finally, \text{SUM(VARIABLES, var) CTR VAR} expresses the required condition. In this expression \text{var} and \text{CTR} respectively correspond to the attribute of the collection \text{VARIABLES} (a domain variable) and to the condition we want to enforce. Since the final graph \(G_f \) contains all the vertices of the initial graph, the expression \text{SUM(VARIABLES, var) CTR VAR} corresponds to the sum of the variables of the \text{VARIABLES} collection.

- **\text{SUM_WEIGHT_ARC}(Expr) :** \text{Expr} is an arithmetic expression. For each arc \(a \) of \(E(G_f) \), let \(f(a) \) denote the value of \text{Expr}. \text{SUM_WEIGHT_ARC}(Expr) is equal to \(\sum_{a \in E(G_f)} f(a) \). The value of \text{Expr} usually depends on the attributes of the items located at the extremities of an arc.

EXAMPLE: The constraint \text{global_cardinality_with_costs VARIABLES, VALUES, MATRIX, COST} enforces that each value \text{VALUES}[i].\text{var} be assigned to exactly \text{VALUES}[i].\text{noccurrence} variables of the VARIABLES collection. In addition the \text{COST} of an assignment is equal to the sum of the elementary costs associated with the fact that we assign the \text{i}^{th} variable of the VARIABLES collection to the \text{j}^{th} value of the VALUES collection. These elementary costs are given by the MATRIX collection.

The graph-property \text{SUM_WEIGHT_ARC(MATRIX[variables.key-1+size(VALUES)+values.key],c) = COST} expresses the fact that the \text{COST} variable is equal to the sum of the elementary costs associated with each variable-value assignment. All these elementary costs are recorded in the MATRIX collection. More precisely, the cost \(c_{ij} \) is recorded in the attribute \(c \) of the \((i-1) \times |\text{VALUES}| + j)^{th} \) entry of the MATRIX collection.

A last graph characteristic, \text{DISTANCE} , is computed on two final graphs \(G_1 \) and \(G_2 \) that have the same set \(V \) of vertices and the sets \(E(G_1) \) and \(E(G_2) \) of arcs. This graph characteristic is the cardinality of the set \((E(G_1) - E(G_2)) \cup (E(G_2) - E(G_1))\). This corresponds to the number of arcs that belong to \(E(G_1) \) but not to \(E(G_2) \), plus the number of arcs that are in \(E(G_2) \) but not in \(E(G_1) \).

1.2.3 Graph constraint

A global constraint can be defined as a conjunction of several simple or dynamic graph constraints that all share the same name, the same arguments and the same argument restrictions. This section first describes simple graph constraints and then dynamic graph constraints, which are an extension of simple graph constraints.

For an example of global constraint that is defined by more than one graph constraint see for instance the \text{sort} constraint and its two graph constraints.

The arguments and the argument restrictions were described in Section 1.1.4, page 13.
1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES

Simple graph constraint

To a simple graph constraint correspond several initial graphs, usually one, where all the initial graphs have the same vertices and arcs. Specifying more than one initial graph is achieved by using the FOR ALL ITEMS OF iterator, which takes a collection \(C \) and generates an initial graph \(G_i(t) \) for each item \(t \) of \(C \). In this context, the arc constraints and/or graph properties of an initial graph may depend of the attributes of the item \(t \) of \(C \) from which they were generated. All arc constraints attached to a given arc have to be pairwise mutually incompatible.

The graphs of a simple graph constraint are defined by the following fields:

- An Arc input(s) field, which consists of a sequence of collections \(C_1, C_2, \ldots, C_d \) \((d \geq 1)\). To each item of these collections corresponds a vertex of the initial graph.

- An Arc generator field, which can be one or several expressions\(^{19} \) of the following forms:

 - \(ARC_GENERATOR \mapsto collection(\textbf{item}_1, \textbf{item}_2, \ldots, \textbf{item}_a) \),

 where \(ARC_GENERATOR \) is one of the arc generators with a fixed arity\(^{20} \) defined in Section 1.2.2 page 26 and \(\textbf{item}_i \) \((1 \leq i \leq a)\) denotes the \(i^{th} \) item associated with the \(i^{th} \) vertex of an arc. These items correspond to formal parameters\(^ {21} \) which can be used within an arc constraint. When the Arc input(s) field consists of one single collection \((d = 1)\), \(\textbf{item}_i \) \((1 \leq i \leq a)\) represents an item of the collection \(C_1 \). Otherwise, when \(d > 1 \), we must have \(a = d \) and, in this context, \(\textbf{item}_i \) \((1 \leq i \leq a)\) represents an item of \(C_i \).

EXAMPLE: The alldifferent(VARIABLES) constraint has the following Arc input(s) and Arc generator fields:

- Its Arc input(s) field refers only to the collection VARIABLES (i.e. \(d = 1 \)).
- Its Arc generator field consists of

\[CLIQUE \mapsto collection(\textbf{variables}_1, \textbf{variables}_2) \] (i.e. \(a = 2 \)).

In this context, where \(d = 1 \), both \textbf{variables}_1 and \textbf{variables}_1 are items of the VARIABLES collection.

\(^{17}\) As we previously said, even if we have more than one initial graph, all vertices and arcs of the different initial graphs are identical.

\(^{18}\) Two arc constraints \(ctr_1(X_1, X_2, \ldots, X_n) \) and \(ctr_2(X_1, X_2, \ldots, X_n) \) are incompatible if there does not exist any tuple of values \((v_1, v_2, \ldots, v_n)\) such that both \(ctr_1(X_1, X_2, \ldots, X_n) \) and \(ctr_2(X_1, X_2, \ldots, X_n) \) hold.

\(^{19}\) Usually one single expression.

\(^{20}\) Any arc generator different from \(PATH_1 \) and \(PATH_N \).

\(^{21}\) See the description of simple arithmetic expressions page 22.
EXAMPLE: The\textcolor{red}{\text{same}}(\text{VARIABLES1, VARIABLES2}) constraint has the following Arc input(s) and Arc generator fields:

* Its Arc input(s) field refers to the collections VARIABLES1 and VARIABLES2 (i.e. \(d = 2\)).
* Its Arc generator field consists of

\[PRODUCT \leftrightarrow \text{collection(variables1, variables2)} \] (i.e. \(a = 2\)).

In this context, where \(d > 1\), variables1 and variables1 respectively correspond to items of the VARIABLES1 and the VARIABLES2 collections.

- \textcolor{red}{\text{ARCGENERATOR}} \leftrightarrow \text{collection}, where \textcolor{red}{\text{ARCGENERATOR}} is one of the arc generators \textcolor{red}{\text{PATH}_1} or \textcolor{red}{\text{PATH}_N}. In this context, collection denotes a collection of items corresponding to the vertices of an arc of the initial graph. An arc constraint enforces a restriction on the items of this collection.

EXAMPLE:

The \textcolor{blue}{\text{size_maximal_sequence_alldifferent}}(\text{SIZE, VARIABLES}) constraint has the following Arc input(s) and Arc generator fields:

* Its Arc input(s) field refers to the VARIABLES collection.
* Its Arc generator field consists of \(PRODUCT \leftrightarrow \text{collection}\).

In this context, collection is a collection of the same type as the VARIABLES collection. It corresponds to the variables associated with an arc of the initial graph.

When the Arc generator field consists of \(n\) \((n > 1)\) expressions then these expressions have the form:

\[\text{ARCGENERATOR}_1 \leftrightarrow \text{collection(item}_1, \text{item}_2, \ldots, \text{item}_n)\]
\[\text{ARCGENERATOR}_2 \leftrightarrow \text{collection(item}_1, \text{item}_2, \ldots, \text{item}_n)\]

\[\text{.................}\]

\[\text{ARCGENERATOR}_n \leftrightarrow \text{collection(item}_1, \text{item}_2, \ldots, \text{item}_n)\]

All leftmost part of the expressions must be the same since they will be involved in one single Arc constraint(s) field. The \textcolor{red}{\text{global_contiguity}} constraint is an example of global constraint where more than one arc generator is used.

- An Arc arity field, which corresponds to the number of vertices \(a\) of each arc of the initial graph. \(a\) is either a strictly positive integer, an argument of the global constraint of type \text{int}, or the character \text{*}. In this last case, this is used for denoting the fact that all the arc constraints don’t involve the same number of vertices. This is for instance the case when we use the arc generators \textcolor{red}{\text{PATH}_1} or \textcolor{red}{\text{PATH}_N} as in the \textcolor{red}{\text{arith_sliding}} or the \textcolor{red}{\text{size_maximal_sequence_alldifferent}} constraints.

- An Arc constraint(s) field, which corresponds to a conjunction of arc constraint(s) those were introduced in Section 1.2.2 page 22.

\footnote{Usually this conjunction consists of one single arc constraint.}
1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES

- **A Graph property(ies) field**, which corresponds to one or several *graph properties* (see Section 1.2.2 page 31) to be satisfied on the final graphs associated with an instantiated solution of the global constraint. To each initial graph corresponds one final graph obtained by removing all arcs for which the corresponding arc constraints do not hold as well as all vertices that don’t have any arc.

We now give several examples of descriptions of *simple graph constraints*, starting from the `nvalue` constraint, which was introduced as a first example of global constraint that can be modeled by a graph property in Section 1.2.1 page 14.

EXAMPLE: The constraint `nvalue` (`NVAL, VARIABLES`) restricts `NVAL` to be the number of distinct values taken by the variables of the collection `VARIABLES`. Its meaning is described by a *simple graph constraint* corresponding to the following items:

- **Arc input(s)**: `VARIABLES`
- **Arc generator**: `CLIQUE` \leftrightarrow collection(`variables1, variables2`)
- **Arc arity**: 2
- **Arc constraint(s)**: `variables1.var = variables2.var`
- **Graph property(ies)**: `NSCC = NVAL`

Since this description does not use the *FOR ALL ITEMS OF* iterator we generate one single initial graph. Each vertex of this graph corresponds to one item of the `VARIABLES` collection. Since we use the `CLIQUE` arc generator we have an arc between each pair of vertices. An arc constraint corresponds to an equality constraint between the two variables that are associated with the extremities of the arc. Finally, the **Graph property(ies)** field forces the final graph to have `NVAL` strongly connected components.
EXAMPLE: The constraint \texttt{[global_contiguity]} VARIABLES) forces all variables of the VARIABLES collection to be assigned to 0 or 1. In addition, all variables assigned to value 1 appear contiguously. Its meaning is described by a simple graph constraint corresponding to the following items:

Arc input(s) : VARIABLES
Arc generator : \texttt{PATH} \leftrightarrow \texttt{collection(variables1, variables2)}
Arc generator : \texttt{LOOP} \leftrightarrow \texttt{collection(variables1, variables2)}
Arc arity : 2
Arc constraint(s) : \texttt{variables1.var = variables2.var}
\texttt{variables1.var = 1}

Graph property(ies): NCC \leq 1

Since this description does not use the FOR ALL ITEMS OF iterator we generate one single initial graph. Each vertex of this graph corresponds to one item of the VARIABLES collection. Since we use the \texttt{PATH} arc generator we generate an arc from item VARIABLES\([i]\) to item VARIABLES\([i + 1]\) \((1 \leq i < \text{\texttt{VARIABLES}})\). In addition, since we use the \texttt{LOOP} arc generator, we generate also an arc from each item of the VARIABLES collection to itself.\footnote{We use the \texttt{LOOP} arc generator in order to keep in the final graph those isolated variables assigned to 1. This is because isolated vertices with no arcs are always removed from the final graph.} The effect of the arc constraint is to keep in the final graph those vertices for which the corresponding variable is assigned to 1. Adjacent variables assigned to 1 form a connected component of the final graph and the graph property NCC \leq 1 enforces to have at most one such group of adjacent variables assigned to 1.

EXAMPLE:

The \texttt{[global_cardinality]} VARIABLES, VALUES) constraint enforces that each value VALUES\([i].\text{val} \ (1 \leq i \leq \text{\texttt{VALUES}})\) be taken by exactly VALUES\([i].\text{noccurrence} variables of the VARIABLES collection. Its meaning is described by a simple graph constraint corresponding to the following items:

For all items of VALUES:

Arc input(s) : VARIABLES
Arc generator : \texttt{SELF} \leftrightarrow \texttt{collection(variables)}
Arc arity : 1
Arc constraint(s) : \texttt{variables.var = VALUES.val}

Graph property(ies): \texttt{NVERTEX} = VALUES.noccurrence

Since this description uses the FOR ALL ITEMS OF VALUES iterator on the VALUES collection we generate an initial graph for each item of the VALUES collection (i.e. one graph for each value). Each vertex of an initial graph corresponds to one item of the VARIABLES collection. Since we use the \texttt{SELF} arc generator we have an arc for each vertex. For an initial graph associated with a value \texttt{val} an arc constraint on a vertex \texttt{v} corresponds to an equality constraint between the variable associated with \texttt{v} and the value \texttt{val}. Finally, the Graph property(ies) field forces the final graph to have a given number of vertices (i.e. associated with the attribute \texttt{val}).
1.2. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES

Dynamic graph constraint

The purpose of a **dynamic graph constraint** is to enforce a condition on different subsets of variables, not known in advance. This situation occurs frequently in practice and is hard to express since one cannot use a classical constraint for which it is required to provide all variables right from the beginning. One good example of such global constraint is the **cumulative** constraint where one wants to force the sum of some variables to be less than or equal to a given limit. In the context of the cumulative constraint, each set of variables is defined by the height of the different tasks that overlap a given instant i. Since the origins of the tasks are not initially fixed, we don’t know in advance which task will overlap a given instant and so, we cannot state any sum constraint initially.

A **dynamic graph constraint** is defined in exactly the same way as a **simple graph constraint**, except that we may omit the **Graph property(ies)** field, and that we have to provide the two following additional fields:

- The **Set** field denotes a generator of sets of vertices. Such a generator takes as argument a final graph and produces different sets of vertices. In order to have something tractable, we force the total number of generated sets to be polynomial in the number of vertices.

 In practice each set of vertices is represented by a collection of items. The type of this collection corresponds either to the type of the items associated with the vertices, or to the type of a new derived collection. This is achieved by providing an expression of the form `name` or `name-derived_collection`, where `name` represents a formal parameter, and `derived_collection` a declaration of a new derived collection (as specified in Section 1.2.2, page 17).

- The **Constraint(s) on sets** field provides a global constraint defined in the catalog that has to hold for each set created by the previous generator.

We now describe the different generators of sets of vertices currently available:

- **ALL_VERTICES** generates one single set containing all the vertices of the final graph. It is specified by a declaration of the form

 `ALL_VERTICES >> [vertices]`

 where `vertices` represents all the vertices of the final graph.

- **CC** generates one set of vertices for each connected component of the final graph. These sets correspond to all the vertices of a given connected component. It is specified by a declaration of the form

 `CC >> [connected_component]`

 where `connected_component` represents the vertices of a connected component of the final graph.
• PATH_LENGTH\((L) \) generates all elementary paths\(^23\) of \(L \) vertices of the final
graph such that, discarding loops, all vertices of a path have no more than one
successor and one predecessor in the final graph. It is specified by a declaration
of the form

\[
\text{PATH_LENGTH}(L) \gg \text{[path]}
\]

where path represents the vertices of an elementary path, ordered according to
their occurrence in the path.

• PRED generates the non-empty sets corresponding to the predecessors of each
vertex of the final graph. It is specified by a declaration of the form

\[
\text{PRED} \gg \text{[predecessor,destination]}
\]

where destination represents a vertex of the final graph and predecessor its
predecessors.

• SUCC generates the non-empty sets corresponding to the successors of each
vertex of the final graph. It is specified by a declaration of the form

\[
\text{SUCC} \gg \text{[source,successor]}
\]

where source represents a vertex of the final graph and successor its succes-
sors.

As an illustrative example of dynamic graph constraint we now consider the
cumulative\(^\text{23}\) constraint.

\(^{23}\) A path where all vertices are distinct is called an elementary path.
EXAMPLE: The \texttt{cumulative} \texttt{TASKS, LIMIT}) constraint, where \texttt{TASKS} is a collection of the form \texttt{collection\{origin = dvar, duration = dvar, end = dvar, height = dvar\}}, and where \texttt{LIMIT} is a non-negative integer, holds if, for any point the cumulated height of the set of tasks that overlap that point, does not exceed \texttt{LIMIT}.

The first graph constraint of \texttt{cumulative} enforces for each task of the \texttt{TASKS} collection the equality \texttt{origin + duration = end}. We focus on the second graph constraint, which uses a \textit{dynamic graph constraint} described by the following items:

- **Arc input(s)**: \texttt{TASKS TASKS}
- **Arc generator**: \texttt{PRODUCT \rightarrow collection(tasks1, tasks2)}
- **Arc arity**: \(2\)
- **Arc constraint(s)**:
 - \(\text{tasks1.duration} > 0\)
 - \(\text{tasks2.origin} \leq \text{tasks1.origin}\)
 - \(\text{tasks1.origin} \leq \text{tasks2.end}\)

- **Sets**:
 - **SUCC>>**
 - [source, variables = \texttt{col(VARIABLES = collection(var = dvar), [item(var = TASKS.height)])}]

- **Constraint(s) on sets**: \texttt{SUCC<<} \texttt{variables, \leq LIMIT}

The second graph constraint is defined by:

- To each item of the \texttt{TASKS} collection correspond two vertices of the initial graph.
- The arity of the arc constraint is \(2\).
- The arcs of the initial graph are constructed with the \texttt{PRODUCT} arc generator between the \texttt{TASKS} collection and the \texttt{TASKS} collection. Therefore, each vertex associated with a task is linked to all the vertices related to the different tasks.
- The arc constraint that is associated with an arc between a task \texttt{tasks1} and a task \texttt{tasks2} is an overlapping constraint that holds if both, the duration of \texttt{tasks1} is strictly greater than zero, and if the origin of \texttt{tasks1} is overlapped by task \texttt{tasks2}.
- The set generator is \texttt{SUCC}. The final graph will consist of those tasks for which the origin is covered by at least one task and of those corresponding tasks.
- The dynamic constraint on a set forces the sum of the heights of the tasks that belong to a successor set to not exceed \texttt{LIMIT}.
CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

Figure 1.6: Initial and final graph of an instance of the cumulative constraint

Parts (A) and (B) of Figure 1.6 respectively show the initial and the final graph corresponding to the following instance:

- **cumulative**
 - origin 1 duration 3 height 1,
 - origin 2 duration 9 height 2,
 - origin 3 duration 10 height 1,
 - origin 6 duration 6 height 1,
 - origin 7 duration 2 height 3.

We label the vertices of the initial and final graph by giving the key of the corresponding task. On both graphs the edges are oriented from left to right. On the final graph we consider the sets that consist of the successors of the different vertices; those are the sets of tasks \(\{1\} \), \(\{1, 2\} \), \(\{1, 2, 3\} \), \(\{2, 3, 4\} \) and \(\{2, 3, 4, 5\} \). Since the SUCC set generator uses a derived collection that only considers the height attribute of a task, these sets respectively correspond to the following collection of items:

- \(\{\text{var } 1\} \)
- \(\{\text{var } 1, \text{var } 2\} \)
- \(\{\text{var } 1, \text{var } 2, \text{var } 1\} \)
- \(\{\text{var } 2, \text{var } 1, \text{var } 1\} \)
- \(\{\text{var } 2, \text{var } 1, \text{var } 1, \text{var } 3\} \)

The **cumulative** constraint holds since, for each successors set, the corresponding constraint holds:

- \(\text{sum ctr} \{\text{var } 1\}, \leq, 8\).
- \(\text{sum ctr} \{\text{var } 1, \text{var } 2\}, \leq, 8\).
- \(\text{sum ctr} \{\text{var } 1, \text{var } 2, \text{var } 1\}, \leq, 8\).
- \(\text{sum ctr} \{\text{var } 2, \text{var } 1, \text{var } 1\}, \leq, 8\).
- \(\text{sum ctr} \{\text{var } 2, \text{var } 1, \text{var } 1, \text{var } 3\}, \leq, 8\).

The **sum ctr** (VARIABLES, CTR, VAR) constraint holds if the sum \(S \) of the variables of the VARIABLES collection satisfies \(S \text{ CTR VARIABLES} \), where CTR is a comparison operator.

\`key` is an implicit attribute corresponding to the position of an item within a collection that was introduced in Section 1.1.2, page 14.
1.3 Describing global constraints in terms of automata

This section is based on the paper describing global constraint in terms of automata [4]. The main difference with the original paper is the introduction of array of counters within the description of an automaton. We consider global constraints for which any ground instance can be checked in linear time by scanning once through their variables without using any data structure, except counters or arrays of counters. In order to concretely illustrate this point we first select a set of global constraints and write down a checker for each of them. Finally, we give for each checker a sketch of the corresponding automaton. Based on these observations, we define the type of automaton we use in the catalog.

1.3.1 Selecting an appropriate description

As we previously said, we focus on those global constraints that can be checked by scanning once through their variables. This is for instance the case of:

- **element** [32].
- **minimum** [33].
- **pattern** [34].
- **global_contiguity** [35].
- **alldifferent** [18].
- **lex_lessq** [36].
- **among** [37].
- **inflexion** [38].

Since they illustrate key points needed for characterizing the set of solutions associated with a global constraint, our discussion will be based on the last five constraints for which we now recall the definition:

- The **global_contiguity** (vars) constraint forces the sequence of 0-1 variables vars to have at most one group of consecutive 1. For instance, the constraint **global_contiguity** ([0, 1, 1, 0]) holds since we have only one group of consecutive 1.

- The lexicographic ordering constraint \(\overrightarrow{x} \leq_{\text{lex}} \overrightarrow{y} \) (see **lex_lessq**) over two vectors of variables \(\overrightarrow{x} = (x_0, \ldots, x_{n-1}) \) and \(\overrightarrow{y} = (y_0, \ldots, y_{n-1}) \) holds iff \(n = 0 \) or \(x_0 < y_0 \) or \(x_0 = y_0 \) and \((x_1, \ldots, x_{n-1}) \leq_{\text{lex}} (y_1, \ldots, y_{n-1}) \).

- The **among** (nvar, vars, values) constraint restricts the number of variables of the sequence of variables vars that take their value in a given set values, to be equal to the variable nvar. For instance, **among** (3, [4, 5, 5, 4, 1], [1, 5, 8]) holds since exactly 3 values of the sequence 45541 are located in \{1, 5, 8\}.

- The **inflexion** (ninf, vars) constraint forces the number of inflexions of the sequence of variables vars to be equal to the variable ninf. An inflexion is described by one of the following patterns: a strict increase followed by a strict decrease or, conversely, a strict decrease followed by a strict increase. For instance, **inflexion** (4, [3, 3, 1, 4, 5, 5, 6, 5, 6, 3]) holds since we can extract from the
sequence 33145565563 the four subsequences 314, 565, 6556 and 563, which all follow one of these two patterns.

- The `alldifferent` constraint forces all pairs of distinct variables of the collection `vars` to take distinct values. For instance `alldifferent([6, 1, 5, 9])` holds since we have four distinct values.

```
global_contiguity(vars[0..n-1]):BOOLEAN
01 BEGIN
02 i=0;
03 WHILE i<n AND vars[i]=0 DO i++;
04 WHILE i<n AND vars[i]=1 DO i++;
05 WHILE i<n AND vars[i]=0 DO i++;
06 RETURN (i=n);
07 END.

lex_less(x[0..n-1], y[0..n-1]):BOOLEAN
01 BEGIN
02 i=0;
03 WHILE i<n AND x[i]=y[i] DO i++;
04 RETURN (i=n OR x[i]<y[i]);
05 END.

among(nvar, vars[0..n-1], values):BOOLEAN
01 BEGIN
02 i=0; c=0;
03 WHILE i<n DO
04 IF vars[i] in values THEN c++;
05 i++;
06 RETURN (nvar=c);
07 END.

inflection(ninf, vars[0..n-1]):BOOLEAN
01 BEGIN
02 i=n; s=0;
03 WHILE i>0 AND vars[i]=vars[i+1] DO i++;
04 IF i>0 THEN less=(vars[i]<vars[i+1]);
05 WHILE i>0 DO
06 IF less THEN
07 IF vars[i]>vars[i+1] THEN c++; less=FALSE;
08 ELSE
09 IF vars[i]<vars[i+1] THEN c++; less=TRUE;
10 i++;
11 RETURN (ninf=c);
12 END.

alldifferent(vars[0..n-1]):BOOLEAN
01 BEGIN
02 u=vars[0]; v=vars[0]; i=1;
03 WHILE i<n AND vars[i]=vars[i-1] DO i++;
04 IF i<n THEN less=(vars[i]<vars[i-1]);
05 WHILE i<n DO
06 IF vars[i]>v THEN v=vars[i];
07 IF vars[i]<u THEN u=vars[i];
08 FOR i=0 TO n-1 DO c[vars[i]]=c[vars[i]]+1;
09 FOR i=0 TO n-1 DO c[vars[i]]<2 THEN RETURN FALSE;
10 RETURN TRUE;
11 RETURN FALSE;
12 END.
```

Figure 1.7: Five checkers and their corresponding automata

Parts (A1), (B1), (C1), (D1) and (E1) of Figure 1.7 depict the five checkers respectively associated with `global_contiguity`, `lex_less`, `among`, `inflection`, and `alldifferent`.
1.3. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF AUTOMATA

For each checker we observe the following facts:

- Within the checker depicted by part (A1) of Figure 1.7, the values of the sequence $\text{vars}[0], ..., \text{vars}[n - 1]$ are successively compared against 0 and 1 in order to check that we have at most one group of consecutive 1. This can be translated to the automaton depicted by part (A2) of Figure 1.7. The automaton takes as input the sequence $\text{vars}[0], ..., \text{vars}[n - 1]$, and triggers successively a transition for each term of this sequence. Transitions labeled by 0, 1 and $\$\$ are respectively associated with the conditions $\text{vars}[[i]] = 0$, $\text{vars}[[i]] = 1$ and $i = n$. Transitions leading to failure are systematically skipped. This is why no transition labeled with a 1 starts from state z.

- Within the checker given by part (B1) of Figure 1.7, the components of vectors x and y are scanned in parallel. We first skip all the components that are equal and then perform a final check. This is represented by the automaton depicted by part (B2) of Figure 1.7. The automaton takes as input the sequence $(\text{x}[0], \text{y}[0]), ..., (\text{x}[n - 1], \text{y}[n - 1])$ and triggers a transition for each term of this sequence. Unlike the global contiguity constraint, some transitions now correspond to a condition (e.g. $\text{x}[[i]] = \text{y}[[i]], \text{x}[[i]] < \text{y}[[i]]$) between two variables of the lex_lesseq constraint.

- Note that the among ($nvar, \text{vars}, \text{values}$) constraint involves a variable $nvar$ whose value is computed from a given collection of variables vars. The checker depicted by part (C1) of Figure 1.7 counts the number of variables of $\text{vars}[0], ..., \text{vars}[n - 1]$ that take their value in values. For this purpose it uses a counter c, which is eventually tested against the value of $nvar$. This convinced us to allow the use of counters in an automaton. Each counter has an initial value, which can be updated while triggering certain transitions. The final state of an automaton can force a variable of the constraint to be equal to a given counter. Part (C2) of Figure 1.7 describes the automaton corresponding to the code given in part (C1) of the same figure. The automaton uses the counter variable c initially set to 0 and takes as input the sequence $\text{vars}[0], ..., \text{vars}[n - 1]$. It triggers a transition for each variable of this sequence and increments c when the corresponding variable takes its value in values. The final state returns a success when the value of c is equal to $nvar$. At this point we want to stress the following fact: It would have been possible to use an automaton that avoids the use of counters. However, this automaton would depend on the effective value of the argument $nvar$. In addition, it would require more states than the automaton of part (C2) of Figure 1.7. This is typically a problem if we want to have a fixed number of states in order to save memory as well as time.

- As the among constraint, the inflexion ($ninf, \text{vars}$) constraint involves a variable $ninf$ whose value is computed from a given sequence of variables $\text{vars}[0], ..., \text{vars}[n - 1]$. Therefore, the checker depicted in part (D1) of Figure 1.7 uses also a counter c for counting the number of inflexions, and compares its final value to the $ninf$ argument. The automaton depicted by part (D2) of Figure 1.7 represents this program. It takes as input the sequence of pairs
CHAPTER 1. DESCRIBING GLOBAL CONSTRAINTS

\[
\langle \text{vars}[0], \text{vars}[1] \rangle, \langle \text{vars}[1], \text{vars}[2] \rangle, \ldots, \langle \text{vars}[n-2], \text{vars}[n-1] \rangle
\]

and triggers a transition for each pair. Note that a given variable may occur in more than one pair. Each transition compares the respective values of two consecutive variables of \text{vars}[0..n-1] and increments the counter \(c\) when a new inflexion is detected. The final state returns a success when the value of \(c\) is equal to \(n_{\text{inf}}\).

- The checker associated with \text{alldifferent} is depicted by part (E1) of Figure 1.7. It first initializes an array of counters to 0. The entries of the array correspond to the potential values of the sequence \text{vars}[0], \ldots, \text{vars}[n-1]. In a second phase the checker computes for each potential value its number of occurrences in the sequence \text{vars}[0], \ldots, \text{vars}[n-1]. This is done by scanning this sequence. Finally in a third phase the checker verifies that no value is used more than once. These three phases are represented by the automaton depicted by part (E2) of Figure 1.7. The automaton depicted by part (E2) takes as input the sequence \text{vars}[0], \ldots, \text{vars}[n-1]. Its initial state initializes an array of counters to 0. Then it triggers successively a transition for each element \text{vars}[i] of the input sequence and increments by 1 the entry corresponding to \text{vars}[i]. The final state checks that all entries of the array of counters are strictly less than 2, which means that no value occurs more than once in the sequence \text{vars}[0], \ldots, \text{vars}[n-1].

Synthesizing all the observations we got from these examples leads to the following remarks and definitions for a given global constraint \(C\):

- For a given state, no transition can be triggered indicates that the constraint \(C\) does not hold.

- Since all transitions starting from a given state are mutually incompatible all automata are deterministic. Let \(\mathcal{M}\) denote the set of mutually incompatible conditions associated with the different transitions of an automaton.

- Let \(S_0, \ldots, S_{m-1}\) denote the sequence of subsets of variables of \(C\) on which the transitions are successively triggered. All these subsets contain the same number of elements and refer to some variables of \(C\). Since these subsets typically depend on the constraint, we leave the computation of \(S_0, \ldots, S_{m-1}\) outside the automaton. To each subset \(S_i\) of this sequence corresponds a variable \(S_i\) with an initial domain ranging over \([\text{min}, \text{min} + |\mathcal{M}| - 1]\), where \(\text{min}\) is a fixed integer. To each integer of this range corresponds one of the mutually incompatible conditions of \(\mathcal{M}\). The sequences \(S_0, \ldots, S_{m-1}\) and \(S_0, \ldots, S_{m-1}\) are respectively called the signature and the signature argument of the constraint. The constraint between \(S_i\) and the variables of \(S_i\) is called the signature constraint and is denoted by \(\Psi_C(S_i, S_i)\).

- From a pragmatic point of view, the task of writing a constraint checker is naturally done by writing down an imperative program where local variables, arrays, assignment statements and control structures are used. This suggested us to consider deterministic finite automata augmented with local variables and assignment statements on these variables. Regarding control structures, we did not
introduce any extra feature since the deterministic choice of which transition to
trigger next seemed to be good enough.

- Many global constraints involve a variable whose value is computed from a given
collection of variables. This convinced us to allow the final state of an automaton
to optionally return a result. In practice, this result corresponds to the value of a
local variable of the automaton in the final state.

1.3.2 Defining an automaton

An automaton \(A \) of a global constraint \(C \) is defined by

\[
(Signature, SignatureDomain, SignatureArg, SignatureArgPattern,
Counters, Arrays, States, Transitions)
\]

where:

- **Signature** is the sequence of variables \(S_0, \ldots, S_{m-1} \) corresponding to the sig-
nature of the constraint \(C \).

- **SignatureDomain** is an interval that defines the range of possible values of the
variables of **Signature**.

- **SignatureArg** is the signature argument \(S_0, \ldots, S_{m-1} \) of the constraint \(C \). The
link between the variables of \(S_i \) and the variable \(S_i \) (\(0 \leq i < m \)) is done by
writing down the signature constraint \(\Psi_C(S_i, S_i) \).

- When used, **SignatureArgPattern** defines a symbolic name for each term of
SignatureArg. These names can be used within the description of a transition for expressing an additional condition for triggering the corresponding transition.

- **Counters** is the, possibly empty, list of all counters used in the automaton \(A \). Each counter is described by a term \(t(Counter, InitialValue, FinalVariable) \) where **Counter** is a symbolic name representing the counter, **InitialValue** is an integer giving the value of the counter in the initial state of \(A \), and **FinalVariable** gives the variable that should be unified with the value of the counter in the final state of \(A \).

- **Arrays** is the, possibly empty, list of all arrays used in the automaton \(A \). Each array is described by a term \(t(Array, InitialValue, FinalConstraint) \) where **Array** is a symbolic name representing the array, **InitialValue** is an integer giving the value of all the entries of the array in the initial state of \(A \). **FinalConstraint** denotes an existing constraint of the catalog that should hold in the final state of \(A \). Arguments of this constraint correspond to collections of variables that are bound to array of counters, or to variables that are bound to counters declared in **Counters**. For an array of counters we only consider those entries that are located between the first and the last entries that were modified while triggering a transition of \(A \).
• **States** is the list of states of \(A \), where each state has the form source(id), sink(id) or node(id). \(id \) is a unique identifier associated with each state. Finally, source(id) and sink(id) respectively denote the initial and the final state of \(A \).

• **Transitions** is the list of transitions of \(A \). Each transition \(t \) has the form arc(id₁, label, id₂) or arc(id₁, label, id₂, counters). \(id₁ \) and \(id₂ \) respectively correspond to the state just before and just after \(t \), while label denotes the value that the signature variable should have in order to trigger \(t \). When used, counters gives for each counter of Counters its value after firing the corresponding transition. This value is specified by an arithmetic expression involving counters, constants, as well as usual arithmetic functions such as +, -, min or max. The order used in the counters list is identical to the order used in Counters.

EXAMPLE: As an illustrative example we give the description of the automaton associated with the \text{inflexion(ninf, vars)} constraint. We have:

- **Signature** = \(S₀, S₁, \ldots, Sₙ₋₂ \).
- **SignatureDomain** = 0..2.
- **SignatureArg** = \(\langle \text{vars}[0], \text{vars}[1] \rangle, \ldots, \langle \text{vars}[n - 2], \text{vars}[n - 1] \rangle \).
- **SignatureArgPattern** is not used.
- **Counters** = \(t(c, 0, \text{ninf}) \).
- **States** = \(\langle \text{source}(s), \text{node}(i), \text{node}(j), \text{sink}(t) \rangle \).
- **Transitions** = \[\langle \text{arc}(s, 1, s), \text{arc}(s, 2, i), \text{arc}(s, 0, j), \text{arc}(s, t), \text{arc}(i, 1, i), \text{arc}(i, 2, i), \text{arc}(i, 0, j, [c + 1]), \text{arc}(i, s, t), \text{arc}(j, 1, j), \text{arc}(j, 0, j), \text{arc}(j, 2, i, [c + 1]), \text{arc}(j, s, t) \rangle \).

The signature constraint relating each pair of variables \(\langle \text{vars}[i], \text{vars}[i + 1] \rangle \) to the signature variable \(Sᵢ \) is defined as follows: \(\Psi_{\text{inflexion}}(Sᵢ, \text{vars}[i], \text{vars}[i + 1]) \equiv \text{vars}[i] > \text{vars}[i + 1] \Leftrightarrow Sᵢ = 0 \land \text{vars}[i] = \text{vars}[i + 1] \Leftrightarrow Sᵢ = 1 \land \text{vars}[i] < \text{vars}[i + 1] \Leftrightarrow Sᵢ = 2 \). The sequence of transitions triggered on the ground instance \(\text{inflexion}(4, [3, 3, 1, 4, 5, 5, 6, 5, 6, 3]) \) is \(\begin{array}{c}
 j \quad \begin{array}{c}
 1 \quad \text{c=1} \quad 5 \quad \text{c=3}

 \end{array}
 \end{array}
\)

Each transition gives the corresponding condition and, possibly, the value of the counter \(c \) just after firing that transition.
Chapter 2

Description of the catalog

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Which global constraints are included?</td>
<td>57</td>
</tr>
<tr>
<td>2.2 Which global constraints are missing?</td>
<td>58</td>
</tr>
<tr>
<td>2.3 Searching in the catalog</td>
<td>58</td>
</tr>
<tr>
<td>2.3.1 How to see if a global constraint is in the catalog?</td>
<td>58</td>
</tr>
<tr>
<td>2.3.2 How to search for all global constraints sharing the same structure</td>
<td>59</td>
</tr>
<tr>
<td>Searching from a graph property perspective</td>
<td>59</td>
</tr>
<tr>
<td>Searching from an automaton perspective</td>
<td>59</td>
</tr>
<tr>
<td>2.3.3 Searching all places where a global constraint is referenced</td>
<td>60</td>
</tr>
<tr>
<td>2.4 Figures of the catalog</td>
<td>61</td>
</tr>
<tr>
<td>2.5 Keywords attached to the global constraints</td>
<td>62</td>
</tr>
</tbody>
</table>

2.1 Which global constraints are included?

The global constraints of this catalog come from the following sources:

- Existing constraint systems like:
 - Alice 2.
 - CHARME in C,
 - CHIP 38 in Prolog, C and C++ http://www.cosytec.com
 - ECLAIR 40 in Claire,
 - ECLiPSe 41 in Prolog http://www-icparc.doc.ic.ac.uk/eclipse
 - FaCile in OCaml http://www.recherche.enac.fr/opti/facile/
-- IF/PROLOG in Prolog
http://www.ifcomputer.com/IFProlog/Constraints/home_en.html

-- Ilog Solver \[42\] in C++ and later in Java http://www.ilog.com

-- Mozart \[43\] in Oz http://www.mozart-oz.org/

-- SICStus \[44\] in Prolog http://www.sics.se/sicstus/

* Constraint programming papers mostly from conferences like:

-- The Principles and Practice of Constraint Programming (CP)
http://www.informatik.uni-trier.de/\~ley/db/conf/cp/index.html

-- The International Joint Conference on Artificial Intelligence (IJCAI)
http://www.informatik.uni-trier.de/\~ley/db/conf/ijcai/index.html

-- The National Conference on Artificial Intelligence (AAAI)
http://www.informatik.uni-trier.de/\~ley/db/conf/aaai/index.html

-- The International Conference on Logic Programming (ICLP)
http://www.informatik.uni-trier.de/\~ley/db/conf/iclp/index.html

-- The International Conference of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CPAIOR)
http://www.informatik.uni-trier.de/\~ley/db/conf/cpaior/

* New constraints inspired by variations of existing constraints, practical
applications, combinatorial problems, puzzles or discussions with colleagues.

2.2 Which global constraints are missing?

Constraints with too many arguments (like for instance the original cycle constraint with 16 arguments), which are in fact a combination of several constraints, were not directly put into the catalog. Constraints that have complex arguments were also omitted. Beside this, the following constraints should be added in some future version of the catalog: case \[46\], choquet, cumulative__trapeze \[47, 48\], inequality__sum \[49\], no_cycle \[50\], range \[51\], regular \[5\], roots \[51\], soft_gcc \[12\], soft__regular \[12\]. Finally we only consider a restricted number of constraints involving set variables since this is a relatively new area, which is currently growing rapidly since 2003.

2.3 Searching in the catalog

2.3.1 How to see if a global constraint is in the catalog?

Searching a given global constraint through the catalog can be achieved in the following ways:
If you have an idea of the name of the global constraint you are looking for, then put all its letters in lower case, separate distinct words by an underscore and search the resulting name in the index. The entry where the constraint is defined is shown in bold. Common abbreviations or synonyms found in papers have also been put in the index.

You can also search a global constraint through the list of keywords that is attached to each global constraint. All available keywords are listed alphabetically in Section 2.5 page 62. For each keyword we give the list of global constraints using the corresponding keyword as well as the definition of the keyword.

2.3.2 How to search for all global constraints sharing the same structure

Since we have two ways of defining global constraints (e.g. searching for a graph with specific properties or coming up with an automaton that only recognizes the solutions associated with the global constraint) we can look to the global constraints from these two perspectives.

Searching from a graph property perspective

The index contains all the arc generators as well as all the graph properties and the pages where they are mentioned. This allows for finding all global constraints that use a given arc generator or a given graph property in their definition. You can further restrict your search to those global constraints using a specific combination of arc generators and graph properties. All these combinations are listed at the "signature" entry of the index. Within these combinations, a graph property with an underline means that the constraint should be evaluated each time the minimum of this graph property increases. Similarly a graph property with an overline indicates that the constraint should be evaluated each time the maximum of this graph property decreases. For instance if we look for those constraints that both use the CLIQUE arc generator as well as the NARC graph-property we find the \texttt{inverse} and \texttt{place_in_pyramid} constraints. Since NARC is underlined and overlined these constraints will have to be woken each time the minimum or the maximum of NARC changes. The signature associated with a global constraint is also shown in the header of the even pages corresponding to the description of the global constraint.

Searching from an automaton perspective

We have created the following list of keywords, which allow for finding all global constraints defined by a specific type of automaton that recognizes its solutions:

- "automaton" indicates that the catalog provides a deterministic automaton,

1. Arc generators and graph properties are introduced in the section "Describing Explicitly Global Constraints".
2. Automata that recognize the solutions of a global constraint were introduced in the section "Describing Explicitly Global Constraints".
• "automaton without counters" indicates that the catalog provides a deterministic automaton without counters as well as without array of counters,

• "automaton with counters" indicates that the catalog provides a deterministic automaton with counters but without array of counters,

• "automaton with array of counters" indicates that the catalog provides a deterministic automaton with array of counters and possibly with counters.

In addition we also provide a list of keywords that characterize the structure of the hypergraph associated with the decomposition of the automaton of a global constraints. Note that, when a global constraint is defined by several graph properties it is also defined by several automata (usually one automata for each graph property). This is for instance the case of the change continuity constraint. Currently we have these keywords:

• "Berge-acyclic constraint network",
• "alpha-acyclic constraint network(2)",
• "alpha-acyclic constraint network(3)",
• "alpha-acyclic constraint network(4)",
• "sliding cyclic(1) constraint network(1)",
• "sliding cyclic(1) constraint network(2)",
• "sliding cyclic(1) constraint network(3)",
• "sliding cyclic(2) constraint network(2)",
• "circular sliding cyclic(1) constraint network(2)",
• "centered cyclic(1) constraint network(1)",
• "centered cyclic(2) constraint network(1)",
• "centered cyclic(3) constraint network(1)".

When a global constraint is only defined by one or several automaton its signature is set to the keyword AUTOMATON.

2.3.3 Searching all places where a global constraint is referenced

Beside the page where a global constraint is defined (in bold), the index also gives all the pages where a global constraint is referenced. Since a global constraint can also be used for defining another global constraint the item Used in of the description of a global constraint provides this information.
2.4 Figures of the catalog

The catalog contains the following types of figures:

- Figures that illustrate a global constraint or a keyword,
- Figures that depict the initial as well as the final graphs associated with a global constraint,
- Figures that provide an automaton that only recognizes the solutions associated with a given global constraint,
- Figures that give the hypergraph associated with the decomposition of an automaton in terms of signature and transition constraints.

Most of the graph figures that depict the initial and final graph of a global constraint of this catalog were automatically generated by using the open source graph drawing software Graphviz available from AT&T.

2.5 Keywords attached to the global constraints

This section explains the meaning of the keywords attached to the global constraints of the catalog. For each keyword it first gives the list of global constraints using the corresponding keyword and then defines the keyword. At present the following keywords are in use.

Acyclic:

- `alldifferent_on_intersection`
- `among_low_up`
- `arithmetic`
- `cardinality_atleast`
- `cardinality_atmost`
- `cardinality_atmost_partition`
- `change`
- `change_continuity`
- `change_pair`
- `change_partition`
- `common`
- `common_interval`
- `common_modulo`
- `common_partition`
- `correspondence`
- `counter`
- `cyclic_change`
- `cyclic_change_joker`

Denotes the fact that a constraint is defined by one single graph constraint for which the final graph doesn’t have any circuit.

All different:

- `alldifferent`
- `alldifferent_between_sets`
- `alldifferent_except_0`
- `alldifferent_interval`
- `alldifferent_modulo`
- `alldifferent_on_intersection`
- `alldifferent_partition`
- `soft_alldifferent_ctr`
- `soft_alldifferent_var`
- `symmetric_alldifferent`
- `weighted_partial_alldiff`

Denotes the fact that we have a clique of disequalities or that a constraint is a variation of the `alldifferent` constraint. Variations may be related to relaxations (e.g. `alldifferent_except_0`, `soft_alldifferent_ctr`, `soft_alldifferent_var`), or to specializations (e.g. `symmetric_alldifferent`) of the `alldifferent` constraint. Variations may also result from an extension of the notion of disequality (e.g. `alldifferent_interval`, `alldifferent_modulo`, `alldifferent_partition`).
Alignment:

- **orchard**

Denotes the fact that a constraint enforces the alignment of different sets of points.

Alpha-acyclic constraint network(2):

- **among**
- **among_diff_0**
- **among_interval**
- **among_low_up**
- **among_modulo**
- **atleast**
- **atmost**
- **count**
- **counts**
- **differ_from_at_least_k_pos**
- **exactly**
- **group**
- **group_skip_isolated_item**
- **sliding_card_skip**

Before defining *alpha-acyclic constraint network(2)* we first need to introduce the following notions:

- The **dual graph** of a constraint network \mathcal{N} is defined in the following way: To each constraint of \mathcal{N} corresponds a vertex in the dual graph and if two constraints have a non-empty set S of shared variables, there is an edge labeled S between their corresponding vertices in the dual graph.

- An edge in the dual graph of a constraint network is **redundant** if its variables are shared by every edge along an alternative path between the two end points [52].

- If the subgraph resulting from the removal of the redundant edges of the dual graph is a tree the original constraint network is called α-acyclic [53].

Alpha-acyclic constraint network(2) denotes an α-acyclic constraint network such that for any pair of constraints the two sets of involved variables share at most two variables.

Alpha-acyclic constraint network(3):

- **group**
- **group_skip_isolated_item**
- **ith_pos_differ_from_0**

Alpha-acyclic constraint network(3) denotes an α-acyclic constraint network (see *alpha-acyclic constraint network(2)*) such that for any pair of constraints the two sets of involved variables share at most three variables.
Alpha-acyclic constraint network (4):

- max_index
- min_index

Alpha-acyclic constraint network (4) denotes an α-acyclic constraint network (see alpha-acyclic constraint network (2)) such that for any pair of constraints the two sets of involved variables share at most four variables.

Partition:

- change_continuity

Denotes the fact that a constraint is defined by two graph constraints having the same initial graph, where each arc of the initial graph belongs to one of the final graph (but not to both).

Arithmetic constraint:

- product_ctr
- range_ctr
- sum_ctr
- sum_int

An arithmetic constraint involving a sum, a product, or a difference between a maximum and a minimum value. Such constraints were introduced within the catalog since they are required for defining a given global constraint. For instance the sum_ctr constraint is used within the definition of the cumulative constraint.

Array constraint:

- elem
- element
- element_lesseq
- element_greatereq
- element_matrix
- element_sparse

A constraint that allows for expressing simple array equations.

Assignment:

- assign_and_counts
- assign_and_nvalues
- balance
- balance_interval
- balance_modulo
- balance_partition
- bin_packing
- cardinality_atleast
- cardinality_atmost
- global_cardinality
- global_cardinality_low_up
- global_cardinality_with_costs
- indexed_sum
- interval_and_count
- interval_and_sum
- max_value
- min_value
2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS

- min_size_set_consecutive_var
- minimum_weight_alldifferent
- same_and_global_cardinality
- sum_of_weights_of_distinct_values
- symmetric_cardinality
- symmetric_gcc
- weighted_partial_alldiff

A constraint putting a restriction on all items that are assigned to the same equivalence class or on all equivalence classes that are effectively used. Usually an equivalence class corresponds to one single value (e.g. balance, bin_packing, global_cardinality, sum_of_weights_of_distinct_values) to an interval of consecutive values (e.g. balance_interval, interval_and_count) or to all values that are congruent modulo a given number (e.g. balance_modulo). The restriction on all items that are assigned to the same equivalence class can for instance be a constraint on the number of items (e.g. cardinality_atleast, cardinality_atmost) or a constraint on the sum of a specific attribute (e.g. bin_packing, interval_and_sum).

At least:

- atleast
- cardinality_atleast

A constraint enforcing that one or several values occur a minimum number of times within a given collection of domain variables.

At most:

- atmost
- cardinality_atmost
- cardinality_atmost_partition

A constraint enforcing that one or several values occur a maximum number of times within a given collection of domain variables.

Automaton:

- alldifferent
- alldifferent_except_0
- alldifferent_interval
- alldifferent_modulo
- alldifferent_on_intersection
- alldifferent_same_value
- among
- among_diff_0
- among_interval
- among_low_up
- among_modulo
- arith
- arith_or
- arith_sliding
- assign_and_count
- atleast
- atmost
- balance
- balance_interval
- balance_modulo
- bin_packing
- cardinality_atleast
- cardinality_atmost
A constraint for which the catalog provides a deterministic automaton for the ground case. This automaton can usually be used for deriving mechanically a filtering algorithm for the general case. We have the following three types of deterministic automata:

- Deterministic automata without counters and without array of counters,
2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS

- Deterministic automata with counters but without array of counters,
- Deterministic automata with array of counters and possibly with counters.

Figure 2.1: Examples of automata

Figure 2.1 shows three automata respectively associated with the global_contiguity, the exactly and the alldifferent constraints. These automata correspond to the three types we described above.

Automaton with array of counters:

- alldifferent
- alldifferent_except_0
- alldifferent_interval
- alldifferent_modulo
- alldifferent_on_intersection
- alldifferent_same_value
- assign_and_counts
- balance
- balance_interval
- balance_modulo
- bin_packing
- cardinality_atleast
- cardinality_atmost
- cumulative
- disjoint
- global_cardinality
- interval_and_count
- interval_and_sum
- inverse
- max_value
- min
- min_value
- nvalue
- used_by

A constraint for which the catalog provides a deterministic automaton with array of counters and possibly with counters.
Automaton with counters:

- among
- among_diff
- among_interval
- among_low_up
- among_modulo
- arith_sliding
- atleast
- atmost
- change
- change_continguity
- change_pair
- circular_change
- count
- counts
- cyclic_change
- cyclic_change_joker
- deepest_valley
- differ_from_at_least
- differ_from_at_least_k_pos
- distance_change
- exactly
- group
- group_skip_isolated_item
- heighest_peak
- inflexion
- ith_pos_different_from_0
- longest_change
- max_index
- min_index
- peak
- sliding_card_skip
- smooth
- valley

A constraint for which the catalog provides a deterministic automaton with counters but without array of counters.

Automaton without counters:

- arith
- arith_or
- decreasing
- domain_constraint
- elem
- element
- element_greater
eq
- element_less
eq
- element_matrix
- element_sparse
- global_contiguity
- in
- in_same_partition
- increasing
- int_value_precede
- int_value_precede_chain
- lex_between
- lex_different
- lex_greater
- lex_greatereq
- lex_less
- lex_less
eq
- lex_max
- min
- minimum
- minimum_except_0
- minimum_greater_than
- next_element
- no_peak
- no_valley
- not_all_equal
- not_in
- not_in
- sequence_folding
- stage_element
- strictly_decreasing
- strictly_increasing
- two_orth_are_in_contact
- two_orth_do_not_overlap
A constraint for which the catalog provides a deterministic automaton without counters and without array of counters.

Balanced tree:

- `tree_range`

A constraint that allows for expressing the fact that we want to cover a digraph by one (or more) *balanced tree*. A *balanced tree* is a tree where no leaf is much farther away than a given threshold from the root than any other leaf. The distance between a leaf and the root of a tree is the number of vertices on the path from the root to the leaf.

Balanced assignment:

- `balance`
- `balance_interval`
- `balance_modulo`
- `balance_partition`

A constraint that allows for expressing a restriction on the maximum value of the difference between the maximum number of items assigned to the same equivalence class and the minimum number of items assigned to the same equivalence class.

Berge-acyclic constraint network:

- `int_value_precede`
- `int_value_precede_chain`
- `global_contiguity`
- `lex_between`
- `lex_different`
- `lex_greater`
- `lex_greatereq`
- `lex_less`
- `lex_leseq`
- `two_orth_do_not_overlap`
- `two_orth_are_in_contact`

A constraint for which the decomposition associated with its counter-free automaton is *Berge-acyclic*. Arc-consistency for a *Berge-acyclic* constraint network is achieved by making each constraint of the corresponding network arc-consistent. A constraint network for which the corresponding *intersection graph* does not contain any cycle and such that for any pair of constraints the two sets of involved variables share at most one variable is so-called *Berge-acyclic*. The *intersection graph* of a constraint network is built in the following way: to each vertex corresponds a constraint and there is an edge between two vertices if and only if the sets of variables involved in the two corresponding constraints intersect.

Parts (A), (B) and (C) of Figure 2.2 provide three examples of constraint networks, while parts (D), (E) and (F) give their corresponding intersection graph. The constraint network corresponding to part (A) is Berge-acyclic, while the constraint network associated with (B) is not (since its corresponding intersection graph (E) contains a cycle). Finally the constraint network depicted by (C) is also not Berge-acyclic since its third and fourth constraints share more than one variable.
CHAPTER 2. DESCRIPTION OF THE CATALOG

Figure 2.2: Illustration of Berge-acyclic constraint network

Binary constraint:

- element_greatereq
- element_lesseq
- element_sparse

A constraint involving only two variables.

Bioinformatics:

- all_differ_from_at_least_k_pos
- one_tree
- sequence_folding

Denotes the fact that, for a given constraint, either there is a reference to its uses in Bioinformatics, or it was inspired by a problem from the area of Bioinformatics.

Bipartite:

- alldifferent_on_intersection
- among_lowup
- arith_or
- cardinality_atleast
- cardinality_atmost
- cardinality_atmost_partition
- common
- common_interval
- common_modulo
- common_partition
- correspondence
- counts

Denotes the fact that a constraint is defined by one graph constraint for which the final graph is bipartite.
2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS

Bipartite matching:

- \texttt{alldifferent}
- \texttt{alldifferent_between_sets}
- \texttt{disjoint}
- \texttt{lex_alldifferent}

Figure 2.3: A bipartite graph and one of its bipartite matching

Denotes the fact that, for a given constraint, a bipartite matching algorithm can be used within its filtering algorithm. A bipartite matching is a subgraph that pairs every vertex of a bipartite graph with exactly one other vertex. A bipartite graph is a graph for which the set of vertices can be partitioned in two parts such that no two vertices in the same part are joined by an edge. Part (A) of Figure 2.3 shows a bipartite graph with a possible division of the vertices in black and white, while part (B) depicts with a thick line a bipartite matching of this graph.

Boolean channel:

- \texttt{domain_constraint}

A constraint that allows for making the link between a set of 0-1 variables \(B_1, B_2, \ldots, B_n\) and a domain variable \(V\). It enforces a condition of the form \(V = i \iff B_i = 1\).

Border:

- \texttt{period}

A constraint that can be related to the notion of border, which we define now. Given a sequence \(s = uv\), \(r\) is a prefix of \(s\) when \(u\) is empty, \(r\) is a suffix of \(s\) when \(v\) is empty, \(r\) is a proper factor of \(s\) when \(r \neq s\). A border of a non-empty sequence \(s\) is a proper factor of \(s\), which is both a prefix and a suffix of \(s\). We have that the smallest period of a sequence \(s\) is equal to the size of \(s\) minus the length of the longest border of \(s\).
CHAPTER 2. DESCRIPTION OF THE CATALOG

Bound-consistency:

- **allDifferent**
- **globalCardinality**
- **used**

Denotes the fact that, for a given constraint, there is a filtering algorithm that ensures **bound-consistency** for its variables. A filtering algorithm ensures **bound-consistency** for a given constraint **ctr** if and only if for every variable **V** of **ctr**:

- There exists at least one solution for **ctr** such that \(V = \min(V) \) and every other variable **W** of **ctr** is assigned to a value located in its range \(\min(W) .. \max(W) \),
- There exists at least one solution for **ctr** such that \(V = \max(V) \) and every other variable **W** of **ctr** is assigned to a value located in its range \(\min(W) .. \max(W) \).

One interest of this definition is that it sometimes gives the opportunity to come up with a filtering algorithm that has a lower complexity than the algorithm that achieves arc-consistency. Discarding holes from the variables usually leads to graphs with a specific structure for which one can take advantage in order to derive more efficient graph algorithms. Filtering algorithms that achieve bound-consistency can also be used in a preprocessing phase before applying a more costly filtering algorithm that achieves arc-consistency. Note that there is a second definition of **bound-consistency** where the range \(\min(W) .. \max(W) \) is replaced by the domain of the variable **W**. However within the context of global constraints all current filtering algorithms don’t refer to this second definition.

Centered cyclic(1) constraint network(1):

- **domainConstraint**
- **in**
- **maximum**
- **minimum**
- **minimum_except_0**
- **not_in**

Figure 2.4: Hypergraph associated with a centered cyclic(1) constraint network(1)

A constraint network corresponding to the pattern depicted by Figure 2.4. Circles depict variables, while arcs are represented by a set of variables. Gray circles correspond to optional variables. All pairs of constraints have at most one variable in common.
Centered cyclic(2) constraint network(1):

- elem
- element
- element_greatereq
- element_lesseq
- element_sparse
- in_same_partition
- minimum_greater_than
- stage_element

Figure 2.5: Hypergraph associated with a centered cyclic(2) constraint network(1)

A constraint network corresponding to the pattern depicted by Figure 2.5. Circles depict variables, while arcs are represented by a set of variables. Gray circles correspond to optional variables.

Centered cyclic(3) constraint network(1):

- element_matrix
- next_element

Figure 2.6: Hypergraph associated with a centered cyclic(3) constraint network(1)

A constraint network corresponding to the pattern depicted by Figure 2.6. Circles depict variables, while arcs are represented by a set of variables. Gray circles correspond to optional variables.
Channel routing:

- `connect_points`

A constraint that can be used for modeling channel routing problems. Channel routing consists of creating a layout in a rectangular region of a VLSI chip in order to link together the terminals of different modules of the chip. Connections are usually made by wire segments on two different layers: Horizontal wire segments on the first layer are placed along lines called tracks, while vertical wire segments on the second layer connect terminals to the horizontal wire segments, with vias at the intersection.

Channeling constraint:

- `domain_constraint`
- `inverse`
- `inverse_set`
- `link_set_to_booleans`
- `same`

Constraints that allow for linking two models of the same problem. Usually channeling constraints show up in the following context:

- When a problem can be modeled by using different types of variables (e.g. 0-1 variables, domain variables, set variables),
- When a problem can be modeled by using two distinct matrices of variables representing the same information redundantly,
- When, in a problem, the roles of the variables and the values can be interchanged. This is typically the case when we have a bijection between a set of variables and the values they can take.

Circuit:

- `circuit`
- `cutset`
- `cycle`
- `symmetric_alldifferent`

A constraint such that its initial or its final graph corresponds to zero (e.g. cutset), one (e.g. circuit) or several (e.g. cycle `symmetric_alldifferent`) vertex-disjoint circuits.

Circular sliding cyclic(1) constraint network(2):

- `circular_change`

A constraint network corresponding to the pattern depicted by Figure 2.7. Circles depict variables, while arcs are represented by a set of variables.
2.5. **KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS**

These two circles correspond to the same variable.

![Hypergraph](image)

Figure 2.7: Hypergraph corresponding to a circular sliding cyclic(1) constraint network(2)

Cluster:

- **circuit_cluster**

A constraint that partitions the vertices of an initial graph into several clusters.

Coloured:

- **assign_and_count**
- **coloured_cumulative**
- **coloured_cumulatives**
- **cycle_card_on_path**
- **interval_and_count**

A constraint with a collection where one of the attributes is a color.

Conditional constraint:

- **size_maximal_sequence_alldifferent**
- **size_maximal_starting_sequence_alldifferent**

A constraint that allows for expressing the fact that some constraints can be enforced during the enumeration phase.

Connected component:

- **alldifferent_on_intersection**
- **binary_tree**
- **change_continuity**
- **circuit_cluster**
- **cycle**
- **cycle_card_on_path**
- **cycle_resource**
- **global_contiguity**
- **group**
- **k_cut**
- **map**
- **max_value_on_intersection**
- **temporal_path**
- **tree**
- **tree_range**
- **tree_resource**

Denotes the fact that a constraint uses in its definition a graph property (e.g. MAX_NCC, MIN_NCC, NCC) constraining the connected components of its associated final graph.
Consecutive loops are connected:

- **group**

Denotes the fact that the graph constraints of a global constraint use only the PATH and the LOOP arc generators and that their final graphs do not contain consecutive vertices that have a loop and that are not connected together by an arc.

Consecutive values:

- **max_size_set_of_consecutive_var**
- **min_size_set_of_consecutive_var**
- **nset_of_consecutive_values**

A constraint for which the definition involves the notion of consecutive values assigned to the variables of a collection of domain variables.

Constraint between two collections of variables:

- **common**
- **common_interval**
- **common_modulo**
- **common_partition**
- **same**
- **same_and_global_cardinality**
- **same_intersection**
- **same_interval**
- **same_modulo**
- **same_partition**
- **soft_same_interval_var**
- **soft_same_modulo_var**
- **soft_same_partition_var**
- **soft_same_var**
- **soft_used_by_interval_var**
- **soft_used_by_modulo_var**
- **soft_used_by_partition_var**
- **soft_used_by_var**
- **sort**
- **used_by**
- **used_by_interval**
- **used_by_modulo**
- **used_by_partition**
- **used_by_var**

A constraint involving only two collections of domain variables in its arguments.

Constraint between three collections of variables:

- **correspondence**
- **sort_permutation**

A constraint involving only three collections of domain variables in its arguments.

Constraint involving set variables:

- **alldifferent_between_sets**
- **clique**
- **eq_set**
- **in_set**
- **inverse_set**
- **k_cut**
- **link_set_to_booleans**
- **path_from_to**
2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS

- set_value_precede
- strongly_connected
- sum_set
- symmetric_cardinality
- symmetric_gcc
- tour

A constraint involving set variables in its arguments.

Constraint on the intersection:

- alldifferent_on_intersection
- nvalue_on_intersection
- same_intersection

Denotes the fact that a constraint involving two collections of variables imposes a restriction on the values that occur in both collections.

Contact:

- orths_are_connected
- two_orths_are_in_contact

A constraint enforcing that some orthotopes touch each other. Part (A) of Figure 2.8 shows two orthotopes that are in contact while parts (B) and (C) give two examples of orthotopes that are not in contact.

![Figure 2.8: Illustration of the notion of contact](image)

Convex:

- global_contiguity

A constraint involving the notion of convexity. A subset S of the plane is called convex if and only if for any pair of points p, q of this subset the corresponding line-segment is contained in S. Part (A) of Figure 2.9 gives an example of convex set, while part (B) depicts an example of non-convex set.

![Figure 2.9: A convex set and a non-convex set](image)
Convex hull relaxation:

- \(R \)

Given a non-convex set \(S \), \(R \) is a **convex outer approximation** of \(S \) if:

 - \(R \) is convex,
 - If \(s \in S \), then \(s \in R \).

Given a non-convex set \(S \), \(R \) is the **convex hull** of \(S \) if:

 - \(R \) is a convex outer approximation of \(S \),
 - For every \(T \) where \(T \) is a convex outer approximation of \(S \), \(R \subseteq T \).

Part (A) of Figure 2.10 depicts a non-convex set, while part (B) gives its corresponding convex hull.

![Figure 2.10: Convex hull of a non-convex set](image)

Within the context of linear programming the **convex hull relaxation** of a non-convex set \(S \) corresponds to the set of linear constraints characterizing the convex hull of \(S \).

Cost filtering constraint:

- `global_cardinality_with_costs`
- `sum_of_weights_of_distinct_values`
- `minimum_weight_alldifferent`
- `weighted_partial_alldiff`

A constraint that has a set of decision variables as well as a cost variable and for which there exists a filtering algorithm that restricts the state variables from the minimum or maximum value of the cost variable.

Cost matrix:

- `global_cardinality_with_costs`
- `minimum_weight_alldifferent`

A constraint for which a first argument corresponds to a collection of variables \(\text{Vars} \), a second argument to a cost matrix \(M \), and a third argument to a cost variable \(C \). Let \(\text{Vals} \) denote the set of values that can be assigned to the variables of \(\text{Vars} \). The cost matrix defines for each pair \(v, u \) (\(v \in \text{Vars} \), \(u \in \text{Vals} \)) an elementary cost, which is used for computing \(C \) when value \(u \) is assigned to variable \(v \).
2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS

Counting constraint:

- among
- among_diff
- among_interval
- among_low_up
- among_modulo
- count
- discrepancy
- exactly
- nclass
- nequivalence
- ninterval
- npair
- nvalue
- nvalue_en_intersection
- nvalues
- nvalues_except_0

A constraint restricting the number of occurrences of some values (respectively some pairs of values) within a given collection of domain variables (respectively pairs of domain variables).

Cycle:

- cycle
- symmetric_alldifferent

A constraint that can be used for restricting the number of cycles of a permutation or for restricting the size of the cycles of a permutation.

Cyclic:

- circular_change
- cyclic_change
- cyclic_change_joker
- stretch_circuit

A constraint that involves a kind of cyclicity in its definition. It either uses the arc generator $CIRCUIT$ or an arc constraint involving \mod.

Data constraint:

- elem
- element
- element_greatereq
- element_lessgeq
- element_matrix
- element_sparse
- elements
- elements_alldifferent
- elements_sparse
- in_relation
- ith_pos_different_from_0
- next_element
- next_greater_element
- stage_element
- sum

A constraint that allows for representing an access to an element of a data structure (e.g. a table, a matrix, a relation) or to compute a value from a given data structure.
CHAPTER 2. DESCRIPTION OF THE CATALOG

Decomposition:

- `all_min_dist`
- `all_differ_from_at_least_k_pos`
- `among_seq`
- `arith`
- `arith_or`
- `arith_sliding`
- `decreasing`
- `diffn`
- `diffn_column`
- `diffn_include`
- `disjunctive`
- `domain_constraint`
- `increasing`
- `lex_alldifferent`
- `lex_chain_less`
- `lex_chain_leq`
- `link_set_to_booleans`
- `orth_link_ori_size_end`
- `sequence_folding`
- `sliding_distribution`
- `sliding_sum`
- `strictly_decreasing`
- `strictly_increasing`
- `symmetric_cardinality`
- `symmetric_gcc`

A constraint for which the catalog provides a description in terms of a conjunction of more elementary constraints. This is the case when the constraint is described by one or several graph constraints that all satisfy the following property: The description uses the NARC graph property and forces all arcs of the initial graph to belong to the final graph. Most of the time we have only one single graph constraint. But some constraints (e.g. `diffn`) use more than one. Note that the arc constraint can sometimes be a logical expression involving several constraints (e.g. `domain_constraint`).

Decomposition-based violation measure:

- `soft_alldifferent_ctr`

A soft constraint associated to a constraint which can be described in terms of a conjunction of more elementary constraints for which the violation cost is the number of violated elementary constraints.

Demand profile:

- `cumulatives`
- `same_and_global_cardinality`

A constraint that allows for representing problems where one has to allocate resources in order to cover a given demand. A profile specifies for each instant the minimum, and possibly maximum, required demand.
2.5. **KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS**

Derived collection:

- `assign_and_counts`
- `correspondence`
- `cumulative_two_d`
- `cumulative_with_level_of_priority`
- `cumulatives`
- `cycle_resource`
- `domain_constraint`
- `element`
- `element_matrix`
- `element_sparse`
- `elements_sparse`
- `golomb`
- `golomb`
- `in`, `in` relation
- `in_same_partition`

A constraint that uses one or several derived collections.

Difference:

- `golomb`

Denotes the fact that the definition in terms of graph property of a constraint involves a difference between two variables within its arc constraint.

Directed acyclic graph:

- `cutset`

A constraint that forces the final graph to be a directed acyclic graph. A directed acyclic graph is a digraph with no path starting and ending at the same vertex.

Disequality:

- `all_differ_from_at_least_k_pos`
- `all_differ`
- `all_differ_between_sets`
- `disjoint`
- `elements_all_differ`
- `golomb`

Denotes the fact that a disequality between two domain variables, one domain variable and a fixed value, or two set variables is used within the definition of
a constraint. Denotes also the fact that the notion of disequality can be used within the informal definition of a constraint. This is for instance the case for the relaxation of the \texttt{alldifferent} constraint (i.e \texttt{soft.alldifferent.var}), which do not strictly enforce a disequality.

Domain channel:

- \texttt{domain.constraint}

A constraint that allows for making the link between a domain variable V and a set of 0-1 variables B_1, B_2, \ldots, B_n. It enforces a condition of the form $V = i \iff B_i = 1$.

Domain definition:

- \texttt{arith}
- \texttt{in}
- \texttt{not.in}

A constraint that is used for defining the initial domain of one or several domain variables or for removing some values from the domain of one or several domain variables.

Domination:

- \texttt{nvalue}
- \texttt{sum.of.weights.of.distinct.values}

A constraint that can be used for expressing directly the fact that we search for a dominating set in an undirected graph. Given an undirected graph $G = (V, E)$ where V is a finite set of vertices and E a finite set of unordered pairs of distinct elements from V, a set S is a dominating set if for every vertex $u \in V - S$ there exists a vertex $v \in S$ such that u is adjacent to v. Part (A) of Figure 2.11 gives an undirected graph G, while part (B) depicts a dominating set $S = \{e, f, g\}$ in G.

![Figure 2.11: A graph and one of its dominating set](image)

Figure 2.11: A graph and one of its dominating set
2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS

Dual model:

- inverse
- inverse_set

A constraint that can be used as a channeling constraint in a problem where the roles of the variables and the values can be interchanged. This is for instance the case when we have a bijection between a set of variables and the values they can take.

Duplicated variables:

- global_cardinality
- lex_less
- lex_greater
- lex_greatereq

A constraint for which the situation where the same variable can occur more than once was considered in order to derive a better filtering algorithm or to prove a complexity result for achieving arc-consistency.

Empty intersection:

- disjoint

A constraint that enforces an empty intersection between two sets of variables.

Equality:

- eq_set

Denotes the fact that the notion of equality can be used within the informal definition of a constraint.

Equality between multisets:

- same
- same_and_global_cardinality

A constraint that can be used for modeling an equality constraint between two multisets.

Equivalence:

- balance_interval
- balance_modulo
- balance_partition
- balance
- max_value
- min_value
- nclass
- nequivalence
- ninterval
- not_all_equal
- npair
CHAPTER 2. DESCRIPTION OF THE CATALOG

- `mvalue`
- `values`

Denotes the fact that a constraint is defined by a graph constraint for which the final graph is reflexive, symmetric and transitive.

Euler knight:

- `cycle`

Denotes the fact that a constraint can be used for modeling the *Euler knight problem*. The *Euler knight problem* consists of finding a sequence of moves on a chessboard by a knight such that each square of the board is visited exactly once.

Excluded:

- `not_in`

A constraint that prevents certain values to be taken by a variable.

Extension:

- `in_relation`

A constraint that is defined by explicitly providing all its solutions.

Facilities location problem:

- `cycle_or_accessibility`
- `sum_of_weights_of_distinct_values`

A constraint that allows for modeling a facilities location problem. In a facilities location problem one has to select a subset of locations from a given initial set so that a given set of conditions holds.

Flow:

- `global_cardinality`
- `global_cardinality_low_up`
- `same`
- `soft_alldifferent_var`

A constraint for which there is a filtering algorithm based on an algorithm that finds a feasible flow in a graph. This graph is constructed from the variables of the constraint as well as from their potential values.
2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS

Frequency allocation problem:

- \texttt{all_min_dist}

A constraint that was used for modeling frequency allocation problems.

Functional dependency:

- \texttt{elem}
- \texttt{element}
- \texttt{elements}
- \texttt{elements_alldifferent}
- \texttt{stage_element}

A constraint that allows for representing a functional dependency between two domain variables. A variable \(X \) is said to functionally determine another variable \(Y \) if and only if each potential value of \(X \) is associated with exactly one potential value of \(Y \).

Geometrical constraint:

- \texttt{connect_points}
- \texttt{crossing}
- \texttt{cumulative_two_d}
- \texttt{cycle_or_accessibility}
- \texttt{diffn}_\texttt{column}
- \texttt{diffn_include}
- \texttt{graph_crossing}
- \texttt{orchard}
- \texttt{orth_on_the_ground}
- \texttt{orth_on_to_of_orth}
- \texttt{orths_are_connected}
- \texttt{place_in_pyramid}
- \texttt{polyomino}
- \texttt{sequence_folding}
- \texttt{two_layer_edge_crossing}
- \texttt{two_orth_are_in_contact}
- \texttt{two_orth_column}
- \texttt{two_orth_do_not_overlap}
- \texttt{two_orth_include}

A constraint between geometrical objects (e.g. points, line-segments, rectangles, parallelepipeds, orthotopes) or a constraint selecting a subset of points so that a given geometrical property holds (e.g. distance).

Golomb ruler:

- \texttt{golomb}

A constraint that allows for expressing the Golomb ruler problem. A Golomb ruler is a set of integers (marks) \(a_1 < \cdots < a_k \) such that all the differences \(a_i - a_j \) \((i > j)\) are distinct.
CHAPTER 2. DESCRIPTION OF THE CATALOG

Graph constraint:

- binary_tree
- circuit
- circuit_cluster
- clique
- cutset
- cycle
- cycle_card_on_path
- cycle_or_accessibility
- cycle_resource
- derangement
- inverse
- k_cut
- map
- one_tree
- path_from_to
- strongly_connected
- symmetric_alldifferent
- temporal_path
- tour
- tree
- tree_range
- tree_resource

A constraint that selects a subgraph from a given initial graph so that this subgraph satisfies a given property.

Graph partitioning constraint:

- binary_tree
- circuit
- cycle
- cycle_resource
- map
- symmetric_alldifferent
- temporal_path
- tree
- tree_range
- tree_resource

A constraint that partitions the vertices of a given initial graph and that keeps one single successor for each vertex so that each partition corresponds to a specific pattern.

Guillotine cut:

- diffn_column
- two_orth_column

A constraint that can enforce some kind of guillotine cut. In a lot of cutting problems the stock sheet as well as the pieces to be cut are all shaped as rectangles. In a guillotine cutting pattern all cuts must go from one edge of the rectangle corresponding to the stock sheet to the opposite edge.
2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS

Hall interval:

- `alldifferent`
- `global_cardinality`

A constraint for which some filtering algorithms take advantage of Hall intervals. Given a set of domain variables, a Hall set is a set of values $H = \{v_1, v_2, \ldots, v_h\}$ such that there are h variables whose domains are contained in H. A Hall interval is a Hall set that consists of an interval of values (and can therefore be specified by its endpoints).

Hamiltonian:

- `circuit`
- `tour`

A constraint enforcing to cover a graph with one Hamiltonian circuit or cycle. This corresponds to finding a circuit (respectively a cycle) passing all the vertices exactly once of a given digraph (respectively undirected graph).

Heuristics:

- `discrepancy`

A constraint that was introduced for expressing a heuristics.

Hypergraph:

- `among_seq`
- `arith_sliding`
- `orchard`
- `relaxed_sliding_sum`
- `size_maximal_sequence_alldifferent`
- `size_maximal_starting_sequence_alldifferent`
- `sliding_distribution`
- `sliding_sum`

Denotes the fact that a constraint uses in its definition at least one arc constraint involving more than two vertices.

Included:

- `in`
- `in_set`

Enforces that a domain or a set variable take a value within a list of values (possibly one single value).
Inclusion:

- **used_by**
- **used_by_partition**
- **used_by_interval**
- **used_by_modulo**

Denotes the fact that a constraint can model the inclusion of one multiset within another multiset. Usually we consider multiset of values (e.g. **used_by**) but this can also be multisets of equivalence classes (e.g. **used_by_interval**, **used_by_modulo**, **used_by_partition**).

Indistinguishable values:

- **int_value_precede**
- **int_value_precede_chain**
- **set_value_precede**

A constraint which can be used for breaking symmetries of indistinguishable values. Indistinguishable values in a solution of a problem can be swapped to construct another solution of the same problem.

Interval:

- **alldifferent_interval**
- **among_interval**
- **balance_interval**
- **common_interval**
- **interval_and_count**
- **interval_and_sum**
- **minterval**
- **same_interval**
- **soft_same_interval_var**
- **soft_used_by_interval_var**
- **used_by_interval**

Denotes the fact that a constraint puts a restriction related to a set of fixed intervals (or on one fixed interval).

Joker value:

- **alldifferent_except_0**
- **among_diff_0**
- **connect_points**
- **cyclic_change_joker**
- **ith_pos_different_from_0**
- **minimum_except_0**
- **nvalues_except_0**
- **period_except_0**
- **weighted_partial_alldiff**

Denotes the fact that, for some variables of a given constraint, there exist specific values that have a special meaning: for instance they can be assigned without breaking the constraint. As an example consider the **alldifferent_except_0** constraint, which forces a set of variables to take distinct values, except those variables that are assigned to 0.
2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS

Lexicographic order:

- allperm
- lex2
- lex_between
- lex_chain_less
- lex_chain_leq
- lex_greater
- lex_greater_eq
- lex_less
- lex_less_eq
- strict_lex

A constraint involving a lexicographic ordering relation in its definition.

Limited discrepancy search:

- discrepancy

A constraint for simulating limited discrepancy search. Limited discrepancy search is useful for problems for which there is a successor ordering heuristics that usually leads directly to a solution. It consists of systematically searching all paths that differ from the heuristic path in at most a very small number of discrepancies.

Linear programming:

- circuit
- cumulative
- domain_constraint
- element_greater_eq
- element_less_eq
- g_cut
- link_set_to_booleans
- path_from_to
- strongly_connected
- sum
- tour

A constraint for which a reference provides a linear relaxation (e.g. cumulative sum) or a constraint that was also proposed within the context of linear programming (e.g. circuit, domain_constraint).

Line-segments intersection:

- crossing
- graph_crossing
- two_layer_edge_crossing

A constraint on the number of line-segment intersections.
CHAPTER 2. DESCRIPTION OF THE CATALOG

Magic hexagon:

- `global_cardinality_with_costs`

A constraint that can be used for modeling the magic hexagon problem. The *magic hexagon* problem consists of finding an arrangement of *n* hexagons, where an integer from 1 to *n* is assigned to each hexagon so that:

- Each integer from 1 to *n* occurs exactly once,
- The sum of the numbers along any straight line is the same.

Figure 2.12 shows a magic hexagon.

![Figure 2.12: A magic hexagon](image)

Magic series:

- `global_cardinality`

A constraint that allows for modeling the *magic series* problem with one single constraint. A non-empty finite series \(S = (s_0, s_1, \ldots, s_n) \) is *magic* if and only if there are \(s_i \) occurrences of \(i \) in \(S \) for each integer \(i \) ranging from 0 to *n*. 3, 2, 1, 1, 0, 0, 0 is an example of such a magic series for \(n = 6 \).

Magic square:

- `global_cardinality_with_costs`

A constraint that can be used for modeling the magic square problem. The *magic square* problem consists in filling an *n* by *n* square with *n*² distinct integers so that the sum of each row and column and of both main diagonals be the same.
2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS

Matching:

- **symmetric_alldifferent**

A constraint that allows for expressing the fact that we want to find a *perfect matching* on a graph with an even number of vertices. A *perfect matching* on a graph \(G \) with \(n \) vertices is a set of \(n/2 \) edges of \(G \) such that no two edges have a vertex in common.

Matrix:

- **allperm**
- **colored_matrix**
- **element_matrix**
- **lex2**
- **strict_lex2**

A constraint on a matrix of domain variables (e.g. allperm, colored_matrix, lex2 strict_lex2) or a constraint that allows for representing the access to an element of a matrix (e.g. element_matrix).

Matrix model:

- **allperm**
- **colored_matrix**
- **lex2**
- **strict_lex2**

A constraint on a matrix of domain variables. A *matrix model* is a model involving one matrix of domain variables.

Matrix symmetry:

- **lex2**
- **lex_chain_less**
- **lex_chain_leq**
- **lex_greater**
- **lex_greatereq**
- **lex_less**
- **lex_leq**

A constraint that can be used for breaking certain types of symmetries within a matrix of domain variables.

Maximum:

- **max_index**
- **max_size_set_of_consecutive_vars**
- **max**
- **max_value**
- **maximum**
- **maximum_modulo**

A constraint for which the definition involves the notion of maximum.
CHAPTER 2. DESCRIPTION OF THE CATALOG

Maximum clique:

- \texttt{clique}

A constraint that can be used for searching for a \textit{maximum clique} in a graph. A \textit{maximum clique} is a clique of maximum size, a clique being a subset of vertices such that each vertex is connected to all other vertices of the clique.

Maximum number of occurrences:

- \texttt{max_nvalue}

A constraint that restricts the maximum number of times that a given value is taken.

\texttt{maxint}:

- \texttt{deepest_valley}
- \texttt{min_3}
- \texttt{minimum}
- \texttt{minimum_except_0}
- \texttt{minimum_modulo}

A constraint that uses \texttt{maxint} in its definition in terms of graph properties or in terms of automata. \texttt{maxint} is the largest integer that can be represented on a machine.

Minimum:

- \texttt{min_index}
- \texttt{min_3}
- \texttt{min_nvalue}
- \texttt{min_size_set_of_consecutive_var}
- \texttt{minimum}
- \texttt{minimum_except_0}
- \texttt{minimum_greater_than}
- \texttt{minimum_modulo}
- \texttt{next_element}
- \texttt{next_greater_element}

A constraint for which the definition involves the notion of minimum.

Minimum number of occurrences:

- \texttt{min_nvalue}

A constraint that restricts the minimum number of times that a given value is taken.

Modulo:

- \texttt{all_different_modulo}
- \texttt{among_modulo}
- \texttt{balance_modulo}
- \texttt{common_modulo}
- \texttt{maximum_modulo}
- \texttt{minimum_modulo}
- \texttt{same_modulo}
- \texttt{soft_same_modulo_var}
- \texttt{soft_used_by_modulo_var}
- \texttt{used_by_modulo}
2.5. **KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS**

Denotes the fact that the arc constraint associated with a given constraint mentions the function \(\text{mod} \).

Multiset:

- \(\text{same} \)
- \(\text{same} \text{ and global cardinality} \)

A constraint using domain variables that can be used for modeling some constraint between multisets.

Multiset ordering:

- \(\text{lex greater} \)
- \(\text{lex less} \)
- \(\text{lex greatereq} \)
- \(\text{lex lesseq} \)

Similar constraints exist also within the context of multisets.

no_loop:

- \(\text{alldifferent on intersection} \)
- \(\text{change} \)
- \(\text{all differ from at least K pos} \)
- \(\text{common interval} \)
- \(\text{among low up} \)
- \(\text{common modulo} \)
- \(\text{arith or} \)
- \(\text{common partition} \)
- \(\text{cardinality atleast} \)
- \(\text{common} \)
- \(\text{cardinality atmost partition} \)
- \(\text{correspondence} \)
- \(\text{cardinality atmost} \)
- \(\text{counts} \)
- \(\text{change continuity} \)
- \(\text{crossing} \)
- \(\text{change pair} \)
- \(\text{cyclic change joker} \)
- \(\text{change partition} \)
- \(\text{cyclic change} \)

Denotes a constraint defined by a graph constraint for which the final graph doesn’t have any loop.

n-queen:

- \(\text{alldifferent} \)
- \(\text{inverse} \)

A constraint that can be used for modeling the n-queen problem. Place \(n \) queens on a \(n \) by \(n \) chessboard in such a way that no queen attacks another. Two queens attack each other if they are located on the same column, on the same row or on the same diagonal.
CHAPTER 2. DESCRIPTION OF THE CATALOG

Non-overlapping:

- \texttt{diffn}
- \texttt{disjoint_tasks}
- \texttt{orth_on_top_of_orth}
- \texttt{orths_are_connected}
- \texttt{place_in_pyramid}
- \texttt{two_orth_are_in_contact}
- \texttt{two_orth_are_not_overlap}

A constraint that forces a collection of geometrical objects to not pairwise overlap.

Number of changes:

- \texttt{change}
- \texttt{change_pair}
- \texttt{change_partition}
- \texttt{circular_change}
- \texttt{cyclic_change}
- \texttt{cyclic_change_joker}
- \texttt{smooth}

A constraint restricting the number of times that a given binary constraint holds on consecutive items of a given collection.

Number of distinct equivalence classes:

- \texttt{nclass}
- \texttt{nequivalence}
- \texttt{ninterval}
- \texttt{nvalue}
- \texttt{nvalues}

A constraint on the number of distinct equivalence classes assigned to a collection of domain variables.

Number of distinct values:

- \texttt{assign_and_nvalues}
- \texttt{coloured_cumulative}
- \texttt{coloured_cumulatives}
- \texttt{nvalue}
- \texttt{nvalues}
- \texttt{nvalues_on_intersection}
- \texttt{nvalues_except_0}

A constraint on the number of distinct values assigned to one or several set of variables.

Obscure:

- \texttt{one_tree}

A constraint for which a better description is needed.
2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS

One succ:

- alldifferent_between_sets
- alldifferent_except_0
- alldifferent_interval
- alldifferent_modulo
- alldifferent_partition
- alldifferent
- binary_tree
- circuit_cluster
- circuit
- cycle_card_on_path
- cycle
- minimum_weight_alldifferent

Denotes the fact that a constraint is defined by one single graph constraint such that:

- All the vertices of its initial graph belong to the final graph,
- All the vertices of its final graph have exactly one successor.

Order constraint:

- allperm
- decreasing
- increasing
- int_value_precede
- int_value_precede_chain
- lex?
- lex_between
- lex_chain_less
- lex_chain_leq
- lex_greater
- lex_gretereq
- lex_less
- lex_lesseq
- max_index
- max
- max_index
- maximum
- maximum_modulo
- minimum
- minimum_except_0
- minimum_greater_than
- minimum_modulo
- next_greater_element
- set_value_precede
- strict_lex
- strictly_decreasing
- strictly_increasing

A constraint involving an ordering relation in its definition. An ordering relation \(R \) on a set \(S \) is a relation such that, for every \(a, b, c \in S \):

- \(a R b \) or \(b R a \),
- If \(a R b \) and \(b R c \), then \(a R c \),
- If \(a R b \) and \(b R a \) then \(a = b \).
CHAPTER 2. DESCRIPTION OF THE CATALOG

Orthotope:

- `diffn`
- `diffn_column`
- `diffn_include`
- `orth_link_oris_end`
- `orth_on_the_ground`
- `orth_on_top_of_orth`
- `orths_are_connected`
- `place_in_pyramid`
- `two_orth_are_in_contact`
- `two_orth_column`
- `two_orth_do_not_overlap`
- `two_orth_include`

A constraint involving orthotopes. An orthotope corresponds to the generalization of the rectangle and box to the n-dimensional case.

Pair:

- `change_pair`
- `npair`

A constraint involving a collection of pairs of variables.

Partition:

- `alldifferent_partition`
- `balance_partition`
- `cardinality_atmost_partition`
- `change_partition`
- `common_partition`
- `in_same_partition`
- `nclass`
- `same_partition`
- `soft_same_partition_var`
- `soft_used_by_partition_var`
- `used_by_partition`

A constraint involving in one of its argument a partitioning of a given finite set of integers.

Path:

- `path_from_to`
- `temporal_path`

A constraint allowing for expressing the fact that we search for one or several vertex-disjoint simple paths. Within a digraph a simple path is a set of links that are traversed in the same direction and such that each vertex of the simple path is visited exactly once.

Pentomino:

- `polyomino`

Can be used to model a pentomino. A pentomino is an arrangement of five unit squares that are joined along their edges.
2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS

Periodic:

- **period**
- **period_except_0**

A constraint that can be used for modeling the fact that we are looking for a sequence that has some kind of periodicity.

Permutation:

- **alldifferent**
- **change_continuity**
- **circuit**
- **correspondence**
- **cycle**
- **derangement**
- **elements_alldifferent**
- **inverse**
- **same**
- **same_and_global_cardinality**
- **same_interval**
- **same_modulo**
- **same_partition**
- **sort**
- **sort_permutation**
- **symmetric_alldifferent**

A constraint that can be used for modeling a permutation or a specific type or characteristic of a permutation. A permutation is a rearrangement of elements, where none are changed, added or lost.

Permutation channel:

- **inverse**

A constraint that allows for modeling the link between a permutation and its inverse permutation. A permutation is a rearrangement of n distinct integers between 1 and n, where none are changed, added or lost. An inverse permutation is a permutation in which each number and the number of its position are swapped.

Phylogeny:

- **one_tree**

A constraint inspired by the area of phylogeny. Phylogeny is concerned by the classification of organism based on genetic connections between species.

Pick-up delivery:

- **cycle**

A constraint that was used for modeling a pick-up delivery problem. In a pick-up delivery problem, vehicles have to transport loads from origins to destinations without any transshipment at intermediate locations.
CHAPTER 2. DESCRIPTION OF THE CATALOG

Polygon:

- \texttt{diffn}

A constraint that can be generalized to handle polygons.

Positioning constraint:

- \texttt{diffn_column}
- \texttt{diffn_include}
- \texttt{two_orth_column}
- \texttt{two_orth_include}

A constraint restricting the relative positioning of two or more geometrical objects.

Predefined constraint:

- \texttt{allperm}
- \texttt{colored_matrix}
- \texttt{eq_set}
- \texttt{in_set}
- \texttt{lex2}
- \texttt{pattern}
- \texttt{period}
- \texttt{period_except_0}
- \texttt{set_value_precede}
- \texttt{set_value}\n- \texttt{strict_lex2}

A constraint for which the meaning is not explicitly described in terms of graph properties or in terms of automata.

Producer-consumer:

- \texttt{cumulative}
- \texttt{cumulatives}

A constraint that can be used for modeling problems where a first set of tasks produces a resource, while a second set of tasks consumes this resource. The constraint allows for imposing a limit on the minimum or the maximum stock at each instant.

Product:

- \texttt{cumulative_product}
- \texttt{product_ctr}

A constraint involving a product in its definition.

Proximity constraint:

- \texttt{alldifferent_same_value}
- \texttt{distance_change}
- \texttt{Distance_between}

A constraint restricting the distance between two collections of variables according to some measure.
2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS

Range:

- `range_ctr`

An arithmetic constraint involving a difference between a maximum and a minimum value.

Rank:

- `max_r`
- `min_r`

A positioning constraint according to an ordering relation.

Relation:

- `in_relation`
- `symmetric_cardinality`
- `symmetric_gcc`

A constraint that allows for representing the access to an element of a relation or to model a relation. A relation is a subset of the product of several finite sets.

Relaxation:

- `alldifferent_except_0`
- `relaxed_sliding_sum`
- `soft_alldifferent_ctr`
- `soft_alldifferent_var`
- `soft_same_interval_var`
- `soft_same_modulo_var`
- `soft_same_partition_var`
- `soft_same_var`
- `sum_of_weights_of_distinct_values`
- `weighted_partial_alldiff`

Denotes the fact that a constraint allows for specifying a partial degree of satisfaction.

Resource constraint:

- `bin_packing`
- `coloured_cumulative`
- `coloured_cumulatives`
- `cumulative`
- `cumulative_product`
- `cumulative_with_level_of_priority`
- `cumulatives`
- `cycle_resource`
- `disjunctive`
- `interval_and_count`
- `interval_and_sum`
- `track`
- `tree_resource`

A constraint restricting the utilization of a resource. The utilization of a resource is computed from all items that are assigned to that resource.
100

CHAPTER 2. DESCRIPTION OF THE CATALOG

Run of a permutation:

- change_continuity

 A constraint that can be used for putting a restriction on the size of the longest run of a permutation. A run is a maximal increasing contiguous subsequence in a permutation.

Scalar product:

- global_cardinality_with_costs

 A constraint that can be used for modeling a scalar product constraint.

Sequence:

- among_seq
- arith_sliding
- cycle_card_on_path
- deepest_valley
- highest_peak
- inflexion
- no_peak
- no_valley
- peak
- period
- period_except_0
- relaxed_sliding_sum
- sequence_folding
- size_maximal_sequence_alldifferent
- size_maximal_starting_sequence_alldifferent
- sliding_card_skip0
- sliding_distribution
- sliding_sum
- valley

Sequence constraints consecutive variables (possibly not all) of a given collection of domain variables or consecutive vertices of a simple path or a simple circuit. Also a constraint restricting a variable (when fixed to 0 the variable may be omitted) according to consecutive variables of a given collection of domain variables.

Set channel:

- inverse_set
- link_set_to_booleans

A channeling constraint involving one or several set variables.

Scheduling constraint:

- coloured_cumulative
- coloured_cumulatives
- cumulative
- cumulative_product
- cumulative_with_level_of_priority
- cumulatives
- disjoint_tasks
- disjunctive
- period
- period_except_0
2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS

- **shift**

A constraint useful for the area of scheduling. Scheduling is concerned with the allocation or assignment of resources (e.g. manpower, machines, money), over time, to a set of tasks.

Shared table:

- **elements**
- **elements_sparse**

A constraint for which the same table is shared by several constraints.

Sliding cyclic(1) constraint network(1):

- **decreasing**
- **increasing**
- **no_peak**
- **no_valley**
- **not_all_equal**
- **strictly_decreasing**
- **strictly_increasing**

A constraint network corresponding to the pattern depicted by Figure 2.13. Circles depict variables, while arcs are represented by a set of variables.

![Hypergraph associated with a sliding cyclic(1) constraint network(1)](image)

Figure 2.13: Hypergraph associated with a sliding cyclic(1) constraint network(1)

Sliding cyclic(1) constraint network(2):

- **change**
- **change_continuity**
- **cyclic_change**
- **cyclic_change_joker**
- **deepest_valley**
- **highest_peak**
- **inflexion**
- **peak**
- **smooth**
- **valley**

A constraint network corresponding to the pattern depicted by Figure 2.14. Circles depict variables, while arcs are represented by a set of variables.
CHAPTER 2. DESCRIPTION OF THE CATALOG

Figure 2.14: Hypergraph associated with a sliding cyclic(1) constraint network(2)

Sliding cyclic(1) constraint network(3):

- \texttt{change}
- \texttt{change_continuity}
- \texttt{longest_change}

A constraint network corresponding to the pattern depicted by Figure 2.15. Circles depict variables, while arcs are represented by a set of variables.

Figure 2.15: Hypergraph associated with a sliding cyclic(1) constraint network(3)

Sliding cyclic(2) constraint network(2):

- \texttt{change_pair}
- \texttt{distance_change}

Figure 2.16: Hypergraph associated with a sliding cyclic(2) constraint network(2)

A constraint network corresponding to the pattern depicted by Figure 2.16. Circles depict variables, while arcs are represented by a set of variables.
2.5. **KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS**

Sliding sequence constraint:

- `sliding_sequence`
- `arith_sliding`
- `cycle_card_on_path`
- `pattern`
- `relaxed_sliding_sum`
- `sliding_card_skip`
- `sliding_distribution`
- `size_maximal_sequence_alldifferent`
- `size_maximal_starting_sequence_alldifferent`
- `sliding_sum`
- `sliding_time_window`
- `sliding_time_window_from_start`
- `sliding_time_window_sum`
- `stretch_circuit`
- `stretch_path`

A constraint enforcing a condition on sliding sequences of domain variables that partially overlap or a constraint computing a quantity from a set of sliding sequences. These sliding sequences can be either initially given or dynamically constructed. In the latter case they can for instance correspond to adjacent vertices of a path that has to be built.

Soft constraint:

- `relaxed_sliding_sum`
- `soft_alldifferent_ctr`
- `soft_alldifferent_var`
- `soft_same_interval_var`
- `soft_same_modulo_var`
- `soft_same_partition_var`
- `soft_same_var`
- `soft_used_by_interval_var`
- `soft_used_by_modulo_var`
- `soft_used_by_partition_var`
- `soft_used_by_var`
- `weighted_partial_alldiff`

A constraint that is a relaxed form of one other constraint.

Sort:
A constraint involving the notion of sorting in its definition.

Sparse functional dependency:

- element_sparse
- elements_sparse

A constraint that allows for representing a functional dependency between two domain variables, where both variables have a restricted number of values. A variable X is said to functionally determine another variable Y if and only if each potential value of X is associated with exactly one potential value of Y.

Sparse table:

- element_sparse
- elements_sparse

An element constraint for which the table is sparse.

Sport timetabling:

- symmetric_alldifferent

A constraint used for creating sports schedules.

Squared squares:

- cumulative
- diffn

A constraint that can be used for modeling the squared squares problem: It consists of tiling a square with smaller squares such that each of the smaller squares has a different integer size.

Strongly connected component:

- connect_points
- cycle
- cycle_or_accessibility
- cycle_resource
- group_skip_isolated_item
- nclass
- equivalence
- mininterval
- nvalue
- nvalues
- nvalues_except_0
- nvalues_except_0
cumulative
- diffn
- npair
- nset_of_consecutive_values
- nvalue
- nvalues
- polyomino
- soft_alldifferent_var
- strongly_connected

Denotes the fact that a constraint restricts the strongly connected components of its associated final graph. This is usually done by using a graph property like...
2.5. **KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS**

MAX_NSCC, MIN_NSCC or NSCC.

Sum:

- **sliding_sum**
- **sliding_time_window_sum**
- **sum**

A constraint involving one or several sums.

Sweep:

- **diffn**

A constraint for which the filtering algorithm may use a *sweep algorithm*. A *sweep algorithm* solves a problem by moving an imaginary object (usually a line or a plane). The object does not move continuously, but only at particular points where we actually do something. A sweep algorithm uses the following two data structures:

 - A data structure called the *sweep status*, which contains information related to the current position of the object that moves,
 - A data structure named the *event point series*, which holds the events to process.

The algorithm initializes the sweep status for the initial position of the imaginary object. Then the object jumps from one event to the next event; each event is handled by updating the status of the sweep.

Symmetry:

- **allperm**
- **int_value_precede**
- **int_value_precede_chain**
- **lex**
- **lex_between**
- **lex_chain_less**
- **lex_chain_less_eq**
- **lex_greater**
- **lex_greater_eq**
- **lex_less**
- **lex_less_eq**
- **set_value_precede**
- **strict_lex**

A constraint that can be used for breaking certain types of symmetries.

Symmetric:

- **connect_points**

Denotes the fact that a constraint is defined by a graph constraint for which the final graph is symmetric.
CHAPTER 2. DESCRIPTION OF THE CATALOG

Table:

- elem
- element
- element_greareq
- element_lesseq
- element_sparse
- elements
- elements_alldifferent
- elements_sparse
- ith_pos_different_from_0
- next_element
- next_greater_element
- stage_element

A constraint that allows for representing the access to an element of a table.

Temporal constraint:

- coloured_cumulative
- coloured_cumulatives
- cumulative
- cumulative_product
- cumulative_with_level_of_priority
- cumulatives
- disjoint_tasks
- interval_and_count
- interval_and_sum
- shift
- sliding_time_window
- sliding_time_window_from_start
- sliding_time_window_sum
- track

A constraint involving the notion of time.

Ternary constraint:

- element_matrix

A constraint involving only three variables.

Timetabling constraint:

- change
- change_continuity
- change_pair
- change_partition
- circular_change
- colored_matrix
- cyclic_change
- cyclic_change_joker
- group
- group_skip_isolated_item
- interval_and_count
- interval_and_sum
- longest_change
- pattern
- period
- period_except_0
- shift
- sliding_card_skip0
- smooth
- stretch_circuit
- stretch_path
- symmetric_alldifferent
- symmetric_cardinality
- symmetric_gcc
- track
2.5. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS

A constraint that can occur in timetabling problems.

Time window:

- `sliding_time_window_sum`

A constraint involving one or several date ranges.

Touch:

- `orths_are_connected`
- `two_orth_are_in_contact`

A constraint enforcing that some orthotopes touch each other (see Contact).

Tree:

- `binary_tree`
- `one_tree`
- `tree`
- `tree_range`
- `tree_resource`

A constraint that partitions the vertices of a given initial graph and that keeps one single successor for each vertex so that each partition corresponds to one tree. Each vertex points to its father or to itself if it corresponds to the root of a tree.

Tuple:

- `in_relation`
- `vec_eq_tuple`

A constraint involving a tuple. A tuple is an element of a relation, where a relation is a subset of the product of several finite sets.

Unary constraint:

- `in`
- `not_in`

A constraint involving only one variable.

Undirected graph:

- `tour`

A constraint that deals with an undirected graph. An undirected graph is a graph whose edges consist of unordered pairs of vertices.
Value constraint:

- all_min_dist.
- alldifferent.
- alldifferent_except_0.
- alldifferent_interval.
- alldifferent_modulo.
- alldifferent_on_intersection.
- alldifferent_partition.
- among.
- among_diff_0.
- among_interval.
- among_low_up.
- among_modulo.
- arith.
- arith_or.
- atleast.
- atmost.
- balance.
- balance_interval.
- balance_modulo.
- cardinality_atleast.
- cardinality_atmost.
- cardinality_atmost_partition.
- count.
- counts.
- differ_from_at_least_k_pos.
- discrepancy.
- disjoint.
- exactly.
- global_cardinality.
- global_cardinality_low_up.
- in.
- in_same_partition.
- in_set.
- link_set_to_booleans.
- max_value.
- max_size_of_consecutive_var.
- min_value.
- min_size_of_consecutive_var.
- not_all_equal.
- not_in.
- nclass.
- nequivalence.
- ninterval.
- npair.
- nvalue.
- nvalues.
- nvalues_except_0.
- vec_eq_tuple.

A constraint that puts a restriction on how values can be assigned to usually one or several collections of variables, or possibly one or two variables. These variables usually correspond to domain variables but can sometimes be set variables.

Value partitioning constraint:

- class.
- equivalence.
- interval.
- npair.
- nvalue.
- nvalues.
- nvalues_except_0.

A constraint involving a partitioning of values in its definition.
Value precedence:

- `int_value_precede`
- `int_value_precede_chain`
- `set_value_precede`
- `set_value_precede_chain`

A constraint that allows for expressing symmetries between values that are assigned to variables.

Variable-based violation measure:

- `soft_alldifferent_var`
- `soft_same_interval_var`
- `soft_same_modulo_var`
- `soft_same_partition_var`
- `soft_same_var`
- `soft_used_by_interval_var`
- `soft_used_by_modulo_var`
- `soft_used_by_partition_var`
- `soft_used_by_var`

A soft constraint for which the violation cost is the minimum number of variables to unassign in order to get back to a solution.

Variable indexing:

- `indexed_sum`
- `elem`
- `element`
- `element_greatereq`
- `element_lessseq`
- `element_sparse`

A constraint where one or several variables are used as an index into an array.

Variable subscript:

- `indexed_sum`
- `elem`
- `element`
- `element_greatereq`
- `element_lessseq`

A constraint that can be used to model one or several variables that have a variable subscript.

Vector:

- `all_differ_from_at_least_k_pos`
- `differ_from_at_least_k_pos`
- `lex_alldifferent`
- `lex_between`
- `lex_chain_less`
- `lex_chain_lessseq`
- `lex_different`
- `lex_greater`
- `lex_greatereq`
- `lex_less`
- `lex_lessseq`

Denotes the fact that one (or more) argument of a constraint corresponds to a collection of vectors that all have the same number of components.
Vpartition:

- **group**

 Denotes the fact that a constraint is defined by two graph constraints C_1 and C_2 such that:

 - The two graph constraints have the same initial graph G_i,

 - Each vertex of the initial graph G_i belongs to exactly one of the final graphs associated with C_1 and C_2.

Weighted assignment:

- **global_cardinality_with_costs**
- **sum_of_weights_of_distinct_values**
- **minimum_weight_alldifferent**
- **weighted_partial_alldifferent**

 A constraint expressing an assignment problem such that a cost can be computed from each solution.

Workload covering:

- **cumulatives**

 A constraint that can be used for modeling problems where a first set of tasks T_1 has to cover a second set of tasks T_2. Each task of T_1 and T_2 is defined by an origin, a duration and a height. At each point in time t the sum of the heights of the tasks of the first set T_1 that overlap t has to be greater than or equal to the sum of the heights of the tasks of the second set T_2 that also overlap t.
Chapter 3
Further topics

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Differences from the 2000 report</td>
<td>111</td>
</tr>
<tr>
<td>3.2</td>
<td>Graph invariants</td>
<td>114</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Graph classes</td>
<td>115</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Format of an invariant</td>
<td>116</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Using the database of invariants</td>
<td>117</td>
</tr>
<tr>
<td>3.2.4</td>
<td>The database of graph invariants</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Graph invariants involving one characteristic of a final graph</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Graph invariants involving two characteristics of a final graph</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Graph invariants involving three characteristics of a final graph</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Graph invariants involving four characteristics of a final graph</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>Graph invariants involving five characteristics of a final graph</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Graph invariants relating two characteristics of two final graphs</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Graph invariants relating three characteristics of two final graphs</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>Graph invariants relating four characteristics of two final graphs</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Graph invariants relating five characteristics of two final graphs</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>Graph invariants relating six characteristics of two final graphs</td>
<td>159</td>
</tr>
<tr>
<td>3.3</td>
<td>The electronic version of the catalog</td>
<td>160</td>
</tr>
</tbody>
</table>

3.1 Differences from the 2000 report

This section summarizes the main differences with the SICS report [3] as well as of the corresponding paper [1]. The main differences are listed below:

- We have both simplified and extended the way to generate the vertices of the initial graph and we have introduced a new way of defining set of vertices. We
CHAPTER 3. FURTHER TOPICS

have also removed the CLIQUE(MAX) set of vertices generator since it cannot in general be evaluated in polynomial time. Therefore, we have modified the description of the constraints assign_and_counts assign_and_nvalues interval_and_count interval_and_sum bin_packing cumulative cumulative_two which all used this feature.

- We have introduced the new arc generators PATH_1 and PATH_N, which allow for specifying an n-ary constraint for which n is not fixed.

The size_maximal_sequence_alldifferent and the size_maximal_sequence_alldifferent are examples of global constraints that use these arc generators in order to generate a set of sliding alldifferent constraints.

- In addition to traditional domain variables we have introduced float, set and multiset variables as well as several global constraints mentioning float and set variables (see for instance the choquet and the alldifferent_between_sets constraints). This decision was initially motivated by the fact that several constraint systems and papers mention global constraints dealing with these types of variables. Later on, we realized that set variables also greatly simplify the interface of existing global constraints. This was especially true for those global constraints that explicitly deal with a graph, like clique or cutset. In this context, using a set variable for catching the successors of a vertex is quite natural. This is especially true when a vertex of the final graph can have more than one successor since it allows for avoiding a lot of 0-1 variables.

- We have introduced the possibility of using more than one graph constraint for defining a given global constraint (see for instance the cumulative or the sort constraints). Therefore we have removed the notion of dual graph, which was initially introduced in the original report. In this context, we now use two graph constraints (see for instance change_continuity).

- On the one hand, we have introduced the following new graph characteristics:
 - MAX_DRG,
 - MAX_OD,
 - MIN_DRG,
 - MIN_ID,
 - MIN_OD,
 - NTREE,
 - PATH_FROM_TO,
 - PRODUCT,
 - RANGE,
 - RANGE_DRG,
 - RANGE_NCC,
 - SUM,
 - SUM_WEIGHT_ARC.

On the other hand, we have removed the following graph characteristics:
 - NCC(COMP, val),
 - NSCC(COMP, val).
3.1. DIFFERENCES FROM THE 2000 REPORT

- \text{NTREE(ATTR, COMP, val)}.
- \text{NSOURCE_EQ_NSINK}.
- \text{NSOURCE_GREATEREQ_NSINK}.

Finally, \text{MAX_IN_DEGREE} has been renamed \text{MAX_ID}.

- We have introduced an iterator over the items of a collection in order to specify in a generic way a set of similar elementary constraints or a set of similar graph properties. This was required for describing some global constraints such as \text{global_cardinality}, \text{cycle_resource}, \text{stretch}. All these global constraints mention a condition involving some limit depending on the specific values that are effectively used. For instance the \text{global_cardinality} constraint forces each value v to be respectively used at least atleast_v and at most atmost_v times. This iterator was also necessary in the context of graph covering constraints where one wants to cover a digraph with some patterns. Each pattern consists of one resource and several tasks. One can now attach specific constraints to the different resources. Both the \text{cycle_resource} and the \text{tree_resource} constraints illustrate this point.

- We have added some standard existing global constraints that were obviously missing from the previous report. This was for instance the case of the \text{element} constraint.

- In order to make clear the notion of family of global constraints we have computed for each global constraint a signature, which summarizes its structure. Each signature was inserted into the index so that one can retrieve all the global constraints sharing the same structure.

- We have generalized some existing global constraints. For instance the \text{change_pair} constraint extends the \text{change} constraint. Finally we have introduced some novel global constraints like \text{disjoint_tasks} or \text{symmetric_gcc}.

- We have defined the rules for specifying arc constraints.
3.2 Graph invariants

Within the scope of the graph-based description this section shows how to use implied constraints, which are systematically linked to the description of a global constraint. This usually occurs in the following context:

- Quite often, it happens that one wants to enforce the final graph to satisfy more than one graph property. In this context, these graph properties involve several graph characteristics that cannot vary independently.

EXAMPLE: As a practical example, consider the group constraint and its first graph constraint. It involves the four graph characteristics NCC, MIN_NCC, MAX_NCC and NVERTEX, which respectively correspond to the number of connected components, the number of vertices of the smallest connected component, the number of vertices of the largest connected component and the number of vertices of the final graph. In this example the number of connected components of the final graph cannot vary independently from the size of the smallest connected component. The same remark applies also for the size of the largest connected component. Having a graph invariant that directly relates the four graph characteristics can dramatically improve the propagation.

- Even if the description of a global constraint involves one single graph characteristic C, we can introduce the number of vertices, NVERTEX, and the number of arcs, NARC, of the final digraph. In this context, we can take advantage of graph invariants linking C, NARC and NVERTEX.

- It also happens that we enforce two graph constraints GC1 and GC2 that have the same initial graph G. In this context we consider the following situations:
 - Each arc of G belongs to one of the final graphs associated with GC1 or with GC2 (but not to both). An example of such global constraint is the changecontinuity constraint. Within the graph invariants this situation is denoted by apartition.
 - Each vertex of G belongs to one of the final graphs associated with GC1 or with GC2 (but not to both). An example of such global constraint is the group constraint. Within the graph invariants this situation is denoted by vpartition.

In these situations the graph properties associated with the two graph constraints are also not independent.

In practice the graphs associated with global constraints have a regular structure which comes from the initial graph or from the property of the arc constraints. So, in addition to graph invariants that hold for any graph, we want also tighter graph invariants that hold for specific graph classes. The next section introduces the graph classes we consider, while the two other sections give the graph invariants on one and two graphs.
3.2. GRAPH INVARIANTS

3.2.1 Graph classes

By definition, a graph invariant has to hold for any digraph. For instance, we have the graph invariant $NARC \leq NVERTEX^2$, which relates the number of arcs and the number of vertices of any digraph. This invariant is sharp since the equality is reached for a clique. However, by considering the structure of a digraph, we can get sharper invariants. For instance, if our digraph is a subset of an elementary path (e.g. we use the $PATH$ arc generator depicted by Figure 1.4) we have that $NARC \leq NVERTEX - 1$, which is a tighter bound of the maximum number of arcs since $NVERTEX - 1 < NVERTEX^2$. For this reason, we consider recurring graph classes that show up for different global constraints of the catalog. For a given global constraint, a graph class specifies a general property that holds on its final digraph. We list the different graph classes and, for each of them, we point to some global constraints that fit in that class. Finding all the global constraints corresponding to a given graph class can be done by looking into the list of keywords (see Section 2.5 page 62).

- **acyclic**: graph constraint for which the final graph doesn’t have any circuit.
- **apartition**: constraint defined by two graph constraints having the same initial graph, where each arc of the initial graph belongs to one of the final graph (but not to both).
- **bipartite**: graph constraint for which the final graph is bipartite.
- **consecutive loops are connected**: denotes the fact that the graph constraints of a global constraint use only the $PATH$ and the $LOOP$ arc generators and that their final graphs do not contain consecutive vertices that have a loop and that are not connected together by an arc.
- **equivalence**: graph constraint for which the final graph is reflexive, symmetric and transitive.
- **no_loop**: graph constraint for which the final graph doesn’t have any loop.
- **one_succ**: graph constraint for which all the vertices of the initial graph belong to the final graph and for which all vertices of the final graph have exactly one successor.
- **symmetric**: graph constraint for which the final graph is symmetric.
- **vpartition**: constraint defined by two graph constraints having the same initial graph, where each vertex of the initial graph belongs to one of the final graph (but not to both).
In addition, we also consider graph constraints such that their final graphs is a subset of the graph generated by the arc generators:

- \textit{CHAIN},
- \textit{Circuit},
- \textit{CLIQUE},
- \textit{CLIQUE(Comparison)},
- \textit{GRID},
- \textit{LOOP},
- \textit{PATH},
- \textit{PRODUCT},
- \textit{PRODUCT(Comparison)},
- \textit{SYMMETRIC_PRODUCT},
- \textit{SYMMETRIC_PRODUCT(Comparison)},

where \textit{Comparison} is one of the following comparison operators \leq, \geq, $<$, $>$, $=$, \neq.

3.2.2 Format of an invariant

As we previously saw, we have graph invariants that hold for any digraph as well as tighter graph invariants for specific graph classes. As a consequence, we partition the database in groups of graph invariants. A \textit{group of graph invariants} corresponds to several invariants such that all invariants relate the same subset of graph characteristics and such that all invariants are variations of the first invariant of the group taking into accounts the graph class. Therefore, the first invariant of a group has no precondition, while all other invariants have a non-empty precondition that characterizes the graph class for which they hold.

\setupexample{As a first example consider the group of invariants denoted by Proposition 64, which relate the number of arcs NARC with the number of vertices of the smallest and largest connected component (i.e. MIN_NCC and MAX_NCC).

\[
\text{MIN_NCC} \neq \text{MAX_NCC} \Rightarrow \text{NARC} \geq \text{MIN_NCC} + \text{MAX_NCC} - 2 + (\text{MIN_NCC} = 1)
\]

\text{equivalence}: \text{MIN_NCC} \neq \text{MAX_NCC} \Rightarrow

\[
\text{NARC} \geq \text{MIN_NCC}^2 + \text{MAX_NCC}^2
\]

On the one hand, since the first rule has no precondition it corresponds to a general graph invariant. On the other hand the second rule specifies a tighter condition (since $\text{MIN_NCC}^2 + \text{MAX_NCC}^2$ is greater than or equal to $\text{MIN_NCC} + \text{MAX_NCC} - 2 + (\text{MIN_NCC} = 1)$), which only holds for a final graph, which is reflexive, symmetric and transitive.
EXAMPLE: As a second example, consider the following group of invariants corresponding to Proposition 49, which relate the number of arcs N_{ARC} to the number of vertices N_{VERTEX} according to the arc generator (see Figure 1.4) used for generating the initial digraph:

\[
N_{ARC} \leq N_{VERTEX}^2 \\
\text{arc}_{gen} = \text{CIRCUIT} : N_{ARC} \leq N_{VERTEX} \\
\text{arc}_{gen} = \text{CHAIN} : N_{ARC} \leq 2 \cdot N_{VERTEX} - 2 \\
\text{arc}_{gen} = \text{CLIQUE}(\leq) : N_{ARC} \leq \frac{N_{VERTEX} \cdot (N_{VERTEX} + 1)}{2} \\
\text{arc}_{gen} = \text{CLIQUE}(\geq) : N_{ARC} \leq \frac{N_{VERTEX} \cdot (N_{VERTEX} + 1)}{2} \\
\text{arc}_{gen} = \text{CLIQUE}(\leq) : N_{ARC} \leq \frac{N_{VERTEX} \cdot (N_{VERTEX} - 1)}{2} \\
\text{arc}_{gen} = \text{CLIQUE}(>) : N_{ARC} \leq \frac{N_{VERTEX} \cdot (N_{VERTEX} - 1)}{2} \\
\text{arc}_{gen} = \text{CLIQUE}(\neq) : N_{ARC} \leq N_{VERTEX}^2 - N_{VERTEX} \\
\text{arc}_{gen} = \text{CYCLE} : N_{ARC} \leq 2 \cdot N_{VERTEX} \\
\text{arc}_{gen} = \text{PATH} : N_{ARC} \leq N_{VERTEX} - 1
\]

3.2.3 Using the database of invariants

The purpose of this section is to provide a set of graph invariants, each invariant relating a given set of graph characteristics. Once we have these graph invariants we can use them systematically by applying the following steps:

- For a given graph constraint we extract all the graph characteristics occurring in its description. This can be done automatically by scanning the corresponding graph properties. Let G_C denote this subset of graph characteristics. For each graph characteristic g_c of G_C we check if we have a graph property of the form $g_c = \text{var}$ where var is a domain variable. If this is the case we record the pair (g_c, var); if not, we create a new domain variable var and also record the pair (g_c, var).

- We then search for all groups of graph invariants involving a subset of the previous graph characteristics G_C. For each selected group we filter out those graph invariants for which the preconditions are not compatible with the graph class of the graph constraint under consideration. In each group we finally keep those invariants that have the maximum number of preconditions (i.e. the most specialized graph invariants).

- Finally we state all the previous collected graph invariants as implied constraints. This is achieved by using the variables associated with each graph characteristic.
EXAMPLE: We continue with the example of the group constraint and its first graph constraint. The steps for creating the implied constraints are:

- We first extract the graph characteristics NCC, MIN_NCC, MAX_NCC and NVERTEX from the first graph constraint of the group constraint. Since all the graph properties attached to the previous graph characteristics have the form gc = var we extract the corresponding domain variables and get the following pairs (NCC, NGROUP), (MIN_NCC, MIN_SIZE), (MAX_NCC, MAX_SIZE) and (NVERTEX, NVAL).

- We search for all groups of graph invariants involving the graph characteristics NCC, MIN_NCC, MAX_NCC and NVERTEX and filter out the irrelevant graph invariants that can’t be applied on the graph class associated with the group constraint.

- We state all the previous invariants by substituting each graph characteristics by its corresponding variable, which leads to a set of implied constraints.

3.2.4 The database of graph invariants

For each combination of graph characteristics we give the number of graph invariants we currently have. The items are sorted first in increasing number of graph characteristics of the invariant, second in alphabetic order on the name of the characteristics. All graph invariants assume a digraph for which each vertex has at least one arc. For some propositions, a figure depicts the corresponding final graph, which minimizes or maximizes a given graph characteristic. The propositions of this section and their corresponding proofs use the notations introduced in Section 1.2.2 page 31.

- Graph invariants involving one graph characteristics of a final graph:
 - MAX_NCC: 1 (see Proposition 1).
 - MAX_NSNC: 2 (see Propositions 2 and 3).
 - MIN_NCC: 1 (see Proposition 4).
 - MIN_NSNC: 2 (see Propositions 5 and 6).
 - NARC: 1 (see Proposition 7).
 - NCC: 2 (see Propositions 8 and 9).
 - NSCC: 1 (see Proposition 10).
 - NSINK: 1 (see Proposition 11).
 - NSOURCE: 1 (see Proposition 12).
 - NVERTEX: 1 (see Proposition 13).

- Graph invariants involving two graph characteristics of a final graph:
 - MAX_NCC, MAX_NSNC: 2 (see Propositions 14 and 15).
 - MAX_NCC, MIN_NCC: 2 (see Propositions 16 and 17).
 - MAX_NCC, NARC: 2 (see Propositions 18 and 19).
 - MAX_NCC, NSINK: 2 (see Propositions 20 and 21).
 - MAX_NCC, NSOURCE: 2 (see Propositions 22 and 23).
3.2. GRAPH INVARIANTS

- MAX_NCC, NVERTEX: 2 (see Propositions 64 and 65).
- MAX_NSCC, MIN_NSCC: 2 (see Propositions 66 and 67).
- MAX_NSCC, NARC: 2 (see Propositions 68 and 69).
- MAX_NSCC, NVERTEX: 2 (see Propositions 70 and 71).
- MIN_NCC, MIN_NSCC: 2 (see Propositions 72 and 73).
- MIN_NCC, NARC: 2 (see Propositions 74 and 75).
- MIN_NCC, NVERTEX: 2 (see Propositions 76 and 77).
- NARC, NCC: 2 (see Propositions 78 and 79).
- NARC, NSCC: 2 (see Propositions 80 and 81).
- MIN_NCC, NCC: 1 (see Proposition 82).
- MIN_NSCC, NSCC: 1 (see Proposition 83).
- MIN_NSCC, NVERTEX: 2 (see Propositions 84 and 85).
- MIN_NSCC, NARC: 2 (see Propositions 86 and 87).
- MIN_NSCC, NCC: 1 (see Proposition 88).
- MIN_NSCC, NSCC: 1 (see Proposition 89).
- MIN_NSCC, NARC: 2 (see Propositions 90 and 91).
- MIN_NSCC, NVERTEX: 2 (see Propositions 92 and 93).
- MIN_NSCC, NCC: 1 (see Proposition 94).
- MIN_NSCC, NSCC: 1 (see Proposition 95).
- MIN_NSCC, NARC: 2 (see Propositions 96 and 97).
- MIN_NCC, NCC: 1 (see Proposition 98).
- MIN_NSCC, NSCC: 1 (see Proposition 99).

- Graph invariants involving three graph characteristics of a final graph:
 - MAX_NCC, MIN_NCC, NARC: 1 (see Proposition 64).
 - MAX_NCC, MIN_NCC, NCC: 1 (see Proposition 65).
 - MAX_NCC, MIN_NCC, NVERTEX: 5 (see Propositions 66, 67, 68, 69 and 70).
 - MAX_NCC, NARC, NCC: 2 (see Propositions 71 and 72).
 - MAX_NCC, NARC, NVERTEX: 2 (see Propositions 73 and 74).
 - MAX_NCC, NCC, NVERTEX: 2 (see Propositions 75 and 76).
 - MAX_NSCC, MIN_NSCC, NARC: 1 (see Proposition 77).
 - MAX_NSCC, MIN_NSCC, NSCC: 1 (see Proposition 78).
 - MAX_NSCC, MIN_NSCC, NVERTEX: 2 (see Propositions 79 and 80).
 - MIN_NCC, NARC, NVERTEX: 2 (see Propositions 81 and 82).
 - MIN_NCC, NARC, NCC: 1 (see Proposition 83).
 - MIN_NCC, NARC, NVERTEX: 1 (see Proposition 84).
 - MIN_NCC, NARC, NSCC: 1 (see Proposition 85).
 - MIN_NCC, NARC, NSINK: 1 (see Proposition 86).
 - MIN_NCC, NARC, NSOURCE: 1 (see Proposition 87).
 - NARC, NCC: 2 (see Propositions 88 and 89).
 - NARC, NSCC, NVERTEX: 3 (see Propositions 90, 91 and 92).
 - NARC, NSINK, NVERTEX: 2 (see Propositions 93 and 94).
 - NARC, NSOURCE, NVERTEX: 2 (see Propositions 95 and 96).
 - NSINK, NSOURCE, NVERTEX: 1 (see Proposition 97).

- Graph invariants involving four graph characteristics of a final graph:
 - MAX_NCC, MIN_NCC, NARC, NCC: 2 (see Propositions 64 and 65).
 CHAPTER 3. FURTHER TOPICS

- MAX NCC, MIN NCC, NCC, NVERTEX: 2 (see Propositions 100 and 101).
- MAX NSCC, MIN NSCC, NARC, NSCC: 2 (see Propositions 102 and 103).
- MAX NSCC, MIN NSCC, NSCC, NVERTEX: 2 (see Propositions 103 and 105).
- MIN NCC, NARC, NCC, NVERTEX: 1 (see Proposition 106).
- NARC, NCC, NSCC, NVERTEX: 2 (see Propositions 107 and 108).
- NARC, NSINK, NSOURCE, NVERTEX: 1 (see Proposition 109).

- Graph invariants involving ve graph characteristics of a nal graph:
 - MAX NCC, MIN NCC, NARC, NCC, NVERTEX: 1 (see Proposition 110).
 - MIN NCC, NARC, NCC, NSCC, NVERTEX: 1 (see Proposition 111).

- Graph invariants relating two characteristics of two nal graphs:
 - MAX NCC1, NCC2: 1 (see Proposition 112).
 - MAX NCC2, NCC1: 1 (see Proposition 113).
 - MIN NCC1, NCC2: 1 (see Proposition 114).
 - MIN NCC2, NCC1: 1 (see Proposition 115).
 - NARC1, NARC2: 1 (see Proposition 116).
 - NCC1, NCC2: 2 (see Propositions 117 and 118).
 - NVERTEX1, NVERTEX2: 1 (see Proposition 119).

- Graph invariants relating three characteristics of two nal graphs:
 - MAX NCC1, MIN NCC1, MIN NCC2: 2 (see Propositions 120 and 121).
 - MAX NCC2, MIN NCC2, MIN NCC1: 2 (see Propositions 122 and 123).
 - MIN NCC1, NARC2, NCC1: 1 (see Proposition 124).
 - MIN NCC2, NARC1, NCC2: 1 (see Proposition 125).

- Graph invariants relating four characteristics of two nal graphs:
 - MAX NCC1, MIN NCC1, MIN NCC2, NCC1: 2 (see Propositions 126 and 127).
 - MAX NCC2, MIN NCC2, MIN NCC1, NCC2: 2 (see Propositions 128 and 129).

- Graph invariants relating five characteristics of two nal graphs:
 - MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1: 7 (see Propositions 130, 131, 132, 133, 134, 135 and 136).
 - MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC2: 7 (see Propositions 137, 138, 139, 140, 141, 142 and 143).

- Graph invariants relating six characteristics of two nal graphs:
 - MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1, NCC2: 2 (see Propositions 144 and 145).
3.2. GRAPH INVARIANTS

Graph invariants involving one characteristic of a final graph

\[\text{MAX}_{NCC} \]

Proposition 1.

\[\text{no_loop} : \text{MAX}_{NCC} \neq 1 \quad (3.1) \]

Proof. Since we don’t have any loop, a non-empty connected component has at least two vertices.

\[\text{MAX}_{NSCC} \]

Proposition 2.

\[\text{acyclic} : \text{MAX}_{NSCC} \leq 1 \quad (3.2) \]

Proof. Since we don’t have any circuit, a non-empty strongly connected component consists of one single vertex.

Proposition 3.

\[\text{no_loop} : \text{MAX}_{NSCC} \neq 1 \quad (3.3) \]

Proof. Since we don’t have any loop, a non-empty strongly connected component has at least two vertices.

\[\text{MIN}_{NCC} \]

Proposition 4.

\[\text{no_loop} : \text{MIN}_{NCC} \neq 1 \quad (3.4) \]

Proof. Since we don’t have any loop, a non-empty connected component has at least two vertices.

\[\text{MIN}_{NSCC} \]

Proposition 5.

\[\text{acyclic} : \text{MIN}_{NSCC} \leq 1 \quad (3.5) \]

Proof. Since we don’t have any circuit, a non-empty strongly connected component consists of one single vertex.

Proposition 6.

\[\text{no_loop} : \text{MIN}_{NSCC} \neq 1 \quad (3.6) \]

Proof. Since we don’t have any loop, a non-empty strongly connected component has at least two vertices.

\[\text{NARC} \]

Proposition 7.

\[\text{one}_\text{succ} : \text{NARC} = \text{NVERTEX_INITIAL} \quad (3.7) \]

Proof. By definition of \text{one}_\text{succ}.
CHAPTER 3. FURTHER TOPICS

NCC

Proposition 8.

\[\text{no}_\text{loop} : 2 \cdot \text{NCC} \leq \text{NVERTEX}_{\text{INITIAL}} \quad (3.8) \]

Proof. By definition of no_loop, each connected component has at least two vertices. \qed

Proposition 9.

\[\text{consecutive_loops_are_connected} : 2 \cdot \text{NCC} \leq \text{NVERTEX}_{\text{INITIAL}} + 1 \quad (3.9) \]

Proof. By definition of consecutive_loops_are_connected. \qed

NSCC

Proposition 10.

\[\text{no}_\text{loop} : 2 \cdot \text{NSCC} \leq \text{NVERTEX}_{\text{INITIAL}} \quad (3.10) \]

Proof. By definition of no_loop, each strongly connected component has at least two vertices. \qed

NSINK

Proposition 11.

\[\text{symmetric} : \text{NSINK} = 0 \quad (3.11) \]

Proof. Since we don’t have any isolated vertex. \qed

NSOURCE

Proposition 12.

\[\text{symmetric} : \text{NSOURCE} = 0 \quad (3.12) \]

Proof. Since we don’t have any isolated vertex. \qed

NVERTEX

Proposition 13.

\[\text{one_succ} : \text{NVERTEX} = \text{NVERTEX}_{\text{INITIAL}} \quad (3.13) \]

Proof. By definition of one_succ. \qed
3.2. **GRAPH INVARIANTS**

Graph invariants involving two characteristics of a final graph

\[\text{MAX}_N \text{CC}, \text{MAX}_N \text{SCC} \]

Proposition 14.

\[\text{MAX}_N \text{CC} = 0 \iff \text{MAX}_N \text{SCC} = 0 \] \hspace{1cm} (3.14)

Proof. By definition of \(\text{MAX}_N \text{CC} \) and of \(\text{MAX}_N \text{SCC} \). \(\square \)

Proposition 15.

\[\text{MAX}_N \text{SCC} \leq \text{MAX}_N \text{CC} \] \hspace{1cm} (3.15)

Proof. \(\text{MAX}_N \text{SCC} \) is a lower bound of the size of the largest connected component since the largest strongly connected component is for sure included within a connected component. \(\square \)

\[\text{MAX}_N \text{CC}, \text{MIN}_N \text{CC} \]

Proposition 16.

\[\text{MIN}_N \text{CC} = 0 \iff \text{MIN}_N \text{CC} = 0 \] \hspace{1cm} (3.16)

Proof. By definition of \(\text{MAX}_N \text{CC} \) and of \(\text{MIN}_N \text{CC} \). \(\square \)

Proposition 17.

\[\text{MIN}_N \text{CC} \leq \text{MAX}_N \text{CC} \] \hspace{1cm} (3.17)

Proof. By definition of \(\text{MIN}_N \text{CC} \) and of \(\text{MAX}_N \text{CC} \). \(\square \)

\[\text{MAX}_N \text{CC}, \text{NARC} \]

Proposition 18.

\[\text{MAX}_N \text{CC} = 0 \iff \text{NARC} = 0 \] \hspace{1cm} (3.18)

Proof. By definition of \(\text{MAX}_N \text{CC} \) and of \(\text{NARC} \). \(\square \)

Proposition 19.

\[\text{MAX}_N \text{CC} > 0 \Rightarrow \text{NARC} \geq \max(1, \text{MAX}_N \text{CC} - 1) \] \hspace{1cm} (3.19)

symmetric: \(\text{MAX}_N \text{CC} > 0 \Rightarrow \text{NARC} \geq \max(1, 2 \cdot \text{MAX}_N \text{CC} - 2) \) \hspace{1cm} (3.20)

equivalence: \(\text{NARC} \geq \text{MAX}_N \text{CC}^2 \) \hspace{1cm} (3.21)

arc gen: \(\text{PATH} : \text{NARC} \geq \text{MAX}_N \text{CC} - 1 \) \hspace{1cm} (3.22)

Proof.

(3.19) \(\text{MAX}_N \text{CC} - 1 \) arcs are needed to connect \(\text{MAX}_N \text{CC} \) vertices that belong to a given connected component containing at least two vertices. And one arc is required for a connected component containing one single vertex.

(3.20) Similarly, when the graph is symmetric, \(2 \cdot \text{MAX}_N \text{CC} - 2 \) arcs are needed to connect \(\text{MAX}_N \text{CC} \) vertices that belong to a given connected component containing at least two vertices.
Finally, when the graph is reflexive, symmetric and transitive, \(\text{MAX}_\text{NCC} \) arcs are needed to connect \(\text{MAX}_\text{NCC} \) vertices that belong to a given connected component.

When the initial graph corresponds to a path, the minimum number of arcs of a connected component involving \(n \) vertices is equal to \(n - 1 \).

Proposition 20.

\[
\text{MAX}_\text{NCC} = 0 \Rightarrow \text{NSINK} = 0
\]

Proof. By definition of \(\text{MAX}_\text{NCC} \) and of \(\text{NSINK} \).

Proposition 21.

\[
\text{NSINK} \geq 1 \Rightarrow \text{MAX}_\text{NCC} \geq 2
\]

Proof. Since we don’t have any isolated vertex a sink is connected to at least one other vertex. Therefore, if the graph has a sink, there exists at least one connected component with at least two vertices.

Proposition 22.

\[
\text{MAX}_\text{NCC} = 0 \Rightarrow \text{NSOURCE} = 0
\]

Proof. By definition of \(\text{MAX}_\text{NCC} \) and of \(\text{NSOURCE} \).

Proposition 23.

\[
\text{NSOURCE} \geq 1 \Rightarrow \text{MAX}_\text{NCC} \geq 2
\]

Proof. Since we don’t have any isolated vertex a source is connected to at least one other vertex. Therefore, if the graph has a source, there exists at least one connected component with at least two vertices.

Proposition 24.

\[
\text{MAX}_\text{NCC} = 0 \Leftrightarrow \text{NVERTEX} = 0
\]

Proof. By definition of \(\text{MAX}_\text{NCC} \) and of \(\text{NVERTEX} \).

Proposition 25.

\[
\text{NVERTEX} \geq \text{MAX}_\text{NCC}
\]

Proof. By definition of \(\text{MAX}_\text{NCC} \).
3.2. GRAPH INVARIANTS

MAX_NSCC, MIN_NSCC

Proposition 26.
\[\text{MAX_NSCC} = 0 \Leftrightarrow \text{MIN_NSCC} = 0 \] (3.29)

Proof. By definition of MAX_NSCC and of MIN_NSCC.

Proposition 27.
\[\text{MIN_NSCC} \leq \text{MAX_NSCC} \] (3.30)

Proof. By definition of MIN_NSCC and of MAX_NSCC.

MAX_NSCC, NARC

Proposition 28.
\[\text{MAX_NSCC} = 0 \Leftrightarrow \text{NARC} = 0 \] (3.31)

Proof. By definition of MAX_NSCC and of NARC.

Proposition 29.
\[\text{NARC} \geq \text{MAX_NSCC} \] (3.32)

symmetric: \[\text{NARC} \geq 2 \cdot \text{MAX_NSCC} \] (3.33)

equivalence: \[\text{NARC} \geq \text{MAX_NSCC}^2 \] (3.34)

Proof. In a strongly connected component at least one arc has to leave each vertex. Since we have at least one strongly connected component of MAX_NSCC vertices this leads to the previous inequality.

MAX_NSCC, NVERTEX

Proposition 30.
\[\text{MAX_NSCC} = 0 \Leftrightarrow \text{NVERTEX} = 0 \] (3.35)

Proof. By definition of MAX_NSCC and of NVERTEX.

Proposition 31.
\[\text{NVERTEX} \geq \text{MAX_NSCC} \] (3.36)

Proof. By definition of MAX_NSCC.

MIN_NCC, MIN_NSCC

Proposition 32.
\[\text{MIN_NCC} = 0 \Leftrightarrow \text{MIN_NSCC} = 0 \] (3.37)

Proof. By definition of MIN_NCC and of MIN_NSCC.

Proposition 33.
\[\text{MIN_NCC} \geq \text{MIN_NSCC} \] (3.38)

Proof. By construction MIN_NCC is an upper bound of the number of vertices of the smallest strongly connected component.
Proposition 34.

\[\text{MIN}_{NCC} = 0 \Leftrightarrow \text{NARC} = 0 \quad (3.39) \]

Proof. By definition of \(\text{MIN}_{NCC} \) and of \(\text{NARC} \).

\[\square \]

Proposition 35.

\[\text{MIN}_{NCC} > 0 \Rightarrow \text{NARC} \geq \max(1, \text{MIN}_{NCC} - 1) \quad (3.40) \]

symmetric: \(\text{MIN}_{NCC} > 0 \Rightarrow \text{NARC} \geq \max(1, 2 \cdot \text{MIN}_{NCC} - 2) \quad (3.41) \]

equivalence: \(\text{NARC} \geq \text{MIN}_{NCC}^2 \quad (3.42) \)

\[\text{arc} _\text{gen} = \text{PATH} : \text{NARC} \geq \text{MIN}_{NCC} - 1 \quad (3.43) \]

Proof. Similar to Proposition 19.

\[\square \]

Proposition 36.

\[\text{consecutive} _\text{loops} _\text{are} _\text{connected} : (\text{MIN}_{NCC} + 1) \cdot NCC \leq N\text{VERTEX}_{\text{INITIAL}} + 1 \quad (3.44) \]

Proof. By definition of \(\text{consecutive} _\text{loops} _\text{are} _\text{connected} \).

\[\square \]

Proposition 37.

\[\text{MIN}_{NCC} = 0 \Leftrightarrow N\text{VERTEX} = 0 \quad (3.45) \]

Proof. By definition of \(\text{MIN}_{NCC} \) and of \(N\text{VERTEX} \).

\[\square \]

Proposition 38.

\[N\text{VERTEX} \geq \text{MIN}_{NCC} \quad (3.46) \]

Proof. By definition of \(\text{MIN}_{NCC} \).

\[\square \]

Proposition 39.

\[\text{MIN}_{NCC} \notin \left[\min \left(\left\lfloor \frac{N\text{VERTEX}}{2} \right\rfloor , \left\lfloor \frac{N\text{VERTEX}_{\text{INITIAL}} - 1}{2} \right\rfloor \right) + 1, N\text{VERTEX} - 1 \right] \quad (3.47) \]

Proof. On the one hand, if \(NCC \leq 1 \), we have that \(\text{MIN}_{NCC} \geq N\text{VERTEX} \).

On the other hand, if \(NCC > 1 \), we have that \(\text{MIN}_{NCC} + \text{MIN}_{NCC} \leq N\text{VERTEX} \) and that \(\text{MIN}_{NCC} + \text{MIN}_{NCC} + 1 \leq N\text{VERTEX}_{\text{INITIAL}} \), which by isolating \(\text{MIN}_{NCC} \) and by grouping the two inequalities leads to \(\text{MIN}_{NCC} \leq \min \left(\left\lfloor \frac{N\text{VERTEX}}{2} \right\rfloor , \left\lfloor \frac{N\text{VERTEX}_{\text{INITIAL}} - 1}{2} \right\rfloor \right) \). The result follows.

\[\square \]
3.2. GRAPH INVARIANTS

MIN_NSCC, NARC

Proposition 40.

\[
\text{MIN_NSCC} = 0 \iff \text{NARC} = 0
\]

Proof. By definition of \text{MIN_NSCC} and of \text{NARC}. □

Proposition 41.

\[
\text{NARC} \geq \text{MIN_NSCC}
\]

Proof. Similar to Proposition 29. □

MIN_NSCC, NVERTEX

Proposition 42.

\[
\text{MIN_NSCC} = 0 \iff \text{NVERTEX} = 0
\]

Proof. By definition of \text{MIN_NSCC} and of \text{NVERTEX}. □

Proposition 43.

\[
\text{NVERTEX} \geq \text{MIN_NSCC}
\]

Proof. By definition of \text{MIN_NSCC}. □

NARC, NCC

Proposition 44.

\[
\text{NARC} = 0 \iff \text{NCC} = 0
\]

Proof. By definition of \text{NARC} and of \text{NCC}. □

Proposition 45.

\[
\text{NARC} \geq \text{NCC}
\]

Proof. Each connected component contains at least one arc (since, by hypothesis, each vertex has at least one arc). □

NARC, NSCC

Proposition 46.

\[
\text{NARC} = 0 \iff \text{NSCC} = 0
\]

Proof. By definition of \text{NARC} and of \text{NSCC}. □

Proposition 47.

\[
\text{NARC} \geq \text{NSCC}
\]

Proof. \[\text{3.57}\] (respectively \[\text{3.58}\]) holds since each strongly connected component contains at least one (respectively two) arc(s). □
Proposition 48.
\[
\text{NARC} = 0 \leftrightarrow \text{NVERTEX} = 0 \quad (3.59)
\]

Proof. By definition of \text{NARC} and of \text{NVERTEX}.

Proposition 49.
\[
\text{NARC} \leq \text{NVERTEX}^2 \quad (3.60)
\]

\[
\text{arc gen} = CIRCUIT : \text{NARC} \leq \text{NVERTEX}
\]

\[
\text{arc gen} = CHAIN : \text{NARC} \leq 2 \cdot \text{NVERTEX} - 2
\]

\[
\text{arc gen} = CLIQUE(\leq) : \text{NARC} \leq \frac{\text{NVERTEX} \cdot (\text{NVERTEX} + 1)}{2}
\]

\[
\text{arc gen} = CLIQUE(\geq) : \text{NARC} \leq \frac{\text{NVERTEX} \cdot (\text{NVERTEX} + 1)}{2}
\]

\[
\text{arc gen} = CLIQUE(<) : \text{NARC} \leq \frac{\text{NVERTEX} \cdot (\text{NVERTEX} - 1)}{2}
\]

\[
\text{arc gen} = CLIQUE(>) : \text{NARC} \leq \frac{\text{NVERTEX} \cdot (\text{NVERTEX} - 1)}{2}
\]

\[
\text{arc gen} = CLIQUE(\neq) : \text{NARC} \leq \text{NVERTEX}^2 - \text{NVERTEX}
\]

\[
\text{arc gen} = CYCLE : \text{NARC} \leq 2 \cdot \text{NVERTEX}
\]

\[
\text{arc gen} = PATH : \text{NARC} \leq \text{NVERTEX} - 1
\]

Proof. \(3.60\) holds since each vertex of a digraph can have at most \text{NVERTEX} successors. The next items correspond to the maximum number of arcs that can be achieved according to a specific arc generator.

Proposition 50.
\[
2 \cdot \text{NARC} \geq \text{NVERTEX} \quad (3.70)
\]

Proof. By induction on the number of vertices of a graph \(G\):

1. If \text{NVERTEX}(G) is equal to 1 or 2 Proposition 50 holds.
2. Assume that \text{NVERTEX}(G) \geq 3.
 - Assume there exists a vertex \(v\) such that, if we remove \(v\), we don’t create any isolated vertex in the remaining graph. We have \(\text{NARC}(G) \geq \text{NARC}(G - v) + 1\). Thus \(2 \cdot \text{NARC}(G) \geq 2 \cdot \text{NARC}(G - v) + 1\). Since by induction hypothesis \(2 \cdot \text{NARC}(G - v) \geq \text{NVERTEX}(G - v) = \text{NVERTEX}(G) - 1\) the result holds.
• Otherwise, all the connected components of G are reduced to two elements with only one arc. We remove one of such connected component (v, w).
Thus $\text{NARC}(G) = \text{NARC}(G - \{v, w\}) + 1$. As by induction hypothesis, $2 \cdot \text{NARC}(G - \{v, w\}) \geq \text{NVERTEX}(G - \{v, w\}) = \text{NVERTEX}(G) - 2$ the result holds.

Proposition 51.

$$\text{arc} \cdot \text{gen} = \text{LOOP} : \text{NARC} = \text{NVERTEX}$$

(3.71)

Proof. From the definition of LOOP. □

Proposition 52.

$$\text{NCC} = 0 \iff \text{NSCC} = 0$$

(3.72)

Proof. By definition of NCC and of NSCC. □

Proposition 53.

$$\text{NCC} \leq \text{NSCC}$$

(3.73)

Proof. Holds since each connected component contains at least one strongly connected component. □

Proposition 54.

$$\text{NCC} = 0 \iff \text{NVERTEX} = 0$$

(3.74)

Proof. By definition of NCC and of NVERTEX. □

Proposition 55.

$$\text{NCC} \leq \text{NVERTEX}$$

(3.75)

$$\text{no}_\text{loop} : 2 \cdot \text{NCC} \leq \text{NVERTEX}$$

(3.76)

Proof. (3.75) (respectively (3.76) holds since each connected component contains at least one (respectively two) vertex. □

Proposition 56.

$$\text{vpartition} \land \text{consecutive}\text{loops}\text{are}\text{connected} : \quad \text{NVERTEX} \leq \text{NVERTEX}_\text{INITIAL} - (\text{NCC} - 1)$$

(3.77)

Proof. Holds since between two "consecutive" connected components of the initial graph there is at least one vertex, which is missing. □
CHAPTER 3. FURTHER TOPICS

Proposition 57. \[\text{NSCC} = 0 \iff \text{NVERTEX} = 0 \] (3.78)

Proof. By definition of NSCC and of NVERTEX.

Proposition 58. \[\text{NSCC} \leq \text{NVERTEX} \] (3.79)

\[\text{no_loop} \iff 2 \cdot \text{NSCC} \leq \text{NVERTEX} \] (3.80)

Proof. 3.79 (respectively 3.80) holds since each strongly connected component contains at least one (respectively 2) vertex.

Proposition 59. \[\text{acyclic} : \text{NSCC} = \text{NVERTEX} \] (3.81)

Proof. In a directed acyclic graph we have that each vertex corresponds to a strongly connected component involving only that vertex.

Proposition 60. \[\text{NVERTEX} = 0 \Rightarrow \text{NSINK} = 0 \] (3.82)

Proof. By definition of NVERTEX and of NSINK.

Proposition 61. \[\text{NVERTEX} > 0 \Rightarrow \text{NSINK} < \text{NVERTEX} \] (3.83)

Proof. Holds since each sink must have a predecessor which cannot be a sink and since each vertex has at least one arc.

Proposition 62. \[\text{NVERTEX} = 0 \Rightarrow \text{NSOURCE} = 0 \] (3.84)

Proof. By definition of NVERTEX and of NSOURCE.

Proposition 63. \[\text{NVERTEX} > 0 \Rightarrow \text{NSOURCE} < \text{NVERTEX} \] (3.85)

Proof. Holds since each source must have a successor which cannot be a source and since each vertex has at least one arc.
Graph invariants involving three characteristics of a final graph

Proposition 64.

\[
\begin{align*}
\text{MIN}_\text{NCC} \neq \text{MAX}_\text{NCC} & \Rightarrow \\
\text{NARC} & \geq \text{MIN}_\text{NCC} + \text{MAX}_\text{NCC} - 2 + (\text{MIN}_\text{NCC} = 1) \quad (3.86)
\end{align*}
\]

\[
\text{equivalence: } \text{MIN}_\text{NCC} \neq \text{MAX}_\text{NCC} \Rightarrow \\
\text{NARC} & \geq \text{MIN}_\text{NCC}^2 + \text{MAX}_\text{NCC}^2 \quad (3.87)
\]

Proof. \(3.86\) \(n - 1\) arcs are needed to connect \(n (n > 1)\) vertices that all belong to a given connected component. Since we have two connected components which respectively have \(\text{MIN}_\text{NCC}\) and \(\text{MAX}_\text{NCC}\) vertices this leads to the previous inequality. When \(\text{MIN}_\text{NCC}\) is equal to one we need an extra arc.

Proposition 65.

\[
\text{MIN}_\text{NCC} \neq \text{MAX}_\text{NCC} \Rightarrow \text{NCC} \geq 2 \quad (3.88)
\]

Proof. If \(\text{MIN}_\text{NCC}\) and \(\text{MAX}_\text{NCC}\) are different then they correspond for sure to at least two distinct connected components.

Proposition 66.

\[
\text{MIN}_\text{NCC} \neq \text{MAX}_\text{NCC} \Rightarrow \text{NVERTEX} \geq \text{MIN}_\text{NCC} + \text{MAX}_\text{NCC} \quad (3.89)
\]

Proof. Since we have at least two distinct connected components which respectively have \(\text{MIN}_\text{NCC}\) and \(\text{MAX}_\text{NCC}\) vertices this leads to the previous inequality.

Proposition 67.

\[
\text{MAX}_\text{NCC} \leq \max(\text{MIN}_\text{NCC}, \text{NVERTEX} - \max(1, \text{MIN}_\text{NCC})) \quad (3.90)
\]

Proof. On the one hand, if \(\text{NCC} \leq 1\), we have that \(\text{MAX}_\text{NCC} \leq \text{MIN}_\text{NCC}\). On the other hand, if \(\text{NCC} > 1\), we have that \(\text{NVERTEX} \geq \max(1, \text{MIN}_\text{NCC}) + \text{MAX}_\text{NCC}\) (i.e. \(\text{MAX}_\text{NCC} \leq \text{NVERTEX} - \max(1, \text{MIN}_\text{NCC})\)). The result is obtained by taking the maximum value of the right hand side of the two inequalities.

Proposition 68.

\[
\text{MIN}_\text{NCC} \notin [\text{NVERTEX} - \max(1, \text{MAX}_\text{NCC}) + 1, \text{NVERTEX} - 1] \quad (3.91)
\]

Proof. On the one hand, if \(\text{NCC} \leq 1\), we have that \(\text{MIN}_\text{NCC} \geq \text{NVERTEX}\). On the other hand, if \(\text{NCC} > 1\), we have that \(\text{MIN}_\text{NCC} + \max(1, \text{MAX}_\text{NCC}) \leq \text{NVERTEX}\) (i.e. \(\text{MIN}_\text{NCC} \leq \text{NVERTEX} - \max(1, \text{MAX}_\text{NCC})\)). The result follows.
Proposition 69.

\[\text{NVERTEX} \not\in [\text{MIN}_N \text{CCC} + 1, \text{MIN}_N \text{CCC} + \text{MAX}_N \text{CCC} - 1] \] \hspace{1cm} (3.92)

Proof. On the one hand, if \(\text{NCCC} \leq 1 \), we have that \(\text{NVERTEX} \leq \text{MIN}_N \text{CCC} \). On the other hand, if \(\text{NCCC} > 1 \), we have that \(\text{NVERTEX} \geq \text{MIN}_N \text{CCC} + \text{MAX}_N \text{CCC} \). Since \(\text{MIN}_N \text{CCC} \leq \text{MIN}_N \text{CCC} + \text{MAX}_N \text{CCC} \) the result follows. \(\square \)

Proposition 70.

\[
\begin{align*}
\text{if } \text{MIN}_N \text{CCC} > 0 \\
\text{then } k_{inf} &= \left\lfloor \frac{\text{NVERTEX} + \text{MIN}_N \text{CCC}}{\text{MIN}_N \text{CCC}} \right\rfloor \text{ else } k_{inf} = 1 \\
\text{if } \text{MAX}_N \text{CCC} > 0 \\
\text{then } k_{sup_1} &= \left\lfloor \frac{\text{NVERTEX} - 1}{\text{MAX}_N \text{CCC}} \right\rfloor \text{ else } k_{sup_1} = \text{NVERTEX} \\
\text{if } \text{MAX}_N \text{CCC} < \text{MIN}_N \text{CCC} \\
\text{then } k_{sup_2} &= \left\lfloor \frac{\text{MIN}_N \text{CCC} - 2}{\text{MAX}_N \text{CCC} - \text{MIN}_N \text{CCC}} \right\rfloor \text{ else } k_{sup_2} = \text{NVERTEX} \\
\text{ } \\
\forall k \in [k_{inf}, k_{sup}] : \text{NVERTEX} \not\in [k \cdot \text{MAX}_N \text{CCC} + 1, (k + 1) \cdot \text{MIN}_N \text{CCC} - 1] \hspace{1cm} (3.93)
\end{align*}
\]

Proof. We make the proof for \(k \in \mathbb{N} \) (the interval \([k_{inf}, k_{sup}]\) is only used for restricting the number of intervals to check). We have that \(\text{NVERTEX} \in [k \cdot \text{MIN}_N \text{CCC}, k \cdot \text{MAX}_N \text{CCC}] \). A forbidden interval \([k \cdot \text{MAX}_N \text{CCC} + 1, (k + 1) \cdot \text{MIN}_N \text{CCC} - 1]\) corresponds to an interval between the end of interval \([k \cdot \text{MIN}_N \text{CCC}, k \cdot \text{MAX}_N \text{CCC}]\) and the start of the next interval \([(k + 1) \cdot \text{MIN}_N \text{CCC}, (k + 1) \cdot \text{MAX}_N \text{CCC}]\). Since all intervals \([i \cdot \text{MIN}_N \text{CCC}, i \cdot \text{MAX}_N \text{CCC}]\) \((i < k)\) end before \(k \cdot \text{MAX}_N \text{CCC}\) and since all intervals \([j \cdot \text{MIN}_N \text{CCC}, j \cdot \text{MAX}_N \text{CCC}]\) \((j > k)\) start after \((k + 1) \cdot \text{MIN}_N \text{CCC}\), they do not use any value in \([k \cdot \text{MAX}_N \text{CCC} + 1, (k + 1) \cdot \text{MIN}_N \text{CCC} - 1]\). \(\square \)

Proposition 71.

\[\text{NARC} \leq \text{NCC} \cdot \text{MAX}_N \text{CCC}^2 \] \hspace{1cm} (3.94)

\[\text{arc_gen} = \text{PATH} : \text{NARC} \leq \text{NCC} \cdot (\text{MAX}_N \text{CCC} - 1) \] \hspace{1cm} (3.95)

Proof. On the one hand, \(\text{NARC} \) holds since the maximum number of arcs is achieved by taking \(\text{NCC} \) connected components where each connected component is a clique involving \(\text{MAX}_N \text{CCC} \) vertices. On the other hand, \(\text{arc_gen} \) holds since a tree of \(n \) vertices has \(n - 1 \) arcs. \(\square \)
3.2. GRAPH INVARIANTS

Proposition 72.

\[\text{NARC} \geq \text{MAX}_{\text{NCC}} + \text{NCC} - 2 \]

(3.96)

Proof. The minimum number of arcs is achieved by taking one connected component with \(\text{MAX}_{\text{NCC}} \) vertices and \(\text{MAX}_{\text{NCC}} - 1 \) arcs as well as \(\text{NCC} - 1 \) connected components with one single vertex and a loop.

\(\text{MAX}_{\text{NCC}}, \text{NARC}, \text{NVERTEX} \)

Proposition 73.

\[\text{MAX}_{\text{NCC}} > 0 \Rightarrow \]

\[\text{NARC} \leq \text{MAX}_{\text{NCC}}^2 \cdot \left(\frac{\text{NVERTEX}}{\text{MAX}_{\text{NCC}}} \right) + (\text{NVERTEX} \mod \text{MAX}_{\text{NCC}})^2 \]

(3.97)

Figure 3.1: Illustration of Proposition 73. A graph that achieves the maximum number of arcs according to the size of the largest connected component as well as to a fixed number of vertices (\(\text{MAX}_{\text{NCC}} = 3, \text{NVERTEX} = 11, \text{NARC} = 3^2 \cdot \left[\frac{11}{3} \right] + (11 \mod 3)^2 = 31 \))

Proof. We first begin with the following claim:

Let \(G \) be a graph such that \(V(G) - \text{NCC}(G, \text{MAX}_{\text{NCC}}(G)) \cdot \text{MAX}_{\text{NCC}}(G) \geq \text{MAX}_{\text{NCC}}(G) \), then there exists a graph \(G' \) such that \(V(G') = V(G) \), \(\text{MAX}_{\text{NCC}}(G') = \text{MAX}_{\text{NCC}}(G) \), \(\text{NCC}(G', \text{MAX}_{\text{NCC}}(G')) = \text{NCC}(G, \text{MAX}_{\text{NCC}}(G)) + 1 \) and \(|E(G)| \leq |E(G')| \).

Proof of the claim:

Let \((C_i)_{i \in [n]} \) be the connected components of \(G \) on less than \(\text{MAX}_{\text{NCC}}(G) \) vertices and such that \(|C_i| \geq |C_{i+1}| \). By hypothesis there exists \(k \leq n \) such that \(|\bigcup_{i=1}^{k-1} C_i| < \text{MAX}_{\text{NCC}}(G) \) and \(|\bigcup_{i=1}^{k} C_i| \geq \text{MAX}_{\text{NCC}}(G) \).

- Either \(|\bigcup_{i=1}^{k} C_i| = \text{MAX}_{\text{NCC}}(G) \), and then with \(G' \) such that \(G' \) restricted to the \(\bigcup_{i=1}^{k} C_i \) be a complete graph and \(G' \) restricted to \(V(G) - \bigcup_{i=1}^{k} C_i \) being exactly \(G \) restricted to \(V(G) - \bigcup_{i=1}^{k} C_i \), we obtain the claim.

- Or \(|\bigcup_{i=1}^{k} C_i| > \text{MAX}_{\text{NCC}}(G) \). Then \(C_k = C_k^1 \cup C_k^2 \) such that \(|\bigcup_{i=1}^{k-1} C_i \cup C_k^1| = \text{MAX}_{\text{NCC}}(G) \) and \(|C_k^2| < |C_1| \) (notice that \(k \geq 2 \)). Then with \(G' \) such that \(G' \) restricted to \(\bigcup_{i=1}^{k-1} C_i \cup C_k^1 \) is a complete graph and \(G' \) restricted to \(V(G) - ((\bigcup_{i=1}^{k-1} C_i) \cup C_k^1) \) is exactly \(G \) restricted to \(V(G) - ((\bigcup_{i=1}^{k-1} C_i) \cup C_k^1) \).
we obtain the claim.

End of proof of the claim

We prove by induction on $r(G) = \frac{\text{NVERTEX}(G)}{\text{MAX}_N\text{NCC}(G)} - \text{NCC}(G, \text{MAX}_N\text{NCC}(G))$, where G is any graph. For $r(G) = 0$ the result holds (see Prop 44). Otherwise, since $r(G) > 0$ we have that $V(G) - \text{NCC}(G, \text{MAX}_N\text{NCC}(G)) \cdot \text{MAX}_N\text{NCC}(G) \geq \text{MAX}_N\text{NCC}(G)$, by the previous claim there exists G' with the same number of vertices and the same number of vertices in the largest connected component, such that $r(G') = r(G) - 1$. Consequently the result holds by induction.

Proposition 74.

$$\text{NARC} \geq \text{MAX}_N\text{NCC} - 1 + \left\lfloor \frac{\text{NVERTEX} - \text{MAX}_N\text{NCC} + 1}{2} \right\rfloor$$ (3.98)

Proof. Let G be a graph, let X be a maximal size connected component of G, then we have $G = G[X] \oplus G[V(G) - X]$. On the one hand, as $G[X]$ is connected, by setting $\text{NCC} = 1$ in (3.13) of Proposition 52 we have $|E(G[X])| \geq |X| - 1$, on the other hand, by Proposition 50 $|E(G[V(G) - X])| \geq \left\lfloor \frac{|V(G) - X|}{2} \right\rfloor$. Thus the result follows. \qed

Proposition 75.

$$\text{NVERTEX} \leq \text{NCC} \cdot \text{MAX}_N\text{NCC}$$ (3.99)

Proof. The number of vertices is less than or equal to the number of connected components multiplied by the largest number of vertices in a connected component. \qed

Proposition 76.

$$\text{NVERTEX} \geq \text{MAX}_N\text{NCC} + \max(0, \text{NCC} - 1)$$ (3.100)

Proof. (3.100) The minimum number of vertices according to a fixed number of connected components NCC such that one of the connected component contains MAX_NNCC vertices is obtained as follows: We get MAX_NNCC vertices from the connected component involving MAX_NNCC vertices and one vertex for each remaining connected component. \qed

Proposition 77.

$$\text{MIN}_N\text{NSCC} \neq \text{MAX}_N\text{NSCC} \Rightarrow \text{NARC} \geq \text{MIN}_N\text{NSCC} + \text{MAX}_N\text{NSCC}$$ (3.102)

Proof. (3.102) In a strongly connected component at least one arc has to leave each arc. Since we have two strongly connected components which respectively have MIN_NNSCC and MAX_NNSCC vertices this leads to the previous inequality. \qed
3.2. GRAPH INVARIANTS

Proposition 78.

\[\text{MIN_NSCC} \neq \text{MAX_NSCC} \Rightarrow \text{NSCC} \geq 2 \]

(3.104)

Proof. Follows from the definitions of MIN_NSCC and of MAX_NSCC.

Proposition 79.

\[\text{MIN_NSCC} \neq \text{MAX_NSCC} \Rightarrow \text{NVERTEX} \geq \text{MIN_NSCC} + \text{MAX_NSCC} \]

(3.105)

Proof. Since we have at least two distinct strongly connected components which respectively have MIN_NSCC and MAX_NSCC vertices this leads to the previous inequality.

Proposition 80.

if \(\text{MIN_NSCC} > 0 \)

then \(k_{\inf} = \left\lfloor \frac{\text{NVERTEX} + \text{MIN_NSCC}}{\text{MIN_NSCC}} \right\rfloor \) else \(k_{\inf} = 1 \)

if \(\text{MAX_NSCC} > 0 \)

then \(k_{\sup_1} = \left\lceil \frac{\text{NVERTEX} - 1}{\text{MAX_NSCC}} \right\rceil \) else \(k_{\sup_1} = \text{NVERTEX} \)

if \(\text{MAX_NSCC} < \text{MIN_NSCC} \)

then \(k_{\sup_2} = \left\lfloor \frac{\text{MIN_NSCC} - 2}{\text{MAX_NSCC} - \text{MIN_NSCC}} \right\rfloor \) else \(k_{\sup_2} = \text{NVERTEX} \)

\[k_{\sup} = \min(k_{\sup_1}, k_{\sup_2}) \]

\[\forall k \in [k_{\inf}, k_{\sup}]: \text{NVERTEX} \notin [k \cdot \text{MAX_NSCC} + 1, (k + 1) \cdot \text{MIN_NSCC} - 1] \]

(3.106)

Proof. Similar to Proposition 70.
Proposition 81.
\[\text{NVERTEX} \leq \text{NSCC} \cdot \text{MAX_NSCC} \] \hfill (3.107)

Proof. Since each strongly connected component contains at most \text{MAX_NSCC} vertices the total number of vertices is less than or equal to \text{NSCC} \cdot \text{MAX_NSCC}. \hfill \square

Proposition 82.
\[\text{NVERTEX} \geq \text{MAX_NSCC} + \max(0, \text{NSCC} - 1) \] \hfill (3.108)

Proof. \hfill (3.108) The minimum number of vertices according to a fixed number of strongly connected components \text{NSCC} such that one of them contains \text{MAX_NSCC} vertices is equal to \text{MAX_NSCC} + \max(0, \text{NSCC} - 1). \hfill \square

Proposition 83.
\[\text{NARC} \leq \text{MIN_NCC}^2 + (\text{NVERTEX} - \text{MIN_NCC})^2 \] \hfill (3.110)

\begin{align*}
\text{arc_gen} &= \text{CIRCUIT} : \text{NARC} \leq \text{NVERTEX} - 2 \cdot (\text{MIN_NCC} < \text{NVERTEX}) \\
\text{arc_gen} &= \text{CHAIN} : \text{NARC} \leq \text{NVERTEX} - 2 \cdot (\text{MIN_NCC} < \text{NVERTEX}) \\
\text{arc_gen} &= \text{CLIQUE}(\leq) : \text{NARC} \leq \frac{\text{MIN_NCC} \cdot (\text{MIN_NCC} + 1)}{2} + \frac{(\text{NVERTEX} - \text{MIN_NCC}) \cdot (\text{NVERTEX} - \text{MIN_NCC} + 1)}{2} \\
\text{arc_gen} &= \text{CLIQUE}(\geq) : \text{NARC} \leq \frac{\text{MIN_NCC} \cdot (\text{MIN_NCC} + 1)}{2} + \frac{(\text{NVERTEX} - \text{MIN_NCC}) \cdot (\text{NVERTEX} - \text{MIN_NCC} + 1)}{2} \\
\text{arc_gen} &= \text{CLIQUE}(\leq) : \text{NARC} \leq \frac{\text{MIN_NCC} \cdot (\text{MIN_NCC} - 1)}{2} + \frac{(\text{NVERTEX} - \text{MIN_NCC}) \cdot (\text{NVERTEX} - \text{MIN_NCC} - 1)}{2} \\
\text{arc_gen} &= \text{CLIQUE}(\geq) : \text{NARC} \leq \frac{\text{MIN_NCC} \cdot (\text{MIN_NCC} - 1)}{2} + \frac{(\text{NVERTEX} - \text{MIN_NCC}) \cdot (\text{NVERTEX} - \text{MIN_NCC} - 1)}{2} \\
\text{arc_gen} &= \text{CLIQUE}(\neq) : \text{NARC} \leq \text{MIN_NCC}^2 - \text{MIN_NCC} + \frac{(\text{NVERTEX} - \text{MIN_NCC})^2 - (\text{NVERTEX} - \text{MIN_NCC})}{2} \\
\end{align*} \hfill (3.117)
3.2. GRAPH INVARIANTS

$$\text{arc_gen} = \text{CYCLE : NARC} \leq \text{NVERTEX} - 4 \cdot (\text{MIN_NCC} < \text{NVERTEX})$$

(3.118)

$$\text{arc_gen} = \text{PATH : NARC} \leq \max(0, \text{MIN_NCC} - 1) + \max(0, \text{NVERTEX} - \text{MIN_NCC} - 1)$$

(3.119)

Proof. The maximum number of vertices according to a fixed number of vertices \text{NVERTEX} and to the fact that there is a connected component with \text{MIN_NCC} vertices is obtained by:

- Building a connected component with \text{MIN_NCC} vertices and creating an arc between each pair of vertices.
- Building a connected component with all the \text{NVERTEX} \text{- MIN_NCC} remaining vertices and creating an arc between each pair of vertices.

Proposition 84.

$$\text{MIN_NCC} > 1 \Rightarrow \text{NARC} \geq \left\lceil \frac{\text{NVERTEX}}{\text{MIN_NCC}} \right\rceil \cdot (\text{MIN_NCC} - 1) + \text{NVERTEX} \mod \text{MIN_NCC}$$

(3.120)

Proof. Achieving the minimum number of arcs with a fixed number of vertices and with a minimum number of vertices greater than or equal to one in each connected component is achieved in the following way:

- Since the minimum number of arcs of a connected component of \(n \) vertices is \(n - 1 \), splitting a connected component into \(k \) parts that all have more than one vertex saves \(k - 1 \) arcs. Therefore we build a maximum number of connected components. Since each connected component has at least \text{MIN_NCC} vertices we get \(\left\lceil \frac{\text{NVERTEX}}{\text{MIN_NCC}} \right\rceil \) connected components.
- Since we can’t build a connected component with the rest of the vertices (i.e. \(\text{NVERTEX} \mod \text{MIN_NCC} \) vertices left) we have to incorporate them in the previous connected components and this costs one arc for each vertex.

When \text{MIN_NCC} = 1, note that Proposition 50 provides a lower bound on the number of arcs.

Proposition 85.

$$\text{NVERTEX} \geq \text{NCC} \cdot \text{MIN_NCC}$$

(3.121)

Proof. The smallest number of vertices is obtained by taking all connected components to their minimum number of vertices \text{MIN_NCC}.

\qed
MIN_NSCC, NARC, NVERTEX

Proposition 86.

\[\text{NARC} \leq \text{NVERTEX}^2 + \text{MIN_NSCC}^2 - \text{NVERTEX} \cdot \text{MIN_NSCC} \quad (3.122) \]

Proof. Achieving the maximum number of arcs, provided that we have at least one strongly connected component with \(\text{MIN_NSCC} \) vertices, is done by:

- Building a first strongly connected component \(C_1 \) with \(\text{MIN_NSCC} \) vertices and adding an arc between each pair of vertices of \(C_1 \).
- Building a second strongly connected component \(C_2 \) with \(\text{NVERTEX} - \text{MIN_NSCC} \) vertices and adding an arc between each pair of vertices of \(C_2 \).

Finally, we add an arc from every vertex of \(C_1 \) to every vertex of \(C_2 \). This leads to a total number of arcs of \(\text{MIN_NSCC}^2 + (\text{NVERTEX} - \text{MIN_NSCC})^2 + \text{MIN_NSCC} \cdot (\text{NVERTEX} - \text{MIN_NSCC}) \).

MIN_NSCC, NSCC, NVERTEX

Proposition 87.

\[\text{NVERTEX} \geq \text{NSCC} \cdot \text{MIN_NSCC} \quad (3.123) \]

Proof. Since each strongly connected component contains at least \(\text{MIN_NSCC} \) vertices the total number of vertices is greater than or equal to \(\text{NSCC} \cdot \text{MIN_NSCC} \).

NARC, NCC, NVERTEX

Proposition 88.

\[\text{NARC} \leq (\text{NVERTEX} - \text{NCC} + 1)^2 + \text{NCC} - 1 \quad (3.124) \]

\[\text{arc_gen} = \text{CIRCUIT}: \text{NARC} \leq \text{NVERTEX} - \text{NCC} + 1 - (\text{NCC} \neq 1) \quad (3.125) \]

\[\text{arc_gen} = \text{CHAIN}: \text{NARC} \leq 2 \cdot \text{NVERTEX} - 2 \cdot \text{NCC} \quad (3.126) \]

\[\text{arc_gen} = \text{CLIQUE}(\leq): \text{NARC} \leq \text{NCC} - 1 + \frac{(\text{NVERTEX} - \text{NCC} + 1) \cdot (\text{NVERTEX} - \text{NCC} + 2)}{2} \quad (3.127) \]

\[\text{arc_gen} = \text{CLIQUE}(\geq): \text{NARC} \leq \text{NCC} - 1 + \frac{(\text{NVERTEX} - \text{NCC} + 1) \cdot (\text{NVERTEX} - \text{NCC} + 2)}{2} \quad (3.128) \]

\[\text{arc_gen} = \text{CLIQUE}(\lt): \text{NARC} \leq \text{NCC} - 1 + \frac{(\text{NVERTEX} - \text{NCC} + 1) \cdot (\text{NVERTEX} - \text{NCC})}{2} \quad (3.129) \]

\[\text{arc_gen} = \text{CLIQUE}(\gt): \text{NARC} \leq \text{NCC} - 1 + \frac{(\text{NVERTEX} - \text{NCC} + 1) \cdot (\text{NVERTEX} - \text{NCC})}{2} \quad (3.130) \]
3.2. GRAPH INVARIANTS

\[
\text{arc}_\text{gen} = \text{CLIQUE}(\neq) : \text{NARC} \leq \max(0, \text{NCC} - 1) + (\text{NVERTEX} - \text{NCC} + 1)^2 - (\text{NVERTEX} - \text{NCC} + 1) \quad (3.131)
\]

\[
\text{arc}_\text{gen} = \text{CYCLE} : \text{NARC} \leq 2 \cdot \text{NVERTEX} - 2 \cdot \text{NCC} + 2 \cdot (\text{NCC} = 1) \quad (3.132)
\]

\[
\text{arc}_\text{gen} = \text{PATH} : \text{NARC} = \text{NVERTEX} - \text{NCC} \quad (3.133)
\]

Figure 3.2: Illustration of Proposition 88. A graph that achieves the maximum number of arcs according to a fixed number of connected components as well as to a fixed number of vertices \((\text{NCC} = 5, \text{NVERTEX} = 7, \text{NARC} = (7 - 5 + 1)^2 + 5 - 1 = 13)\)

Proof. (3.132) We proceed by induction on \(T(G) = \text{NVERTEX}(G) - |X| - (\text{NCC}(G) - 1)\), where \(X\) is any connected component of \(G\) of maximum cardinality. For \(T(G) = 0\) then either \(\text{NCC}(G) = 1\) and thus the formula is clearly true, or all the connected components of \(G\), but possibly \(X\), are reduced to one element. Since isolated vertices are not allowed, the formula holds.

Assume that \(T(G) \geq 1\). Then there exists \(Y\), a connected component of \(G\) distinct from \(X\), with more than one vertex. Let \(y \in Y\) and let \(G'\) be the graph such that \(V(G') = V(G)\) and \(E(G')\) is defined by:

- For all \(Z\) connected components of \(G\) distinct from \(X\) and \(Y\) we have \(G'[Z] = G[Z]\).
- With \(X' = X \cup \{y\}\) and \(Y' = Y - \{y\}\), we have \(G'[Y'] = G[Y']\) and \(E(G'[X']) = E(G[X]) \cup (\bigcup_{x \in X'} \{(x, y), (y, x)\})\).

Clearly \(|E(G')| - |E(G)| \geq 2 \cdot |X| + 1 - (2 \cdot |Y| - 1)\) and since \(X\) is of maximal cardinality the difference is strictly positive. Now as \(\text{NVERTEX}(G') = \text{NVERTEX}(G), \text{NCC}(G') = \text{NCC}(G)\) and as \(T(G') = T(G) - 1\) the result holds by induction hypothesis.

Proposition 89.

\[
\text{NARC} \geq \text{NVERTEX} - \text{NCC} \quad (3.134)
\]

Proof. (3.134) By induction of the number of vertices. The formula holds for one vertex. Let \(G\) a graph with \(n + 1\) vertices \((n \geq 1)\). First assume there exists \(x\) in \(G\) such that \(G - x\) has the same number of connected components than \(G\). Since \(\text{NARC}(G) \geq \text{NARC}(G - x) + 1\), and by induction hypothesis \(\text{NARC}(G - x) \geq \text{NVERTEX}(G - x) - \text{NCC}(G - x)\) the result holds. Otherwise all connected components of \(G\) are reduced to one vertex and the formula holds.
Proposition 90.

\[
N\text{ARC} \leq (N\text{VERTEX} - N\text{SCC} + 1) \cdot N\text{VERTEX} + \frac{N\text{SCC} \cdot (N\text{SCC} - 1)}{2} \tag{3.136}
\]

equivalence: \[N\text{ARC} \leq N\text{SCC} - 1 + (N\text{VERTEX} - N\text{SCC} + 1)^2 \tag{3.137} \]

Proof. For proving it is easier to rewrite the formula as \[N\text{ARC} \leq (N\text{VERTEX} - (N\text{SCC} - 1))^2 + (N\text{CC} - 1) \cdot (N\text{VERTEX} - (N\text{SCC} - 1)) + \frac{N\text{SCC} \cdot (N\text{SCC} - 1)}{2}. \] We proceed by induction on \(T(G) = N\text{VERTEX}(G) - |X| - (N\text{SCC}(G) - 1), \) where \(X \) is any strongly connected component of \(G \) of maximum cardinality.

For \(T(G) = 0 \) then either \(N\text{SCC}(G) = 1 \) and thus the formula is clearly true, or all the strongly connected components of \(G \), but possibly \(X \), are reduced to one element. Since the maximum number of arcs in a directed acyclic graph of \(n \) vertices is \(\frac{(n+1)(n+2)}{2} \), and as the subgraph of \(G \) induced by all the strongly connected components of \(G \) excepted \(X \) is acyclic, the formula clearly holds.

Assume that \(T(G) \geq 1 \), let \((X_i)_{i \in I} \) be the family of strongly connected components of \(G \), and let \(G_i \) be the reduced graph of \(G \) induced by \((X_i)_{i \in I} \) (that is \(V(G_i) = I \) and \(\forall i, i' \in I, (i, i') \in E(G_i) \) iff \(\exists x_1 \in X_{i_1}, \exists x_2 \in X_{i_2} \) such that \((x_1, x_2) \in E \)). Consider \(G' \) such that \(V(G') = V(G) \) and \(E(G') \) is defined by:

- For all strongly connected components \(Z \) of \(G \) we have \(G'[Z] = G[Z] \).
- For \(\sigma \) be any topological sort of \(G_i \), \(\forall x_i \in X_i, \forall x_j \in X_j, (x_i, x_j) \in E(G') \) whenever \(i < j \) with respect to \(\sigma \).

Notice that \(G' \) satisfies the following properties: \(T(G') = T(G), V(G') = V(G), N\text{SCC}(G') = N\text{SCC}(G), E(G') \subseteq E(G) \), \((X_i)_{i \in I} \) is still the family of strongly connected components of \(G' \), and moreover, for every \(i \in I \) and every \(x_i \in X_i \) we have that \(x_i \) is connected to any vertex outside \(X_i \), that is the number of arcs incident to \(x_i \) and incident to vertices outside \(X_i \) is exactly \(|V(G')| - |X_i| \).

Now, as \(T(G') \geq 1 \), there exists \(Y, \) a strongly connected component of \(G' \) distinct from \(X \), with more than one vertex. Let \(y \in Y \) and let \(G'' \) be the graph such that \(V(G'') = V(G') \) and \(E(G'') \) is defined by:

- \(G''[V(G) - \{y\}] = G'[V(G) - \{y\}] \).
3.2. GRAPH INVARIANTS

- With \(X' = X \cup \{ y \} \), we have \(G''[Y'] = G'[Y'] \) and \(E(G''[X']) = E(G'[X]) \cup \{ (x, y), (y, x) \} \).

- Assume that \(X = X_j \) for \(j \in I \). Then \(\forall i \in I \setminus \{ j \}, \forall x_i \in X_i, (x_i, y) \in E(G'') \) whenever \(i \) is less than \(j \) with respect to \(\sigma \) and \((y, x_i) \in E(G'') \) whenever \(j \) is less than \(i \) with respect to \(\sigma \).

Clearly \(|E(G'')| - |E(G')| \geq 2|X| + 1 + |V(G')| - |X| - (2 \cdot |Y| - 1 + |V(G')| - |Y|)) = |X| - |Y| + 2 \) and since \(X \) is of maximal cardinality the difference is strictly positive. As \(E(G) \subseteq E(G''), |E(G'')| - |E(G)| \) is also strictly positive. Now as \(\text{NVERTEX}(G'') = \text{NVERTEX}(G'), \text{NSCC}(G'') = \text{NSCC}(G) \) and as \(T(G'') = T(G') - 1 = T(G) - 1 \) the result holds by induction hypothesis.

\[
\text{Proposition 91.} \quad \text{NARC} \geq \text{NVERTEX} - \left\lfloor \frac{\text{NSCC} - 1}{2} \right\rfloor \tag{3.138}
\]

\[
\text{equivalence: \(\text{NSCC} > 0 \Rightarrow \text{NARC} \geq (\text{NVERTEX} \mod \text{NSCC}) \cdot \left(\left\lfloor \frac{\text{NVERTEX}}{\text{NSCC}} \right\rfloor + 1 \right)^2 + (\text{NSCC} - \text{NVERTEX} \mod \text{NSCC}) \cdot \left(\frac{\text{NVERTEX}}{\text{NSCC}} \right)^2 \right.} \tag{3.139}
\]

Figure 3.4: Illustration of Proposition 91. A graph that achieves the minimum number of arcs according to a fixed number of strongly connected components as well as to a fixed number of vertices (\(\text{NSCC} = 7, \text{NVERTEX} = 10, \text{NARC} = 10 - \left\lfloor \frac{7}{2} \right\rfloor = 7 \)).

\[\text{Proof.} \text{ For proving part 3.138 of Proposition 91 we proceed by induction on \(\text{NSCC}(G) \). If } \text{NSCC}(G) = 1 \text{ then, we have } \text{NARC}(G) \geq \text{NVERTEX}(G) \text{ (i.e. for one vertex this is true since every vertex has at least one arc, otherwise every vertex } v \text{ has an arc arriving on } v \text{ as well as an arc starting from } v \text{, thus we have } \text{NARC} \geq \frac{\text{NVERTEX}}{2}. \] \text{If } \text{NSCC}(G) > 1 \text{ let } X \text{ be a strongly connected component of } G. \text{ Then } \text{NARC}(G) \geq \text{NARC}(G[V(G) - X]) + \text{NARC}(G[X]). \text{ By induction hypothesis } \text{NARC}(G[V(G) - X]) \geq |V(G) - X| - \left\lceil \text{NSCC}(G[V(G) - X]) - 1 \right\rceil. \text{ Thus } \text{NARC}(G[V(G) - X]) \geq |V(G) - X| - \left\lfloor \frac{\text{NSCC}(G) - 1 - 1}{2} \right\rfloor. \text{ Since } \text{NARC}(G[X]) \geq |X| \text{ we obtain } \text{NARC}(G) \geq |V(G)| - \left\lceil \frac{\text{NSCC}(G) - 1 - 1}{2} \right\rceil, \text{ and thus the result holds.} \]
Proposition 92.

\[\text{equivalence: } \text{NVERTEX} > 0 \Rightarrow \text{NSCC} \geq \frac{\text{NVERTEX}^2}{\text{NARC}} \]

(3.140)

Proof. As shown in [54], a lower bound for the minimum number of equivalence classes (e.g. strongly connected components) is the independence number of the graph and the right-hand side of Proposition 92 corresponds to a lower bound of the independence number proposed by Turán [55].

NARC, NSINK, NVERTEX

Proposition 93.

\[\text{NARC} \leq (\text{NVERTEX} - \text{NSINK}) \cdot \text{NVERTEX} \]

(3.141)

Proof. The maximum number of arcs is achieved by the following pattern: For all non-sink vertices we have an arc to all vertices.

Proposition 94.

\[\text{NARC} \geq \text{NSINK} + \max(0, \text{NVERTEX} - 2 \cdot \text{NSINK}) \]

(3.142)

Figure 3.5: Illustration of Proposition 94. Graphs that achieve the minimum number of arcs according to a fixed number of sinks as well as to a fixed number of vertices (A : NSINK = 3, NVERTEX = 5, NARC = 3 + max(0, 5 − 2 · 3) = 3; B : NSINK = 3, NVERTEX = 9, NARC = 3 + max(0, 9 − 2 · 3) = 6)

Proof. Recall that for \(x \in V(G) \), we have that \(d_G^+(x) + d_G^-(x) \geq 1 \). If \(x \) is a sink then \(d_G^-(x) \geq 1 \), consequently \(\text{NARC}(G) \geq \text{NSINK}(G) \). If \(x \) is not a sink then \(d_G^+(x) \geq 1 \), consequently \(\text{NARC}(G) \geq |V(G)| - \text{NSINK}(G) \).
3.2. GRAPH INVARIANTS

Figure 3.6: Illustration of Proposition 96. Graphs that achieve the minimum number of arcs according to a fixed number of sources as well as to a fixed number of vertices (A : NSOURCE = 3, NVERTEX = 5, NARC = 3 + max(0, 5 − 2 · 3) = 3; B : NSOURCE = 3, NVERTEX = 9, NARC = 3 + max(0, 9 − 2 · 3) = 6)

Proposition 95.

\[\text{NARC} \leq (\text{NVERTEX} − \text{NSOURCE}) \cdot \text{NVERTEX} \] \hspace{1cm} (3.143)

Proof. The maximum number of arcs is achieved by the following pattern: For all non-source vertices we have an arc from all vertices.

Proposition 96.

\[\text{NARC} \geq \text{NSOURCE} + \max(0, \text{NVERTEX} − 2 \cdot \text{NSOURCE}) \] \hspace{1cm} (3.144)

Proof. Similar to Proposition 95

Proposition 97.

\[\text{NVERTEX} \geq \text{NSOURCE} + \text{NSINK} \] \hspace{1cm} (3.145)

Proof. No vertex can be both a source and a sink (isolated vertices are removed).
Graph invariants involving four characteristics of a final graph

\[\text{MAX}_\text{NCC}, \text{MIN}_\text{NCC}, \text{NARC}, \text{NCC} \]

Proposition 98. Let \(\alpha \) denote \(\max(0, \text{NCC} - 1) \).

\[\text{NARC} \leq \alpha \cdot \text{MAX}_\text{NCC}^2 + \text{MIN}_\text{NCC}^2 \] \hspace{1cm} (3.146)

\[\text{arc}_\text{gen} = \text{CIRCUIT} : \text{NARC} \leq \alpha \cdot \text{MAX}_\text{NCC} + \text{MIN}_\text{NCC} \] \hspace{1cm} (3.147)

\[\text{arc}_\text{gen} = \text{CHAIN} : \text{NARC} \leq \alpha \cdot (2 \cdot \text{MAX}_\text{NCC} - 2) + 2 \cdot \text{MIN}_\text{NCC} - 2 \] \hspace{1cm} (3.148)

\[\text{arc}_\text{gen} \in \{ \text{CLIQUE}(\leq), \text{CLIQUE}(\geq) \} : \text{NARC} \leq \alpha \cdot \frac{\text{MAX}_\text{NCC}(\text{MAX}_\text{NCC} + 1)}{2} + \frac{\text{MIN}_\text{NCC}(\text{MIN}_\text{NCC} + 1)}{2} \] \hspace{1cm} (3.149)

\[\text{arc}_\text{gen} \in \{ \text{CLIQUE}(\leq), \text{CLIQUE}(\geq) \} : \text{NARC} \leq \alpha \cdot \frac{\text{MAX}_\text{NCC}(\text{MAX}_\text{NCC} - 1)}{2} + \frac{\text{MIN}_\text{NCC}(\text{MIN}_\text{NCC} - 1)}{2} \] \hspace{1cm} (3.150)

\[\text{arc}_\text{gen} = \text{CLIQUE}(\neq) : \text{NARC} \leq \text{MIN}_\text{NCC}^2 - \text{MIN}_\text{NCC} + \alpha \cdot (\text{MAX}_\text{NCC}^2 - \text{MAX}_\text{NCC}) \] \hspace{1cm} (3.151)

\[\text{arc}_\text{gen} = \text{CYCLE} : \text{NARC} \leq 2 \cdot \alpha \cdot \text{MAX}_\text{NCC} + 2 \cdot \text{MIN}_\text{NCC} \] \hspace{1cm} (3.152)

\[\text{arc}_\text{gen} = \text{PATH} : \text{NARC} \leq \alpha \cdot (\text{MAX}_\text{NCC} - 1) + \text{MIN}_\text{NCC} - 1 \] \hspace{1cm} (3.153)

\textbf{Proof.} We construct \(\text{NCC} - 1 \) connected components with \(\text{MAX}_\text{NCC} \) vertices and one connected component with \(\text{MIN}_\text{NCC} \) vertices. \(n^2 \) corresponds to the maximum number of arcs in a connected component. \(n, 2 \cdot n - 2, \frac{n(n+1)}{2}, \frac{n(n+1)}{2}, \frac{n(n-1)}{2}, \frac{n(n-1)}{2}, n^2 - n, 2 \cdot n \) and \(n - 1 \) respectively correspond to the maximum number of arcs in a connected component of \(n \) vertices according to the fact that we use the arc generator \(\text{CIRCUIT}, \text{CHAIN}, \text{CLIQUE}(\leq), \text{CLIQUE}(\geq), \text{CLIQUE}(\leq), \text{CLIQUE}(\geq), \text{CLIQUE}(\neq), \text{CYCLE} \) or \(\text{PATH} \).

Proposition 99.

\[\text{NCC} > 0 \Rightarrow \text{NARC} \geq (\text{NCC} - 1) \cdot \max(1, \text{MIN}_\text{NCC} - 1) + \max(1, \text{MAX}_\text{NCC} - 1) \] \hspace{1cm} (3.154)

\[\text{arc}_\text{gen} = \text{PATH} : \text{NARC} \geq \max(0, \text{NCC} - 1) \cdot (\text{MIN}_\text{NCC} - 1) + \text{MAX}_\text{NCC} - 1 \] \hspace{1cm} (3.155)

\textbf{Proof.} We construct \(\text{NCC} - 1 \) connected components with \(\text{MIN}_\text{NCC} \) vertices and one connected component with \(\text{MAX}_\text{NCC} \) vertices. The quantity \(\max(1, n - 1) \) corresponds to the minimum number of arcs in a connected component of \(n \) (\(n > 0 \)) vertices.
3.2. GRAPH INVARIANTS

Proposition 100.

\[N_{\text{VERTEX}} \leq \max(0, N_{\text{CC}} - 1) \cdot \text{MAX}_{\text{NCC}} + \text{MIN}_{\text{NCC}} \]
(3.156)

Proof. Derived from the definitions of MIN_NCC and MAX_NCC. □

Proposition 101.

\[N_{\text{VERTEX}} \geq \max(0, N_{\text{CC}} - 1) \cdot \text{MIN}_{\text{NCC}} + \text{MAX}_{\text{NCC}} \]
(3.157)

Proof. Derived from the definitions of MIN_NCC and MAX_NCC. □

Proposition 102.

\[
\text{NARC} \leq \max(0, N_{\text{SCC}} - 1) \cdot \text{MAX}_{\text{NSCC}}^2 + \text{MIN}_{\text{NSCC}}^2 + \\
\max(0, N_{\text{SCC}} - 1) \cdot \text{MIN}_{\text{NSCC}} \cdot \text{MAX}_{\text{NSCC}} + \\
\text{MAX}_{\text{NSCC}}^2 \cdot \frac{\max(0, N_{\text{SCC}} - 2) \cdot \max(0, N_{\text{SCC}} - 1)}{2} \]
(3.158)

Proof. We assume that we have at least two strongly connected components (the case with one being obvious). Let \((\text{SCC}_i)_{i \in [N_{\text{CC}}(G)]}\) be the family of strongly connected components of \(G\). Then \(|E(G)| \leq \sum_{i \in [N_{\text{CC}}(G)]} |E(G[\text{SCC}_i])| + k\), where \(k\) is the number of arcs between the distinct strongly connected components of \(G\). For any strongly connected component \(\text{SCC}_i\) the number of arcs it has with the other strongly connected components is bounded by \(|\text{SCC}_i| \cdot (|V(G) - \text{SCC}_i|)\). Consequently, \(k \leq \frac{1}{2} \cdot \sum_{i \in [N_{\text{CC}}(G)]} |\text{SCC}_i| \cdot (|V(G) - \text{SCC}_i|)\). W.l.o.g. we assume \(|\text{SCC}_1| = \text{MIN}_{\text{NCC}}\). Then we get \(k \leq \frac{1}{2} \cdot (\text{MIN}_{\text{NCC}} \cdot (N_{\text{CC}} - 1) \cdot \text{MAX}_{\text{NCC}} + \text{MAX}_{\text{NCC}} \cdot ((N_{\text{CC}} - 2) \cdot \text{MAX}_{\text{NCC}} + \text{MIN}_{\text{NCC}}))\). □

Proposition 103.

\[\text{NARC} \geq \max(0, N_{\text{SCC}} - 1) \cdot \text{MIN}_{\text{NSCC}} + \text{MAX}_{\text{NSCC}} \]
(3.159)

Proof. Let \((\text{SCC}_i)_{i \in [N_{\text{CC}}(G)]}\) be the family of strongly connected components of \(G\), as \(|E(G)| \geq \sum_{i \in [N_{\text{CC}}(G)]} |E(G[\text{SCC}_i])|\), we obtain the result since in a strongly connected graph the number of edges is at least its number of vertices. □

Proposition 104.

\[N_{\text{VERTEX}} \leq \max(0, N_{\text{SCC}} - 1) \cdot \text{MAX}_{\text{NSCC}} + \text{MIN}_{\text{NSCC}} \]
(3.160)

Proof. Derived from the definitions of MIN_NS CC and MAX_NS CC. □

Proposition 105.

\[N_{\text{VERTEX}} \geq \max(0, N_{\text{SCC}} - 1) \cdot \text{MIN}_{\text{NSCC}} + \text{MAX}_{\text{NSCC}} \]
(3.161)

Proof. Derived from the definitions of MIN_NS CC and MAX_NS CC. □
Proposition 106. Let α, β and γ respectively denote $\max(0, \text{NCC} - 1)$, $\text{NVERTEX} - \alpha \cdot \text{MIN_NCC}$ and MIN_NCC.

\[
\text{NARC} \leq \alpha \cdot \gamma^2 + \beta^2
\]
(3.162)

\[
\text{arc_gen} \in \{\text{CLIQUE(=), CLIQUE(>)}\} : \text{NARC} \leq \alpha \cdot \frac{\gamma \cdot (\gamma + 1)}{2} + \frac{\beta \cdot (\beta + 1)}{2}
\]
(3.163)

\[
\text{arc_gen} \in \{\text{CLIQUE(<), CLIQUE(>)}\} : \text{NARC} \leq \alpha \cdot \frac{\gamma \cdot (\gamma - 1)}{2} + \frac{\beta \cdot (\beta - 1)}{2}
\]
(3.164)

\[
\text{arc_gen} = \text{CLIQUE(\neq)} : \text{NARC} \leq \alpha \cdot \gamma \cdot (\gamma - 1) + \beta \cdot (\beta - 1)
\]
(3.165)

Figure 3.7: Illustration of Proposition 106. Graphs that achieve the maximum number of arcs according to a minimum number of vertices in a connected component, to a number of connected components, as well as to a fixed number of vertices ($\text{MIN_NCC} = 2$, $\text{NCC} = 5$, $\text{NVERTEX} = 11$, $\text{NARC} = (11 - (5 - 1) \cdot 2)^2 + (5 - 1) \cdot 2^2 = 25$).

Proof. For proving inequality (3.162) we proceed by induction on the number of vertices of G. First note that if all the connected components are reduced to one element the result is obvious. Thus we assume that the number of vertices in the maximal sized connected component of G is at least 2. Let x be an element of the maximal sized connected component of G. Then, $G - x$ satisfies $\alpha(G - x) = \alpha(G)$, $\gamma(G - x) = \gamma(G)$ and $\beta(G - x) = \beta(G) - 1$. Since by induction hypothesis $|E(G - x)| \leq \alpha(G - x) \cdot \gamma(G - x)^2 + \beta(G - x)^2$, and since the number of arcs of G incident to x is at most $2 \cdot (\beta(G) - 1) + 1$, we have that $|E(G)| \leq \alpha(G) \cdot \gamma(G)^2 + (\beta(G) - 1)^2 + 2 \cdot (\beta(G) - 1) + 1$. And thus the result follows. \qed
3.2. GRAPH INVARIANTS

Illustration of Proposition 107. A graph that achieves the maximum number of arcs according to a fixed number of connected components, to a fixed number of strongly connected components as well as to a fixed number of vertices (NCC = 3, NSCC = 6, NVERTEX = 7, NARC = 3 - 1 + (7 - 6 + 1)(7 - 3 + 1) + (6 - 3 + 1)(6 - 3)/2 = 18)

\[\text{NARC, NCC, NSCC, NVERTEX} \]

Proposition 107.

\[
\text{NARC} \leq \text{NCC} - 1 + (\text{NVERTEX} - \text{NSCC} + 1) \cdot (\text{NVERTEX} - \text{NCC} + 1) = \frac{(\text{NSCC} - \text{NCC} + 1) \cdot (\text{NSCC} - \text{NCC})}{2}
\]

(3.166)

Proof. We proceed by induction on \(T(G) = \text{NVERTEX}(G) - |X| - (\text{NCC}(G) - 1) \), where \(X \) is any connected component of \(G \) of maximum cardinality. For \(T(G) = 0 \) then either \(\text{NCC}(G) = 1 \) and thus the formula is clearly true, by Proposition 3.136 or all the connected components of \(G \), but possibly \(X \), are reduced to one element. Since isolated vertices are not allowed, again by Proposition 3.136 applied on \(G[X] \), the formula holds indeed \(\text{NVERTEX}(G[X]) = \text{NVERTEX}(G) - (\text{NCC}(G) - 1) \) and \(\text{NSCC}(G[X]) = \text{NSCC}(G) - (\text{NCC}(G) - 1) \).

Assume that \(T(G) \geq 1 \). Then there exists \(Y \), a connected component of \(G \) distinct from \(X \), with more than one vertex.

- Firstly assume that \(G[Y] \) is strongly connected. Let \(y \in Y \) and let \(G' \) be the graph such that \(V(G') = V(G) \) and \(E(G') \) is defined by:
 - For all \(Z \) connected components of \(G \) distinct from \(X \) and \(Y \) we have \(G'[Z] = G[Z] \).
 - With \(X' = X \cup (Y - \{y\}) \) and \(Y' = \{y\} \), we have \(E(G'[Y']) = \{(y,y)\} \) and \(E(G'[X']) = E(G[X]) \cup \{(z,x) : z \in Y - \{y\}, x \in X\} \cup \{(z,t) : z,t \in Y - \{y\}\} \).

Clearly we have that \(|E(G')| - |E(G)| \geq (|Y'| - 1) \cdot |X'| - 2 \cdot (|Y| - 1) \) and since \(|X| \geq |Y| \geq 2 \), the difference is positive or null. Now as \(\text{NVERTEX}(G') = \text{NVERTEX}(G) \), \(\text{NCC}(G') = \text{NCC}(G) \), \(\text{NSCC}(G') = \text{NSCC}(G) \) (since \(G'[Y - \{y\}] \) is strongly connected because \(E(G'[Y - \{y\}]) = \{(z,t) : z,t \in Y - \{y\}\} \)) and since the reduced graph of the strongly connected components of \(G'[X'] \) is exactly the reduced graph of the strongly connected components of \(G[X] \) to which a unique source has been added) and as \(T(G') \leq T(G) - 1 \), the result holds by induction hypothesis.
• Secondly assume that $G[Y]$ is not strongly connected. Let $Z \subset Y$ such that Z is a strongly connected component of $G[Y]$ corresponding to a source in the reduced graph of the strongly connected components of $G[Y]$. Let G' be the graph such that $V(G') = V(G)$ and $E(G')$ is defined by:
 - For all W connected components of G distinct from X and Y we have $G'[W] = G[W]$.
 - With $X' = X \cup Z$ and $Y' = Y - Z$, we have $E(G'[Y']) = E(G[Y'])$ if $|Y'| > 1$ and $E(G'[Y']) = \{(y, y)\}$ if $Y' = \{y\}$. $E(G'[X']) = E(G[X]) \cup \{(z, x) : z \in Z, x \in X\}$.

Clearly we have that $|E(G')| - |E(G)| \geq |Z| \cdot |X| - |Z| \cdot (|Y| - |Z|)$ and since $|X| \geq |Y| - |Z|$, the difference is strictly positive. Now as $\NVERTEX(G') = \NVERTEX(G), \NCC(G') = \NCC(G), \NSCC(G') = \NSCC(G)$ and as $T(G') \leq T(G) - 1$, the result holds by induction hypothesis.

\hspace{1cm} \Box

Proposition 108.

$$\NARC \geq \NVERTEX - \max(0, \min(\NCC, \NSCC - \NCC)) \quad (3.167)$$

Proof. We prove that the invariant is valid for any digraph G. First notice that for an operational behavior, since we can’t assume that Proposition 53 (i.e. $\NCC(G) \leq \NSCC(G)$) was already triggered, we use the max operator. But since any strongly connected component is connected, then $\NSCC(G) - \NCC(G)$ is never negative. Consequently, we only show by induction on $\NSCC(G)$ that $\NARC(G) \geq \NVERTEX(G) - \min(\NCC(G), \NSCC(G) - \NCC(G))$.

To begin notice that if X is a strongly (non void) connected component then either $\NARC(G[X]) \geq |X|$ or $\NARC(G[X]) = 0$ and in this latter case we have that both $|X| = 1$ and X is strictly included in a connected component of G (recall that isolated vertices are not allowed). Thus we can directly assume that $\NSCC(G) = k > 1$.

Consider that there exists a connected component of G, say X, which is also strongly connected. Let $G' = G - X$, consequently we have $\NSCC(G') = \NSCC(G) - 1, \NCC(G') = \NCC(G) - 1, \NVERTEX(G') = \NVERTEX(G) - |X|$, and $\NARC(G) \geq |X| + \NARC(G')$. Then $\NARC(G) \geq |X| + \NVERTEX(G') - \min(\NCC(G'), \NSCC(G') - \NCC(G'))$ and thus $\NARC(G) \geq \NVERTEX(G) - \min(\NCC(G) - 1, \NSCC(G) - \NCC(G))$, which immediately gives the result.

Second consider that any strongly connected component is strictly included in a connected component of G. Then, either there exists a strongly connected component X such that $|X| \geq 2$. Let $G' = G - X$, consequently we have $\NSCC(G') = \NSCC(G) - 1, \NCC(G') = \NCC(G), \NVERTEX(G') = \NVERTEX(G) - |X|$, and $\NARC(G) \geq |X| + 1 + \NARC(G')$. Then $\NARC(G) \geq |X| + 1 + \NVERTEX(G') - \min(\NCC(G'), \NSCC(G') - \NCC(G'))$ and thus $\NARC(G) \geq \NVERTEX(G) + 1 - \min(\NCC(G), \NSCC(G) - \NCC(G) + 1)$, which immediately gives the result. Or, all the strongly connected components are reduced to one element, so we have $\NSCC(G) = \NVERTEX(G)$, and thus we obtain that $\NVERTEX(G) - \min(\NCC(G), \NSCC(G) - \NCC(G)) = \min(\NCC(G), \NVERTEX(G) - \NCC(G))$, which gives the result by for example Proposition 53 (3.14).

This bound is tight: take for example any circuit.
3.2. GRAPH INVARIANTS

Proposition 109.

\[\text{NARC} \leq \text{NVERTEX}^2 - \text{NVERTEX} \cdot \text{NSOURCE} - \text{NVERTEX} \cdot \text{NSINK} + \text{NSOURCE} \cdot \text{NSINK} \]

\[(3.168) \]

Proof. Since the maximum number of arcs of a digraph is \(\text{NVERTEX}^2 \), and since:

- No vertex can have a source as a successor we lose \(\text{NVERTEX} \cdot \text{NSOURCE} \) arcs,
- No sink can have a successor we lose \(\text{NVERTEX} \cdot \text{NSINK} \) arcs.

In these two sets of arcs we count twice the arcs from the sinks to the sources, so we finally get a maximum number of arcs corresponding to the right-hand side of the inequality to prove. \(\square \)

Graph invariants involving five characteristics of a final graph

\[\text{MAX}_\text{NCC}, \text{MIN}_\text{NCC}, \text{NARC}, \text{NCC}, \text{NVERTEX} \]

Proposition 110.

Let:

- \(\Delta = \text{NVERTEX} - \text{NCC} \cdot \text{MIN}_\text{NCC} \),
- \(\delta = \lceil \frac{\Delta}{\text{MAX}_\text{NCC} - \text{MIN}_\text{NCC}} \rceil \),
- \(r = \Delta \mod \max(1, \text{MAX}_\text{NCC} - \text{MIN}_\text{NCC}) \),
- \(\epsilon = (r > 0) \).

\[\Delta = 0 \lor (\text{MAX}_\text{NCC} \neq \text{MIN}_\text{NCC} \land \delta + \epsilon \leq \text{NCC}) \]

\[(3.169) \]

\[\text{NARC} \leq (\text{NCC} - \delta - \epsilon) \cdot \text{MIN}_\text{NCC}^2 + \epsilon \cdot (\text{MIN}_\text{NCC} + r)^2 + \delta \cdot \text{MAX}_\text{NCC}^2 \]

\[(3.170) \]

Proposition 110 is currently a conjecture.

\[\text{MIN}_\text{NCC}, \text{NARC}, \text{NCC}, \text{NSCC}, \text{NVERTEX} \]

Proposition 111.

\[\text{NARC} \leq (\text{NCC} - 1) \cdot \max(1, (\text{MIN}_\text{NCC} - 1)) + \\
(\text{NVERTEX} - \text{NSCC} + 1) \cdot (\text{NVERTEX} - \text{NCC} + 1) + \\
(\text{NSCC} - \text{NCC} + 1) \cdot (\text{NSCC} - \text{NCC}) \]

\[(3.171) \]

Proposition 111 is currently a conjecture.
Graph invariants relating two characteristics of two final graphs

\[\text{MAX}_{NCC_1, NCC_2} \]

Proposition 112.

\[\text{partition} : \text{MAX}_{NCC_1} < N\text{VERTEX}_{\text{INITIAL}} \Leftrightarrow NCC_2 > 0 \quad (3.172) \]

\[\text{apartition} : \text{MAX}_{NCC_2} < N\text{VERTEX}_{\text{INITIAL}} \Leftrightarrow NCC_1 > 0 \quad (3.173) \]

Proof. Since we have the precondition \text{partition}, we know that each vertex of the initial graph belongs to the first or to the second final graphs (but not to both).

1. On the one hand, if the largest connected component of the first final graph can’t contain all the vertices of the initial graph, then the second final graph has at least one connected component.

2. On the other hand, if the second final graph has at least one connected component then the largest connected component of the first final graph can’t be equal to the initial graph.

(3.172) holds for a similar reason.

\[\text{MIN}_{NCC_1, NCC_2} \]

Proposition 113.

\[\text{partition} : \text{MIN}_{NCC_1} < N\text{VERTEX}_{\text{INITIAL}} \Leftrightarrow NCC_2 > 0 \quad (3.174) \]

\[\text{apartition} : \text{MIN}_{NCC_2} < N\text{VERTEX}_{\text{INITIAL}} \Leftrightarrow NCC_1 > 0 \quad (3.175) \]

Proof. Similar to Proposition 112.

Proposition 114.

\[\text{partition} : \text{MIN}_{NCC_1} < N\text{VERTEX}_{\text{INITIAL}} \Leftrightarrow NCC_2 > 0 \quad (3.176) \]

Proof. Since we have the precondition \text{partition}, we know that each vertex of the initial graph belongs to the first or to the second final graphs (but not to both).

1. On the one hand, if the smallest connected component of the first final graph can’t contain all the vertices of the initial graph, then the second final graph has at least one connected component.

2. On the other hand, if the second final graph has at least one connected component then the smallest connected component of the first final graph can’t be equal to the initial graph.
3.2. GRAPH INVARIANTS

Proposition 115.

\[
\text{vpartition : } \text{MIN}_{\text{NCC}_2} < \text{NVERTEX}_{\text{INITIAL}} \iff \text{NCC}_1 > 0 \quad (3.177)
\]

Proof. Similar to Proposition 114. \qed

Proposition 116.

\[
\text{apartition} \wedge \text{arc_gen} = \text{PATH} : \text{NARC}_1 + \text{NARC}_2 = \text{NVERTEX}_{\text{INITIAL}} - 1 \quad (3.178)
\]

Proof. Holds since each arc of the initial graph belongs to one of the two final graphs and since the initial graph has \(\text{NVERTEX}_{\text{INITIAL}} - 1\) arcs. \qed

Proposition 117.

\[
\text{apartition} \wedge \text{arc_gen} = \text{PATH} : |\text{NCC}_1 - \text{NCC}_2| \leq 1 \quad (3.179)
\]

\[
\text{vpartition} \wedge \text{consecutive_loops_are_connected} : |\text{NCC}_1 - \text{NCC}_2| \leq 1 \quad (3.180)
\]

Proof. Holds because the two initial graphs correspond to a path and because consecutive connected components do not come from the same graph constraint. \qed

Proposition 118.

\[
\text{apartition} \wedge \text{arc_gen} = \text{PATH} : \text{NCC}_1 + \text{NCC}_2 < \text{NVERTEX}_{\text{INITIAL}} \quad (3.181)
\]

Proof. Holds because the initial graph is a path. \qed

Proposition 119.

\[
\text{vpartition} : \text{NVERTEX}_1 + \text{NVERTEX}_2 = \text{NVERTEX}_{\text{INITIAL}} \quad (3.182)
\]

Proof. By definition of \text{vpartition} each vertex of the initial graph belongs to one of the two final graphs (but not to both). \qed
Graph invariants relating three characteristics of two final graphs

\[
\text{MAX}_1, \text{MIN}_1, \text{MIN}_2
\]

Proposition 120.

\[
\text{partition} \land \text{arc_gen} = \text{PATH} : \\
\max(2, \text{MIN}_1) + \max(3, \text{MIN}_1 + 1, \text{MAX}_1) + \\
\max(2, \text{MIN}_2) - 2 > \text{NVERTEX}_\text{INITIAL} \Rightarrow \text{MIN}_1 = \text{MAX}_1
\]

(3.183)

\[\text{Proof.}\] The quantity \(\max(2, \text{MIN}_1) + \max(3, \text{MIN}_1 + 1, \text{MAX}_1) + \max(2, \text{MIN}_2) - 2\) corresponds to the minimum number of variables needed for building two non-empty connected components of respective size \(\text{MIN}_1\) and \(\text{MAX}_1\) such that \(\text{MAX}_1\) is strictly greater than \(\text{MIN}_1\). If this quantity is greater than the total number of variables we have that \(\text{MIN}_1 = \text{MAX}_1\). \[\square\]

Proposition 121.

\[
\text{vpartition} \land \text{consecutive_loops_are_connected} : \\
\max(1, \text{MIN}_1) + \max(2, \text{MIN}_1 + 1, \text{MAX}_1) + \\
\max(1, \text{MIN}_2) > \text{NVERTEX}_\text{INITIAL} \Rightarrow \text{MIN}_1 = \text{MAX}_1
\]

(3.184)

\[\text{Proof.}\] The quantity \(\max(1, \text{MIN}_1) + \max(2, \text{MIN}_1 + 1, \text{MAX}_1) + \max(1, \text{MIN}_2)\) corresponds to the minimum number of variables needed for building two non-empty connected components of respective size \(\text{MIN}_1\) and \(\text{MAX}_1\) such that \(\text{MAX}_1\) is strictly greater than \(\text{MIN}_1\). If this quantity is greater than the total number of variables we have that \(\text{MIN}_1 = \text{MAX}_1\). \[\square\]

Proposition 122.

\[
\text{partition} \land \text{arc_gen} = \text{PATH} : \\
\max(2, \text{MIN}_2) + \max(3, \text{MIN}_2 + 1, \text{MAX}_2) + \\
\max(2, \text{MIN}_1) - 2 > \text{NVERTEX}_\text{INITIAL} \Rightarrow \text{MIN}_2 = \text{MAX}_2
\]

(3.185)

\[\text{Proof.}\] Similar to Proposition 120. \[\square\]

Proposition 123.

\[
\text{vpartition} \land \text{consecutive_loops_are_connected} : \\
\max(1, \text{MIN}_2) + \max(2, \text{MIN}_2 + 1, \text{MAX}_2) + \\
\max(1, \text{MIN}_1) > \text{NVERTEX}_\text{INITIAL} \Rightarrow \text{MIN}_2 = \text{MAX}_2
\]

(3.186)

\[\text{Proof.}\] Similar to Proposition 121. \[\square\]
3.2. GRAPH INVARIANTS

Proposition 124.

\[
\text{apartition} \land \text{arc_gen} = \text{PATH} \land \text{NVERTEX}_{\text{INITIAL}} > 0 : \nonumber \\
\text{NCC}_1 = 1 \Leftrightarrow \text{MIN}_1 + \text{NARC}_2 = \text{NVERTEX}_{\text{INITIAL}}
\]

(3.187)

Proof. When \(\text{MIN}_1 + \text{NARC}_2 = \text{NVERTEX}_{\text{INITIAL}}\) there is no more room for an extra connected component for the first final graph.

Proposition 125.

\[
\text{apartition} \land \text{arc_gen} = \text{PATH} \land \text{NVERTEX}_{\text{INITIAL}} > 0 : \nonumber \\
\text{NCC}_2 = 1 \Leftrightarrow \text{MIN}_2 + \text{NARC}_1 = \text{NVERTEX}_{\text{INITIAL}}
\]

(3.188)

Proof. Similar to Proposition 124.

Graph invariants relating four characteristics of two final graphs

Proposition 126.

\[
\text{apartition} \land \text{arc_gen} = \text{PATH} : \nonumber \\
\max(2, \text{MIN}_1) + \max(2, \text{MAX}_1) + \max(2, \text{MIN}_2) - 2 > \nonumber \\
\text{NVERTEX}_{\text{INITIAL}} \Rightarrow \text{NCC}_1 \leq 1
\]

(3.189)

Proof. The quantity \(\max(2, \text{MIN}_1) + \max(2, \text{MAX}_1) + \max(2, \text{MIN}_2) - 2\) corresponds to the minimum number of variables needed for building two non-empty connected components of respective size \(\text{MIN}_1\) and \(\text{MAX}_1\). If this quantity is greater than the total number of variables we have that \(\text{NCC}_1 \leq 1\).

Proposition 127.

\[
\text{vpartition} \land \text{consecutive_loops_are_connected} : \nonumber \\
\max(1, \text{MIN}_1) + \max(1, \text{MAX}_1) + \max(1, \text{MIN}_2) > \nonumber \\
\text{NVERTEX}_{\text{INITIAL}} \Rightarrow \text{NCC}_1 \leq 1
\]

(3.190)

Proof. The quantity \(\max(1, \text{MIN}_1) + \max(1, \text{MAX}_1) + \max(1, \text{MIN}_2)\) corresponds to the minimum number of variables needed for building two non-empty connected components of respective size \(\text{MIN}_1\) and \(\text{MAX}_1\). If this quantity is greater than the total number of variables we have that \(\text{NCC}_1 \leq 1\).
Proposition 128.

\[
\text{apartition} \land \text{arc_gen} = \text{PATH} : \\
\max(2, \text{MIN}_N \text{NCC}_2) + \max(2, \text{MAX}_N \text{NCC}_2) + \max(2, \text{MIN}_N \text{NCC}_1) - 2 > \\
\text{NVERTEX}_{\text{INITIAL}} = \text{NCC}_2 \leq 1
\]
(3.191)

Proof. Similar to Proposition 126.

Proposition 129.

\[
\text{vpartition} \land \text{consecutive_loops_are_connected} : \\
\max(1, \text{MIN}_N \text{NCC}_2) + \max(1, \text{MAX}_N \text{NCC}_2) + \max(1, \text{MIN}_N \text{NCC}_1) > \\
\text{NVERTEX}_{\text{INITIAL}} = \text{NCC}_2 \leq 1
\]
(3.192)

Proof. Similar to Proposition 127.

Graph invariants relating five characteristics of two final graphs

\[
\text{MAX}_N \text{NCC}_2, \text{MIN}_N \text{NCC}_2, \text{MIN}_N \text{NCC}_1, \text{NCC}_2
\]

Proposition 130.

\[
\text{vpartition} \land \text{consecutive_loops_are_connected} : \\
\text{MIN}_N \text{NCC}_1 \cdot \max(0, \text{NCC}_1 - 1) + \text{MAX}_N \text{NCC}_1 + \\
\text{MIN}_N \text{NCC}_2 \cdot \max(0, \text{NCC}_1 - 2) + \text{MAX}_N \text{NCC}_2 \leq \text{NVERTEX}_{\text{INITIAL}}
\]
(3.193)

Proof. The left-hand side of (130) corresponds to the minimum number of vertices of the two final graphs provided that we build the smallest possible connected components.

Proposition 131.

\[
\text{vpartition} \land \text{consecutive_loops_are_connected} : \\
\text{NCC}_1 \leq (\text{MAX}_N \text{NCC}_1 > 0) + \frac{\alpha}{\beta} + (\alpha \mod \beta \geq \max(1, \text{MIN}_N \text{NCC}_1))
\]

\[
\begin{cases}
\alpha = \max(0, \text{NVERTEX}_{\text{INITIAL}} - \max(1, \text{MAX}_N \text{NCC}_1) - \max(1, \text{MAX}_N \text{NCC}_2)), \\
\beta = \max(1, \text{MIN}_N \text{NCC}_1) + \max(1, \text{MIN}_N \text{NCC}_2).
\end{cases}
\]
(3.194)

Proof. The maximum number of connected components is achieved by building non-empty groups as small as possible, except for two groups of respective size \(\max(1, \text{MAX}_N \text{NCC}_1) \) and \(\max(1, \text{MAX}_N \text{NCC}_2) \), which have to be built.

Proposition 132.

\[
\text{vpartition} \land \text{consecutive_loops_are_connected} : \\
\text{MAX}_N \text{NCC}_1 \cdot \max(0, \text{NCC}_1 - 1) + \text{MIN}_N \text{NCC}_1 + \\
\text{MAX}_N \text{NCC}_2 \cdot \text{NCC}_1 + \text{MIN}_N \text{NCC}_2 \geq \text{NVERTEX}_{\text{INITIAL}}
\]
(3.195)
3.2. GRAPH INVARIANTS

Proof. The left-hand side of (3.12) corresponds to the maximum number of vertices of the two final graphs provided that we build the largest possible connected components.

Proposition 133.

\(\text{vpartition} \land \text{consecutive_loops_are_connected} : \)

\[
\text{NCC}_1 \geq (\text{MAX}_\text{NCC}_2 < \text{NVERTEX}_\text{INITIAL}) + \left\lfloor \frac{\alpha}{\beta} \right\rfloor + (\alpha \mod \beta > \text{MAX}_\text{NCC}_2)
\]

\[
\begin{align*}
\bullet & \quad \alpha = \max(0, \text{NVERTEX}_\text{INITIAL} - \text{MIN}_\text{NCC}_1 - \text{MIN}_\text{NCC}_2), \\
\bullet & \quad \beta = \max(1, \text{MAX}_\text{NCC}_1) + \max(1, \text{MAX}_\text{NCC}_2).
\end{align*}
\]

(3.196)

Proof. The minimum number of connected components is achieved by taking the groups as large as possible except for two groups of respective size \(\text{MIN}_\text{NCC}_2 \) and \(\text{MIN}_\text{NCC}_1 \), which have to be built.

Proposition 134.

\(\text{vpartition} \land \text{consecutive_loops_are_connected} : \)

\[
\text{MAX}_\text{NCC}_2 \leq \max(\text{MIN}_\text{NCC}_2, \text{NVERTEX}_\text{INITIAL} - \alpha), \text{with}:
\]

\[
\begin{align*}
\bullet & \quad \alpha = \text{MIN}_\text{NCC}_1 \cdot \max(0, \text{NCC}_1 - 1) + \text{MAX}_\text{NCC}_1 + \text{MIN}_\text{NCC}_2 + \text{MIN}_\text{NCC}_2 \cdot \max(0, \text{NCC}_1 - 3)
\end{align*}
\]

(3.197)

Proof. If \(\text{NCC}_1 \leq 1 \) we have that \(\text{MAX}_\text{NCC}_2 \leq \text{MIN}_\text{NCC}_2 \). Otherwise, when \(\text{NCC}_1 > 1 \), we have that \(\text{MIN}_\text{NCC}_1 \cdot \max(0, \text{NCC}_1 - 1) + \text{MAX}_\text{NCC}_1 + \text{MIN}_\text{NCC}_2 + \text{MAX}_\text{NCC}_2 + \text{MIN}_\text{NCC}_2 \cdot \max(0, \text{NCC}_1 - 3) \leq \text{NVERTEX}_\text{INITIAL} \). \(\text{NCC}_1 - 3 \) comes from the fact that we build the minimum number of connected components in the second final graph (i.e. \(\text{NCC}_1 - 1 \) connected components) and that we have already built two connected components of respective size \(\text{MIN}_\text{NCC}_2 \) and \(\text{MAX}_\text{NCC}_2 \). By isolating \(\text{MAX}_\text{NCC}_2 \) in the previous expression and by grouping the two inequalities the result follows.

Proposition 135.

\(\text{apartition} \land \text{arc_gen} = \text{PATH} \land \text{MIN}_\text{NCC}_1 > 1 \land \text{MIN}_\text{NCC}_2 > 1 : \)

\[
\text{NCC}_1 \leq (\text{MAX}_\text{NCC}_1 > 0) + \left\lfloor \frac{\alpha}{\beta} \right\rfloor + ((\alpha \mod \beta) + 1 \geq \text{MIN}_\text{NCC}_1), \text{with}:
\]

\[
\begin{align*}
\bullet & \quad \alpha = \max(0, \text{NVERTEX}_\text{INITIAL} - \text{MAX}_\text{NCC}_1 - \text{MAX}_\text{NCC}_2 + 1), \\
\bullet & \quad \beta = \text{MIN}_\text{NCC}_1 + \text{MIN}_\text{NCC}_2 - 2.
\end{align*}
\]

(3.198)

Proof. The maximum number of connected components of \(G_1 \) is achieved by:

- Building a first connected component of \(G_1 \) involving \(\text{MAX}_\text{NCC}_1 \) vertices,
- Building a first connected component of \(G_2 \) involving \(\text{MAX}_\text{NCC}_2 \) vertices,
- Building alternatively a connected component of \(G_1 \) and a connected component of \(G_2 \) involving respectively \(\text{MIN}_\text{NCC}_1 \) and \(\text{MIN}_\text{NCC}_2 \) vertices,
- Finally, if this is possible, building a connected component of \(G_1 \) involving \(\text{MIN}_\text{NCC}_1 \) vertices.
FIGURE 3.9: Illustration of Proposition 135. Configuration achieving the maximum number of connected components for G_1 according to the size of the smallest and largest connected components of G_1 and G_2 and to an initial number of vertices ($\text{MAX}_1 = 4$, $\text{MAX}_2 = 5$, $\text{MIN}_1 = 3$, $\text{MIN}_2 = 4$, $\text{NVERTEX}_{\text{INITIAL}} = 14$, $\alpha = \max(0, 14 - 4 - 5 + 1) = 6$, $\beta = \max(2, 3 + 4 - 2) = 5$, $\text{NCC}_1 = (4 > 0) + \left\lfloor \frac{\alpha}{\beta} \right\rfloor + ((\text{6mod5} + 1) \geq 3) = 2$)

Proposition 136.

\[\text{apartition} \land \text{arc_gen} = \text{PATH} \land \text{MIN}_1 > 1 \land \text{MIN}_2 > 1: \]

\[\text{NCC}_1 \geq (\text{MIN}_1 > 0) + \left\lfloor \frac{\alpha}{\beta} \right\rfloor + ((\alpha \mod \beta + 1 > \text{MAX}_2), \text{with:} \]

\[
\begin{cases}
\cdot \alpha = \max(0, \text{NVERTEX}_{\text{INITIAL}} - \text{MIN}_1 - \text{MIN}_2 + 1), \\
\cdot \beta = \text{MAX}_1 + \text{MAX}_2 - 2.
\end{cases}
\]

(3.199)

FIGURE 3.10: Illustration of Proposition 136. Configuration achieving the minimum number of connected components for G_1 according to the size of the smallest and largest connected components of G_1 and G_2 and to an initial number of vertices ($\text{MAX}_1 = 4$, $\text{MAX}_2 = 5$, $\text{MIN}_1 = 3$, $\text{MIN}_2 = 4$, $\text{NVERTEX}_{\text{INITIAL}} = 18$, $\alpha = \max(0, 18 - 3 - 4 + 1) = 12$, $\beta = \max(2, 4 + 5 - 2) = 7$, $\text{NCC}_1 = (3 > 0) + \left\lfloor \frac{12}{7} \right\rfloor + (((12 \text{mod } 7) + 1) > 5) = 3$)

Proof. The minimum number of connected components of G_1 is achieved by:

- Building a first connected component of G_2 involving MIN_2 vertices,
- Building a first connected component of G_1 involving MIN_1 vertices.
3.2. GRAPH INVARIANTS

- Building alternatively a connected component of \(G_2 \) and a connected component of \(G_1 \) involving respectively \(\text{MAX}_NCC_2 \) and \(\text{MAX}_NCC_1 \) vertices.
- Finally, if this is possible, building a connected component of \(G_2 \) involving \(\text{MAX}_NCC_2 \) vertices and a connected component of \(G_1 \) with the remaining vertices. Note that these remaining vertices cannot be incorporated in the connected components previously built.

Proposition 137.

\[\text{vpartition} \land \text{consecutive loops are connected} : \]
\[\text{MIN}_NCC_2 \cdot \max(0, \text{NCC}_2 - 1) + \text{MAX}_NCC_2 + \]
\[\text{MIN}_NCC_1 \cdot \max(0, \text{NCC}_2 - 2) + \text{MAX}_NCC_1 \leq \text{NVERTEX}_\text{INITIAL} \]
(3.200)

Proof. Similar to Proposition 130.

Proposition 138.

\[\text{vpartition} \land \text{consecutive loops are connected} : \]
\[\text{NCC}_2 \leq (\text{MAX}_NCC_2 > 0) + \left\lfloor \frac{\alpha}{\beta} \right\rfloor + (\alpha \mod \beta \geq \max(1, \text{MIN}_NCC_2)) \]
\[\begin{cases} \alpha = \max(0, \text{NVERTEX}_\text{INITIAL} - \max(1, \text{MAX}_NCC_2) - \max(1, \text{MAX}_NCC_1)), \\ \beta = \max(1, \text{MIN}_NCC_2) + \max(1, \text{MIN}_NCC_1). \end{cases} \]
(3.201)

Proof. Similar to Proposition 131.

Proposition 139.

\[\text{vpartition} \land \text{consecutive loops are connected} : \]
\[\text{MAX}_NCC_2 \cdot \max(0, \text{NCC}_2 - 1) + \text{MIN}_NCC_2 + \]
\[\text{MAX}_NCC_1 \cdot \text{NCC}_2 + \text{MIN}_NCC_1 \geq \text{NVERTEX}_\text{INITIAL} \]
(3.202)

Proof. Similar to Proposition 132.

Proposition 140.

\[\text{vpartition} \land \text{consecutive loops are connected} : \]
\[\text{NCC}_2 \geq \begin{cases} \left(\text{MAX}_NCC_1 < \text{NVERTEX}_\text{INITIAL} \right) + \left\lfloor \frac{\alpha}{\beta} \right\rfloor + (\alpha \mod \beta > \text{MAX}_NCC_1) \\ \begin{cases} \alpha = \max(0, \text{NVERTEX}_\text{INITIAL} - \text{MIN}_NCC_2 - \text{MIN}_NCC_1), \\ \beta = \max(1, \text{MAX}_NCC_2) + \max(1, \text{MAX}_NCC_1). \end{cases} \end{cases} \]
(3.203)

Proof. Similar to Proposition 133.
Proposition 141.

\[vpartition \land \text{consecutive_loops_are_connected} : \]
\[\text{MAX}_\text{NCC}_1 \leq \text{max} (\text{MIN}_\text{NCC}_1, \text{NVERTEX_INITIAL} - \alpha), \text{with} : \]
\[\bullet \alpha = \text{MIN}_\text{NCC}_2 \cdot \text{max} (0, \text{NCC}_2 - 1) + \text{MAX}_\text{NCC}_2 + \]
\[\text{MIN}_\text{NCC}_1 \cdot \text{max} (0, \text{NCC}_2 - 3) \]

Proof. Similar to Proposition 134.

Proposition 142.

\[\text{apartition} \land \text{arc_gen} = \text{PATH} \land \text{MIN}_\text{NCC}_1 > 1 \land \text{MIN}_\text{NCC}_2 > 1 : \]
\[\text{NCC}_2 \leq (\text{MAX}_\text{NCC}_2 > 0) + \left\lfloor \frac{\alpha}{\beta} \right\rfloor + ((\alpha \mod \beta) + 1 \geq \text{MIN}_\text{NCC}_2), \text{with} : \]
\[\begin{cases} \bullet \alpha = \text{max} (0, \text{NVERTEX_INITIAL} - \text{MAX}_\text{NCC}_1 - \text{MAX}_\text{NCC}_2 + 1), \\
\bullet \beta = \text{MIN}_\text{NCC}_1 + \text{MIN}_\text{NCC}_2 - 2. \end{cases} \]

Proof. Similar to Proposition 135.

Proposition 143.

\[\text{apartition} \land \text{arc_gen} = \text{PATH} \land \text{MIN}_\text{NCC}_1 > 1 \land \text{MIN}_\text{NCC}_2 > 1 : \]
\[\text{NCC}_2 \geq (\text{MIN}_\text{NCC}_2 > 0) + \left\lfloor \frac{\alpha}{\beta} \right\rfloor + ((\alpha \mod \beta) + 1 > \text{MAX}_\text{NCC}_1), \text{with} : \]
\[\begin{cases} \bullet \alpha = \text{max} (0, \text{NVERTEX_INITIAL} - \text{MIN}_\text{NCC}_1 - \text{MIN}_\text{NCC}_2 + 1), \\
\bullet \beta = \text{MAX}_\text{NCC}_1 + \text{MAX}_\text{NCC}_2 - 2. \end{cases} \]

Proof. Similar to Proposition 136.
Graph invariants relating six characteristics of two final graphs

\[\text{MAX}_{\text{NCC}_1}, \text{MAX}_{\text{NCC}_2}, \text{MIN}_{\text{NCC}_1}, \text{MIN}_{\text{NCC}_2}, \text{NCC}_1, \text{NCC}_2 \]

Proposition 144.

\[\text{apartition} \land \text{arc-gen} = \text{PATH} \land \text{NVERTEX}_{\text{INITIAL}} > 0 : \]

\[\alpha \cdot \text{MIN}_{\text{NCC}_1} + \text{MAX}_{\text{NCC}_1} + \beta \cdot \text{MIN}_{\text{NCC}_2} + \text{MAX}_{\text{NCC}_2} \leq \text{NVERTEX}_{\text{INITIAL}} + \text{NCC}_1 + \text{NCC}_2 - 1, \]

with:

\[\begin{align*}
\alpha &= \max(0, \text{NCC}_1 - 1), \\
\beta &= \max(0, \text{NCC}_2 - 1).
\end{align*} \]

(3.207)

Proof. Let \(CC(G_1) = \{ CC^1_a : a \in [\text{NCC}_1] \} \) and \(CC(G_2) = \{ CC^2_a : a \in [\text{NCC}_2] \} \) be respectively the set of connected components of the first and the second final graphs. Since the initial graph is a path, and since each arc of the initial graph belongs to the first or to the second final graphs (but not to both), there exists \((A_i)_{i \in [\text{NCC}_1 + \text{NCC}_2]} \) and there exists \(j \in [2] \) such that \(A_i \in CC(G_1+i\cdot\mod 2) \) for \(i \mod 2 = 0 \) and \(A_i \in CC(G_1+(i+1)\cdot\mod 2) \) for \(i \mod 2 = 1 \) and \(A_i \cap A_{i+1} \neq \emptyset \) for \(i \in [\text{NCC}_1 + \text{NCC}_2 - 1] \).

By inclusion-exclusion principle, since \(A_i \cap A_j = \emptyset \) whenever \(j \neq i + 1 \), we obtain

\[\text{NVERTEX}_{\text{INITIAL}} = \sum_{a \in [\text{NCC}_1]} |CC^1_a| + \sum_{a \in [\text{NCC}_2]} |CC^2_a| - \sum_{i \in [\text{NCC}_1 + \text{NCC}_2 - 1]} |A_i \cap A_{i+1}|. \]

Since \(|A_i \cap A_{i+1}| \) is equal to 1 for every well defined \(i \), we obtain

\[\sum_{a \in [\text{NCC}_1]} |CC^1_a| + \sum_{a \in [\text{NCC}_2]} |CC^2_a| = \text{NVERTEX}_{\text{INITIAL}} + \text{NCC}_1 + \text{NCC}_2 - 1. \]

Since \(\alpha \cdot \text{MIN}_{\text{NCC}_1} + \text{MAX}_{\text{NCC}_1} + \beta \cdot \text{MIN}_{\text{NCC}_2} + \text{MAX}_{\text{NCC}_2} \leq \sum_{a \in [\text{NCC}_1]} |CC^1_a| + \sum_{a \in [\text{NCC}_2]} |CC^2_a| \) the result follows.

Proposition 145.

\[\text{apartition} \land \text{arc-gen} = \text{PATH} \land \text{NVERTEX}_{\text{INITIAL}} > 0 : \]

\[\alpha \cdot \text{MAX}_{\text{NCC}_1} + \text{MIN}_{\text{NCC}_1} + \beta \cdot \text{MAX}_{\text{NCC}_2} + \text{MIN}_{\text{NCC}_2} \geq \text{NVERTEX}_{\text{INITIAL}} + \text{NCC}_1 + \text{NCC}_2 - 1, \]

with:

\[\begin{align*}
\alpha &= \max(0, \text{NCC}_1 - 1), \\
\beta &= \max(0, \text{NCC}_2 - 1).
\end{align*} \]

(3.208)

Proof. Similar to Proposition 144.
3.3 The electronic version of the catalog

An electronic version of the catalog containing every global constraint of the catalog is given in Appendix B. This electronic version was used for generating the LATEX file of this catalog, the figures associated with the graph-based description and a filtering algorithm for some of the constraints that use the automaton-based description. Within the electronic version, each constraint is described in terms of meta-data. A typical entry is:

\begin{verbatim}
ctr_date(minimum, ['20000128', '20030820', '20040530', '20041230']).
ctr_origin(minimum, 'CHIP').
ctr_arguments(minimum, ['MIN'-dvar, 'VARIABLES'-collection(var-dvar)]).
ctr_restrictions(minimum, [size('VARIABLES') > 0, required('VARIABLES', var)]).
ctr_graph(minimum, ['VARIABLES'], 2, ['CLIQUE'>collection(variables1, variables2)], [variables1^key = variables2^key #/ variables1^var < variables2^var], ['ORDER'(0, 'MAXINT', var) = 'MIN']).
ctr_example(minimum, minimum(2, [[var-3], [var-2], [var-7], [var-2], [var-6]])).
ctr_see_also(minimum, [maximum]).
ctr_key_words(minimum, ['order constraint', 'minimum', 'maxint', 'automaton', 'automaton without counters', 'centered cyclic(1) constraint network(1)']).
ctr_automaton(minimum, minimum).
\end{verbatim}

and consists of the following Prolog facts, where CONSTRAINT_NAME is the name of the constraint under consideration. The facts are organized in the following 13 items:

- Items 1, 2, 5, 10 and 11 provide general information about a global constraint,
• Items 3, 4 and 6 describe the parameters of a global constraint.
• Items 7 and 8 describes the meaning of a global constraint in terms of a graph-based representation.
• Item 9 provides a ground instance which holds.
• Items 12 and 13 describe the meaning of a global constraint in term of an automaton-based representation.

Items 1, 2, 4 and 9 are mandatory, while all other items are optional. We now give the different items:

1. **ctr::date**(CONSTRAINT_NAME, LIST_OF_DATES_OF_MODIFICATIONS)
 - LIST_OF_DATES_OF_MODIFICATIONS is a list of dates when the description of the constraint was modified.

2. **ctr::origin**(CONSTRAINT_NAME, STRING, LIST_OF_CONSTRAINTS_NAMES)
 - STRING is a string denoting the origin of the constraint. LIST_OF_CONSTRAINTS_NAMES is an eventually empty list of constraint names related to the origin of the constraint.

3. **ctr::types**(CONSTRAINT_NAME, LIST_OF_TYPES_DECLARATIONS)
 - LIST_OF_TYPES_DECLARATIONS is a list of elements of the form name-type, where name is the name of a new type and type the type itself (usually a collection). Basic and compound data types were respectively introduced in sections 1.1.1 and 1.1.2 page 161. This field is only used when we need to declare a new type that will be used for specifying the type of the arguments of the constraint. This is for instance the case when one argument of the constraint is a collection for which the type of one attribute is also a collection. This is for instance the case of the `diffn` constraint where the unique argument ORTHOTOPES is a collection of ORTHOTOPE. ORTHOTOPE refers to a new type declared in LIST_OF_TYPES_DECLARATIONS.

4. **ctr::arguments**(CONSTRAINT_NAME, LIST_OF_ARGUMENTS_DECLARATIONS)
 - LIST_OF_ARGUMENTS_DECLARATIONS is a list of elements of the form arg-type, where arg is the name of an argument of the constraint and type the type of the argument. Basic and compound data types were respectively introduced in sections 1.1.1 and 1.1.2 page 161.

5. **ctr::synonyms**(CONSTRAINT_NAME, LIST_OF_SYNONYMS)
 - LIST_OF_SYNONYMS is a list of synonyms for the constraint. This stems from the fact that, quite often, different authors use a different name for the same constraint. This is for instance the case for the `alldifferent` and the `symmetric_alldifferent` constraints.

6. **ctr::restrictions**(CONSTRAINT_NAME, LIST_OF_RESTRICTIONS)
• **LIST_OF_RESTRICTIONS** is a list of restrictions on the different argument of the constraint. Possible restrictions were described in Section 1.1.3 page 5.

7. **ctr-derived-collections** (CONSTRAINT_NAME, LIST_OF_DERIVED_COLLECTIONS)

• **LIST_OF_DERIVED_COLLECTIONS** is a list of derived collections. Derived collections are collections that are computed from the arguments of the constraint and are used in the graph-based description. Derived collections were described in Section 1.2.2 page 17.

8. **ctr-graph** (CONSTRAINT_NAME, LIST_OF_ARC_INPUT, ARC_ARITY, ARC_GENERATORS, ARC_CONSTRAINTS, GRAPH_PROPERTIES)

• **LIST_OF_ARC_INPUT** is a list of collections used for creating the vertices of the initial graph. This was described at page 41 of Section 1.2.3.

• **ARC_ARITY** is the number of vertices of an arc. Arc arity was explained at page 44 of Section 1.2.3.

• **ARC_GENERATORS** is a list of arc generators. Arc generators were introduced at page 43 of Section 1.2.3.

• **ARC_CONSTRAINTS** is a list of arc constraints. Arc constraints were defined in Section 1.2.2 page 22.

• **GRAPH_PROPERTIES** is a list of graph properties. Graph properties were described in Section 1.2.2 page 31.

9. **ctr-example** (CONSTRAINT_NAME, LIST_OFEXAMPLES)

• **LIST_OFEXAMPLES** is a list of examples (usually one). Each example corresponds to a ground instance for which the constraint holds.

10. **ctr-see-also** (CONSTRAINT_NAME, LIST_OF_CONSTRAINTS)

• **LIST_OF_CONSTRAINTS** is a list of constraints that are related in some way to the constraint.

11. **ctr-keywords** (CONSTRAINT_NAME, LIST_OF_KEYWORDS)

• **LIST_OF_KEYWORDS** is a list of keywords associated with the constraint. Keywords may be linked to the meaning of the constraint, to a typical pattern where the constraint can be applied or to a specific problem where the constraint is useful. All keywords used in the catalog are listed in alphabetic order in Section 2.5 page 62. Each keyword has an entry explaining its meaning and providing the list of global constraints using that keyword.

12. **ctr-automaton** (CONSTRAINT_NAME, PREDICATE_NAME)

• **PREDICATE_NAME** is the name of the Prolog predicate that creates the automata (usually one) associated with the constraint. This predicate name is usually the same as the constraint name, except for those constraints corresponding to a SICStus built-in (e.g. `in_element`).
13. `constraint_name(LIST_OF_ARGUMENTS) :- BODY:

- `LIST_OF_ARGUMENTS` is the list of argument of the constraint.
- `BODY` corresponds to the Prolog code that creates the signature constraints as well as the automata (usually one) associated with the constraint. Within `BODY`, a fact of the form `automaton/9` describes the states and the transitions of the automata used for describing the set of solutions accepted by the constraint. It follows the description provided in Section 1.3.2, page 55.
Chapter 4

Global constraint catalog

Contents

4.1 all_differ_from_at_least_k_pos .. 172
4.2 all_min_dist ... 174
4.3 alldifferent ... 176
4.4 alldifferent_between_sets ... 180
4.5 alldifferent_except_0 ... 182
4.6 alldifferent_interval ... 186
4.7 alldifferent_modulo ... 190
4.8 alldifferent_on_intersection ... 194
4.9 alldifferent_partition ... 198
4.10 alldifferent_same_value .. 200
4.11 allperm ... 204
4.12 among ... 206
4.13 among_diff_0 ... 208
4.14 among_interval .. 212
4.15 among_low_up ... 214
4.16 among_modulo .. 218
4.17 among_seq ... 222
4.18 arith ... 224
4.19 arith_or ... 228
4.20 arith_sliding ... 232
4.21 assign_and_counts ... 234
4.22 assign_and_nvalues ... 238
4.23 atleast ... 242
4.24 atmost ... 246
4.25 balance ... 250
4.26 balance_interval .. 252
4.27 balance_modulo .. 256
4.28 balance partition ... 260
4.29 bin_packing .. 264
4.30 binary_tree .. 268
4.31 cardinality_atleast .. 272
4.32 cardinality_atmost .. 276
4.33 cardinality_atmost_partition 280
4.34 change ... 284
4.35 change_continuity ... 288
4.36 change_paid .. 298
4.37 change_partition ... 302
4.38 circuit .. 306
4.39 circuit_cluster .. 310
4.40 circular_change ... 314
4.41 clique .. 318
4.42 colored_matrix .. 322
4.43 coloured_cumulative .. 324
4.44 coloured_cumulatives 328
4.45 common .. 332
4.46 common_interval .. 336
4.47 common_modulo ... 338
4.48 common_partition .. 340
4.49 connect_points .. 342
4.50 correspondence .. 346
4.51 count .. 350
4.52 counts .. 354
4.53 crossing ... 358
4.54 cumulative .. 362
4.55 cumulative_product ... 366
4.56 cumulative_two_d .. 370
4.57 cumulative_with_level_of_priority 374
4.58 cumulatives .. 378
4.59 cutset .. 382
4.60 cycle .. 386
4.61 cycle_card_on_path .. 390
4.62 cycle_or_accessibility 394
4.63 cycle_resource .. 398
4.64 cyclic_change ... 402
4.65 cyclic_change_joker ... 406
4.66 decreasing .. 410
4.67 deepest_valley ... 414
4.68 derangement ... 418
4.69 differ_from_at_least_k_pos 422
4.70 diffn .. 426
4.71 diffn_column ... 430
4.72 diffn_include ... 432
4.73 discrepancy ... 434
4.74 disjoint .. 436
4.75 disjoint_tasks .. 440
4.76 disjunctive ... 444
4.77 distance_between 446
4.78 distance_change .. 448
4.79 domain_constraint 452
4.80 elem .. 456
4.81 element ... 460
4.82 element_greater ... 464
4.83 element_less ... 468
4.84 element_matrix .. 472
4.85 element_sparse .. 476
4.86 elements .. 480
4.87 elements_all_different 482
4.88 elements_sparse ... 486
4.89 eq_set ... 490
4.90 exactly .. 492
4.91 global_cardinality 496
4.92 global_cardinality_low_up 500
4.93 global_cardinality_with_costs 502
4.94 global_contiguity 506
4.95 golomb ... 508
4.96 graph_crossing .. 512
4.97 group .. 516
4.98 group_skip_isolated_item 524
4.99 heighest_peak .. 532
4.100in .. 536
4.101in_relation ... 538
4.102in_same_partition 542
4.103in_set ... 546
4.104increasing ... 548
4.105indexed_sum ... 552
4.106inflection ... 554
4.107int_value_precede 556
4.108int_value_precede_chain 558
4.109interval_and_count 560
4.110interval_and_sum 564
4.111inverse ... 568
4.112inverse_set .. 572
4.113ith_pos_different_from 576
4.114k_cut ... 578
4.115lex2 ... 580
4.116lex_alldifferent ... 582
4.117lex_between ... 584
4.118lex_chain_less ... 588
4.119lex_chain_lesseq .. 592
4.120lex_different .. 596
4.121lex_greater ... 598
4.122lex_greatereq .. 602
4.123lex_less ... 606
4.124lex_lesseq .. 610
4.125link_set_to_booleans 614
4.126longest_change ... 618
4.127map .. 622
4.128max_index .. 624
4.129max_d .. 626
4.130max_aval ... 628
4.131max_size_set_of_consecutive_var 632
4.132maximum ... 634
4.133maximum_modulo .. 638
4.134min_index ... 640
4.135min_n .. 644
4.136min_aval ... 646
4.137min_size_set_of_consecutive_var 650
4.138minimum ... 652
4.139minimum_except_0 ... 656
4.140minimum_greater ... 660
4.141minimum_modulo .. 664
4.142minimum_weight_alldifferent 666
4.143nclass ... 670
4.144nequivalence ... 674
4.145next_element ... 676
4.146next_greater_element 680
4.147ninterval .. 682
4.148no_peak ... 684
4.149no_valley ... 686
4.150not_all_equal .. 688
4.151not_in .. 690
4.152npair .. 694
4.153nset_of_consecutive_values 696
4.154nvalue ... 698
4.155nvalue_on_intersection 702
4.156nvalues ... 704
4.200 soft_used_by_partition_var
4.201 soft_used_by_var
4.202 sort
4.203 sort_permutation
4.204 stage_element
4.205 stretch_circuit
4.206 stretch_path
4.207 strict_lex2
4.208 strictly_decreasing
4.209 strictly_increasing
4.210 strongly_connected
4.211 sum
4.212 sum_ctr
4.213 sum_of_weights_of_distinct_values
4.214 sum_set
4.215 symmetric_alldifferent
4.216 symmetric_cardinality
4.217 symmetric_gcc
4.218 temporal_path
4.219 tour
4.220 track
4.221 tree
4.222 tree_range
4.223 tree_resource
4.224 two_layer_edge_crossing
4.225 two_orth_are_in_contact
4.226 two_orth_column
4.227 two_orth_do_not_overlap
4.228 two_orth_include
4.229 used_by
4.230 used_by_interval
4.231 used_by_modulo
4.232 used_by_partition
4.233 valley
4.234 vec_eq_tuples
4.235 weighted_partial_alldiff
4.1 all_differ_from_at_least_k_pos

Origin
Inspired by [56].

Constraint
all_differ_from_at_least_k_pos(K, VECTORS)

Type(s)
VECTOR : collection(var – dvar)

Argument(s)
K : int
VECTORS : collection(vec – VECTOR)

Restriction(s)
required(VECTOR, var)
K ≥ 0
required(VECTORS, vec)
same_size(VECTORS, vec)

Purpose
Enforce all pairs of distinct vectors of the VECTORS collection to differ from at least K positions.

Arc input(s)
VECTORS

Arc generator
CLIQUE(≠) ↦ collection(vectors1, vectors2)

Arc arity
2

Arc constraint(s)
differ_from_at_least_k_pos(K, vectors1.vec, vectors2.vec)

Graph property(ies)
NARC = |VECTORS| * |VECTORS| – |VECTORS|

Example
all_differ_from_at_least_k_pos 2, \begin{cases} 2, \{ \text{vec} – \{ \begin{array}{c} \text{var} – 2, \\ \text{var} – 5, \\ \text{var} – 2, \\ \text{var} – 0 \\ \text{var} – 3, \\ \text{var} – 6, \\ \text{var} – 2, \\ \text{var} – 1, \\ \text{var} – 3, \\ \text{var} – 6, \\ \text{var} – 1, \\ \text{var} – 0 \end{array} \} \}, \end{cases}

The previous constraint holds since exactly 3 · (3 – 1) = 6 arc constraints hold, namely:

- The first and second vectors differ from 3 positions which is greater than or equal to K = 2.

1Each item corresponds to two arc constraints.
The first and third vectors differ from 3 positions which is greater than or equal to $K = 2$.

The second and third vectors differ from 2 positions which is greater than or equal to $K = 2$.

Parts (A) and (B) of Figure 4.1 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Figure 4.1: Initial and final graph of the all differ from at least k pos constraint

Graph model

The arc constraint(s) field uses the `differ_from_at_least_k_pos` constraint defined in this catalog.

Signature

Since we use the $CLIQUE(\neq)$ arc generator on the items of the VECTORS collection, the expression $|\text{VECTORS}| \cdot |\text{VECTORS}| - |\text{VECTORS}|$ corresponds to the maximum number of arcs of the final graph. Therefore we can rewrite the graph property $\text{NARC} = |\text{VECTORS}| \cdot |\text{VECTORS}| - |\text{VECTORS}|$ to $\text{NARC} \geq |\text{VECTORS}| \cdot |\text{VECTORS}| - |\text{VECTORS}|$. This leads to simplify NARC to NARC.

See also

`differ_from_at_least_k_pos`

Key words

`decomposition` `disequality` `bioinformatics` `vector` `no_loop`
4.2 all_min_dist

Origin

Constraint

all_min_dist(MINDIST, VARIABLES)

Synonym(s)

minimum_distance.

Argument(s)

MINDIST : int
VARIABLES : collection(var − dvar)

Restriction(s)

MINDIST > 0
required(VARIABLES, var)
VARIABLES.var ≥ 0

Purpose

Enforce for each pair (var_i, var_j) of distinct variables of the collection VARIABLES that |var_i − var_j| ≥ MINDIST.

Arc input(s)

VARIABLES

Arc generator

CLIQUE(⟨) → collection(variables1,variables2)

Arc arity

2

Arc constraint(s)

abs(variables1.var − variables2.var) ≥ MINDIST

Graph property(ies)

NARC = |VARIABLES| * (|VARIABLES| − 1) / 2

Example

all_min_dist (2, {var − 5, var − 1, var − 9, var − 3})

Parts (A) and (B) of Figure 4.2 respectively show the initial and final graph. The all_min_dist constraint holds since all the arcs of the initial graph belong to the final graph: all the minimum distance constraints are satisfied.

Graph model

We generate a clique with a minimum distance constraint between each pair of distinct vertices and state that the number of arcs of the final graph should be equal to the number of arcs of the initial graph.

Usage

The all_min_dist constraint was initially created for handling frequency allocation problems.

Remark

The all_min_dist constraint can be modeled as a set of tasks which should not overlap. For each variable var of the VARIABLES collection we create a task t where var and MINDIST respectively correspond to the origin and the duration of t.

See also

alldifferent, diffn

Key words

value constraint, decomposition, frequency allocation problem.
Figure 4.2: Initial and final graph of the all_min_dist constraint
4.3 alldifferent

<table>
<thead>
<tr>
<th>Origin</th>
<th>[2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint</td>
<td>alldifferent(VARIABLES)</td>
</tr>
<tr>
<td>Synonym(s)</td>
<td>alldiff, alldistinct.</td>
</tr>
<tr>
<td>Argument(s)</td>
<td>VARIABLES : collection(var − dvar)</td>
</tr>
<tr>
<td>Restriction(s)</td>
<td>required(VARIABLES, var)</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enforce all variables of the collection VARIABLES to take distinct values.</td>
</tr>
<tr>
<td>Arc input(s)</td>
<td>VARIABLES</td>
</tr>
<tr>
<td>Arc generator</td>
<td>CLIQUE [\mapsto] collection(variables1,variables2)</td>
</tr>
<tr>
<td>Arc arity</td>
<td>2</td>
</tr>
<tr>
<td>Arc constraint(s)</td>
<td>variables1.var = variables2.var</td>
</tr>
<tr>
<td>Graph property(ies)</td>
<td>(\text{MAX_NSCC} \leq 1)</td>
</tr>
<tr>
<td>Example</td>
<td>alldifferent({var − 5, var − 1, var − 9, var − 3})</td>
</tr>
</tbody>
</table>

Parts (A) and (B) of Figure 4.3 respectively show the initial and final graph. Since we use the \(\text{MAX_NSCC}\) graph property we show one of the largest strongly connected component of the final graph. The \textit{alldifferent} holds since all the strongly connected components have at most one vertex: A value is used at most once.

Graph model

We generate a \textit{clique} with an \textit{equality} constraint between each pair of vertices (including a vertex and itself) and state that the size of the largest strongly connected component should not exceed one.

Automaton

Figure 4.4 depicts the automaton associated to the \textit{alldifferent} constraint. To each item of the collection VARIABLES corresponds a signature variable \(S_i\), which is equal to 1. The automaton counts the number of occurrences of each value and finally imposes that each value is taken at most one time.

Usage

The \textit{alldifferent} constraint occurs in most practical problems. A classical example is the \(n\)-queen chess puzzle problem: Place \(n\) queens on a \(n\) by \(n\) chessboard in such a way that no queen attacks another. Two queens attack each other if they are located on the same column, on the same row or on the same diagonal. This can be modelled as the conjunction of three \textit{alldifferent} constraints. We associate to the \(i^{th}\) column of the chessboard a domain variable \(X_i\), that gives the line number where the corresponding queen is located. The three \textit{alldifferent} constraints are:
Figure 4.3: Initial and final graph of the alldifferent constraint

Figure 4.4: Automaton of the alldifferent constraint
• \texttt{alldifferent}(X_1, X_2 + 1, \ldots, X_n + n - 1) for the upper-left to lower-right diagonals,
• \texttt{alldifferent}(X_1, X_2, \ldots, X_n) for the lines,
• \texttt{alldifferent}(X_1 + n - 1, X_2 + n - 2, \ldots, X_n) for the lower-right to upper-left diagonals.

They are respectively depicted by parts (A), (C) and (D) of Figure 4.5.

![Diagram of upper-left to lower-right diagonals (A-B), lines (C) and lower-right to upper-left diagonals (D-E)](image)

Remark

Even if the \texttt{alldifferent} constraint had not this form, it was specified in ALICE \cite{58,2} by asking for an injective correspondence between variables and values: \(x \neq y \Rightarrow f(x) \neq f(y)\).

For possible relaxations of the \texttt{alldifferent} constraints see the \texttt{alldifferent_except_0}, the \texttt{soft_alldifferent_ct}, the \texttt{soft_alldifferent_var} and the \texttt{weighted_partial_alldiff} constraints.

Algorithm

The first complete filtering algorithm was independently found by Marie-Christine Costa \cite{59} and Jean-Charles Régis \cite{18}. This algorithm is based on a corollary of Claude Berge which characterizes the edges of a graph that belong to a maximum matching but not to all \cite{17} page 120. A short time after, assuming that all variables have no holes in their domain, Michel Leconte came up with a filtering algorithm \cite{60} based on edge finding. A first bound-consistency algorithm was proposed by Bleuzen-Guernalec et al. \cite{61}. Later on, two different approaches were used to design bound-consistency algorithms. Both approaches model the constraint as a bipartite graph. The first identifies Hall intervals in this graph \cite{62,63} and the second applies the same algorithm that is used to compute arc-consistency, but achieves a speedup by exploiting the simpler structure of the graph \cite{23}.

Used in

\texttt{circuit_cluster} \quad \texttt{correspondence} \quad \texttt{size_maximal_sequence_alldifferent} \quad \texttt{size_maximal_starting_sequence_alldifferent} \quad \texttt{sort_permutation}
See also

<table>
<thead>
<tr>
<th>alldifferent_except</th>
<th>soft_alldifferent_var</th>
<th>soft_alldifferent_ctr</th>
</tr>
</thead>
<tbody>
<tr>
<td>cycle</td>
<td>symmetric_alldifferent</td>
<td>lex_alldifferent</td>
</tr>
<tr>
<td>alldifferent_on_intersection</td>
<td>weighted_partial_alldiff</td>
<td></td>
</tr>
</tbody>
</table>

Key words

<table>
<thead>
<tr>
<th>value constraint</th>
<th>permutation</th>
<th>all different</th>
<th>disequality</th>
<th>bipartite matching</th>
<th>n-queen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall interval</td>
<td>bound-consistency</td>
<td>automaton</td>
<td>automaton with array of counters</td>
<td>one-succ</td>
<td></td>
</tr>
</tbody>
</table>
4.4 alldifferent_between_sets

Origin ILOG

Constraint
alldifferent_between_sets(VARIABLES)

Synonym(s)
all_null_intersect, alldiff_between_sets, alldistinct_between_sets.

Argument(s)
VARIABLES : collection(var – svar)

Restriction(s)
required(VARIABLES, var)

Purpose
Enforce all sets of the collection VARIABLES to be distinct.

Arc input(s)
VARIABLES

Arc generator
CLIQUE \(\rightarrow\) collection(variables1,variables2)

Arc arity
2

Arc constraint(s)
eq_set(variables1.var,variables2.var)

Graph property(ies)
MAX_NSCC \(\leq\ 1\)

Example
alldifferent_between_sets
\[
\left(\begin{array}{l}
\text{var} - \{3,5\}, \\
\text{var} - \emptyset, \\
\text{var} - \{3\}, \\
\text{var} - \{3,5,7\}
\end{array}\right)
\]

Parts (A) and (B) of Figure 4.6 respectively show the initial and final graph. Since we use the MAX_NSCC graph property we show one of the largest strongly connected component of the final graph. The alldifferent_between_sets holds since all the strongly connected components have at most one vertex.

Graph model
We generate a clique with binary set equalities constraints between each pair of vertices (including a vertex and itself) and state that the size of the largest strongly connected component should not exceed one.

Usage
This constraint is available in some configuration library offered by Ilog.

See also
alldifferent, link_set_to_booleans

Key words
all different, disequality, bipartite matching, constraint involving set variables, one-succ.
Figure 4.6: Initial and final graph of the allDifferent_between_sets constraint
4.5 alldifferent_except_0

Origin Derived from alldifferent

Constraint alldifferent_except_0(VARIABLES)

Synonym(s) alldiff_except_0, alldistinct_except_0

Argument(s) VARIABLES : collection(var – dvar)

Restriction(s) required(VARIABLES, var)

Purpose Enforce all variables of the collection VARIABLES to take distinct values, except those variables which are assigned to 0.

Arc input(s) VARIABLES

Arc generator CLIQUE \(\rightarrow\) collection(variables1, variables2)

Arc arity 2

Arc constraint(s)

- variables1.var \neq 0
- variables1.var = variables2.var

Graph property(ies) MAX_NSCC \(\leq 1\)

Example alldifferent_except_0

\[
\begin{pmatrix}
\text{var} - 5, \\
\text{var} - 0, \\
\text{var} - 1, \\
\text{var} - 9, \\
\text{var} - 0, \\
\text{var} - 3
\end{pmatrix}
\]

Parts (A) and (B) of Figure 4.7 respectively show the initial and final graph. Since we use the MAX_NSCC graph property we show one of the largest strongly connected component of the final graph. The alldifferent_except_0 holds since all the strongly connected components have at most one vertex: A value different from 0 is used at most once.

Graph model

The graph model is the same as the one used for the alldifferent constraint, except that we discard all variables that are assigned to 0.

Automaton

Figure 4.8 depicts the automaton associated to the alldifferent_except_0 constraint. To each variable \(\text{VAR}_i\) of the collection VARIABLES corresponds a 0-1 signature variable \(S_i\). The following signature constraint links \(\text{VAR}_i\) and \(S_i\): \(\text{VAR}_i \neq 0 \Leftrightarrow S_i\). The automaton counts the number of occurrences of each value different from 0 and finally imposes that each non-zero value is taken at most one time.
Figure 4.7: Initial and final graph of the \texttt{alldifferent} except 0 constraint

Figure 4.8: Automaton of the \texttt{alldifferent} except 0 constraint
Usage Quite often it appears that for some modelling reason you create a joker value. You don’t want that normal constraints hold for variables that take this joker value. For this purpose we modify the binary arc constraint in order to discard the vertices for which the corresponding variables are assigned to 0. This will be effectively the case since all the corresponding arcs constraints will not hold.

See also

Key words

value constraint relaxation joker value all different automaton

automaton with array of counters one succ
4.6 alldifferent_interval

Origin
Derived from max

Constraint
alldifferent_interval(VARIABLES, SIZE_INTERVAL)

Synonym(s)
alldiff_interval, alldistinct_interval.

Argument(s)
VARIABLES : collection(var - dvar)
SIZE_INTERVAL : int

Restriction(s)
required(VARIABLES,var)
SIZE_INTERVAL > 0

Purpose
Enforce all variables of the collection VARIABLES to belong to distinct intervals. The intervals are defined by [SIZE_INTERVAL · k, SIZE_INTERVAL · k + SIZE_INTERVAL − 1] where k is an integer.

Arc input(s)
VARIABLES

Arc generator
CLIQUE → collection(variables1,variables2)

Arc arity
2

Arc constraint(s)
variables1.var/SIZE_INTERVAL = variables2.var/SIZE_INTERVAL

Graph property(ies)
MAX_NSCC ≤ 1

Example
alldifferent_interval({var − 2, var − 3, var − 10}, 3)

In the previous example, the second parameter SIZE_INTERVAL defines the following family of intervals [3 · k, 3 · k + 2], where k is an integer. Since the three variables of the collection VARIABLES take values that are respectively located within the three following distinct intervals [0, 2], [3, 5] and [9, 11], the alldifferent_interval constraint holds. Parts (A) and (B) of Figure 4.9 respectively show the initial and final graph. Since we use the MAX_NSCC graph property we show one of the largest strongly connected component of the final graph.

Graph model
Similar to the alldifferent constraint, but we replace the binary equality constraint of the alldifferent constraint by the fact that two variables are respectively assigned to two values that belong to the same interval. We generate a clique with a belong to the same interval constraint between each pair of vertices (including a vertex and itself) and state that the size of the largest strongly connected component should not exceed one.

Automaton
Figure 4.10 depicts the automaton associated to the alldifferent_interval constraint. To each item of the collection VARIABLES corresponds a signature variable S_i, which is equal to 1. For each interval [SIZE_INTERVAL · k, SIZE_INTERVAL · k + SIZE_INTERVAL − 1] of values the automaton counts the number of occurrences of its values and finally imposes that the values of an interval are taken at most once.
Figure 4.9: Initial and final graph of the \textit{alldifferent\textunderscore interval} constraint

\[\{C[_]=0\} \]

\[s \quad 1, \quad \{C[\var_1/\text{SIZE_INTERVAL}]=C[\var_1/\text{SIZE_INTERVAL}]+1\} \]

\[t: \quad \text{arith}(C,\!<,\!2) \]

Figure 4.10: Automaton of the \textit{alldifferent\textunderscore interval} constraint
See also

- alldifferent

Key words

- value constraint
- interval
- all different
- automaton
- automaton with array of counters
- one-succ
4.7 alldifferent_modulo

Origin Derived from alldifferent

Constraint alldifferent_modulo(VARIABLES, M)

Synonym(s) alldiff_modulo, alldistinct_modulo.

Argument(s) VARIABLES : collection(var - dvar)
M : int

Restriction(s) required(VARIABLES, var)
M ≠ 0
M ≥ |VARIABLES|

Purpose Enforce all variables of the collection VARIABLES to have a distinct rest when divided by M.

Arc input(s) VARIABLES

Arc generator CLIQUE → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) MAX_NSCC ≤ 1

Example alldifferent_modulo \(\left\{ \begin{array}{ll}
\text{var - 25}, \\
\text{var - 1}, \\
\text{var - 14}, \\
\text{var - 3}
\end{array} \right\}, 5 \)

The equivalences classes associated to values 25, 1, 14 and 3 are respectively equal to 25 mod 5 = 0, 1 mod 5 = 1, 14 mod 5 = 4 and 3 mod 5 = 3. Since they are distinct the alldifferent_modulo constraint holds. Parts (A) and (B) of Figure 4.11 respectively show the initial and final graph. Since we use the MAX_NSCC graph property we show one of the largest strongly connected component of the final graph.

Graph model Exploit the same model used for the alldifferent constraint. We replace the binary equality constraint by an other equivalence relation depicted by the arc constraint. We generate a clique with a binary equality modulo M constraint between each pair of vertices (including a vertex and itself) and state that the size of the largest strongly connected component should not exceed one.

Automaton Figure 4.12 depicts the automaton associated to the alldifferent_modulo constraint. To each item of the collection VARIABLES corresponds a signature variable \(S_i \), which is equal to 1. The automaton counts for each equivalence class the number of used values and finally imposes that each equivalence class is used at most one time.
Figure 4.11: Initial and final graph of the \texttt{alldifferent_modulo} constraint

Figure 4.12: Automaton of the \texttt{alldifferent_modulo} constraint
See also

See also

Key words

Key words
4.8 \textbf{alldifferent_on_intersection}

<table>
<thead>
<tr>
<th>Origin</th>
<th>Derived from \textit{common} and \textit{alldifferent}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint</td>
<td>alldifferent_on_intersection(VARIABLES1, VARIABLES2)</td>
</tr>
<tr>
<td>Synonym(s)</td>
<td>alldiff_on_intersection, alldistinct_on_intersection</td>
</tr>
<tr>
<td>Argument(s)</td>
<td>VARIABLES1 : collection(var – dvar)</td>
</tr>
<tr>
<td></td>
<td>VARIABLES2 : collection(var – dvar)</td>
</tr>
<tr>
<td>Restriction(s)</td>
<td>\text{required}(VARIABLES1.var)</td>
</tr>
<tr>
<td></td>
<td>\text{required}(VARIABLES2.var)</td>
</tr>
<tr>
<td>Purpose</td>
<td>The values which both occur in the VARIABLES1 and VARIABLES2 collections have only one occurrence.</td>
</tr>
</tbody>
</table>

Arc input(s) VARIABLES1 VARIABLES2
Arc generator \textit{PRODUCT} \rightarrow \text{collection}(variables1, variables2)
Arc arity 2
Arc constraint(s) variables1.var = variables2.var
Graph property(ies) \textbf{MAX}_NCC \leq 2

Example alldifferent_on_intersection
\begin{align*}
\{ & \text{var} - 5, \\
& \text{var} - 9, \\
& \text{var} - 1, \\
& \text{var} - 5, \\
& \text{var} - 2, \\
& \text{var} - 1, \\
& \text{var} - 6, \\
& \text{var} - 9, \\
& \text{var} - 6, \\
& \text{var} - 2 \}
\end{align*}

Parts (A) and (B) of Figure 4.13 respectively show the initial and final graph. Since we use the \textbf{MAX}_NCC graph property we show one of the largest connected component of the final graph. The alldifferent_on_intersection constraint holds since each connected component has at most two vertices. Observe that all the vertices corresponding to the variables that take values 5, 2 or 6 were removed from the final graph since there is no arc for which the associated equality constraint holds.

Automaton Figure 4.14 depicts the automaton associated to the alldifferent_on_intersection constraint. To each variable VAR1i of the collection VARIABLES1 corresponds a signature variable S_i, which is equal to 0. To each variable VAR2i of the collection VARIABLES2 corresponds a signature variable S_{i+|VARIABLES1|}, which is equal to 1. The automaton first counts
the number of occurrences of each value assigned to the variables of the VARIABLES1 collection. It then counts the number of occurrences of each value assigned to the variables of the VARIABLES2 collection. Finally, the automaton imposes that each value is not taken by two variables of both collections.

See also

| alldifferent | common | nvalue_on_intersection | same_intersection |

Key words

| value constraint | all different | connected component | constraint on the intersection |
| automaton | automaton with array of counters | acyclic | bipartite | no_loop |
Figure 4.13: Initial and final graph of the alldifferent on intersection constraint

Figure 4.14: Automaton of the alldifferent on intersection constraint
4.9 alldifferent_partition

Origin
Derived from `alldifferent`

Constraint
`alldifferent_partition(VARIABLES, PARTITIONS)`

Synonym(s)
`alldiff_partition, alldistinct_partition`.

Type(s)
VALUES : collection(val = int)

Argument(s)
VARIABLES : collection(var = dvar)
PARTITIONS : collection(p = VALUES)

Restriction(s)
required(VARIABLES, val)
distinct(VARIABLES, val)
|VARIABLES| ≤ |PARTITIONS|
required(VARIABLES, var)
|PARTITIONS| ≥ 2
required(PARTITIONS, p)

Purpose
Enforce all variables of the collection VARIABLE to take values which belong to distinct partitions.

Arc input(s)
VARIABLES

Arc generator
`CLIQUE` \(\rightarrow\) collection(variables1, variables2)

Arc arity
2

Arc constraint(s)
in_same_partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies)
`MAX_NSCC` ≤ 1

Example

\[
\text{alldifferent_partition}
\begin{cases}
\{\text{var} = 6, \text{var} = 3, \text{var} = 4\}, \\
\{p = \text{val} = 1, \text{val} = 3\}, \\
\{p = \text{val} = 4\}, \\
\{p = \text{val} = 2, \text{val} = 6\}
\end{cases}
\]

Since all variables take values that are located within distinct partitions the `alldifferent_partition` constraint holds. Parts (A) and (B) of Figure 4.15 respectively show the initial and final graph. Since we use the `MAX_NSCC` graph property we show one of the largest strongly connected component of the final graph.

Graph model
Similar to the `alldifferent` constraint, but we replace the binary `equality` constraint of the `alldifferent` constraint by the fact that two variables are respectively assigned to two values that belong to the same partition. We generate a `clique` with a `in_same_partition` constraint between each pair of vertices (including a vertex and itself) and state that the size of the largest strongly connected component should not exceed one.

See also
`alldifferent, in_same_partition`

Key words
value constraint, partition, all different, one succ.
Figure 4.15: Initial and final graph of the alldifferent partition constraint
4.10 \texttt{alldifferent_same_value}

Origin
Derived from \texttt{alldifferent}.

Constraint
\texttt{alldifferent_same_value(NSAME, VARIABLES1, VARIABLES2)}

Synonym(s)
alldiff_same_value, alldistinct_same_value.

Argument(s)
\begin{itemize}
 \item \texttt{NSAME} : dvar
 \item \texttt{VARIABLES1} : collection(var – dvar)
 \item \texttt{VARIABLES2} : collection(var – dvar)
\end{itemize}

Restriction(s)
\begin{itemize}
 \item \texttt{NSAME} \geq 0
 \item \texttt{NSAME} \leq |\texttt{VARIABLES1}|
 \item |\texttt{VARIABLES1}| = |\texttt{VARIABLES2}|
 \item \texttt{required}(\texttt{VARIABLES1}.var)
 \item \texttt{required}(\texttt{VARIABLES2}.var)
\end{itemize}

Purpose
All the values assigned to the variables of the collection \texttt{VARIABLES1} are pairwise distinct. \texttt{NSAME} is equal to number of constraints of the form \texttt{VARIABLES1}[i].var = \texttt{VARIABLES2}[i].var (1 \leq i \leq |\texttt{VARIABLES1}|) that hold.

Arc input(s)
\texttt{VARIABLES1 VARIABLES2}

Arc generator
\texttt{PRODUCT(CLIQUE, LOOP, =) \rightarrow collection(variables1, variables2)}

Arc arity
2

Arc constraint(s)
\texttt{variables1.var = variables2.var}

Graph property(ies)
\begin{itemize}
 \item \texttt{MAX_NSCC} \leq 1
 \item \texttt{NARC_NO_LOOP} = \texttt{NSAME}
\end{itemize}

Example
\texttt{alldifferent_same_value}
\begin{align*}
 & (2, \begin{cases}
 \text{var} - 7, \\
 \text{var} - 3, \\
 \text{var} - 1, \\
 \text{var} - 5
 \end{cases}), \\
 & \begin{cases}
 \text{var} - 1, \\
 \text{var} - 3, \\
 \text{var} - 1, \\
 \text{var} - 7
 \end{cases}
\end{align*}

Part (A) of Figure 4.16 gives the initial graph that is generated. Variables of collection \texttt{VARIABLES1} are coloured, while variables of collection \texttt{VARIABLES2} are kept in white. Part (B) represents the final graph associated to the example. In this graph each vertex constitutes a strongly connected component and the number of arcs that do not correspond to a loop is equal to 2 (i.e. \texttt{NSAME}).
Graph model

The arc generator \(\text{PRODUCT}(\text{CLIQUE}, \text{LOOP}, =) \) is used in order to generate all the arcs of the initial graph:

- The arc generator \(\text{CLIQUE} \) creates all links between the items of the first collection \(\text{VARIABLES1} \),
- The arc generator \(\text{LOOP} \) creates one loop for all items of the second collection \(\text{VARIABLES2} \),
- Finally the arc generator \(\text{PRODUCT}(=) \) creates an arc between items located at the same position in the collections \(\text{VARIABLES1} \) and \(\text{VARIABLES2} \).

Automaton

Figure 4.17 depicts the automaton associated to the \text{alldifferent_same_value} constraint. Let \(\text{VAR1}_i \) and \(\text{VAR2}_i \) respectively denote the \(i \)th variables of the \(\text{VARIABLES1} \) and \(\text{VARIABLES2} \) collections. To each pair of variables \((\text{VAR1}_i, \text{VAR2}_i)\) corresponds a signature variable \(S_i \). The following signature constraint links \(\text{VAR1}_i, \text{VAR2}_i \) and \(S_i \): \(\text{VAR1}_i = \text{VAR2}_i \Leftrightarrow S_i \).

Usage

When all variables of the second collection are initially bound to distinct values the \text{alldifferent_same_value} constraint can be explained in the following way:

- We interpret the variables of the second collection as the previous solution of a problem where all variables have to be distinct.
- We interpret the variables of the first collection as the current solution to find, where all variables should again be pairwise distinct.

The variable \text{NSAME} measures the distance of the current solution from the previous solution. This corresponds to the number of variables of \(\text{VARIABLES2} \) that are not assigned to the same previous value.

Key words

proximity constraint, automaton, automaton with array of counters

Figure 4.16: Initial and final graph of the \text{alldifferent_same_value} constraint
Figure 4.17: Automaton of the alldifferent_samvalue constraint
4.11 allperm

Origin [64]

Constraint allperm(MATRIX)

Type(s) VECTOR : collection(var – dvar)

Argument(s) MATRIX : collection(vec – VECTOR)

Restriction(s) required(VECTOR, var)
required(MATRIX, vec)
same_size(MATRIX, vec)

Purpose Given a matrix of domain variables, enforces that the first row is lexicographically less than or equal to all permutations of all other rows.

Example allperm \left(\begin{array}{ll}
\text{vec} - \{\text{var} - 1, \text{var} - 2, \text{var} - 3\}
\text{vec} - \{\text{var} - 3, \text{var} - 1, \text{var} - 2\}
\end{array} \right)

The previous constraint holds since vector \langle 1, 2, 3 \rangle is lexicographically less than or equal to all the permutations of vector \langle 3, 1, 2 \rangle (i.e. \langle 1, 2, 3 \rangle, \langle 1, 3, 2 \rangle, \langle 2, 1, 3 \rangle, \langle 2, 3, 1 \rangle, \langle 3, 1, 2 \rangle, \langle 3, 2, 1 \rangle).

Usage A symmetry-breaking constraint.

See also lex2, lex_less

Key words predefined constraint, order constraint, matrix, matrix model, symmetry, lexicographic order
4.12 among

Origin

Constraint

among(NVAR, VARIABLES, VALUES)

Argument(s)

NVAR : dvar
VARIABLES : collection(var - dvar)
VALUES : collection(val - int)

Restriction(s)

NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose

NVAR is the number of variables of the collection VARIABLES which take their value in VALUES.

Arc input(s)

VARIABLES

Arc generator

SELF ⇝ collection(variables)

Arc arity

1

Arc constraint(s)

in(variables.var, VALUES)

Graph property(ies)

NARC = NVAR

Example

among 3 \left\{ \begin{array}{c}
\text{var} - 4, \\
\text{var} - 5,
\end{array} \right\}, \{\text{val} - 1, \text{val} - 5, \text{val} - 8\}

Parts (A) and (B) of Figure 4.18 respectively show the initial and final graph. Since we use the NARC graph property, the unary arcs of the final graph are stressed in bold.

![Figure 4.18: Initial and final graph of the among constraint](image)

Graph model

The arc constraint corresponds to the unary constraint in(variables.var, VALUES) defined in this catalog. Since this is a unary constraint we employ the SELF arc generator in order to produce an initial graph with a single loop on each vertex.
Automaton

Figure 4.19 depicts the automaton associated to the among constraint. To each variable VAR_i of the collection VARIABLES corresponds a 0-1 signature variable S_i. The following signature constraint links VAR_i and S_i: $\text{VAR}_i \in \text{VALUES} \iff S_i$. The automaton counts the number of variables of the VARIABLES collection which take their value in VALUES and finally assigns this number to NVAR.

![Automaton Diagram](image)

Figure 4.19: Automaton of the among constraint

![Hypergraph Diagram](image)

Figure 4.20: Hypergraph of the reformulation corresponding to the automaton of the among constraint

Remark

A similar constraint called between was introduced in CHIP in 1990.

The common constraint can be seen as a generalization of the among constraint where we allow the val attributes of the VALUES collection to be domain variables.

See also: among_diff, exactly, global_cardinality, count, common, nvalue, min_nvalue

Key words: value constraint, counting constraint, automaton, automaton with counters, alpha-acyclic constraint network(2)
4.13 among\textsubscript{diff_0}

Origin
Used in the automaton of \texttt{nvalue}.

Constraint
\texttt{among_diff_0(NVAR, VARIABLES)}

Argument(s)
\begin{itemize}
 \item \texttt{NVAR} : \texttt{dvar}
 \item \texttt{VARIABLES} : \texttt{collection(var - dvar)}
\end{itemize}

Restriction(s)
\begin{itemize}
 \item \texttt{NVAR} \geq 0
 \item \texttt{NVAR} \leq |\texttt{VARIABLES}|
 \item \texttt{required(\texttt{VARIABLES, var})}
\end{itemize}

Purpose
\texttt{NVAR} is the number of variables of the collection \texttt{VARIABLES} which take a value different from 0.

Arc input(s)
\texttt{VARIABLES}

Arc generator
\texttt{SELF} \mapsto \texttt{collection(variables)}

Arc arity
1

Arc constraint(s)
\texttt{variables.var} \neq 0

Graph property(ies)
\texttt{NARC} = \texttt{NVAR}

Example
\begin{equation}
\text{among_diff_0} \left(3, \left\{ \begin{array}{l}
 \text{var} - 0, \\
 \text{var} - 5,
\end{array} \right. \right)
\end{equation}

Parts (A) and (B) of Figure 4.21 respectively show the initial and final graph. Since we use the \texttt{NARC} graph property, the unary arcs of the final graph are stressed in bold.

![Figure 4.21: Initial and final graph of the among_diff_0 constraint](image)

Graph model
Since this is a unary constraint we employ the \texttt{SELF} arc generator in order to produce an initial graph with a single loop on each vertex.
$t: \text{NVAR} = C$

Figure 4.22: Automaton of the \texttt{among} _\texttt{diff} _\texttt{0} constraint

Figure 4.23: Hypergraph of the reformulation corresponding to the automaton of the \texttt{among} _\texttt{diff} _\texttt{0} constraint
Figure 4.22 depicts the automaton associated to the \texttt{among diff 0} constraint. To each variable VAR_i of the collection VARIABLES corresponds a 0-1 signature variable S_i. The following signature constraint links VAR_i and S_i: $\text{VAR}_i \neq 0 \Leftrightarrow S_i$. The automaton counts the number of variables of the VARIABLES collection which take a value different from 0 and finally assigns this number to NVAR.

See also \texttt{among nvalue}

Key words \texttt{value constraint} \texttt{counting constraint} \texttt{joker value} \texttt{automaton} \texttt{automaton with counters} \texttt{alpha-acyclic constraint network(2)}
4.14 among_interval

Origin: Derived from among.

Constraint: among_interval(NVAR, VARIABLES, LOW, UP)

Argument(s):
- **NVAR**: dvar
- **VARIABLES**: collection(var – dvar)
- **LOW**: int
- **UP**: int

Restriction(s):
- NVAR ≥ 0
- NVAR ≤ |VARIABLES|
- required(VARIABLES, var)
- LOW ≤ UP

Purpose:
NVAR is the number of variables of the collection VARIABLES taking a value that is located within interval [LOW, UP].

Arc input(s): VARIABLES

Arc generator: SELF ⥻→ collection(variables)

Arc arity: 1

Arc constraint(s):
- LOW ≤ variables.var
- variables.var ≤ UP

Graph property(ies): NARC = NVAR

Example:
among_interval(3, \{\var – 4, \var – 5, \var – 8, \var – 4, \var – 1\}, 3, 5)

The constraint holds since we have 3 values, namely 4, 5 and 4 which are situated within interval [3, 5]. Parts (A) and (B) of Figure 4.24 respectively show the initial and final graph. Since we use the NARC graph property, the unary arcs of the final graph are stressed in bold.

Figure 4.24: Initial and final graph of the among_interval constraint
Graph model

The arc constraint corresponds to a unary constraint. For this reason we employ the \textit{SELF} arc generator in order to produce a graph with a single loop on each vertex.

Automaton

Figure 4.25 depicts the automaton associated to the \texttt{among interval} constraint. To each variable VAR_i of the collection VARIABLES corresponds a 0-1 signature variable S_i. The following signature constraint links VAR_i and S_i: $\text{LOW} \leq \text{VAR}_i \land \text{VAR}_i \leq \text{UP} \Leftrightarrow S_i$. The automaton counts the number of variables of the VARIABLES collection which take their value in $[\text{LOW}, \text{UP}]$ and finally assigns this number to NVAR.

\[
\begin{align*}
C &= 0 \\
\text{LOW} &\leq \text{VAR}_1 \text{ and } \text{VAR}_1 &\leq \text{UP} & (C = C + 1) \\
\text{LOW} &> \text{VAR}_1 \text{ or } \text{VAR}_1 &> \text{UP} & (C = C + 1) \\
\end{align*}
\]

Figure 4.25: Automaton of the \texttt{among interval} constraint

\[
\begin{align*}
Q_1 &= S_1 \\
C_1 &= 0 \\
Q_2 &= S_2 \\
C_2 &= 0 \\
\ldots \\
Q_n &= S_n \\
C_n &= 0
\end{align*}
\]

Figure 4.26: Hypergraph of the reformulation corresponding to the automaton of the \texttt{among interval} constraint

Remark

By giving explicitly all values of the interval $[\text{LOW}, \text{UP}]$ the \texttt{among interval} constraint can be modelled with the \texttt{among} constraint. However when $\text{LOW} = \text{UP} + 1$ is a large quantity the \texttt{among interval} constraint provides a more compact form.

See also

\texttt{among}

Key words

value constraint, counting constraint, interval, automaton, automaton with counters, alpha-acyclic constraint network(2)
4.15 among_low_up

Origin
among_low_up(LOW, UP, VARIABLES, VALUES)

Constraint
LOW : int
UP : int
VARIABLES : collection(var – dvar)
VALUES : collection(val – int)

Restriction(s)
LOW ≥ 0
LOW ≤ |VARIABLES|
UP ≥ LOW
required(VARIABLES, var)
required(VALS, val)
distinct(VALS, val)

Purpose
Between LOW and UP variables of the VARIABLES collection are assigned to a value of the VALUES collection.

Arc input(s)
VARIABLES VALUES

Arc generator
PRODUCT → collection(variables, values)

Arc arity
2

Arc constraint(s)
variables.var = values.val

Graph property(ies)
• NARC ≥ LOW
• NARC ≤ UP

Example
among_low_up
\[
\begin{pmatrix}
1, 2, \{\text{var} – 9, \text{var} – 2, \text{var} – 4, \text{var} – 5\}, \\
\text{val} – 0, \\
\text{val} – 2, \\
\text{val} – 4, \\
\text{val} – 6, \\
\text{val} – 8
\end{pmatrix}
\]

Parts (A) and (B) of Figure 4.27 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold. The among_low_up constraint holds since between 1 and 2 variables of the VARIABLES collection are assigned to a value of the VALUES collection.

Graph model
Each arc constraint of the final graph corresponds to the fact that a variable is assigned to a value that belong to the VALUES collection. The two graph properties restrict the total number of arcs to the interval [LOW, UP].
Automaton

Figure 4.28 depicts the automaton associated to the \texttt{among_low_up} constraint. To each variable VAR_i of the collection VARIABLES corresponds a 0-1 signature variable S_i. The following signature constraint links VAR_i and S_i: $\text{VAR}_i \in \text{VALUES} \Leftrightarrow S_i$. The automaton counts the number of variables of the VARIABLES collection which take their value in VALUES and finally checks that this number is within the interval $[\text{LOW}, \text{UP}]$.

Used in

\texttt{among_seq, cycle_card_on_path, interval_and_count, sliding_card_skip0}

See also

\texttt{among}

Key words

\texttt{value constraint, counting constraint, automaton, automaton with counters, alpha-acyclic constraint network(2), acyclic, bipartite, no_loop}
Figure 4.27: Initial and final graph of the among low up constraint

Figure 4.28: Automaton of the among low up constraint

Figure 4.29: Hypergraph of the reformulation corresponding to the automaton of the among low up constraint
4.16 among_modulo

Origin
Derived from among.

Constraint
among_modulo(NVAR, VARIABLES, REMAINDER, QUOTIENT)

Argument(s)
NVAR : dvar
VARIABLES : collection(var \(- dvar\))
REMAINDER : int
QUOTIENT : int

Restriction(s)
NVAR \(\geq 0\)
NVAR \(\leq |VARIABLES|\)
required(VARIABLES, var)
REMAINDER \(\geq 0\)
REMAINDER \(<\) QUOTIENT
QUOTIENT \(> 0\)

Purpose
NVAR is the number of variables of the collection VARIABLES taking a value that is congruent to REMAINDER modulo QUOTIENT.

Arc input(s)
VARIABLES

Arc generator
SELF \(\mapsto\) collection(variables)

Arc arity
1

Arc constraint(s)
variables.var mod QUOTIENT = REMAINDER

Graph property(ies)
NARC = NVAR

Example
among_modulo(3, {var - 4, var - 5, var - 8}, 0, 2)

In this example REMAINDER = 0 and QUOTIENT = 2 specifies that we count the number of even values taken by the different variables. Parts (A) and (B) of Figure 4.30 respectively show the initial and final graph. Since we use the NARC graph property, the unary arcs of the final graph are stressed in bold.

Graph model
The arc constraint corresponds to a unary constraint. For this reason we employ the SELF arc generator in order to produce a graph with a single loop on each vertex.

Automaton
Figure 4.31 depicts the automaton associated to the among_modulo constraint. To each variable VAR\(_i\) of the collection VARIABLES corresponds a 0-1 signature variable S\(_i\). The following signature constraint links VAR\(_i\) and S\(_i\): VAR\(_i\) mod QUOTIENT = REMAINDER \(\leftrightarrow\) S\(_i\).
Figure 4.30: Initial and final graph of the \texttt{among_modulo} constraint

Figure 4.31: Automaton of the \texttt{among_modulo} constraint

Figure 4.32: Hypergraph of the reformulation corresponding to the automaton of the \texttt{among_modulo} constraint
Remark By giving explicitly all values v which satisfy the equality $v \mod \text{QUOTIENT} = \text{REMAINDER}$ the among modulo constraint can be modelled with the among constraint. However the among modulo constraint provides a more compact form.

See also among

Key words value constraint, counting constraint, modulo, automaton, automaton with counters, alpha-acyclic constraint network(2).
4.17 among_seq

Origin

Constraint

\[\text{among_seq}(\text{LOW}, \text{UP}, \text{SEQ}, \text{VARIABLES}, \text{VALUES}) \]

Argument(s)

- \text{LOW} : int
- \text{UP} : int
- \text{SEQ} : int
- \text{VARIABLES} : collection(var – dvar)
- \text{VALUES} : collection(val – int)

Restriction(s)

- \text{LOW} \geq 0
- \text{LOW} \leq |\text{VARIABLES}|
- \text{UP} \geq \text{LOW}
- \text{SEQ} > 0
- \text{SEQ} \geq \text{LOW}
- \text{SEQ} \leq |\text{VARIABLES}|
- \text{required(\text{VARIABLES}, \text{var})}
- \text{required(\text{VALUES}, \text{val})}
- \text{distinct(\text{VALUES}, \text{val})}

Purpose

Constrains all sequences of SEQ consecutive variables of the collection VARIABLES to take at least LOW values in VALUES and at most UP values in VALUES.

Arc input(s)

\text{VARIABLES}

Arc generator

\[\text{PATH} \mapsto \text{collection} \]

Arc arity

\text{SEQ}

Arc constraint(s)

\[\text{among_low_up(LOW, UP, collection, VALUES)} \]

Graph property(ies)

\[\text{NARC} = |\text{VARIABLES}| - \text{SEQ} + 1 \]

Example

\[\text{among_seq} \left\{ \begin{array}{l}
\{ \text{var} - 9, \\
\text{var} - 2, \\
\text{var} - 4, \\
1, 2, 4, \\
\text{var} - 5, \\
\text{var} - 5, \\
\text{var} - 7, \\
\text{var} - 2 \} \\
\{ \text{val} - 0, \\
\text{val} - 2, \\
\text{val} - 4, \\
\text{val} - 6, \\
\text{val} - 8 \}
\end{array} \right. \]

The previous constraint holds since the different sequences of 4 consecutive variables contains respectively 2, 2, 1 and 1 even numbers.
Graph model

A constraint on sliding sequences of consecutives variables. Each vertex of the graph corresponds to a variable. Since they link SEQ variables, the arcs of the graph correspond to hyperarcs. In order to link SEQ consecutive variables we use the arc generator PATH. The constraint associated to an arc corresponds to the among_low_up constraint defined at another entry of this catalog.

Signature

Since we use the PATH arc generator with an arity of SEQ on the items of the VARIABLES collection, the expression |VARIABLES| − SEQ + 1 corresponds to the maximum number of arcs of the final graph. Therefore we can rewrite the graph property NARC = |VARIABLES| − SEQ + 1 to NARC ≥ |VARIABLES| − SEQ + 1 and simplify NARC to NARC.

Algorithm

See also among among_low_up

Key words decomposition sliding sequence constraint sequence hypergraph
4.18 arith

Origin
Used in the definition of several automata

Constraint
arith(VARIABLES, RELOP, VALUE)

Argument(s)
VARIABLES : collection(var – dvar)
RELOP : atom
VALUE : int

Restriction(s)
required(VARIABLES, var)
RELOP ∈ {=, ≠, <, ≥, >, ≤}

Purpose
Enforce for all variables var of the VARIABLES collection to have var RELOP VALUE.

Arc input(s)
VARIABLES

Arc generator
SELF ← collection(variables)

Arc arity
1

Arc constraint(s)
variables.var RELOP VALUE

Graph property(ies)
NARC = |VARIABLES|

Example

\[
\text{arith} \left(\begin{array}{c}
\text{var} - 4, \\
\text{var} - 5, \\
\text{var} - 7, \\
\text{var} - 4, \\
\text{var} - 5
\end{array} \right), <, 9
\]

The constraint holds since all variables of are strictly less than 9. Parts (A) and (B) of Figure 4.33 respectively show the initial and final graph. Since we use the NARC graph property, the unary arcs of the final graph are stressed in bold.

![Figure 4.33: Initial and final graph of the arith constraint](image)

Automaton
Figure 4.34 depicts the automaton associated to the arith constraint. To each variable VAR, of the collection VARIABLES corresponds a 0-1 signature variable S. The following signature constraint links VAR, and S: VAR, RELOP VALUE ⇔ S. The automaton enforces for each variable VAR, the condition VAR, RELOP VALUE.

Used in
arith_sliding
See also among count

Key words decomposition value constraint domain definition automaton automaton without counters

\[
\text{VAR}_i \text{RELOP VALUE}
\]

Figure 4.34: Automaton of the \texttt{arith} constraint
Figure 4.35: Hypergraph of the reformulation corresponding to the automaton of the arith constraint
4.19 arith_or

Origin Used in the definition of several automata

Constraint arith_or(VARIABLES1, VARIABLES2, RELOP, VALUE)

Argument(s)
- VARIABLES1 : collection(var – dvar)
- VARIABLES2 : collection(var – dvar)
- RELOP : atom
- VALUE : int

Restriction(s)
- required(VARIABLES1, var)
- required(VARIABLES2, var)
- |VARIABLES1| = |VARIABLES2|
- RELOP ∈ [=, ≠, <, ≥, >, ≤]

Purpose Enforce for all pairs of variables var1, var2, of the VARIABLES1 and VARIABLES2 collections to have var1, RELOP VALUE ∨ var2, RELOP VALUE.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT(=) → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var RELOP VALUE ∨ variables2.var RELOP VALUE

Graph property(ies) NARC = |VARIABLES1|

Example arith_or

\[
\begin{pmatrix}
\text{var - 0,} \\
\text{var - 1,} \\
\text{var - 0,} \\
\text{var - 0,} \\
\text{var - 1,} \\
\text{var - 0,} \\
\end{pmatrix}
\]

The constraint holds since for all pairs of variables var1, var2, of the VARIABLES1 and VARIABLES2 collections we have that at least one of the variables is equal to 0. Parts (A) and (B) of Figure 4.36 respectively show the initial and final graphs. Since we use the NARC graph property, the unary arcs of the final graph are stressed in bold.

Automaton Figure 4.37 depicts the automaton associated to the arith_or constraint. Let VAR1i and VAR2i be the ith variables of the VARIABLES1 and VARIABLES2 collections. To each pair of variables (VAR1i, VAR2i) corresponds a signature variable Si. The following signature constraint links VAR1i, VAR2i and Si: VAR1i, RELOP VALUE ∨ VAR2i, RELOP VALUE ⇔ Si. The automaton enforces for each pair of variables VAR1i,VAR2i, the condition VAR1i, RELOP VALUE ∨ VAR2i, RELOP VALUE.
Figure 4.36: Initial and final graph of the arith\texttt{or} constraint

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure4.36}
\caption{Initial and final graph of the arith\texttt{or} constraint}
\end{figure}

Figure 4.37: Automaton of the arith\texttt{or} constraint

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure4.37}
\caption{Automaton of the arith\texttt{or} constraint}
\end{figure}

Figure 4.38: Hypergraph of the reformulation corresponding to the automaton of the arith\texttt{or} constraint

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure4.38}
\caption{Hypergraph of the reformulation corresponding to the automaton of the arith\texttt{or} constraint}
\end{figure}
See also

Key words
4.20 arith_sliding

Origin
Used in the definition of some automaton

Constraint
arith_sliding(VARIABLES, RELOP, VALUE)

Argument(s)
- VARIABLES : collection(var – dvar)
- RELOP : atom
- VALUE : int

Restriction(s)
required(VARIABLES, var)
RELOP ∈ [≠, <, ≥, >, ≤]

Purpose
Enforce for all sequences of variables var₁, var₂, ..., varᵢ of the VARIABLES collection to have (var₁ + var₂ + ... + varᵢ) RELOP VALUE.

Arc input(s)
VARIABLES

Arc generator
PATH₁ → collection

Arc arity
*

Arc constraint(s)
arith(collection, RELOP, VALUE)

Graph property(ies)
\[\text{NARC} = |\text{VARIABLES}| \]

Example
arith_sliding \(\left\{ \begin{array}{l}
\text{var} - 0, \\
\text{var} - 0, \\
\text{var} - 1, \\
\text{var} - 2, \\
\text{var} - 0, \\
\text{var} - 0, \\
\text{var} - 3
\end{array} \right\} < 4 \)

The previous constraint holds since all the following seven inequalities hold:
- \(0 < 4 \),
- \(0 + 0 < 4 \),
- \(0 + 0 + 1 < 4 \),
- \(0 + 0 + 1 + 2 < 4 \),
- \(0 + 0 + 1 + 2 + 0 < 4 \),
- \(0 + 0 + 1 + 2 + 0 + 0 < 4 \),
- \(0 + 0 + 1 + 2 + 0 + 0 - 3 < 4 \).

Automaton
Figure 4.39 depicts the automaton associated to the arith_sliding constraint. To each item of the collection VARIABLES corresponds a signature variable \(Sᵢ \), which is equal to 0.

See also
arith, cumulative

Key words
decomposition, sliding sequence constraint, sequence, hypergraph, automaton, automaton with counters
Figure 4.39: Automaton of the arith_sliding constraint

Figure 4.40: Hypergraph of the reformulation corresponding to the automaton of the arith_sliding constraint
4.21 assign_and_counts

Origin
N. Beldiceanu

Constraint
assign_and_counts(COLOURS, ITEMS, RELOP, LIMIT)

Argument(s)
- COLOURS : collection(val - int)
- ITEMS : collection(bin - dvar, colour - dvar)
- RELOP : atom
- LIMIT : dvar

Restriction(s)
- required(COLOURS.val)
- distinct(COLOURS.val)
- required(ITEMS.[bin.colour])
- RELOP ∈ [=, ≠, <, ≥, >, ≤]

Purpose
Given several items (each of them having a specific colour which may not be initially fixed), and different bins, assign each item to a bin, so that the total number n of items of colour COLOURS in each bin satisfies the condition n RELOP LIMIT.

Derived Collection(s)
- col(VALUE - collection(val - int), [item(val - COLOURS.val)])

Arc input(s)
- ITEMS ITEMS

Arc generator
PRODUCT ↦ collection(items1, items2)

Arc arity
2

Arc constraint(s)
- items1.bin = items2.bin

Sets

Succ ↦
- source,
- variables ⇒ col(VALUE - collection(var - dvar), [item(var - ITEMS.colour)])

Constraint(s) on sets
counts(VALUE, variables, RELOP, LIMIT)

Example
assign_and_counts

\[
\begin{align*}
\text{counts} & \left(\{\text{val - 4}\}, \\
& \quad \{\text{bin - 1 colour - 4}, \text{bin - 3 colour - 4}, \text{bin - 1 colour - 4}, \text{bin - 1 colour - 5}\}; \leq 2 \right)
\end{align*}
\]

Parts (A) and (B) of Figure 4.41 respectively show the initial and final graph. The final graph consists of the following two connected components:

- The connected component containing six vertices corresponds to the items which are assigned to bin 1.
The connected component containing two vertices corresponds to the items which are assigned to bin 3.

The assign and counts constraint holds since for each set of successors of the vertices of the final graph no more than two items take colour 4. Figure 4.42 shows the solution associated to the example. The items and the bins are respectively represented by little squares and by the different columns. Each little square contains the value of the key attribute of the item to which it corresponds. The items for which the colour attribute is equal to 4 are located under the thick line.

![Graph model](image)

Figure 4.41: Initial and final graph of the assign and counts constraint

![Assignment of items to bins](image)

Figure 4.42: Assignment of the items to the bins

Graph model

We enforce the counts constraint on the colour of the items that are assigned to the same bin.

Automaton

Figure 4.33 depicts the automaton associated to the assign and counts constraint. To each colour attribute \texttt{COLOUR}, of the collection \texttt{ITEMS} corresponds a 0-1 signature variable \texttt{S}. The following signature constraint links \texttt{COLOUR}, and \texttt{S}: \texttt{COLOUR} \in \texttt{COLOURS} \Leftrightarrow \texttt{S}. For all items of the collection \texttt{ITEMS} for which the colour attribute takes its value in \texttt{COLOURS}, counts for each value assigned to the bin attribute its number of occurrences \texttt{n}, and finally imposes the condition \texttt{n RELOP LIMIT}.
Usage

Some persons have pointed out that it is impossible to use constraints such as `among`, `atleast`, `atmost`, `count` or `global_cardinality` if the set of variables is not initially known. However, this is for instance required in practice for some timetabling problems.

See also

`count`, `counts`

Key words

`assignment`, `coloured`, `automaton`, `automaton with array of counters`, `derived collection`
4.22 assign_and_nvalues

Origin
Derived from assign_and_counts and nvalues

Constraint
assign_and_nvalues(ITEMS, RELOP, LIMIT)

Argument(s)
ITEMS : collection(bin = dvar, value = dvar)
RELOP : atom
LIMIT : dvar

Restriction(s)
required(ITEMS, [bin, value])
RELOP ∈ [=, ≠, <, ≥, >, ≤]

Purpose
Given several items (each of them having a specific value which may not be initially fixed),
and different bins, assign each item to a bin, so that the number n of distinct values in each bin
satisfies the condition n RELOP LIMIT.

Arc input(s)
ITEMS ITEMS

Arc generator
PRODUCT → collection(items1, items2)

Arc arity
2

Arc constraint(s)
items1.bin = items2.bin

Sets
SUCC →
[source,
 variables = col(VARIABLES = collection(var = dvar), [item(var = ITEMS.value)])]

Constraint(s) on sets
nvalues(variables, RELOP, LIMIT)

Example
assign_and_nvalues
\[
\begin{pmatrix}
\text{bin = } 2 & \text{value = } 3, \\
\text{bin = } 1 & \text{value = } 5, \\
\text{bin = } 2 & \text{value = } 3, \\
\text{bin = } 2 & \text{value = } 3, \\
\text{bin = } 2 & \text{value = } 4,
\end{pmatrix}
w = 2
\]

Parts (A) and (B) of Figure 4.44 respectively show the initial and final graph. The final graph consists of the following two connected components:

- The connected component containing eight vertices corresponds to the items which
 are assigned to bin 2.
- The connected component containing two vertices corresponds to the items which
 are assigned to bin 1.

The assign_and_nvalues constraint holds since for each set of successors of the vertices
of the final graph no more than two distinct values are used:

- The unique item assigned to bin 1 uses value 5.
Figure 4.44: Initial and final graph of the assign and nvalues constraint

Figure 4.45: An assignment with at most two distinct values in parallel
• Items assigned to bin 2 use values 3 and 4.

Figure 4.45 depicts the solution corresponding to the example.

Graph model
We enforce the \texttt{nvalue} constraint on the items that are assigned to the same bin.

Usage
Let us give two examples where the \texttt{assign and nvalues} constraint is useful:

• Quite often, in bin-packing problems, each item has a specific type, and one wants to assign items of similar type to each bin.

• In a vehicle routing problem, one wants to restrict the number of towns visited by each vehicle. Note that several customers may be located at the same town. In this example, each bin would correspond to a vehicle, each item would correspond to a visit to a customer, and the colour of an item would be the location of the corresponding customer.

See also \texttt{nvalue nvalues}

Key words \texttt{assignment number of distinct values}
4.23 atleast

Origin
CHIP

Constraint
`atleast(N, VARIABLES, VALUE)`

Argument(s)
- `N` : int
- `VARIABLES` : collection(var - dvar)
- `VALUE` : int

Restriction(s)
- `N ≥ 0`
- `N ≤ |VARIABLES|`
- `required(VARIABLES, var)`

Purpose
At least `N` variables of the `VARIABLES` collection are assigned to value `VALUE`.

Arc input(s)
`VARIABLES`

Arc generator
`SELF` \hookrightarrow collection(variables)

Arc arity
1

Arc constraint(s)
`variables.var = VALUE`

Graph property(ies)
`NARC ≥ N`

Example
`atleast(2, \{\text{var} - 4, \text{var} - 2, \text{var} - 4, \text{var} - 5\}, 4)`

Parts (A) and (B) of Figure 4.46 respectively show the initial and final graph. Since we use the `NARC` graph property, the unary arcs of the final graph are stressed in bold. The `atleast` constraint holds since at least 2 variables are assigned to value 4.

![Graph example](image)

Figure 4.46: Initial and final graph of the `atleast` constraint

Graph model
Since we use a unary arc constraint (VALUE is fixed) we employ the `SELF` arc generator in order to produce a graph with a single loop on each vertex.

Automaton
Figure 4.47 depicts the automaton associated to the `atleast` constraint. To each variable `VAR_i` of the collection `VARIABLES` corresponds a 0-1 signature variable `S_i`. The following signature constraint links `VAR_i` and `S_i`: `VAR_i = VALUE ⇔ S_i`. The automaton counts the number of variables of the `VARIABLES` collection which are assigned to `VALUE` and finally checks that this number is greater than or equal to `N`.

![Automaton diagram](image)
Figure 4.47: Automaton of the \textit{atleast} constraint

Figure 4.48: Hypergraph of the reformulation corresponding to the automaton of the \textit{atleast} constraint
See also

\text{at most, among, exactly}

Key words

\text{value constraint, at least, automaton, automaton with counters, alpha-acyclic constraint network(2)}}
4.24 atmost

<table>
<thead>
<tr>
<th>Origin</th>
<th>CHIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint</td>
<td>atmost((N, \text{VARIABLES}, \text{VALUE}))</td>
</tr>
</tbody>
</table>
| Argument(s) | \(N\) : int
\(\text{VARIABLES}\) : collection(var - dvar)
\(\text{VALUE}\) : int |
| Restriction(s)| \(N \geq 0\)
required(VARIABLES, var) |
| Purpose | At most \(N\) variables of the \(\text{VARIABLES}\) collection are assigned to value \(\text{VALUE}\). |

Arc input(s)	\(\text{VARIABLES}\)
Arc generator	\(\text{SELF} \rightarrow \text{collection(variables)}\)
Arc arity	1
Arc constraint(s)	variables.var = VALUE
Graph property(ies)	\(\text{NARC} \leq N\)
Example	atmost(1, \{var - 4, var - 2, var - 4, var - 5\}, 2)

Parts (A) and (B) of Figure 4.49 respectively show the initial and final graph. Since we use the \(\text{NARC}\) graph property, the unary arcs of the final graph are stressed in bold. The \atmost\ constraint holds since at most one variable is assigned to value 2.

![Graph example](image)

Figure 4.49: Initial and final graph of the atmost constraint

Graph model

Since we use a unary arc constraint (VALUE is fixed) we employ the \textit{SELF} arc generator in order to produce a graph with a single loop on each vertex.

Automaton

Figure 4.50 depicts the automaton associated to the \atmost\ constraint. To each variable \(\text{VAR}_i\) of the collection \(\text{VARIABLES}\) corresponds a 0-1 signature variable \(S_i\). The following signature constraint links \(\text{VAR}_i\) and \(S_i\): \(\text{VAR}_i = \text{VALUE} \leftrightarrow S_i\). The automaton counts the number of variables of the \(\text{VARIABLES}\) collection which are assigned to \text{VALUE} and finally checks that this number is less than or equal to \(N\).
Figure 4.50: Automaton of the atmost constraint

Figure 4.51: Hypergraph of the reformulation corresponding to the automaton of the atmost constraint
See also: at least, among, exactly, cumulative

Key words: value constraint, at most, automaton, automaton with counters, alpha-acyclic constraint network(2)
4.25 balance

Origin N. Beldiceanu

Constraint balance(BALANCE, VARIABLES)

Argument(s)
BALANCE : dvar
VARIABLES : collection(var - dvar)

Restriction(s)
BALANCE ≥ 0
BALANCE ≤ |VARIABLES|
required(VARIABLES, var)

Purpose BALANCE is equal to the difference between the number of occurrence of the value that occurs
the most and the value that occurs the least within the collection of variables VARIABLES.

Arc input(s) VARIABLES
Arc generator CLIQUE → collection(variables1, variables2)
Arc arity 2
Arc constraint(s) variables1.var = variables2.var

Graph property(ies) RANGE_NSCC = BALANCE

Example balance (\[
\begin{cases}
\text{var} - 3, \\
\text{var} - 1, \\
\text{var} - 7, \\
\text{var} - 1, \\
\text{var} - 1
\end{cases}
\])

In this example, values 1, 3 and 7 are respectively used 3, 1 and 1 times. BALANCE is
assigned to the difference between the maximum and minimum number of the previous
occurrences (i.e. 3 - 1). Parts (A) and (B) of Figure 4.52 respectively show the initial and
final graph. Since we use the RANGE_NSCC graph property, we show the largest and
smallest strongly connected components of the final graph.

Graph model The graph property RANGE_NSCC constrains the difference between the sizes of the
largest and smallest strongly connected components.

Automaton Figure 4.53 depicts the automaton associated to the balance constraint. To each item of
the collection VARIABLES corresponds a signature variable S_i, which is equal to 1.

Usage One application of this constraint is to enforce a balanced assignment of values, no matter
how many distinct values will be used. In this case one will push down the maximum value
of the first argument of the balance constraint.

See also balance_interval, balance_modulo, balance_partition, tree_range

Key words value constraint, assignment, balanced assignment, automaton,
automaton with array of counters, equivalence.
Figure 4.52: Initial and final graph of the balance constraint

Figure 4.53: Automaton of the balance constraint
4.26 balance_interval

Origin
Derived from balance

Constraint
\(\text{balance}_\text{interval}(\text{BALANCE}, \text{VARIABLES}, \text{SIZE}_\text{INTERVAL}) \)

Argument(s)
- \(\text{BALANCE} : \text{dvar} \)
- \(\text{VARIABLES} : \text{collection}(\text{var} - \text{dvar}) \)
- \(\text{SIZE}_\text{INTERVAL} : \text{int} \)

Restriction(s)
- \(\text{BALANCE} \geq 0 \)
- \(\text{BALANCE} \leq |\text{VARIABLES}| \)
- \(\text{required}(\text{VARIABLES}, \text{var}) \)
- \(\text{SIZE}_\text{INTERVAL} > 0 \)

Purpose
Consider the largest set \(S_1 \) (respectively the smallest set \(S_2 \)) of variables of the collection \(\text{VARIABLES} \) which take their value in a same interval \([\text{SIZE}_\text{INTERVAL} \cdot k, \text{SIZE}_\text{INTERVAL} \cdot k + \text{SIZE}_\text{INTERVAL} - 1]\), where \(k \) is an integer. \(\text{BALANCE} \) is equal to the difference between the cardinality of \(S_2 \) and the cardinality of \(S_1 \).

Arc input(s)
\(\text{VARIABLES} \)

Arc generator
\(\text{CLIQUE} \rightarrow \text{collection} (\text{variables1}, \text{variables2}) \)

Arc arity
2

Arc constraint(s)
\(\text{variables1}.\text{var}/\text{SIZE}_\text{INTERVAL} = \text{variables2}.\text{var}/\text{SIZE}_\text{INTERVAL} \)

Graph property(ies)
\(\text{RANGE}_\text{NSCC} = \text{BALANCE} \)

Example
\(\text{balance}_\text{interval} \left(\begin{array}{c} \text{var} - 6, \\ \text{var} - 4, \\ \text{var} - 3, \\ \text{var} - 3, \\ \text{var} - 4 \end{array} \right), 3 \)

In the previous example, the third parameter \(\text{SIZE}_\text{INTERVAL} \) defines the following family of intervals \([3 \cdot k, 3 \cdot k + 2]\), where \(k \) is an integer. Values 6, 4, 3, 3 and 4 are respectively located within intervals \([6, 8]\), \([3, 5]\), \([3, 5]\), \([3, 5]\) and \([3, 5]\). Therefore intervals \([6, 8]\) and \([3, 5]\) are respectively used 1 and 4 times. \(\text{BALANCE} \) is assigned to the difference between the maximum and minimum number of the previous occurrences (i.e. \(4 - 1 \)). Parts (A) and (B) of Figure 4.54 respectively show the initial and final graph. Since we use the \(\text{RANGE}_\text{NSCC} \) graph property, we show the largest and smallest strongly connected components of the final graph.

Graph model
The graph property \(\text{RANGE}_\text{NSCC} \) constrains the difference between the sizes of the largest and smallest strongly connected components.
Figure 4.54: Initial and final graph of the balance interval constraint

Figure 4.55: Automaton of the balance interval constraint
Automaton

Figure 4.55 depicts the automaton associated to the `balance_interval` constraint. To each item of the collection `VARIABLES` corresponds a signature variable S_i, which is equal to 1.

Usage

One application of this constraint is to enforce a `balanced assignment` of interval of values, no matter how many distinct interval of values will be used. In this case one will `push down` the maximum value of the first argument of the `balance_interval` constraint.

See also

`balance`

Key words

`value constraint`, `interval`, `assignment`, `balanced assignment`, `automaton`, `automaton with array of counters`, `equivalence`
4.27 balance_modulo

<table>
<thead>
<tr>
<th>Origin</th>
<th>Derived from balance_modulo</th>
<th>balance_modulo(BALANCE, VARIABLES, M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint</td>
<td>BALANCE ≥ 0</td>
<td>BALANCE ≤</td>
</tr>
<tr>
<td>Argument(s)</td>
<td>BALANCE : dvar</td>
<td>VARIABLES : collection(var − dvar)</td>
</tr>
<tr>
<td>Restriction(s)</td>
<td>BALANCE ≥ 0</td>
<td>BALANCE ≤</td>
</tr>
</tbody>
</table>

Purpose
Consider the largest set S_1 (respectively the smallest set S_2) of variables of the collection VARIABLES which have the same remainder when divided by M. BALANCE is equal to the difference between the cardinality of S_2 and the cardinality of S_1.

Arc input(s) VARIABLES
Arc generator CLIQUE → collection(variables1, variables2)
Arc arity 2
Arc constraint(s) variables1.var mod M = variables2.var mod M
Graph property(ies) RANGE_NSCC = BALANCE

Example

\[
\text{balance_modulo} \begin{pmatrix} 2, \{ \text{var} - 6, \\
\text{var} - 1, \\
\text{var} - 7, \\
\text{var} - 1, \\
\text{var} - 5 \} \end{pmatrix}, 3
\]

In this example values 6, 1, 7, 1, 5 are respectively associated to the equivalence classes 0, 1, 1, 1, 2. Therefore the equivalence classes 0, 1 and 2 are respectively used 1, 3 and 1 times. BALANCE is assigned to the difference between the maximum and minimum number of the previous occurrences (i.e. $3 - 1$). Parts (A) and (B) of Figure 4.56 respectively show the initial and final graph. Since we use the RANGE_NSCC graph property, we show the largest and smallest strongly connected components of the final graph.

Graph model
The graph property RANGE_NSCC constrains the difference between the sizes of the largest and smallest strongly connected components.

Automaton
Figure 4.57 depicts the automaton associated to the balance_modulo constraint. To each item of the collection VARIABLES corresponds a signature variable S_i, which is equal to 1.
Figure 4.56: Initial and final graph of the balance modulo constraint

Figure 4.57: Automaton of the balance modulo constraint
Usage

One application of this constraint is to enforce a balanced assignment of values, no matter how many distinct equivalence classes will be used. In this case one will push down the maximum value of the first argument of the balance_modulo constraint.

See also

balance

Key words

value constraint, modulo, assignment, balanced assignment, automaton, automaton with array of counters, equivalence
4.28 balance_partition

Origin
Derived from balance

Constraint
balance_partition(BALANCE, VARIABLES, PARTITIONS)

Type(s)
VALUES : collection(val − int)

Argument(s)
BALANCE : dvar
VARIABLES : collection(var − dvar)
PARTITIONS : collection(p − VALUES)

Restriction(s)
required(VARIABLES, val)
distinct(VARIABLES, val)
BALANCE ≥ 0
BALANCE ≤ |VARIABLES|
required(VARIABLES, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose
Consider the largest set S_1 (respectively the smallest set S_2) of variables of the collection VARIABLES which take their value in the same partition of the collection PARTITIONS. BALANCE is equal to the difference between the cardinality of S_2 and the cardinality of S_1.

Arc input(s)
VARIABLES

Arc generator
$CLIQUE \mapsto$ collection(variables1, variables2)

Arc arity
2

Arc constraint(s)
in_same_partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies)
RANGE_NSCC = BALANCE

Example
balance_partition

\[
\begin{align*}
\{ \text{val} - 6, \\
\text{val} - 2, \\
\text{val} - 6, \\
\text{var} - 6, \\
\text{var} - 4, \\
\text{var} - 4 \} & \quad \{ p - \{ \text{val} - 1, \text{val} - 3 \} \}, \\
\{ p - \{ \text{val} - 4 \} \} & \quad \{ p - \{ \text{val} - 2, \text{val} - 6 \} \}
\end{align*}
\]

In this example values 6, 2, 6, 4, 4 are respectively associated to the partitions $p - \{ \text{val} - 2, \text{val} - 6 \}$ and $p - \{ \text{val} - 4 \}$. Partitions $p - \{ \text{val} - 4 \}$ and $p - \{ \text{val} - 2, \text{val} - 6 \}$ are respectively used 2 and 3 times. BALANCE is assigned to the difference between the maximum and minimum number of the previous occurrences (i.e. $3 - 2$). Note that we don’t consider those partitions that are not used at all. Parts (A) and (B) of Figure 4.58 respectively show the initial and final graph. Since we use the RANGE_NSCC graph property, we show the largest and smallest strongly connected components of the final graph.
Graph model

The graph property RANGE_NS CC constrains the difference between the sizes of the largest and smallest strongly connected components.

Usage

One application of this constraint is to enforce a balanced assignment of values, no matter how many distinct partitions will be used. In this case one will push down the maximum value of the first argument of the balance partition constraint.

See also

balance

Key words

Value constraint | partition | assignment | balanced assignment | equivalence
Figure 4.58: Initial and final graph of the balance partition constraint
4.29 bin_packing

Origin
Derived from cumulative

Constraint
$\text{bin_packing}(\text{CAPACITY}, \text{ITEMS})$

Argument(s)
- $\text{CAPACITY} : \text{int}$
- $\text{ITEMS} : \text{collection}(\text{bin} - \text{dvar}, \text{weight} - \text{int})$

Restriction(s)
- $\text{CAPACITY} \geq 0$
- $\text{required}([\text{ITEMS}, \text{bin}, \text{weight}])$
- $\text{ITEMS}.\text{weight} \geq 0$
- $\text{ITEMS}.\text{weight} \leq \text{CAPACITY}$

Purpose
Given several items of the collection ITEMS (each of them having a specific weight), and different bins of a fixed capacity, assign each item to a bin so that the total weight of the items in each bin does not exceed CAPACITY.

Arc input(s)
$\text{ITEMS} \quad \text{ITEMS}$

Arc generator
$\text{PRODUCT} \rightarrow \text{collection}(\text{items1}, \text{items2})$

Arc arity
2

Arc constraint(s)
$\text{items1}.\text{bin} = \text{items2}.\text{bin}$

Sets
- $\text{SUCC} \rightarrow$
 - source,
 - variables = col $\text{VARIABLES} - \text{collection}([\text{var} - \text{dvar}], [\text{item}([\text{var} - \text{ITEMS}.\text{weight}])])$

Constraint(s) on sets
$\text{sum_ctr}([\text{variables}, \leq, \text{CAPACITY}])$

Example
$\text{bin_packing} \left(5, \left\{ \begin{array}{ll}
\text{bin} - 3 & \text{weight} - 4, \\
\text{bin} - 1 & \text{weight} - 3, \\
\text{bin} - 3 & \text{weight} - 1
\end{array} \right\} \right)$

Parts (A) and (B) of Figure 4.59 respectively show the initial and final graph. Each connected component of the final graph corresponds to the items which are all assigned to the same bin. The bin_packing constraint holds since the sum of the height of items which are assigned to bins 1 and 3 is respectively equal to 3 and 5. The previous quantities are both less than or equal to the maximum CAPACITY 5. Figure 4.60 shows the solution associated to the previous example.

Graph model
We enforce the sum_ctr constraint on the weight of the items that are assigned to the same bin.

Automaton
Figure 4.61 depicts the automaton associated to the bin_packing constraint. To each item of the collection ITEMS corresponds a signature variable S_i, which is equal to 1.
Figure 4.59: Initial and final graph of the bin-packing constraint

Figure 4.60: Bin-packing solution

Figure 4.61: Automaton of the bin-packing constraint
Remark

Note the difference with the classical bin-packing problem [66, page 221] where one wants to find solutions that minimize the number of bins. In our case each item may be assigned only to specific bins (i.e. the different values of the bin variable) and the goal is to find a feasible solution. This constraint can be seen as a special case of the cumulative constraint [67], where all tasks durations are equal to one.

In [68] the CAPACITY parameter of the bin_packing constraint is replaced by a collection of domain variables representing the load of each bin (i.e. the sum of the weights of the items assigned to a bin). This allows representing problems where a minimum level has to be reached in each bin.

Algorithm

[69, 70, 71, 72, 68]

See also

cumulative

Key words

resource constraint, assignment, automaton, automaton with array of counters
4.30 binary_tree

Origin

Derived from tree

Constraint

binary_tree(NTREES, NODES)

Argument(s)

NTREES : dvar
NODES : collection(index − int, succ − dvar)

Restriction(s)

NTREES ≥ 0
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Cover the digraph G described by the NODES collection with NTREES binary trees in such a way that each vertex of G belongs to one distinct binary tree. The edges of the binary trees are directed from their leaves to their respective root.

Arc input(s)

NODES

Arc generator

CLIQUE → collection(nodes1, nodes2)

Arc arity

2

Arc constraint(s)

nodes1.succ = nodes2.index

Graph property(ies)

• MAX_NSCC ≤ 1
• NCC = NTREES
• MAX_ID ≤ 2

Example

binary_tree 2, \[
\begin{pmatrix}
\text{index} - 1 & \text{succ} - 1, \\
\text{index} - 2 & \text{succ} - 3, \\
\text{index} - 3 & \text{succ} - 5, \\
\text{index} - 4 & \text{succ} - 7, \\
\text{index} - 5 & \text{succ} - 1, \\
\text{index} - 6 & \text{succ} - 1, \\
\text{index} - 7 & \text{succ} - 7, \\
\text{index} - 8 & \text{succ} - 5
\end{pmatrix}
\]

Parts (A) and (B) of Figure 4.62 respectively show the initial and final graph. Since we use the NCC graph property, we display the two connected components of the final graph. Each of them corresponds to a binary tree. Since we use the MAX_ID graph property, we also show with a double circle a vertex which has a maximum number of predecessors.

The binary_tree constraint holds since all strongly connected components of the final graph have no more than one vertex, since NTREES = NCC = 2 and since MAX_ID = 2.
Figure 4.62: Initial and final graph of the binary_tree constraint
Graph model

We use the same graph constraint as for the tree constraint, except that we add the graph property $\text{MAX,ID} \leq 2$ which constrains the maximum in-degree of the final graph to not exceed 2. MAX,ID does not consider loops: This is why we do not have any problem with the root of each tree.

See also

tree

Key words

graph constraint, graph partitioning constraint, connected component, tree, one-succ
4.31 \texttt{cardinality_atleast}

Origin

Derived from \texttt{global_cardinality}

Constraint

\[\texttt{cardinality_atleast(ATLEAST, VARIABLES, VALUES)} \]

Argument(s)

\begin{itemize}
 \item \texttt{ATLEAST : dvar}
 \item \texttt{VARIABLES : collection(var - dvar)}
 \item \texttt{VALUES : collection(val - int)}
\end{itemize}

Restriction(s)

\begin{itemize}
 \item \texttt{ATLEAST} \geq 0
 \item \texttt{ATLEAST} \leq |\texttt{VARIABLES}|
 \item \texttt{required(VARIABLES, var)}
 \item \texttt{required(VVALUES, val)}
 \item \texttt{distinct(VVALUES, val)}
\end{itemize}

Purpose

\texttt{ATLEAST} is the minimum number of times that a value of VALUES is taken by the variables of the collection VARIABLES.

Arc input(s)

\texttt{VARIABLES VALUES}

Arc generator

\texttt{PRODUCT \mapsto collection(variables, values)}

Arc arity

2

Arc constraint(s)

\texttt{variables.var \neq values.val}

Graph property(ies)

\texttt{MAX_ID = |VARIABLES| - ATLEAST}

Example

\begin{itemize}
 \item \texttt{cardinality_atleast(1, \{var - 3, var - 3, var - 8\}, \{val - 3, val - 8\})}
\end{itemize}

In this example, values 3 and 8 are respectively used 2 and 1 times. Therefore \texttt{ATLEAST} is assigned to 3 - 2 = 1. Parts (A) and (B) of Figure 4.63 respectively show the initial and final graph. Since we use the \texttt{MAX_ID} graph property, the vertex with the maximum number of predecessors is stressed with a double circle.

Graph model

Using directly the graph property \texttt{MIN_ID = ATLEAST} and replacing the disequality of the arc constraint by an equality does not work since it ignores values which are not assigned to any variable. This comes from the fact that isolated vertices are removed from the final graph.

Automaton

Figure 4.64 depicts the automaton associated to the \texttt{cardinality_atleast} constraint. To each variable \texttt{VARi} of the collection \texttt{VARIABLES} corresponds a 0-1 signature variable \texttt{S_i}. The following signature constraint links \texttt{VARi} and \texttt{S_i}: \texttt{VARi \in VALUES \Leftrightarrow S_i}.

Usage

An application of this constraint is to enforce a minimum use of values.
Figure 4.63: Initial and final graph of the cardinality_atleast constraint

Figure 4.64: Automaton of the cardinality_atleast constraint
Remark
This is a restricted form of a variant of an *among* constraint and of the *global cardinals* constraint. In the original *global cardinals* constraint, one specifies for each value its minimum and maximum number of occurrences.

Algorithm
See *global cardinals* [19].

See also
global cardinals

Key words
value constraint, assignment, at least, automaton, automaton with array of counters, acyclic, bipartite, no loop
4.32 cardinality_atmost

Origin Derived from \texttt{global_cardinality}

Constraint cardinality_atmost(ATMOST, VARIABLES, VALUES)

Argument(s)
- ATMOST : dvar
- VARIABLES : collection(var – dvar)
- VALUES : collection(val – int)

Restriction(s)
- ATMOST \geq 0
- ATMOST \leq |VARIABLES|
- required(VARIABLES, var)
- required(VALUES, val)
- distinct(VALUES, val)

Purpose
- \texttt{ATMOST} is the maximum number of occurrences of each value of VALUES within the variables of the collection VARIABLES.

Arc input(s) VARIABLES VALUES

Arc generator \textit{PRODUCT} \mapsto \text{collection}(\text{variables}, \text{values})

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) \texttt{MAX_ID} = ATMOST

Example cardinality_atmost

\[
\begin{pmatrix}
\text{var} - 2, \\
\text{var} - 1, \\
2, \text{var} - 7, \\
\text{var} - 1, \\
\text{var} - 2
\end{pmatrix},
\begin{pmatrix}
\text{val} - 5, \\
\text{val} - 7, \\
\text{val} - 2, \\
\text{val} - 9
\end{pmatrix}
\]

In this example, values 5, 7, 2 and 9 are respectively used 0, 1, 2 and 0 times. Therefore ATMOST is assigned to the maximum number of occurrences 2. Parts (A) and (B) of Figure 4.65 respectively show the initial and final graph. Since we use the \texttt{MAX_ID} graph property, the vertex which has the maximum number of predecessor is stressed with a double circle.

Automaton Figure 4.66 depicts the automaton associated to the cardinality_atmost constraint. To each variable \texttt{VAR}_i of the collection VARIABLES corresponds a 0-1 signature variable \texttt{S}_i. The following signature constraint links \texttt{VAR}_i and \texttt{S}_i: \texttt{VAR}_i \in VALUES \Leftrightarrow S_i.
Figure 4.65: Initial and final graph of the cardinality atmost constraint

Figure 4.66: Automaton of the cardinality atmost constraint
Usage

One application of this constraint is to enforce a maximum use of values.

Remark

This is a restricted form of a variant of the among constraint and of the global_cardinality constraint. In the original global_cardinality constraint, one specifies for each value its minimum and maximum number of occurrences.

Algorithm

See global_cardinality [19].

See also

global_cardinality

Key words

value constraint, assignment, at most, automaton, automaton with array of counters, acyclic, bipartite, no_loop
4.33 cardinality_atmost_partition

<table>
<thead>
<tr>
<th>Origin</th>
<th>Derived from global_cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint</td>
<td>cardinality_atmost_partition(ATMOST, VARIABLES, PARTITIONS)</td>
</tr>
<tr>
<td>Type(s)</td>
<td>VALUES : collection(val − int)</td>
</tr>
<tr>
<td>Argument(s)</td>
<td>ATMOST : dvar</td>
</tr>
<tr>
<td></td>
<td>VARIABLES : collection(var − dvar)</td>
</tr>
<tr>
<td></td>
<td>PARTITIONS : collection(p − VALUES)</td>
</tr>
<tr>
<td>Restriction(s)</td>
<td>required(VARIABLES, val)</td>
</tr>
<tr>
<td></td>
<td>distinct(VARIABLES, val)</td>
</tr>
<tr>
<td></td>
<td>ATMOST ≥ 0</td>
</tr>
<tr>
<td></td>
<td>ATMOST ≤</td>
</tr>
<tr>
<td></td>
<td>required(VARIABLES, var)</td>
</tr>
<tr>
<td></td>
<td>required(PARTITIONS, p)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Purpose</td>
<td>ATMOST is the maximum number of time that values of a same partition of PARTITIONS are taken by the variables of the collection VARIABLES.</td>
</tr>
</tbody>
</table>

Arc input(s)	VARIABLES PARTITIONS
Arc generator	\(PRODUCT \mapsto \text{collection(variables, partitions)} \)
Arc arity	2
Arc constraint(s)	in(variables.var, partitions.p)
Graph property(ies)	MAX_ID = ATMOST

| **Example** | cardinality_atmost_partition |
| | \[
| \{ \begin{align*}
| \text{var} & = 2, \\
| \text{var} & = 3, \\
| \text{var} & = 7, \\
| \text{var} & = 1, \\
| \text{var} & = 6, \\
| \text{var} & = 0, \\
| \end{align*}
| \} \\
| \{ p \in \{\text{val} = 1, \text{val} = 3\}, \\
| \{ p \in \{\text{val} = 4\}, \\
| \{ p \in \{\text{val} = 2, \text{val} = 6\} \\
| \}
| \] |

In this example, two variables are assigned to values of the first partition, no variable is assigned to a value of the second partition, and finally two variables are assigned to values of the last partition. Therefore ATMOST is assigned to the maximum number of occurrences 2. Parts (A) and (B) of Figure 4.67 respectively show the initial and final graph. Since we use the MAX_ID graph property, a vertex with the maximum number of predecessor is stressed with a double circle.
See also

global_cardinality

Key words

value constraint partition at most acyclic bipartite no loop
Figure 4.67: Initial and final graph of the cardinality atmost partition constraint
4.34 change

Origin CHIP

Constraint $\text{change}(\text{NCHANGE}, \text{VARIABLES}, \text{CTR})$

Synonym(s) \(\text{nbchanges}, \text{similarity}\).

Argument(s)
- \(\text{NCHANGE} \quad : \quad \text{dvar}\)
- \(\text{VARIABLES} \quad : \quad \text{collection}(\text{var} - \text{dvar})\)
- \(\text{CTR} \quad : \quad \text{atom}\)

Restriction(s)
- \(\text{NCHANGE} \geq 0\)
- \(\text{NCHANGE} < |\text{VARIABLES}|\)
- \(\text{required}(\text{VARIABLES}, \text{var})\)
- \(\text{CTR} \in [=, \neq, <, \geq, >, \leq]\)

Purpose \(\text{NCHANGE}\) is the number of times that constraint \(\text{CTR}\) holds on consecutive variables of the collection \(\text{VARIABLES}\).

Arc input(s) \(\text{VARIABLES}\)

Arc generator \(\text{PATH} \mapsto \text{collection}(\text{variables1}, \text{variables2})\)

Arc arity 2

Arc constraint(s) \(\text{variables1}.\text{var} \text{CTR} \text{variables2}.\text{var}\)

Graph property(ies) \(\text{NARC} = \text{NCHANGE}\)

Example

\[
\begin{array}{c|c|c|c|c|c|c|c}
\text{change} & 3, & \{\text{var} - 4, \\
 & & \text{var} - 4, \\
 & & \text{var} - 3, \\
 & & \text{var} - 4, \\
 & & \text{var} - 1, \\
 & & \text{var} - 2, \\
 & & \text{var} - 1\} & , \neq \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|c|c|c}
\text{change} & 1, & \{\text{var} - 4, \\
 & & \text{var} - 3, \\
 & & \text{var} - 4, \\
 & & \text{var} - 7\} & , > \\
\end{array}
\]

In the first example the changes are located between values 4 and 3, 3 and 4, 4 and 1. In the second example the unique change occurs between values 4 and 3. Parts (A) and (B) of Figure 4.68 respectively show the initial and final graph of the first example. Since we use the \(\text{NARC}\) graph property, the arcs of the final graph are stressed in bold.

Graph model Since we are only interested by the constraints linking two consecutive items of the collection \(\text{VARIABLES}\) we use \(\text{PATH}\) to generate the arcs of the initial graph.
Figure 4.69 depicts the automaton associated to the change constraint. To each pair of consecutive variables (VAR_\text{i}, VAR_{i+1}) of the collection VARIABLES corresponds a 0-1 signature variable S_i. The following signature constraint links VAR_i, VAR_{i+1} and S_i: VAR_i CTR VAR_{i+1} \Leftrightarrow S_i.

Usage

This constraint can be used in the context of timetabling problems in order to put an upper limit on the number of changes of job types during a given period.

Remark

A similar constraint appears in [73, page 338] under the name of similarity constraint. The difference consists of replacing the arithmetic constraint CTR by a binary constraint. When CTR is equal to \neq this constraint is called nbchanges in [40].

Algorithm

See also

Key words
Figure 4.68: Initial and final graph of the change constraint

Figure 4.69: Automaton of the change constraint

Figure 4.70: Hypergraph of the reformulation corresponding to the automaton of the change constraint
4.35 change_continuity

Origin
N. Beldiceanu

Constraint

\[
\text{change}_\text{continuity} \left(\begin{array}{c}
\text{NB_PERIOD_CHANGE}, \\
\text{NB_PERIOD_CONTINUITY}, \\
\text{MIN_SIZE_CHANGE}, \\
\text{MAX_SIZE_CHANGE}, \\
\text{MIN_SIZE_CONTINUITY}, \\
\text{MAX_SIZE_CONTINUITY}, \\
\text{NB_CHANGE}, \\
\text{NB_CONTINUITY}, \\
\text{VARIABLES}, \\
\text{CTR}
\end{array} \right)
\]

Argument(s)

<table>
<thead>
<tr>
<th>Argument</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB_PERIOD_CHANGE</td>
<td>dvar</td>
</tr>
<tr>
<td>NB_PERIOD_CONTINUITY</td>
<td>dvar</td>
</tr>
<tr>
<td>MIN_SIZE_CHANGE</td>
<td>dvar</td>
</tr>
<tr>
<td>MAX_SIZE_CHANGE</td>
<td>dvar</td>
</tr>
<tr>
<td>MIN_SIZE_CONTINUITY</td>
<td>dvar</td>
</tr>
<tr>
<td>MAX_SIZE_CONTINUITY</td>
<td>dvar</td>
</tr>
<tr>
<td>NB_CHANGE</td>
<td>dvar</td>
</tr>
<tr>
<td>NB_CONTINUITY</td>
<td>dvar</td>
</tr>
<tr>
<td>VARIABLES</td>
<td>collection(var (-) dvar)</td>
</tr>
<tr>
<td>CTR</td>
<td>atom</td>
</tr>
</tbody>
</table>

Restriction(s)

\[
\begin{align*}
\text{NB_PERIOD_CHANGE} & \geq 0 \\
\text{NB_PERIOD_CONTINUITY} & \geq 0 \\
\text{MIN_SIZE_CHANGE} & \geq 0 \\
\text{MAX_SIZE_CHANGE} & \geq \text{MIN_SIZE_CHANGE} \\
\text{MIN_SIZE_CONTINUITY} & \geq 0 \\
\text{MAX_SIZE_CONTINUITY} & \geq \text{MIN_SIZE_CONTINUITY} \\
\text{NB_CHANGE} & \geq 0 \\
\text{NB_CONTINUITY} & \geq 0 \\
\text{required(VARIABLES_var)}
\end{align*}
\]

CTR \(\in [=,\neq,\lt,\geq,\gt,\leq]\)
On the one hand a *change* is defined by the fact that constraint \[\text{VARIABLES}[i].\text{var} \land \text{CTR}\text{VARIABLES}[i+1].\text{var} \] holds.

On the other hand a *continuity* is defined by the fact that constraint \[\text{VARIABLES}[i].\text{var} \land \text{CTR}\text{VARIABLES}[i+1].\text{var} \] does not hold.

A period of change on variables

\[\text{VARIABLES}[i].\text{var}, \text{VARIABLES}[i+1].\text{var}, \ldots, \text{VARIABLES}[j].\text{var} \quad (i < j) \]

is defined by the fact that all constraints \[\text{VARIABLES}[k].\text{var} \land \text{CTR}\text{VARIABLES}[k+1].\text{var} \] hold for \(k \in [i, j-1] \).

A period of continuity on variables

\[\text{VARIABLES}[i].\text{var}, \text{VARIABLES}[i+1].\text{var}, \ldots, \text{VARIABLES}[j].\text{var} \quad (i < j) \]

is defined by the fact that all constraints \[\text{VARIABLES}[k].\text{var} \land \text{CTR}\text{VARIABLES}[k+1].\text{var} \] do not hold for \(k \in [i, j-1] \).

The constraint change_continuity holds if and only if:

- \(\text{NB_PERIOD_CHANGE} \) is equal to the number of periods of change,
- \(\text{NB_PERIOD_CONTINUITY} \) is equal to the number of periods of continuity,
- \(\text{MIN_SIZE_CHANGE} \) is equal to the number of variables of the smallest period of change,
- \(\text{MAX_SIZE_CHANGE} \) is equal to the number of variables of the largest period of change,
- \(\text{MIN_SIZE_CONTINUITY} \) is equal to the number of variables of the smallest period of continuity,
- \(\text{MAX_SIZE_CONTINUITY} \) is equal to the number of variables of the largest period of continuity,
- \(\text{NB_CHANGE} \) is equal to the total number of changes,
- \(\text{NB_CONTINUITY} \) is equal to the total number of continuities.

Arc input(s)

\(\text{VARIABLES} \)

Arc generator

\(PATH \leftrightarrow \text{collection(variables1, variables2)} \)

Arc arity

2

Arc constraint(s)

\(\text{variables1}.\text{var} \land \text{CTR}\text{variables2}.\text{var} \)

Graph property(ies)

- \(\text{NCC} = \text{NB_PERIOD_CHANGE} \)
- \(\text{MIN_NCC} = \text{MIN_SIZE_CHANGE} \)
- \(\text{MAX_NCC} = \text{MAX_SIZE_CHANGE} \)
- \(\text{NARC} = \text{NB_CHANGE} \)

Arc input(s)

\(\text{VARIABLES} \)

Arc generator

\(PATH \leftrightarrow \text{collection(variables1, variables2)} \)

Arc arity

2

Arc constraint(s)

\(\text{variables1}.\text{var} \land \text{CTR}\text{variables2}.\text{var} \)
Graph property(ies)

- NCC = \text{NB}_{\text{PERIOD}} \text{CONTINUITY}
- MIN_NCC = \text{MIN_SIZE} \text{CONTINUITY}
- MAX_NCC = \text{MAX_SIZE} \text{CONTINUITY}
- NARC = \text{NB}_\text{CONTINUITY}

Example

\text{change_continuity} = \{3, 2, 4, 2, 4, 6, 4, 8, 4, 7, 7, 7, 7, 2\}, \neq \{\}

Figure 4.71 makes clear the different parameters that are associated to the given example. We place character | for representing a change and a blank for a continuity. On top of the solution we represent the different periods of change, while below we show the different periods of continuity. Parts (A) and (B) of Figure 4.72 respectively show the initial and final graph associated to the first graph constraint.

\text{Figure 4.71: Periods of changes and periods of continuities}

Graph model

We use two graph constraints to respectively catch the constraints on the period of changes and of the period of continuities. In both case each period corresponds to a connected component of the final graph.

Automaton

Figures 4.73, 4.74, 4.77, 4.78, 4.81, 4.82 and 4.85 depict the automata associated to the different graph characteristics of the change_continuity constraint. For the automata that respectively compute \text{NB}_{\text{PERIOD}} \text{CHANGE}, \text{NB}_{\text{PERIOD}} \text{CONTINUITY MIN_SIZE} \text{CHANGE}, \text{MIN_SIZE} \text{CONTINUITY MAX_SIZE} \text{CHANGE}, \text{MAX_SIZE} \text{CONTINUITY} \text{NB_CHANGE} and \text{NB_CONTINUITY} we have a 0-1 signature variable \text{S}_i for each pair of consecutive variables (\text{VAR}_i, \text{VAR}_{i+1}) of the collection VARIABLES. The following signature constraint links \text{VAR}_i, \text{VAR}_{i+1} and \text{S}_i: \text{VAR}_i, \text{CTR} \text{VAR}_{i+1} \leftrightarrow \text{S}_i.

Remark

If the variables of the collection VARIABLES have to take distinct values between 1 and the total number of variables, we have what is called a permutation. In this case, if we choose the binary constraint <, then MAX_SIZE_CHANGE gives the size of the longest run of the permutation; A run is a maximal increasing contiguous subsequence in a permutation.

See also

group, group_skip, isolated_item, stretch, path

Key words

timetabling constraint, run of a permutation, permutation, connected component, automaton, automaton with counters, sliding cyclic(1) constraint network(2), sliding cyclic(1) constraint network(3), acyclic, no loop, partition.
Figure 4.72: Initial and final graph of the change continuity constraint
Figure 4.73: Automaton for the $\text{NB}_\text{PERIOD}_\text{CHANGE}$ parameter of the change_continuity constraint

Figure 4.74: Automaton for the $\text{NB}_\text{PERIOD}_\text{CONTINUITY}$ parameter of the change_continuity constraint
Figure 4.75: Hypergraph of the reformulation corresponding to the automaton of the NB_PERIOD_CHANGE parameter of the change_continuity constraint

Figure 4.76: Hypergraph of the reformulation corresponding to the automaton of the NB_PERIOD_CONTINUITY parameter of the change_continuity constraint

Figure 4.77: Automaton for the MIN_SIZE_CHANGE parameter of the change_continuity constraint
Figure 4.78: Automaton for the MIN_SIZE_CONTINUITY parameter of the change_continuity constraint

Figure 4.79: Hypergraph of the reformulation corresponding to the automaton of the MIN_SIZE_CHANGE parameter of the change_continuity constraint

Figure 4.80: Hypergraph of the reformulation corresponding to the automaton of the MIN_SIZE_CONTINUITY parameter of the change_continuity constraint
Figure 4.81: Automaton for the MAX_SIZE_CHANGE parameter of the change_continuity constraint

Figure 4.82: Automaton for the MAX_SIZE_CONTINUITY parameter of the change_continuity constraint

Figure 4.83: Hypergraph of the reformulation corresponding to the automaton of the MAX_SIZE_CHANGE parameter of the change_continuity constraint
Figure 4.84: Hypergraph of the reformulation corresponding to the automaton of the MAX_SIZE_CONTINUITY parameter of the change_continuity constraint

Figure 4.85: Automata for the NB_CHANGE and NB_CONTINUITY parameters of the change_continuity constraint

Figure 4.86: Hypergraph of the reformulation corresponding to the automaton of the NB_CHANGE parameter of the change_continuity constraint
Figure 4.87: Hypergraph of the reformulation corresponding to the automaton of the \texttt{NB _CONTINUITY} parameter of the \texttt{change _continuity} constraint.
4.36 change_pair

Origin
Derived from change

Constraint
change_pair(NCHANGE, PAIRS, CTRX, CTRY)

Argument(s)
NCHANGE : dvar
PAIRS : collection(x - dvar, y - dvar)
CTRX : atom
CTRY : atom

Restriction(s)
NCHANGE ≥ 0
NCHANGE < |PAIRS|
required(PAIRS, [x, y])
CTRX ∈ [=, ≠, <, ≥, >, ≤]
CTRY ∈ [=, ≠, <, ≥, >, ≤]

Purpose
NCHANGE is the number of times that the following disjunction holds: (X₁ CTRX X₂) ∨ (Y₁ CTRY Y₂), where (X₁, Y₁) and (X₂, Y₂) correspond to consecutive pairs of variables of the collection PAIRS.

Arc input(s)
PAIRS

Arc generator
PATH ← collection(pairs1, pairs2)

Arc arity
2

Arc constraint(s)
pairs1.x CTRX pairs2.x ∨ pairs1.y CTRY pairs2.y

Graph property(ies)
NARC = NCHANGE

Example
change_pair 3, \left\{ \begin{array}{l} x - 3 \ y - 5, \\ x - 3 \ y - 7, \\ x - 3 \ y - 7, \\ x - 3 \ y - 8, \\ x - 3 \ y - 4, \\ x - 3 \ y - 7, \\ x - 1 \ y - 3, \\ x - 1 \ y - 6, \\ x - 1 \ y - 6, \\ x - 3 \ y - 7 \end{array} \right\}, ≠, >

In the previous example we have the following 3 changes:

- One change between pairs x - 3 y - 8 and x - 3 y - 4,
- One change between pairs x - 3 y - 7 and x - 1 y - 3,
- One change between pairs x - 1 y - 6 and x - 3 y - 7.
Figure 4.88: Initial and final graph of the change pair constraint
Parts (A) and (B) of Figure 4.88 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Graph model

Same as change except that each item has two attributes x and y.

Automaton

Figure 4.89 depicts the automaton associated to the change pair constraint. To each pair of consecutive pairs \((X_i, Y_i), (X_{i+1}, Y_{i+1})\) of the collection PAIRS corresponds a 0-1 signature variable \(S_i\). The following signature constraint links \(X_i, Y_i, X_{i+1}, Y_{i+1}\) and \(S_i\):

\[
(X_i \text{ not } CTRX X_{i+1}) \text{ or } (Y_i \text{ not } CTRY Y_{i+1}) \land (X_i \text{ not } CTRX X_{i+1}) \iff S_i.
\]

Figure 4.89: Automaton of the change pair constraint

Here is a typical example where this constraint is useful. Assume we have to produce a set of cables. A given quality and a given cross-section that respectively correspond to the x and y attributes of the previous pairs of variables characterize each cable. The problem is to sequence the different cables in order to minimize the number of times two consecutive wire cables \(C_1\) and \(C_2\) verify the following property: \(C_1\) and \(C_2\) do not have the same quality or the cross section of \(C_1\) is greater than the cross section of \(C_2\).

Usage

See also change.

Key words

timetabling constraint, number of changes, pair, automaton, automaton with counters, sliding cyclic(2) constraint network(2), acyclic, no loop.
4.37 change_partition

Origin Derived from change

Constraint change_partition(NCHANGE, VARIABLES, PARTITIONS)

Type(s) VALUES : collection(val – int)

Argument(s) NCHANGE : dvar
VARIABLES : collection(var – dvar)
PARTITIONS : collection(p – VALUES)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
NCHANGE ≥ 0
NCHANGE < |VARIABLES|
required(VARIABLES, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose NCHANGE is the number of times that the following constraint holds: X and Y do not belong to the same partition of the collection PARTITIONS. X and Y correspond to consecutive variables of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator PATH ↦ collection(variables1,variables2)

Arc arity 2

Arc constraint(s) in_same_partition(variables1.var,variables2.var,PARTITIONS)

Graph property(ies) NARC = NCHANGE

Example change_partition

In the previous example we have the following two changes:
• One change between values 2 and 1 (since 2 and 1 respectively belong to the third and the first partition).

• One change between values 1 and 6 (since 1 and 6 respectively belong to the first and the third partition).

Parts (A) and (B) of Figure 4.91 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Figure 4.91: Initial and final graph of the change partition constraint

Usage

This constraint is useful for the following problem: Assume you have to produce a set of orders, each order belonging to a given family. In the previous example we have three families that respectively correspond to values \{1, 3\}, to value \{4\} and to values \{2, 6\}.

\[\text{NARC} = 2 \]
We would like to sequence the orders in such a way that we minimize the number of times two consecutive orders do not belong to the same family.

Algorithm [65].

See also change in same partition.

Key words timetabling constraint, number of changes, partition, acyclic, no loop.
4.38 circuit

Origin [2]

Constraint circuit(NODES)

Synonym(s) atour, cycle.

Argument(s) NODES : collection(index – int, succ – dvar)

Restriction(s) required(NODES,[index,succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES,index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose Enforce to cover a digraph G described by the NODES collection with one circuit visiting once all vertices of G.

Arc input(s) NODES

Arc generator $CLIQUE \mapsto$ collection(nodes1,nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • MIN_NSCC = |NODES|
• MAX_ID = 1

Example circuit\(\begin{array}{ll}
\text{index - 1} & \text{succ - 2} \\
\text{index - 2} & \text{succ - 3} \\
\text{index - 3} & \text{succ - 4} \\
\text{index - 4} & \text{succ - 1}
\end{array}\)\)

Parts (A) and (B) of Figure 4.92 respectively show the initial and final graph. The circuit constraint holds since the final graph consists of one circuit mentioning once every vertex of the initial graph.

Graph model The first graph property enforces to have one single strongly connected component containing |NODES| vertices. The second graph property imposes to only have circuits. Since each vertex of the final graph has only one successor we don’t need to use set variables for representing the successors of a vertex.

Signature Since the initial graph contains |NODES| vertices the final graph contains at most |NODES| vertices. Therefore we can rewrite the graph property $MIN_NSCC = |NODES|$ to $MIN_NSCC ≥ |NODES|$. This leads to simplify MIN_NSCC to MIN_NSCC.
Because of the graph property $\text{MIN}_{\text{NSCC}} = \left| \text{NODES} \right|$ the final graph contains at least one vertex. Since a vertex v belongs to the final graph only if there is an arc that has v as one of its extremities the final graph contains at least one arc. Therefore MAX_ID is greater than or equal to 1. So we can rewrite the graph property $\text{MAX}_\text{ID} = 1$ to $\text{MAX}_\text{ID} \leq 1$. This leads to simplify MAX_ID to MAX_ID.

Remark

In the original circuit constraint of CHIP the index attribute was not explicitly present. It was implicitly defined as the position of a variable in a list. Within the framework of linear programming [74] this constraint was introduced under the name atour. Within the KOALOG constraint system this constraint is called cycle.

Algorithm

Since all succ variables of the NODES collection have to take distinct values one can reuse the algorithms associated to the alldifferent constraint. A second necessary condition is to have no more than one strongly connected component. Further necessary conditions combining the fact that we have a perfect matching and one single strongly connected component can be found in [75]. When the graph is planar one can also use as a necessary condition discovered by Grinberg [76] for pruning.

See also

cycle, tour

Key words

graph constraint, graph partitioning constraint, circuit, permutation, Hamiltonian, linear programming, one succ.
Figure 4.92: Initial and final graph of the circuit constraint
4.39 circuit_cluster

Origin
Inspired by [77].

Constraint
circuit_cluster(NCIRCUIT, NODES)

Argument(s)
NCIRCUIT : dvar
NODES : collection(index – int, cluster – int, succ – dvar)

Restriction(s)
NCIRCUIT \geq 1
NCIRCUIT \leq |NODES|
required(NODES,[index, cluster, succ])
NODES.index \geq 1
NODES.index \leq |NODES|
distinct(NODES, index)
NODES.succ \geq 1
NODES.succ \leq |NODES|

Purpose
Consider a digraph \(G \), described by the NODES collection, such that its vertices are partitioned among several clusters. NCIRCUIT is the number of circuits containing more than one vertex used for covering \(G \) in such a way that each cluster is visited by exactly one circuit of length greater than 1.

Arc input(s)
NODES

Arc generator
\(CLIQUE \mapsto \) collection(nodes1, nodes2)

Arc arity
2

Arc constraint(s)
* nodes1.succ \neq nodes1.index
* nodes1.succ = nodes2.index

Graph property(ies)
* NTREE = 0
* NSCC = NCIRCUIT

Sets
\[\text{ALL_VERTICES} \mapsto \left[\begin{array}{c}
\text{variables} - \text{col}(\text{VARIABLES} - \text{collection}(\text{var} - \text{dvar}), \text{item}(\text{var} - \text{NODES.cluster}])
\end{array} \right] \]

Constraint(s) on sets
* all_different(variables)
* nvalues(variables, =, size(NODES, cluster))
In order to express the binary constraint linking two vertices one has to make explicit the identifier of each vertex as well as the cluster to which belong each vertex. This is why the \texttt{circuit_cluster} constraint considers objects that have the following three attributes:

- The attribute \texttt{index}, which is the identifier of a vertex.
- The attribute \texttt{cluster}, which is the cluster to which belong a vertex.
The attribute \textit{succ}, which is the unique successor of a vertex.

The partitioning of the clusters by different circuits is expressed in the following way:

- First observe the condition \texttt{nodes1.succ} \neq \texttt{nodes1.index} prevents the final graph of containing any loop. Moreover the condition \texttt{nodes1.succ = nodes2.index} imposes no more than one successor for each vertex of the final graph.
- The graph property \texttt{NTREE = 0} enforces that all vertices of the final graph belong to one circuit.
- The graph property \texttt{NSCC = NCIRCUIT} express the fact that the number of strongly connected components of the final graph is equal to \texttt{NCIRCUIT}.
- The constraint \texttt{alldifferent(variables)} on the set \texttt{ALL_VERTICES} (i.e. all the vertices of the final graph) states that the cluster attributes of the vertices of the final graph should be pairwise distinct. This concretely means that no cluster should be visited more than once.
- The constraint \texttt{nvalues(variables, =, size(NODES, cluster))} on the set \texttt{ALL_VERTICES} conveys the fact that the number of distinct values of the cluster attribute of the vertices of the final graph should be equal to the total number of clusters. This implies that each cluster is visited at least one time.

Usage

A related abstraction in Operations Research was introduced in [77]. It was reported as the Generalized Travelling Salesman Problem (GTSP). The \texttt{circuit_cluster} constraint differs from the GTSP because of the two following points:

- Each node of our graph belongs to one single cluster.
- We do not constrain the number of circuits to be equal to one: the number of circuits should be equal to one of the values of the domain of the variable \texttt{NCIRCUIT}.

See also

\texttt{alldifferent}, \texttt{nvalues}

Key words

\texttt{graph constraint}, \texttt{connected component}, \texttt{cluster}, \texttt{one_succ}
4.40 circular_change

Origin Derived from change

Constraint circular_change(NCHANGE, VARIABLES, CTR)

Argument(s)
NCHANGE : dvar
VARIABLES : collection(var - dvar)
CTR : atom

Restriction(s)
NCHANGE ≥ 0
NCHANGE ≤ |VARIABLES|
required(VARIABLES, var)
CTR ∈ [\=, \neq, <, \geq, >, \leq]

Purpose NCHANGE is the number of times that CTR holds on consecutive variables of the collection VARIABLES. The last and the first variables of the collection VARIABLES are also considered to be consecutive.

Arc input(s) VARIABLES

Arc generator CIRCUIT \rightarrow collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) NARC = NCHANGE

Example
circular_change 4. \{ \begin{align*}
\text{var} - 4, \\
\text{var} - 4, \\
\text{var} - 3, \\
\text{var} - 4, \\
\text{var} - 1
\end{align*} \}, \neq

In the previous example the changes are located between values 4 and 3, 3 and 4, 4 and 1, and 1 and 4. We count one change for each disequality constraint (between two consecutives variables) which holds. Parts (A) and (B) of Figure 4.94 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Graph model Since we are also interested in the constraint that links the last and the first variable we use the arc generator CIRCUIT to produce the arcs of the initial graph.

Automaton Figure 4.95 depicts the automaton associated to the circular_change constraint. To each pair of consecutive variables (VAR, VAR\((i \mod |\text{VARIABLES}|) + 1\)) of the collection VARIABLES corresponds a 0-1 signature variable \(S_i\). The following signature constraint links \(\text{VAR}_i\), \(\text{VAR}_{(i \mod |\text{VARIABLES}|) + 1}\) and \(S_i\): \(\text{VAR}_i, \text{CTR} \text{VAR}_{(i \mod |\text{VARIABLES}|) + 1} \Leftrightarrow S_i\).
Figure 4.94: Initial and final graph of the \textit{circular change} constraint

Figure 4.95: Automaton of the \textit{circular change} constraint

Figure 4.96: Hypergraph of the reformulation corresponding to the automaton of the \textit{circular change} constraint
See also

Key words

- timetabling constraint
- number of changes
- cyclic
- automaton
- automaton with counters
- circular sliding cyclic
- constraint network

change
4.41 clique

Consider a digraph G described by the NODES collection: To the i^{th} item of the NODES collection corresponds the i^{th} vertex of G; To each value j of the i^{th} succ variable corresponds an arc from the i^{th} vertex to the j^{th} vertex. Select a subset S of the vertices of G which forms a clique of size $\text{SIZE}_{\text{CLIQUE}}$ (i.e. there is an arc between each pair of distinct vertices of S).

Example

$$\text{clique}(3, \begin{cases} \text{index} - 1 & \text{succ} = \emptyset, \\
\text{index} - 2 & \text{succ} = \{3, 5\}, \\
\text{index} - 3 & \text{succ} = \{2, 5\}, \\
\text{index} - 4 & \text{succ} = \emptyset, \\
\text{index} - 5 & \text{succ} = \{2, 3\} \end{cases})$$

Part (A) of Figure 4.97 shows the initial graph from which we start. It is derived from the set associated to each vertex. Each set describes the potential values of the succ attribute of a given vertex. Part (B) of Figure 4.97 gives the final graph associated to the example. Since we both use the NARC and NVERTEX graph properties, the arcs and the vertices of the final graph are stressed in bold. The final graph corresponds to a clique containing three vertices.

Graph model

Observe the use of set variables for modelling the fact that the vertices of the final graph have more than one successor: The successor variable associated to each vertex contains the successors of the corresponding vertex.
Algorithm [78], [79].

See also \texttt{link _set _to _booleans}.

Key words graph constraint, maximum clique, constraint involving set variables.
Figure 4.97: Initial and final graph of the clique set constraint
4.42 colored_matrix

Origin
KOALOG

Constraint
colored_matrix(C, L, K, MATRIX, CPROJ, LPROJ)

Synonym(s)
cardinality_matrix, card_matrix.

Argument(s)

- **C** : int
- **L** : int
- **K** : int
- **MATRIX** : collection(column - int, line - int, var - dvar)
- **CPROJ** : collection(column - int, val - int, nocurrence - dvar)
- **LPROJ** : collection(line - int, val - int, nocurrence - dvar)

Restriction(s)

\[
\begin{align*}
C &\geq 0 \\
L &\geq 0 \\
K &\geq 0
\end{align*}
\]

required(MATRIX, [column, line, var])

increasing_seq(MATRIX, [column, line])

|MATRIX| = C * L + C + L + 1

MATRIX.column \geq 0

MATRIX.column \leq C

MATRIX.line \geq 0

MATRIX.line \leq L

MATRIX.var \geq 0

MATRIX.var \leq K

required(CPROJ, [column, val, nocurrence])

increasing_seq(CPROJ, [column, val])

|CPROJ| = C * K + C + K + 1

CPROJ.column \geq 0

CPROJ.column \leq C

CPROJ.val \geq 0

CPROJ.val \leq K

required(LPROJ, [line, val, nocurrence])

increasing_seq(LPROJ, [line, val])

|LPROJ| = L * K + L + K + 1

LPROJ.line \geq 0

LPROJ.line \leq L

LPROJ.val \geq 0

LPROJ.val \leq K

Purpose
Given a matrix of domain variables, imposes a [global_cardinality](#) constraint involving cardinality variables on each column and each row of the matrix.
Remark

Within [80] the filtering algorithm described in [80] is based on network flow and does not achieve arc-consistency in general. However, when the number of values is restricted to two, the algorithm [80] achieves arc-consistency on the variables of the matrix. This corresponds in fact to a generalization of the problem called "Matrices composed of 0's and 1's" presented by Ford and Fulkerson [81].

Algorithm

The filtering algorithm described in [80] is based on network flow and does not achieve arc-consistency in general. However, when the number of values is restricted to two, the algorithm [80] achieves arc-consistency on the variables of the matrix. This corresponds in fact to a generalization of the problem called "Matrices composed of 0's and 1's" presented by Ford and Fulkerson [81].

Example

\[
\begin{align*}
\text{colored_matrix} = & \left(\begin{array}{llllllllll}
\text{column} & 0 & \text{line} & 0 & \text{var} & 3, \\
\text{column} & 0 & \text{line} & 1 & \text{var} & 1, \\
\text{column} & 0 & \text{line} & 2 & \text{var} & 3, \\
\text{column} & 1 & \text{line} & 0 & \text{var} & 4, \\
\text{column} & 1 & \text{line} & 1 & \text{var} & 4, \\
\text{column} & 1 & \text{line} & 2 & \text{var} & 3 \\
\end{array} \right), \\
\text{column} & 0 & \text{val} & 0 & \text{nocc} & 0, \\
\text{column} & 0 & \text{val} & 1 & \text{nocc} & 1, \\
\text{column} & 0 & \text{val} & 2 & \text{nocc} & 0, \\
\text{column} & 0 & \text{val} & 3 & \text{nocc} & 2, \\
\text{column} & 0 & \text{val} & 4 & \text{nocc} & 0, \\
\text{column} & 1 & \text{val} & 0 & \text{nocc} & 0, \\
\text{column} & 1 & \text{val} & 1 & \text{nocc} & 0, \\
\text{column} & 1 & \text{val} & 2 & \text{nocc} & 0, \\
\text{column} & 1 & \text{val} & 3 & \text{nocc} & 1, \\
\text{column} & 1 & \text{val} & 4 & \text{nocc} & 2 \\
\end{align*}
\]

\[
\begin{align*}
\text{line} & 0 & \text{val} & 0 & \text{nocc} & 0, \\
\text{line} & 0 & \text{val} & 1 & \text{nocc} & 0, \\
\text{line} & 0 & \text{val} & 2 & \text{nocc} & 0, \\
\text{line} & 0 & \text{val} & 3 & \text{nocc} & 1, \\
\text{line} & 0 & \text{val} & 4 & \text{nocc} & 1, \\
\text{line} & 1 & \text{val} & 0 & \text{nocc} & 0, \\
\text{line} & 1 & \text{val} & 1 & \text{nocc} & 1, \\
\text{line} & 1 & \text{val} & 2 & \text{nocc} & 0, \\
\text{line} & 1 & \text{val} & 3 & \text{nocc} & 0, \\
\text{line} & 1 & \text{val} & 4 & \text{nocc} & 1, \\
\text{line} & 2 & \text{val} & 0 & \text{nocc} & 0, \\
\text{line} & 2 & \text{val} & 1 & \text{nocc} & 0, \\
\text{line} & 2 & \text{val} & 2 & \text{nocc} & 0, \\
\text{line} & 2 & \text{val} & 3 & \text{nocc} & 2, \\
\text{line} & 2 & \text{val} & 4 & \text{nocc} & 0
\end{align*}
\]

Remark

Within [80] the colored_matrix constraint is called cardinality_matrix.

See also

global_cardinality

Key words

predefined constraint, timetabling constraint, matrix, matrix model.
4.43 coloured_cumulative

Origin
Derived from cumulative and nvalues

Constraint
coloured_cumulative(TASKS, LIMIT)

Argument(s)
TASKS : collection(origin – dvar, duration – dvar, end – dvar, colour – dvar)
LIMIT : int

Restriction(s)
require_at_least(2, TASKS, [origin, duration, end])
required(TASKS, colour)
TASKS.duration ≥ 0
LIMIT ≥ 0

Purpose
Consider the set \(T \) of tasks described by the TASKS collection. The coloured_cumulative constraint enforces that, at each point in time, the number of distinct colours of the set of tasks that overlap that point, does not exceed a given limit. For each task of \(T \) it also imposes the constraint \(\text{origin} + \text{duration} = \text{end} \).

Arc input(s)
TASKS

Arc generator
SELF \(\rightarrow \) collection(tasks)

Arc arity
1

Arc constraint(s)
tasks.origin + tasks.duration = tasks.end

Graph property(ies)
NARC = |TASKS|

Arc input(s)
TASKS TASKS

Arc generator
PRODUCT \(\rightarrow \) collection(tasks1, tasks2)

Arc arity
2

Arc constraint(s)
• tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin
• tasks1.origin < tasks2.end

Sets

\[
\begin{align*}
\text{Succ} & \leftrightarrow \\
& [\text{source}, \\
& \text{variables} - \text{col} (\text{VARIABLES} - \text{collection} (\text{var} - \text{dvar}), \\
& \text{item} (\text{var} - \text{TASKS}.\text{colour}))]
\end{align*}
\]

Constraint(s) on sets
nvalues(variables, \(\leq \), LIMIT)
Parts (A) and (B) of Figure 4.98 respectively show the initial and final graph associated to the second graph constraint. On the one hand, each source vertex of the final graph can be interpreted as a time point. On the other hand the successors of a source vertex correspond to those tasks which overlap that time point. The coloured_cumulative constraint holds since for each successor set S of the final graph the number of distinct colours of the tasks in S does not exceed the LIMIT 2. Figure 4.99 shows the solution associated to the previous example.

![Figure 4.98: Initial and final graph of the coloured_cumulative constraint](image)

![Figure 4.99: A coloured cumulative solution with at most two distinct colours in parallel](image)

Graph model

Same as cumulative except that we use an other constraint for computing the resource.
consumption at each time point.

Signature
Since TASKS is the maximum number of vertices of the final graph of the first graph constraint we can rewrite $\text{NARC} = |\text{TASKS}|$ to $\text{NARC} \geq |\text{TASKS}|$. This leads to simplify NARC to NARC.

Usage
Useful for scheduling problems where a machine can only proceed in parallel a maximum number of tasks of distinct type. This condition cannot be modelled by the classical cumulative constraint.

See also
- coloured_cumulatives
- cumulative
- mvalues

Key words
- scheduling constraint
- resource constraint
- temporal constraint
- coloured
- number of distinct values
4.44 coloured_cumulatives

Origin
Derived from coloured_cumulatives and nvalues

Constraint
coloured_cumulatives(TASKS, MACHINES)

Argument(s)
TASKS : collection

- machine : dvar
- origin : dvar
- duration : dvar
- end : dvar
- colour : dvar

MACHINES : collection(id : int, capacity : int)

Restriction(s)
required(TASKS, [machine, colour])
require_at_least(2, TASKS, [origin, duration, end])
TASKS.duration \geq 0
required(MACHINES, [id, capacity])
distinct(MACHINES.id)
MACHINES.capacity \geq 0

Purpose
Consider a set T of tasks described by the TASKS collection. The coloured_cumulatives constraint enforces for each machine m of the MACHINES collection the following condition: At each point in time p, the numbers of distinct colours of the set of tasks that both overlap that point p and are assigned to machine m does not exceed the capacity of machine m. It also imposes for each task of T the constraint \(\text{origin} + \text{duration} = \text{end} \).

Arc input(s)
TASKS

Arc generator
SELF \rightarrow collection(tasks)

Arc arity
1

Arc constraint(s)
tasks.origin + tasks.duration = tasks.end

Graph property(ies)
\(\text{NARC} = \# \text{TASKS} \)

For all items of MACHINES:

Arc input(s)
TASKS TASKS

Arc generator
PRODUCT \rightarrow collection(tasks1, tasks2)

Arc arity
2

Arc constraint(s)
- tasks1.machine = MACHINES.id
- tasks1.machine = tasks2.machine
- tasks1.duration > 0
- tasks2.origin \leq tasks1.origin
- tasks1.origin $<$ tasks2.end
Sets

```
SUCC →
[ source,
  variables = col (VARIABLES = collection(var - dvar),
  [item(var - TASKS.colour)] ) ]
```

Constraint(s) on sets

```
mvalues(variables, ≤, MACHINES.capacity)
```

Example

```
coloured_cumulatives
{ machine - 1 origin - 6 duration - 6 end - 12 colour - 1,
  machine - 1 origin - 2 duration - 9 end - 11 colour - 2,
  machine - 2 origin - 7 duration - 3 end - 10 colour - 2,
  machine - 1 origin - 1 duration - 2 end - 3 colour - 1,
  machine - 2 origin - 4 duration - 5 end - 9 colour - 2,
  machine - 1 origin - 3 duration - 10 end - 13 colour - 1
}
```

Parts (A) and (B) of Figure 4.100 respectively shows the initial and final graph associated to machines 1 and 2. On the one hand, each source vertex of the final graph can be interpreted as a time point p on a specific machine m. On the other hand the successors of a source vertex correspond to those tasks which both overlap that time point p and are assigned to machine m. The coloured_cumulatives constraint holds since for each successor set S of the final graph the number of distinct colours in S does not exceed the capacity of the machine corresponding to the time point associated to S. Figure 4.101 shows the solution associated to the previous example. For machine 1 we have at most two distinct colours in parallel, while for machine 2 we have no more than one single colour in parallel.

![Figure 4.100](image-url)
Signature

Since \texttt{TASKS} is the maximum number of vertices of the final graph of the first graph constraint we can rewrite \texttt{NARC} = \mid \texttt{TASKS} \mid to \texttt{NARC} \geq \mid \texttt{TASKS} \mid. This leads to simplify \texttt{NARC} to \texttt{NARC}.

Usage

Useful for scheduling problems where several machines are available and where you have to assign each task to a specific machine. In addition each machine can only proceed in parallel a maximum number of tasks of distinct types.

See also

\texttt{coloured_
 cumulative}, \texttt{cumulative}, \texttt{cumulatives}, \texttt{hvalues}

Key words

\texttt{scheduling constraint}, \texttt{resource constraint}, \texttt{temporal constraint}, \texttt{coloured}, \texttt{number of distinct values}

Figure 4.101: Assignment of the tasks on the two machines
4.45 common

Origin N. Beldiceanu

Constraint \(\text{common}(\text{NCOMMON1}, \text{NCOMMON2}, \text{VARIABLES1}, \text{VARIABLES2}) \)

Argument(s)
- \(\text{NCOMMON1} : \text{dvar} \)
- \(\text{NCOMMON2} : \text{dvar} \)
- \(\text{VARIABLES1} : \text{collection}(\text{var} - \text{dvar}) \)
- \(\text{VARIABLES2} : \text{collection}(\text{var} - \text{dvar}) \)

Restriction(s)
- \(\text{NCOMMON1} \geq 0 \)
- \(\text{NCOMMON1} \leq |\text{VARIABLES1}| \)
- \(\text{NCOMMON2} \geq 0 \)
- \(\text{NCOMMON2} \leq |\text{VARIABLES2}| \)
- \(\text{required}(\text{VARIABLES1}.\text{var}) \)
- \(\text{required}(\text{VARIABLES2}.\text{var}) \)

Purpose
- \(\text{NCOMMON1} \) is the number of variables of the collection of variables \(\text{VARIABLES1} \) taking a value in \(\text{VARIABLES2} \).
- \(\text{NCOMMON2} \) is the number of variables of the collection of variables \(\text{VARIABLES2} \) taking a value in \(\text{VARIABLES1} \).

Arc input(s) \(\text{VARIABLES1} \) \(\text{VARIABLES2} \)

Arc generator \(\text{PRODUCT} \rightarrow \text{collection}(\text{variables1}, \text{variables2}) \)

Arc arity 2

Arc constraint(s) \(\text{variables1}.\text{var} = \text{variables2}.\text{var} \)

Graph property(ies)
- \(\text{NSOURCE} = \text{NCOMMON1} \)
- \(\text{NSINK} = \text{NCOMMON2} \)

Example \[
\left(3, 4, \{\text{var} - 1, \text{var} - 9, \text{var} - 1, \text{var} - 5\}, \begin{array}{c}
\text{var} - 2 \\
\text{var} - 1 \\
\text{var} - 9 \\
\text{var} - 9 \\
\text{var} - 6 \\
\text{var} - 9
\end{array} \right) \]

Parts (A) and (B) of Figure 4.102 respectively show the initial and final graph. Since we use the \textbf{NSOURCE} and \textbf{NSINK} graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since the final graph has only 3 sources and 4 sinks the variables \text{NCOMMON1} and \text{NCOMMON2} are respectively equal to 3 and 4. Note that all the vertices corresponding to the variables that take values 5, 2 or 6 were removed from the final graph since there is no arc for which the associated equality constraint holds.
See also

See also
Figure 4.102: Initial and final graph of the common constraint
4.46 common_interval

Origin
Derived from [common]

Constraint
```
common_interval(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2, SIZE_INTERVAL)
```

Argument(s)
- NCOMMON1 : dvar
- NCOMMON2 : dvar
- VARIABLES1 : collection(var – dvar)
- VARIABLES2 : collection(var – dvar)
- SIZE_INTERVAL : int

Restriction(s)
- NCOMMON1 \(\geq 0\)
- NCOMMON1 \(\leq |VARIABLES1|\)
- NCOMMON2 \(\geq 0\)
- NCOMMON2 \(\leq |VARIABLES2|\)
- required(VARIABLES1, var)
- required(VARIABLES2, var)
- SIZE_INTERVAL \(> 0\)

NCOMMON1 is the number of variables of the collection of variables VARIABLES1 taking a value in one of the intervals derived from the values assigned to the variables of the collection VARIABLES2. To each value \(v\) assigned to a variable of the collection VARIABLES2 we associate the interval \([SIZE_INTERVAL \cdot \lfloor v/SIZE_INTERVAL\rfloor, SIZE_INTERVAL \cdot \lfloor v/SIZE_INTERVAL\rfloor + SIZE_INTERVAL – 1]\).

NCOMMON2 is the number of variables of the collection of variables VARIABLES2 taking a value in one of the intervals derived from the values assigned to the variables of the collection VARIABLES1. To each value \(v\) assigned to a variable of the collection VARIABLES1 we associate the interval \([SIZE_INTERVAL \cdot \lceil v/SIZE_INTERVAL\rceil, SIZE_INTERVAL \cdot \lceil v/SIZE_INTERVAL\rceil + SIZE_INTERVAL – 1]\).

Purpose

Arc input(s)
VARIABLES1 VARIABLE2

Arc generator
```
PRODUCT \rightarrow collection(variables1, variables2)
```

Arc arity
2

Arc constraint(s)
```
variables1.var/SIZE_INTERVAL = variables2.var/SIZE_INTERVAL
```

Graph property(ies)
- NSOURCE = NCOMMON1
- NSINK = NCOMMON2
Example

\[
\begin{align*}
3,2: & \{ \text{var} - 8, \\
& \text{var} - 6, \\
& \text{var} - 6, \\
& \text{var} - 0 \}\,
\begin{align*}
& \{ \text{var} - 7, \\
& \text{var} - 3, \\
& \text{var} - 7 \}, 3
\end{align*}
\end{align*}
\]

In the previous example, the last parameter \(\text{SIZE_INTERVAL}\) defines the following family of intervals \([3 \cdot k, 3 \cdot k + 2]\), where \(k\) is an integer. Parts (A) and (B) of Figure 4.103 respectively show the initial and final graph. Since we use the \(\text{NSOURCE}\) and \(\text{NSINK}\) graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since the graph has only 3 sources and 2 sinks the variables \(\text{NCOMMON}\) and \(\text{NCOMMON2}\) are respectively equal to 3 and 2. Note that the vertices corresponding to the variables that take values 0 or 3 were removed from the final graph since there is no arc for which the associated arc constraint holds.

See also \(\text{common_interval}\)

Key words \(\text{constraint between two collections of variables, interval, acyclic, bipartite, no loop}\)
4.47 common_modulo

Origin
Derived from [common]

Constraint
common_modulo(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2, M)

Argument(s)
NCOMMON1 : dvar
NCOMMON2 : dvar
VARIABLES1 : collection(var − dvar)
VARIABLES2 : collection(var − dvar)
M : int

Restriction(s)
NCOMMON1 ≥ 0
NCOMMON1 ≤ |VARIABLES1|
NCOMMON2 ≥ 0
NCOMMON2 ≤ |VARIABLES2|
required(VARIABLES1.var)
required(VARIABLES2.var)
M > 0

Purpose
NCOMMON1 is the number of variables of the collection of variables VARIABLES1 taking a value situated in an equivalence class (congruence modulo a fixed number M) derived from the values assigned to the variables of VARIABLES2 and from M.
NCOMMON2 is the number of variables of the collection of variables VARIABLES2 taking a value situated in an equivalence class (congruence modulo a fixed number M) derived from the values assigned to the variables of VARIABLES1 and from M.

Arc input(s)
VARIABLES1 VARIABLES2

Arc generator
PRODUCT ← collection(variables1, variables2)

Arc arity
2

Arc constraint(s)
variables1.var mod M = variables2.var mod M

Graph property(ies)
• NSOURCE = NCOMMON1
• NSINK = NCOMMON2

Example
common_modulo

$$\left\{ 3, 4, \{ \text{var} - 0, \text{var} - 4, \text{var} - 0, \text{var} - 8 \}, \begin{cases} \text{var} - 7, \\ \text{var} - 5, \\ \text{var} - 4, \\ \text{var} - 9, \\ \text{var} - 2, \\ \text{var} - 4 \end{cases} \right\}$$

Parts (A) and (B) of Figure 4.104 respectively show the initial and final graph. Since we use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since the graph has only 3
sources and 4 sinks the variables NCOMMON1 and NCOMMON2 are respectively equal to 3 and 4. Note that the vertices corresponding to the variables that take values 8, 7 or 2 were removed from the final graph since there is no arc for which the associated arc constraint holds.

Figure 4.104: Initial and final graph of the common_modulo constraint

See also

Key words
4.48 common_partition

Origin
Derived from common_partition

Constraint
common_partition(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2, PARTITIONS)

Type(s)
VALUES : collection(val - int)

Argument(s)
NCOMMON1 : dvar
NCOMMON2 : dvar
VARIABLES1 : collection(var - dvar)
VARIABLES2 : collection(var - dvar)
PARTITIONS : collection(p - VALUES)

Restriction(s)
required(VALUES, val)
distinct(VALUES, val)
NCOMMON1 ≥ 0
NCOMMON1 ≤ |VARIABLES1|
NCOMMON2 ≥ 0
NCOMMON2 ≤ |VARIABLES2|
required(VARIABLES1.var)
required(VARIABLES2.var)
required(PARTITIONS.p)
|PARTITIONS| ≥ 2

Purpose
NCOMMON1 is the number of variables of the VARIABLES1 collection taking a value in a partition
derived from the values assigned to the variables of VARIABLES2 and from PARTITIONS.
NCOMMON2 is the number of variables of the VARIABLES2 collection taking a value in a partition
derived from the values assigned to the variables of VARIABLES1 and from PARTITIONS.

Arc input(s)
VARIABLES1 VARIABLES2

Arc generator
PRODUCT ↦ collection(variables1, variables2)

Arc arity
2

Arc constraint(s)
in_same_partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies)
• NSOURCE = NCOMMON1
• NSINK = NCOMMON2
Parts (A) and (B) of Figure 4.105 respectively show the initial and final graph. Since we use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since the graph has only 3 sources and 4 sinks the variables NCOMMON1 and NCOMMON2 are respectively equal to 3 and 4. Note that the vertices corresponding to the variables that take values 0 or 7 were removed from the final graph since there is no arc for which the associated in_same_partition constraint holds.

Figure 4.105: Initial and final graph of the common_partition constraint

See also common_in_same_partition

Key words constraint between two collections of variables partition acyclic bipartite no_loop
4.49 connect_points

Origin
N. Beldiceanu

Constraint
connect_points(SIZE1, SIZE2, SIZE3, NGROUP, POINTS)

Argument(s)
SIZE1 : int
SIZE2 : int
SIZE3 : int
NGROUP : dvar
POINTS : collection(p - dvar)

Restriction(s)
SIZE1 > 0
SIZE2 > 0
SIZE3 > 0
NGROUP ≥ 0
NGROUP ≤ |POINTS|
SIZE1 * SIZE2 + SIZE3 = |POINTS|
required(POINTS, p)

Purpose
On a 3-dimensional grid of variables, number of groups, where a group consists of a connected set of variables which all have a same value distinct from 0.

Arc input(s)
POINTS

Arc generator
GRID([SIZE1, SIZE2, SIZE3]) → collection(points1, points2)

Arc arity
2

Arc constraint(s)
• points1.p ≠ 0
• points1.p = points2.p

Graph property(ies)
NSCC = NGROUP
Figure 4.107 gives the initial graph constructed by the GRID arc generator. Figure 4.106 corresponds to the solution where we describe separately each layer of the grid.

We have two groups: A first one for the variables assigned to value 1 and a second one for the variables assigned to value 2.
symmetric

Figure 4.107: The two layers of the solution
4.50 correspondence

Origin

Derived from \texttt{sort_permutation} by removing the sorting condition.

Constraint

correspondence(FROM, PERMUTATION, TO)

Argument(s)

FROM : \texttt{collection(fvar – dvar)}
PERMUTATION : \texttt{collection(var – dvar)}
TO : \texttt{collection(tvar – dvar)}

Restriction(s)

\(|\text{PERMUTATION}| = |\text{FROM}|\)
\(|\text{PERMUTATION}| = |\text{TO}|\)
\(\text{PERMUTATION}.\text{var} \geq 1\)
\(\text{PERMUTATION}.\text{var} \leq |\text{PERMUTATION}|\)
\text{alldifferent(PERMUTATION)}
\text{required(FROM, fvar)}
\text{required(PERMUTATION, var)}
\text{required(TO, tvar)}

Purpose

The variables of the TO collection correspond to the variables of the FROM collection according to the permutation expressed by \texttt{PERMUTATION}.

Derived Collection(s)

\(\text{col}\left(\text{FROM}_\text{PERMUTATION} - \text{collection(fvar – dvar, var – dvar)},\right)\)

\(\left[\text{item(fvar – FROM.fvar, var – \text{PERMUTATION.var})}\right]\)

Arc input(s)

\text{FROM}_\text{PERMUTATION} \text{ TO}

Arc generator

\textit{PRODUCT} \mapsto \text{collection(from_permutation, to)}

Arc arity

2

Arc constraint(s)

* from_permutation.fvar \text{ = to.tvar}
* from_permutation.var \text{ = to.key}

Graph property(ies)

\text{NARC} = |\text{PERMUTATION}|
Parts (A) and (B) of Figure 4.108 respectively show the initial and final graph. In both graphs the source vertices correspond to the derived collection FROM_PERMUTATION, while the sink vertices correspond to the collection TO. Since the final graph contains exactly |PERMUTATION| arcs the correspondence constraint holds. As we use the NARC graph property, the arcs of the final graph are stressed in bold.

![Graph](image_url)

Figure 4.108: Initial and final graph of the correspondence constraint

Signature

Because of the second condition from_permutation.var = to.key of the arc constraint and since both, the var attributes of the collection FROM_PERMUTATION and the key attributes of the collection TO are all distinct, the final graph contains at most |PERMUTATION| arcs. Therefore we can rewrite the graph property NARC = |PERMUTATION| to NARC >= |PERMUTATION|. This leads to simplify NARC to NARC.

Remark

Similar to the constraint except that we also provide the permutation which allows to
go from the items of collection FROM to the items of collection TO.

See also

* **same** sort_permutation

Key words

* constraint between three collections of variables
* permutation
* derived collection
* acyclic
* bipartite
* no_loop
4.51 count

Origin

Constraint

\[\text{count}(\text{VALUE, VARIABLES, RELOP, NVAR}) \]

Argument(s)

\[
\begin{align*}
\text{VALUE} & : \text{int} \\
\text{VARIABLES} & : \text{collection}(\text{var} - \text{dvar}) \\
\text{RELOP} & : \text{atom} \\
\text{NVAR} & : \text{dvar}
\end{align*}
\]

Restriction(s)

\[
\begin{align*}
\text{required}(&\text{VARIABLES, var}) \\
\text{RELOP} & \in [\text{=}, \neq, \text{<}, \text{>,} \leq, \geq]
\end{align*}
\]

Purpose

Let \(N \) be the number of variables of the \text{VARIABLES} collection assigned to value \text{VAL}; Enforce condition \(N \text{ RELOP } \text{NVAR} \) to hold.

Arc input(s)

\text{VARIABLES}

Arc generator

\text{SELF} \mapsto \text{collection}(\text{variables})

Arc arity

1

Arc constraint(s)

\text{variables.var} = \text{VALUE}

Graph property(ies)

\text{NARC \ RELOP \ NVAR}

Example

\[
\text{count} \left(5, \left\{ \begin{array}{l}
\text{var} - 4, \\
\text{var} - 5,
\end{array} \right\}, \geq, 2 \right)
\]

The constraint holds since value 5 occurs 3 times, which is greater than or equal to 2. Parts (A) and (B) of Figure 4.109 respectively show the initial and final graph. Since we use the \text{NARC} graph property, the unary arcs of the final graph are stressed in bold.

Automaton

Figure 4.110 depicts the automaton associated to the count constraint. To each variable \text{VAR}_i of the collection \text{VARIABLES} corresponds a 0-1 signature variable \text{S}_i. The following signature constraint links \text{VAR}_i and \text{S}_i: \text{VAR}_i = \text{VALUE} \Leftrightarrow \text{S}_i.
Figure 4.110: Automaton of the count constraint

Figure 4.111: Hypergraph of the reformulation corresponding to the automaton of the count constraint
Remark

Similar to the among constraint.

See also

among, counts, min_value, max_value, in_value

Key words

value constraint, counting constraint, automaton, automaton with counters, alpha-acyclic constraint network(2)
4.52 counts

Origin
Derived from counts

Constraint
counts(VALUE, VARIABLES, RLOP, LIMIT)

Argument(s)
VALUES : collection(val = int)
VARIABLES : collection(var = dvar)
RLOP : atom
LIMIT : dvar

Restriction(s)
required(VALUE, val)
distinct(VALUE, val)
required(VARIABLES, var)
RLOP \in \{\text{=, \text{\&\&}, \text{\textless}, \text{\textgt}, \text{\leq}}\}

Purpose
Let N be the number of variables of the VARIABLES collection assigned to a value of the VALUES collection. Enforce condition N RLOP LIMIT to hold.

Arc input(s)
VARIABLES VALUES

Arc generator
PRODUCT \mapsto collection(variables, values)

Arc arity
2

Arc constraint(s)
variables.var = values.val

Graph property(ies)
NARC RLOP LIMIT

Example
counts

\begin{align*}
\left\{ \text{val - 1, val - 3, val - 4, val - 9}, \\
\text{var - 4, var - 5, var - 6, var - 7, var - 8} \right\}
\end{align*}

\text{, =, 3}

The constraint holds since values 1, 3, 4 and 9 are used by three variables of the VARIABLES collection. This number is equal to the last argument of the counts constraint. Parts (A) and (B) of Figure 4.12 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Graph model
Because of the arc constraint variables.var = values.val and since each domain variable can take at most one value, NARC is the number of variables taking a value in the VALUES collection.

Automaton
Figure 4.13 depicts the automaton associated to the counts constraint. To each variable \text{VAR}_i of the collection VARIABLES corresponds a 0-1 signature variable \text{S}_i. The following signature constraint links \text{VAR}_i and \text{S}_i: \text{VAR}_i \in VALUES \Leftrightarrow \text{S}_i.
Figure 4.112: Initial and final graph of the counts constraint

Figure 4.113: Automaton of the counts constraint

Figure 4.114: Hypergraph of the reformulation corresponding to the automaton of the counts constraint
Usage

Used in the Constraint(s) on sets slot for defining some constraints like `assign_and_counts`.

See also

- `count` among

Key words

- value constraint
- counting constraint
- automaton
- automaton with counters
- alpha-acyclic constraint network(2)
- acyclic
- bipartite
- no_loop
4.53 crossing

Origin
Inspired by [84].

Constraint
crossing(NCROSS, SEGMENTS)

Argument(s)
NCROSS : dvar
SEGMENTS : collection(ox - dvar, oy - dvar, ex - dvar, ey - dvar)

Restriction(s)
NCROSS ≥ 0
NCROSS ≤ ((|SEGMENTS| * |SEGMENTS| - |SEGMENTS|)/2
required(SEGMENTS, [ox, oy, ex, ey])

Purpose
NCROSS is the number of line-segments intersections between the line-segments defined by the SEGMENTS collection. Each line-segment is defined by the coordinates (ox, oy) and (ex, ey) of its two extremities.

Arc input(s)
SEGMENTS

Arc generator
CLIQUE(<) → collection(s1, s2)

Arc arity
2

Arc constraint(s)
• max(s1.ox, s1.ex) ≥ min(s2.ox, s2.ex)
• max(s2.ox, s2.ex) ≥ min(s1.ox, s1.ex)
• max(s1.oy, s1.ey) ≥ min(s2.oy, s2.ey)
• max(s2.oy, s2.ey) ≥ min(s1.oy, s1.ey)

Graph property(ies)
NARC = NCROSS

Example
crossing(3, \{ ox - 1, oy - 4, ex - 9, ey - 2, ox - 1, oy - 1, ex - 3, ey - 5, ox - 3, oy - 2, ex - 7, ey - 4, ox - 9, oy - 1, ex - 9, ey - 4 \})

Parts (A) and (B) of Figure 4.115 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold. An arc constraint expresses the fact the two line-segments intersect. It is taken from [84, page 889]. Each arc of the final graph corresponds to a line-segments intersection. Figure 4.116 gives a picture of the previous example, where one can observe three line-segments intersections.

Graph model
Each line-segment is described by the x and y coordinates of its two extremities. In the arc generator we use the restriction < in order to generate one single arc for each pair of segments. This is required, since otherwise we would count more than once a given line-segments intersection.
Figure 4.115: Initial and final graph of the crossing constraint

Figure 4.116: Intersection between line-segments
See also

- graph_crossing
- two_layer_edge_crossing

Key words

- geometrical constraint
- line-segments intersection
- no_loop
4.54 cumulative

Origin

Constraint: cumulative(TASKS, LIMIT)

Argument(s)

- TASKS : collection(origin - dvar, duration - dvar, end - dvar, height - dvar)
- LIMIT : int

Restriction(s)

- require_at_least(2, TASKS, [origin, duration, end])
- required(TASKS, height)
- TASKS.duration ≥ 0
- TASKS.height ≥ 0
- LIMIT ≥ 0

Cumulative scheduling constraint or scheduling under resource constraints. Consider a set T of tasks described by the TASKS collection. The cumulative constraint enforces that at each point in time, the cumulated height of the set of tasks that overlap that point, does not exceed a given limit. It also imposes for each task of T the constraint origin + duration = end.

Purpose

Arc input(s)

- TASKS

Arc generator

- SELF \rightarrow collection(tasks)

Arc arity

- 1

Arc constraint(s)

- tasks.origin + tasks.duration = tasks.end

Graph property(ies)

$\text{NARC} = |\text{TASKS}|$

Arc input(s)

- TASKS TASKS

Arc generator

- $\text{PRODUCT} \rightarrow$ collection(tasks1, tasks2)

Arc arity

- 2

Arc constraint(s)

- tasks1.duration > 0
- tasks2.origin ≤ tasks1.origin
- tasks1.origin < tasks2.end

Sets

- $\text{SUCC} \rightarrow$
- $\begin{bmatrix}
\text{source,} \\
\text{variables} \rightarrow \text{col}
\begin{bmatrix}
\text{VARIABLES} \rightarrow \text{collection(var - dvar),} \\
\text{item(var - TASKS.height)}
\end{bmatrix}
\end{bmatrix}$

Constraint(s) on sets

- sum_\text{ctr}(\text{variables,} \leq \text{LIMIT})
Example
cumulative

\[
\begin{align*}
\text{origin} & - 1 & \text{duration} & - 3 & \text{end} & - 4 & \text{height} & - 1, \\
\text{origin} & - 2 & \text{duration} & - 9 & \text{end} & - 11 & \text{height} & - 2, \\
\text{origin} & - 3 & \text{duration} & - 10 & \text{end} & - 13 & \text{height} & - 1, \\
\text{origin} & - 6 & \text{duration} & - 6 & \text{end} & - 12 & \text{height} & - 1, \\
\text{origin} & - 7 & \text{duration} & - 2 & \text{end} & - 9 & \text{height} & - 3
\end{align*}
\]

Parts (A) and (B) of Figure 4.117 respectively show the initial and final graph associated to the second graph constraint. On the one hand, each source vertex of the final graph can be interpreted as a time point. On the other hand the successors of a source vertex correspond to those tasks which overlap that time point. The cumulative constraint holds since for each successor set \(S \) of the final graph the sum of the heights of the tasks in \(S \) does not exceed the limit \(\text{LIMIT} = 8 \). Figure 4.118 shows the cumulated profile associated to the previous example.

![Figure 4.117: Initial and final graph of the cumulative constraint](image)

Graph model

The first graph constraint enforces for each task the link between its origin, its duration and its end. The second graph constraint makes sure, for each time point \(t \) corresponding to the start of a task, that the cumulated heights of the tasks that overlap \(t \) does not exceed the limit of the resource.

Signature

Since \(\text{TASKS} \) is the maximum number of vertices of the final graph of the first graph constraint we can rewrite \(\text{NARC} = |\text{TASKS}| \) to \(\text{NARC} \geq |\text{TASKS}| \). This leads to simplify \(\text{NARC} \) to \(\text{NARC} \).

Automaton

Figure 4.119 depicts the automaton associated to the cumulative constraint. To each item of the collection \(\text{TASKS} \) corresponds a signature variable \(S_i \), which is equal to 1.
Figure 4.118: Resource consumption profile

Figure 4.119: Automaton of the cumulative constraint
Algorithm \[85,86,87\]. Within the context of linear programming, the reference \[8\] provides a relaxation of the cumulative constraint.

See also bin-packing, cumulative product, coloured cumulative, cumulative two-d, coloured cumulatives, cumulatives, cumulative with level of priority.

Key words scheduling constraint, resource constraint, temporal constraint, linear programming, producer-consumer, squared squares, automaton, automaton with array of counters.
4.55 cumulative_product

Origin
Derived from cumulative

Constraint
cumulative_product(TASKS, LIMIT)

Argument(s)
TASKS : collection(origin − dvar, duration − dvar, end − dvar, height − dvar)
LIMIT : int

Restriction(s)
require_at_least(2, TASKS, [origin, duration, end])
required(TASKS, height)
TASKS.duration ≥ 0
TASKS.height ≥ 1
LIMIT ≥ 0

Purpose
Consider a set T of tasks described by the TASKS collection. The cumulative_product constraint enforces that at each point in time, the product of the height of the set of tasks that overlap that point, does not exceed a given limit. It also imposes for each task of T the constraint $\text{origin} + \text{duration} = \text{end}$.

Arc input(s)
TASKS

Arc generator
SELF ↔ collection(tasks)

Arc arity
1

Arc constraint(s)
tasks.origin + tasks.duration = tasks.end

Graph property(ies)
\(\text{NARC} = |\text{TASKS}|\)

Arc input(s)
TASKS TASKS

Arc generator
PRODUCT ↔ collection(tasks1, tasks2)

Arc arity
2

Arc constraint(s)
• tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin
• tasks1.origin < tasks2.end

Sets
\[
\text{Succ} \mapsto \begin{bmatrix}
\text{source},
\text{variables} - \text{col} \left(\text{VARIABLES} - \text{collection}(\text{var} - \text{dvar}), \right)
\end{bmatrix}
\]

Constraint(s) on sets
product_ctr(variables, ≤, LIMIT)
Parts (A) and (B) of Figure 4.120 respectively show the initial and final graph associated to the second graph constraint. On the one hand, each source vertex of the final graph can be interpreted as a time point. On the other hand the successors of a source vertex correspond to those tasks which overlap that time point. The cumulative product constraint holds since for each successor set S of the final graph the product of the heights of the tasks in S does not exceed the limit $\text{LIMIT} = 6$. Figure 4.121 shows the solution associated to the previous example.

Figure 4.120: Initial and final graph of the cumulative product constraint

Figure 4.121: Solution of the cumulative product constraint
Signature

Since TASKS is the maximum number of vertices of the final graph of the first graph constraint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify NARC to NARC.

See also

[see also cumulative]

Key words

[scheduling constraint, resource constraint, temporal constraint, product]
4.56 cumulative_two_d

Origin
Inspired by `cumulative` and `diffn`.

Constraint
`cumulative_two_d(RECTANGLES, LIMIT)`

Argument(s)
`RECTANGLES : collection` `start1 = dvar, size1 = dvar, last1 = dvar, start2 = dvar, size2 = dvar, last2 = dvar, height = dvar`

`LIMIT : int`

Restriction(s)
- `require_at_least(2, RECTANGLES, [start1, size1, last1])`
- `require_at_least(2, RECTANGLES, [start2, size2, last2])`
- `required(RECTANGLES, height)`
- `RECTANGLES.size1 ≥ 0`
- `RECTANGLES.size2 ≥ 0`
- `RECTANGLES.height ≥ 0`
- `LIMIT ≥ 0`

Purpose
Consider a set \mathcal{R} of rectangles described by the `RECTANGLES` collection. Enforces that at each point of the plane, the cumulated height of the set of rectangles that overlap that point, does not exceed a given limit.

Derived Collection(s)
`CORNERS -- collection(size1 = dvar, size2 = dvar, x = dvar, y = dvar)`

Arc input(s)
`RECTANGLES`

Arc generator
`SELF --> collection(rectangles)`
Arc arity

1

Arc constraint(s)

• rectangles.start1 + rectangles.size1 - 1 = rectangles.last1
• rectangles.start2 + rectangles.size2 - 1 = rectangles.last2

Graph property(ies)

NARC = |RECTANGLES|

Arc input(s)

CORNERS RECTANGLES

Arc generator

PRODUCT ⊔ collection(corners, rectangles)

Arc arity

2

Arc constraint(s)

• corners.size1 > 0
• corners.size2 > 0
• rectangles.start1 ≤ corners.x
• corners.x ≤ rectangles.last1
• rectangles.start2 ≤ corners.y
• corners.y ≤ rectangles.last2

Sets

SUCC ⊔

variables = col(VARIABLES – collection(var − dvar),

item(var − RECTANGLES.height))

Constraint(s) on sets

sum_ctr(variables, ≤ LIMIT)

Example

cumulative_two_d

\[
\begin{pmatrix}
\text{start1} - 1 & \text{size1} - 4 & \text{last1} - 4 & \text{start2} - 3 & \text{size2} - 3 & \text{last2} - 5 & \text{height} - 4,
\text{start1} - 3 & \text{size1} - 2 & \text{last1} - 4 & \text{start2} - 1 & \text{size2} - 2 & \text{last2} - 2 & \text{height} - 2,
\text{start1} - 1 & \text{size1} - 2 & \text{last1} - 2 & \text{start2} - 2 & \text{size2} - 2 & \text{last2} - 2 & \text{height} - 3,
\text{start1} - 4 & \text{size1} - 1 & \text{last1} - 4 & \text{start2} - 1 & \text{size2} - 1 & \text{last2} - 1 & \text{height} - 1
\end{pmatrix}
\]

Parts (A) and (B) of Figure 4.122 respectively show the initial and final graph associated to the second graph constraint. On the one hand, each source vertex of the final graph corresponds to the corner of a rectangle of the RECTANGLES collection. On the other hand the successors of a source vertex are those rectangles which overlap that corner.

Part (A) of Figure 4.123 shows 4 rectangles of height 4, 2, 3 and 1. Part (B) gives the corresponding cumulated 2-dimensional profile, where each number is the cumulated height of all the rectangles that contain the corresponding region.

Signature

Since RECTANGLES is the maximum number of vertices of the final graph of the first graph constraint we can rewrite NARC = |RECTANGLES| to NARC ≥ |RECTANGLES|. This leads to simplify NARC to NARC.

Usage

The cumulative_two_d constraint is a necessary condition for the diff constraint in 3 dimensions (i.e. the placement of parallelepipeds in such a way that they do not pairwise overlap and that each parallelepiped has his sides parallel to the sides of the placement space).

Algorithm

A first natural way to handle this constraint would be to accumulate the compulsory parts of the rectangles in a quadtree. To each leave of the quadtree we associate the cumulated height of the rectangles containing the corresponding region.
Figure 4.122: Initial and final graph of the cumulative two-d constraint

Figure 4.123: Two representations of a 2-dimensional cumulated profile
See also cumulative, diff, bin_packing.

Key words geometrical constraint, derived collection.
4.57 cumulative_with_level_of_priority

Origin

H. Simonis

Constraint

\[
\text{cumulative_with_level_of_priority}(\text{TASKS}, \text{PRIORITIES})
\]

Argument(s)

\[
\begin{align*}
\text{TASKS} & : \text{collection} \\
\text{PRIORITIES} & : \text{collection(id – int, capacity – int)}
\end{align*}
\]

Restriction(s)

\[
\begin{align*}
\text{required(TASKS, [priority, height])} \\
\text{require_at_least(2, TASKS, [origin, duration, end])} \\
\text{TASKS.priority} & \geq 1 \\
\text{TASKS.priority} & \leq |\text{PRIORITIES}| \\
\text{TASKS.duration} & \geq 0 \\
\text{TASKS.height} & \geq 0 \\
\text{required(PRIORITIES, [id, capacity])} \\
\text{PRIORITIES.id} & \geq 1 \\
\text{PRIORITIES.id} & \leq |\text{PRIORITIES}| \\
\text{increasing_seq(PRIORITIES, id)} \\
\text{increasing_seq(PRIORITIES, capacity)}
\end{align*}
\]

Purpose

Consider a set \(T \) of tasks described by the TASKS collection where each task has a given priority chosen in the range \([1, \text{PRIORITIES}]\). Let \(T_i \) denotes the subset of tasks of \(T \) which all have a priority less than or equal to \(i \). For each set \(T_i \), the cumulative_with_level_of_priority constraint enforces that at each point in time, the cumulated height of the set of tasks that overlap that point, does not exceed a given limit. Finally, it also imposes for each task of \(T \) the constraint \(\text{origin} + \text{duration} = \text{end} \).

Derived Collection(s)

\[
\text{col} \left(\begin{array}{c}
\text{TIME.POINTS} = \text{collection(idp – int, duration – dvar, point – dvar)}, \\
\text{item} = \text{idp – TASKS.priority, duration – TASKS.duration, point – TASKS.origin}, \\
\text{item} = \text{idp – TASKS.priority, duration – TASKS.duration, point – TASKS.end}
\end{array} \right)
\]

Arc input(s)

\(\text{TASKS} \)

Arc generator

\(\text{SELF} \rightarrow \text{collection(tasks)} \)

Arc arity

1

Arc constraint(s)

\(\text{tasks.origin} + \text{tasks.duration} = \text{tasks.end} \)

Graph property(ies)

\(\text{NARC} = [\text{TASKS}] \)

For all items of \(\text{PRIORITIES} \):
Arc input(s)

TIME_POINTS TASKS

Arc generator

PRODUCT \(\mapsto \) collection(time_points.tasks)

Arc arity

2

Arc constraint(s)

- time_points.idp = PRIORITIES.id
- time_points.idp ≥ tasks.priority
- time_points.duration > 0
- tasks.origin ≤ time_points.point
- time_points.point < tasks.end

Sets

SUCC \(\mapsto \) [source, variables - col(VARIABLES - collection(var - dvar), [item(var - TASKS.height)])]

Constraint(s) on sets

\(\sum_{\text{ctr}}(\text{variables}, \leq, \text{PRIORITIES.capacity}) \)

Example

\[
\text{cumulative_with_level_of_priority} = \left\{ \begin{array}{lllll}
\text{priority} - 1 & \text{origin} - 1 & \text{duration} - 2 & \text{end} - 3 & \text{height} - 1, \\
\text{priority} - 1 & \text{origin} - 2 & \text{duration} - 3 & \text{end} - 5 & \text{height} - 1, \\
\text{priority} - 1 & \text{origin} - 5 & \text{duration} - 2 & \text{end} - 7 & \text{height} - 2, \\
\text{priority} - 2 & \text{origin} - 3 & \text{duration} - 2 & \text{end} - 5 & \text{height} - 2, \\
\text{priority} - 2 & \text{origin} - 6 & \text{duration} - 3 & \text{end} - 9 & \text{height} - 1 \\
\text{id} - 1 & \text{capacity} - 2, \\
\text{id} - 2 & \text{capacity} - 3 \\
\end{array} \right\},
\]

Within the context of the second graph constraint, part (A) of Figure 4.124 shows the initial graphs associated to priorities 1 and 2. Part (B) of Figure 4.124 shows the corresponding final graphs associated to priorities 1 and 2. On the one hand, each source vertex of the final graph can be interpreted as a time point \(p \). On the other hand the successors of a source vertex correspond to those tasks which both overlap that time point \(p \) and have a priority less than or equal to a given level. The \text{cumulative_with_level_of_priority} constraint holds since for each successor set \(S \) of the final graph the sum of the height of the tasks in \(S \) is less than or equal to the capacity associated to a given level of priority. Figure 4.125 shows the cumulated profile associated to both levels of priority.

Signature

Since \text{TASKS} is the maximum number of vertices of the final graph of the first graph constraint we can rewrite \text{NARC} = |\text{TASKS}| to \text{NARC} ≥ |\text{TASKS}|. This leads to simplify \text{NARC} to \text{NARC}.

Usage

The \text{cumulative_with_level_of_priority} constraint was suggested by problems from the telecommunication area where one has to ensure different levels of quality of service. For this purpose the capacity of a transmission link is splitted so that a given percentage is reserved to each level. In addition we have that, if the capacities allocated to levels 1, 2, ..., \(i \) is not completely used, then level \(i + 1 \) can use the corresponding spare capacity.

Remark

The \text{cumulative_with_level_of_priority} constraint can be modeled by a conjunction of \text{cumulative} constraints. As shown by the next example, the consistency for all variables of the \text{cumulative} constraints does not implies consistency for the corresponding \text{cumulative_with_level_of_priority} constraint. The following \text{cumulative_with_level_of_priority} constraint
Figure 4.124: Initial and final graph of the cumulative with level of priority constraint

Figure 4.125: Resource consumption profile according to both levels of priority
cumulative_with_level_of_priority \(\{ \begin{array}{l}
\text{priority} - 1 \; \text{origin} - o_1 \; \text{duration} - 2 \; \text{height} - 2, \\
\text{priority} - 1 \; \text{origin} - o_2 \; \text{duration} - 2 \; \text{height} - 1, \\
\text{priority} - 2 \; \text{origin} - o_3 \; \text{duration} - 1 \; \text{height} - 3 \\
id - 1 \; \text{capacity} - 2, \\
id - 2 \; \text{capacity} - 3
\end{array} \right\}, \)

where the domains of \(o_1, o_2\) and \(o_3\) are respectively equal to \(\{1, 2, 3\}, \{1, 2, 3\}\) and \(\{1, 2, 3, 4\}\) corresponds to the following conjunction of \text{cumulative} constraints

\[
\text{cumulative} \left(\left\{ \begin{array}{l}
\text{origin} - o_1 \; \text{duration} - 2 \; \text{height} - 2, \\
\text{origin} - o_2 \; \text{duration} - 2 \; \text{height} - 1
\end{array} \right\}, 2 \right)
\]

\[
\text{cumulative} \left(\left\{ \begin{array}{l}
\text{origin} - o_1 \; \text{duration} - 2 \; \text{height} - 2, \\
\text{origin} - o_2 \; \text{duration} - 2 \; \text{height} - 1, \\
\text{origin} - o_3 \; \text{duration} - 1 \; \text{height} - 3
\end{array} \right\}, 3 \right)
\]

Even if the \text{cumulative} could achieve arc-consistency, the previous conjunction of \text{cumulative} constraints would not detect the fact that there is no solution.

See also \text{cumulative}

Key words \text{scheduling constraint, resource constraint, temporal constraint, derived collection}
4.58 cumulatives

Origin

Constraint

cumulatives(TASKS, MACHINES, CTR)

Argument(s)

TASKS : collection (machine − dvar, origin − dvar, duration − dvar, end − dvar, height − dvar)
MACHINES : collection(id − int, capacity − int)
CTR : atom

Restriction(s)

required(TASKS, [machine, height])
require_at_least(2, TASKS, [origin, duration, end])
in_attr(TASKS, machine, MACHINES, id)
TASKS.duration ≥ 0
required(MACHINES, [id, capacity])
distinct(MACHINES, id)
CTR ∈ [≤, ≥]

Purpose

Consider a set T of tasks described by the TASKS collection. When CTR is equal to \leq (respectively \geq), the cumulatives constraint enforces the following condition for each machine m:
At each point in time, where at least one task assigned on machine m is present, the cumulated height of the set of tasks that both overlap that point and are assigned to machine m should be less than or equal to (respectively greater than or equal to) the capacity associated to machine m.
It also imposes for each task of T the constraint $\text{origin + duration = end}$.

Derived Collection(s)

col (TIME_POINTS − collection(idm − int, duration − dvar, point − dvar),
item(idm − TASKS.machine, duration − TASKS.duration, point − TASKS.origin),
item(idm − TASKS.machine, duration − TASKS.duration, point − TASKS.end)
)

Arc input(s)

TASKS

Arc generator

SELF \mapsto collection(tasks)

Arc arity

1

Arc constraint(s)

tasks.origin + tasks.duration = tasks.end

Graph property(ies)

$\text{NARC} = |\text{TASKS}|

For all items of MACHINES:

Arc input(s)

TIME_POINTS TASKS

Arc generator

PRODUCT \mapsto collection(time_points, tasks)
Arc arity

2

Arc constraint(s)
- time_points.idm = MACHINES.id
- time_points.idm = tasks.machine
- time_points.duration > 0
- tasks.origin ≤ time_points.point
- time_points.point < tasks.end

Succ \rightarrow

\text{source,}
\begin{array}{l}
\text{variables - col (VARIABLE - collection (var - dvar),)}
\text{[item (var - TASKS.height)]}
\end{array}

Sets

Example

cumulatives

\begin{pmatrix}
\text{machine - 1 origin - 2 duration - 2 end - 4 height - 2,} \\
\text{machine - 1 origin - 1 duration - 4 end - 5 height - 1,} \\
\text{machine - 1 origin - 4 duration - 2 end - 6 height - 1,} \\
\text{machine - 1 origin - 2 duration - 3 end - 5 height - 2,} \\
\text{machine - 1 origin - 5 duration - 2 end - 7 height - 2,} \\
\text{machine - 2 origin - 3 duration - 2 end - 5 height - 1,} \\
\text{machine - 2 origin - 1 duration - 4 end - 5 height - 1}
\end{pmatrix}

\{id - 1 capacity - 0, id - 2 capacity - 0, ≥

Within the context of the second graph constraint, part (A) of Figure 4.126 shows the initial graphs associated to machines 1 and 2. Part (B) of Figure 4.126 shows the corresponding final graphs associated to machines 1 and 2. On the one hand, each source vertex of the final graph can be interpreted as a time point p on a specific machine m. On the other hand, the successors of a source vertex correspond to those tasks which both overlap that time point p and are assigned to machine m. Since they don’t have any successors we have eliminated those vertices corresponding to the end of the last three tasks of the TASKS collection. The cumulatives constraint holds since for each successor set S of the final graph the sum of the height of the tasks in S is greater than or equal to the capacity of the machine corresponding to the time point associated to S. Figure 4.127 shows with a thick line the cumulated profile on both machines.

Signature

Since TASKS is the maximum number of vertices of the final graph of the first graph constraint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify NARC to NARC.

Usage

As shown in the previous example, the cumulatives constraint is useful for covering problems where different demand profiles have to be covered by a set of tasks. This is modelled in the following way:

- To each demand profile is associated a given machine m and a set of tasks for which all attributes (machine, origin, duration, end, height) are fixed; moreover the machine attribute is fixed to m and the height attribute is strictly negative. For each machine m the cumulated profile of all the previous tasks constitutes the demand profile to cover.
- To each task that can be used to cover the demand is associated a task for which the height attribute is a positive integer; the height attribute describes the amount of
Figure 4.126: Initial and final graph of the cumulatives constraint

Figure 4.127: Resource consumption profile on the different machines
demand that can be covered by the task at each instant during its execution (between its origin and its end) on the demand profile associated to the machine attribute.

- In order to express the fact that each demand profile should completely be covered, we set the capacity attribute of each machine to 0. We can also relax the constraint by setting the capacity attribute to a negative number that specifies the maximum allowed uncovered demand at each instant.

The demand profiles might also not be completely fixed in advance.

When all the heights of the tasks are non-negative, one other possible use of the cumulatives constraint is to enforce to reach a minimum level of resource consumption. This is imposed on those time-points that are overlapped by at least one task.

By introducing a dummy task of height 0, of origin the minimum origin of all the tasks and of end the maximum end of all the tasks, this can also be imposed between the first and the last utilisation of the resource.

Finally the cumulatives constraint is also useful for scheduling problems where several cumulative machines are available and where you have to assign each task on a specific machine.

Algorithm

Three filtering algorithms for this constraint are described in [89].

See also

cumulative

Key words

scheduling constraint, resource constraint, temporal constraint, producer-consumer, workload covering, demand profile, derived collection
4.59 cutset

Origin

Constraint
\[\text{cutset} (\text{SIZE_CUTSET}, \text{NODES}) \]

Argument(s)
\[
\text{SIZE_CUTSET} : \text{dvar} \\
\text{NODES} : \text{collection(index \text{-- int, succ \text{-- int, bool \text{-- dvar}})}
\]

Restriction(s)
\[
\text{SIZE_CUTSET} \geq 0 \\
\text{SIZE_CUTSET} \leq |\text{NODES}| \\
\text{required(\text{NODES}, [\text{index, succ, bool}])} \\
\text{\text{NODES.index} \geq 1} \\
\text{\text{NODES.index} \leq |\text{NODES}|} \\
\text{\text{distinct(\text{NODES, index})}} \\
\text{\text{NODES.bool} \geq 0} \\
\text{\text{NODES.bool} \leq 1}
\]

Purpose

Consider a digraph \(G \) with \(n \) vertices described by the \text{NODES} collection. Enforces that the subset of kept vertices of cardinality \(n - \text{SIZE_CUTSET} \) and their corresponding arcs form a graph without circuit.

Arc input(s)
\text{NODES}

Arc generator
\(\text{CLIQUE} \rightarrow \text{collection(nodes1, nodes2)} \)

Arc arity
2

Arc constraint(s)
\[
\cdot \text{\text{in}_set(\text{nodes2.index, nodes1.succ})} \\
\cdot \text{\text{nodes1.bool} = 1} \\
\cdot \text{\text{nodes2.bool} = 1}
\]

Graph property(ies)
\[
\cdot \text{MAX_NSCC} \leq 1 \\
\cdot \text{\text{NVERTEX} = |\text{NODES}| - \text{SIZE_CUTSET}}
\]

Example
\[
\text{cutset} \left(1, \begin{pmatrix}
\text{index} & \text{succ} & \text{bool} \\
1 & 2, 3, 4 & 1, 1, 1 \\
2 & 3 & 1, 0, 1 \\
3 & 4 & 0, 0, 0 \\
4 & 1 & 1, 1, 1 \\
\end{pmatrix} \right)
\]

Part (A) of Figure 4.128 shows the initial graph from which we have choose to start. It is derived from the set associated to each vertex. Each set describes the potential values of the succ attribute of a given vertex. Part (B) of Figure 4.128 gives the final graph associated to the example. Since we use the \text{NVERTEX} graph property, the vertices of the final graph are stressed in bold. The cutset constraint holds since the final graph does not contain any circuit and since the number of removed vertices \text{SIZE_CUTSET} is equal to 1.
Graph model

We use a set of integers for representing the successors of each vertex. Because of the arc constraint, all arcs such that the `bool` attribute of one extremity is equal to 0 are eliminated; therefore, all vertices for which the `bool` attribute is equal to 0 are also eliminated (since they will correspond to isolated vertices). The graph property `MAX_NS_CCC ≤ 1` enforces the size of the largest strongly connected component to not exceed 1; therefore, the final graph can’t contain any circuit.

Usage

The paper [90] introducing the cutset constraint mentions applications from various areas such that *deadlock breaking* or *program verification*.

Algorithm

The filtering algorithm presented in [90] uses graph reduction techniques inspired from Levy and Low [91] as well as from Lloyd, Soffa and Wang [92].

Key words

- graph constraint
- circuit
- directed acyclic graph
Figure 4.128: Initial and final graph of the cutset set constraint
4.60 cycle

Origin

Constraint

\[\text{cycle(NCYCLE, NODES)} \]

Argument(s)

\[\begin{align*}
\text{NCYCLE} & : \text{dvar} \\
\text{NODES} & : \text{collection(index = int, succ = dvar)}
\end{align*} \]

Restriction(s)

\[\begin{align*}
\text{NCYCLE} & \geq 1 \\
\text{NCYCLE} & \leq |\text{NODES}| \\
\text{required}(\text{NODES}, [\text{index}, \text{succ}]) & \\
\text{NODES.index} & \geq 1 \\
\text{NODES.index} & \leq |\text{NODES}| \\
\text{distinct}(\text{NODES}, \text{index}) & \\
\text{NODES.succ} & \geq 1 \\
\text{NODES.succ} & \leq |\text{NODES}|
\end{align*} \]

Purpose

Consider a digraph \(G \) described by the \(\text{NODES} \) collection. \(\text{NCYCLE} \) is equal to the number of circuits for covering \(G \) in such a way that each vertex of \(G \) belongs to one single circuit. \(\text{NCYCLE} \) can also be interpreted as the number of cycles of the permutation associated to the successor variables of the \(\text{NODES} \) collection.

Arc input(s)

\(\text{NODES} \)

Arc generator

\(\text{CLIQUE} \rightarrow \text{collection}(\text{nodes1, nodes2}) \)

Arc arity

2

Arc constraint(s)

\(\text{nodes1.succ} = \text{nodes2.index} \)

Graph property(ies)

\[\begin{align*}
\text{NTREE} & = 0 \\
\text{NCC} & = \text{NCYCLE}
\end{align*} \]

Example

\[\text{cycle}(2, \{ \begin{array}{l}
\text{index} \rightarrow 1 \quad \text{succ} \rightarrow 2, \\
\text{index} \rightarrow 2 \quad \text{succ} \rightarrow 1, \\
\text{index} \rightarrow 3 \quad \text{succ} \rightarrow 5, \\
\text{index} \rightarrow 4 \quad \text{succ} \rightarrow 3, \\
\text{index} \rightarrow 5 \quad \text{succ} \rightarrow 4
\end{array} \}) \]

In this previous example we have the following two cycles: \(1 \rightarrow 2 \rightarrow 1 \) and \(3 \rightarrow 5 \rightarrow 4 \rightarrow 3 \). Parts (A) and (B) of Figure 4.129 respectively show the initial and final graph. Since we use the NCC graph property, we show the two connected components of the final graph. The constraint holds since all the vertices belong to a circuit (i.e. \(\text{NTREE} = 0 \)) and since \(\text{NCYCLE} = \text{NCC} = 2 \).

Graph model

From the restrictions and from the arc constraint, we deduce that we have a bijection from the successor variables to the values of interval \([1, |\text{NODES}|]\). With no explicit restrictions it would have been impossible to derive this property.
In order to express the binary constraint that links two vertices one has to make explicit the identifier of the vertices. This is why the cycle constraint considers objects that have two attributes:

- One fixed attribute \texttt{index}, which is the identifier of the vertex,
- One variable attribute \texttt{succ}, which is the successor of the vertex.

The graph property \texttt{NTREE = 0} is used in order to avoid having vertices which both do not belong to a circuit and have at least one successor located on a circuit. This concretely means that all vertices of the final graph should belong to a circuit.

Usage

The PhD thesis of Eric Bourreau [93] mentions the following applications of the cycle constraint:

- The \textit{balanced Euler knight} problem where one tries to cover a rectangular chessboard of size \(N \cdot M \) by \(C \) knights which all have to visit between \(2 \cdot \lfloor (N \cdot M) / C \rfloor / 2 \) and \(2 \cdot \lceil (N \cdot M) / C \rceil / 2 \) distinct locations. For some values of \(N, M \) and \(C \) there does not exist any solution to the previous problem. This is for instance the case when \(N = M = C = 6 \).
- Some \textit{pick-up delivery} problems where a fleet of vehicles has to transport a set of orders. Each order is characterized by its initial location, its final destination and its weight. In addition one has also to take into account the capacity of the different vehicles.

Remark

In the original cycle constraint of CHIP the \texttt{index} attribute was not explicitly present. It was implicitly defined as the position of a variable in a list.

In an early version of the CHIP their was a constraint named \texttt{circuit} which, from a declarative point of view, was equivalent to \texttt{cycle(1,NODES)}. In ALICE [2] the \texttt{circuit} constraint was also present.

Algorithm

Since all \texttt{succ} variables have to take distinct values one can reuse the algorithms associated to the \texttt{alldifferent} constraint. A second necessary condition is to have no more than \(\max(\texttt{NCYCLE}) \) strongly connected components. Since all the vertices of a circuit belong to the same strongly connected component an arc going from one strongly connected component to another strongly connected component has to be removed.

See also

\texttt{circuit} \hspace{1cm} \texttt{cycle_card_on_path} \hspace{1cm} \texttt{cycle_resource} \hspace{1cm} \texttt{derangement} \hspace{1cm} \texttt{inverse} \hspace{1cm} \texttt{map} \hspace{1cm} \texttt{symmetric_alldifferent} \hspace{1cm} \texttt{tree}

Key words

\texttt{graph constraint} \hspace{1cm} \texttt{circuit} \hspace{1cm} \texttt{cycle} \hspace{1cm} \texttt{permutation} \hspace{1cm} \texttt{graph partitioning constraint} \hspace{1cm} \texttt{connected component} \hspace{1cm} \texttt{strongly connected component} \hspace{1cm} \texttt{Euler knight} \hspace{1cm} \texttt{pick-up delivery} \hspace{1cm} \texttt{one-succ}
Figure 4.129: Initial and final graph of the cycle constraint
4.61 cycle_card_on_path

Origin
CHIP

Constraint
cycle_card_on_path(NCYCLE, NODES, ATLEAST, ATMOST, PATH_LEN, VALUES)

Argument(s)
NCYCLE : dvar
NODES : collection(index - int, succ - dvar, colour - dvar)
ATLEAST : int
ATMOST : int
PATH_LEN : int
VALUES : collection(val - int)

Restriction(s)
NCYCLE ≥ 1
NCYCLE ≤ |NODES|
required(NODES, [index, succ, colour])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|
ATLEAST ≥ 0
ATLEAST ≤ PATH_LEN
ATMOST ≥ ATLEAST
PATH_LEN ≥ 0
required(VALUES, val)
distinct(VALUES, val)

Purpose
Consider a digraph G described by the NODES collection. NCYCLE is the number of circuits for covering G in such a way that each vertex belongs to one single circuit. In addition the following constraint must also hold: On each set of PATH_LENGTH consecutive distinct vertices of each final circuit, the number of vertices for which the attribute colour takes his value in the collection of values VALUES should be located within the range [ATLEAST, ATMOST].

Arc input(s)
NODES

Arc generator
CLIQUE ↦ collection(nodes1, nodes2)

Arc arity
2

Arc constraint(s)
node1.succ = node2.index

Graph property(ies)
• NTREE = 0
• NCC = NCYCLE

Sets
PATH_LENGTH(PATH_LEN) →

variables - col(VARIABLES - collection(var - dvar),
item(var - NODES.colour))
Constraint(s) on sets \(\text{among_low_up} (\text{ATLEAST, ATMOST, variables, VALUES}) \)

Example

\[
\text{cycle_card_on_path} 2, \begin{align*}
\text{index} - 1 & \quad \text{succ} - 7 & \text{colour} - 2, \\
\text{index} - 2 & \quad \text{succ} - 4 & \text{colour} - 3, \\
\text{index} - 3 & \quad \text{succ} - 8 & \text{colour} - 2, \\
\text{index} - 4 & \quad \text{succ} - 9 & \text{colour} - 1, \\
\text{index} - 5 & \quad \text{succ} - 1 & \text{colour} - 2, \\
\text{index} - 6 & \quad \text{succ} - 2 & \text{colour} - 1, \\
\text{index} - 7 & \quad \text{succ} - 5 & \text{colour} - 1, \\
\text{index} - 8 & \quad \text{succ} - 6 & \text{colour} - 1, \\
\text{index} - 9 & \quad \text{succ} - 3 & \text{colour} - 1
\end{align*}
\{\text{val} - 1\}
\]

Parts (A) and (B) of Figure 4.130 respectively show the initial and final graph. Since we use the NCC graph property, we show the two connected components of the final graph. The constraint \text{cycle_card_on_path} holds since all the vertices belong to a circuit (i.e. \text{NTREE} = 0) and since for each set of three consecutives vertices, colour 1 occurs at least once and at most twice (i.e. the \text{among_low_up} constraint holds).

Figure 4.130: Initial and final graph of the \text{cycle_card_on_path} constraint

Usage

Assume that the vertices of \(G \) are partitioned into the following two categories:

- Clients to visit.
- Depots where one can reload a vehicle.

Using the \text{cycle_card_on_path} constraint we can express a constraint like: After visiting three consecutives clients we should visit a depot. This is typically not possible with the \text{ATMOST} constraint since we don’t know in advance the set of variables on which to post the constraint.
Remark

This constraint is a special case of the sequence parameter of the cycle constraint of CHIP [93, pages 121–128].

See also cycle among low up

Key words graph constraint sliding sequence constraint sequence connected component coloured one succ
4.62 cycle_or_accessibility

Origin
Inspired by [94].

Constraint
cycle_or_accessibility(MAXDIST, NCYCLE, NODES)

Argument(s)
MAXDIST : int
NCYCLE : dvar
NODES : collection(index = int, succ = dvar, x = int, y = int)

Restriction(s)
MAXDIST ≥ 0
NCYCLE ≥ 1
NCYCLE ≤ |NODES|
required(NODES, [index, succ, x, y])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 0
NODES.succ ≤ |NODES|
NODES.x ≥ 0
NODES.y ≥ 0

Purpose
Consider a digraph G described by the NODES collection. Cover a subset of the vertices of G by a set of vertex-disjoint circuits in such a way that the following property holds: For each uncovered vertex v_1 of G there exists at least one covered vertex v_2 of G such that the Manhattan distance between v_1 and v_2 is less than or equal to MAXDIST.

Arc input(s) NODES
Arc generator $CLIQUE \mapsto \text{collection}(\text{nodes1}, \text{nodes2})$
Arc arity 2
Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies)
• $NTREE = 0$
• $NCC = NCYCLE$

Arc input(s) NODES
Arc generator $CLIQUE \mapsto \text{collection}(\text{nodes1}, \text{nodes2})$
Arc arity 2
Arc constraint(s)
$\forall \left(\begin{smallmatrix}
nodes1.succ = nodes2.index,
nodes1.succ = 0,
nodes2.succ \neq 0,
abs(nodes1.x - nodes2.x) + abs(nodes1.y - nodes2.y) \leq MAXDIST
\end{smallmatrix} \right)$
Graph property(ies) \(\text{NVERTEX} = |\text{NODES}| \)

Sets

\[
\begin{align*}
\text{variables} &= \text{col}(\text{VARIABLES} - \text{collection}(\text{var} - \text{dvar}), \text{item}(\text{var} - \text{NODES.succ})) , \\
\text{destination} &= \\
\end{align*}
\]

Constraint(s) on sets \(\text{nvalues_except_0}(\text{variables}, = 1) \)

Example \(\text{cycle_or_accessibility} \)

\[
\begin{pmatrix}
\text{index} - 1 & \text{succ} - 6 & x - 4 & y - 5 , \\
\text{index} - 2 & \text{succ} - 0 & x - 9 & y - 1 , \\
\text{index} - 3 & \text{succ} - 0 & x - 2 & y - 4 , \\
\text{index} - 4 & \text{succ} - 1 & x - 2 & y - 6 , \\
\text{index} - 5 & \text{succ} - 5 & x - 7 & y - 2 , \\
\text{index} - 6 & \text{succ} - 4 & x - 4 & y - 7 , \\
\text{index} - 7 & \text{succ} - 0 & x - 6 & y - 4
\end{pmatrix}
\]

Parts (A) and (B) of Figure 4.131 respectively show the initial and final graph associated to the second graph constraint. Figure 4.132 represents the solution associated to the previous example. The covered vertices are colored in gray while the links starting from the uncovered vertices are dashed. In the solution we have 2 circuits and 3 uncovered nodes. All the uncovered nodes are located at a distance that does not exceed 3 from at least one covered node.

Figure 4.131: Initial and final graph of the \text{cycle_or_accessibility} constraint

Graph model

For each vertex \(v \) we have introduced the following attributes:

- \text{index}: The label associated to \(v \),
- \text{succ}: If \(v \) is not covered by a circuit then 0; If \(v \) is covered by a circuit then index of the successor of \(v \).
- \text{x}: The \text{x}-coordinate of \(v \),
- \text{y}: The \text{y}-coordinate of \(v \).
The first graph constraint enforces all vertices which have a non-zero successor to form a set of NCYCLE vertex-disjoint circuits.

The final graph associated to the second graph constraint contains two types of arcs:

- The arcs belonging to one circuit (i.e., nodes1.succ = nodes2.index),
- The arcs between one vertex \(v_1 \) that does not belong to any circuit (i.e., nodes1.succ = 0) and one vertex \(v_2 \) located on a circuit (i.e., nodes2.succ \(\neq 0 \)) such that the Manhattan distance between \(v_1 \) and \(v_2 \) is less than or equal to MAXDIST.

In order to specify the fact that each vertex is involved in at least one arc we use the graph property \(NVERTEX = \|NODES\| \). Finally the dynamic constraint \(nvalues_except_0(\text{variables}, =, 1) \) expresses the fact that for each vertex \(v \), there is exactly one predecessor of \(v \) which belong to a circuit.

Signature

Since \(\|NODES\| \) is the maximum number of vertices of the final graph associated to the second graph constraint we can rewrite \(NVERTEX = \|NODES\| \) to \(NVERTEX \geq \|NODES\| \). This leads to simplify \(NVERTEX \) to \(NVERTEX \).

Remark

This kind of facilities location problem is described in [94, pages 187–189] pages. In addition to our example they also mention the cost problem that is usually a trade-off between the vertices that are directly covered by circuits and the others.

See also

\[\text{nvalues_except_0} \]

Key words

graph constraint, geometrical constraint, strongly connected component, facilities location problem

Figure 4.132: Final graph associated to the facilities location problem
4.63 cycle_resource

Origin
CHIP

Constraint
\[
\text{cycle_resource(RESOURCE, TASK)}
\]

Argument(s)
- **RESOURCE**: collection(id - int, first_task - dvar, nb_task - dvar)
- **TASK**: collection(id - int, next_task - dvar, resource - dvar)

Restriction(s)
- required(RESOURCE, [id, first_task, nb_task])
- RESOURCE.id \(\geq 1\)
- RESOURCE.id \(\leq |\text{RESOURCE}|\)
- distinct(RESOURCE.id)
- RESOURCE.first_task \(\geq 1\)
- RESOURCE.first_task \(\leq |\text{RESOURCE}| + |\text{TASK}|\)
- RESOURCE.nb_task \(\geq 0\)
- RESOURCE.nb_task \(\leq |\text{TASK}|\)
- required(TASK, [id, next_task, resource])
- TASK.id > |\text{RESOURCE}|
- TASK.id \(\leq |\text{RESOURCE}| + |\text{TASK}|\)
- distinct(TASK.id)
- TASK.next_task \(\geq 1\)
- TASK.next_task \(\leq |\text{RESOURCE}| + |\text{TASK}|\)
- TASK.resource \(\geq 1\)
- TASK.resource \(\leq |\text{RESOURCE}|\)

Purpose
Consider a digraph \(G\) defined as follows:
- To each item of the RESOURCE and TASK collections corresponds one vertex of \(G\). A vertex that was generated from an item of the RESOURCE (respectively TASK) collection is called a resource vertex (respectively task vertex).
- There is an arc from a resource vertex \(r\) to a task vertex \(t\) if \(t \in \text{RESOURCE}[r].\text{first_task}\).
- There is an arc from a task vertex \(t\) to a resource vertex \(r\) if \(r \in \text{TASK}[t].\text{next_task}\).
- There is an arc from a task vertex \(t_1\) to a task vertex \(t_2\) if \(t_2 \in \text{TASK}[t_1].\text{next_task}\).
- There is no arc between two resource vertices.

Enforce to cover \(G\) in such a way that each vertex belongs to one single circuit. Each circuit is made up from one single resource vertex and zero, one or more task vertices. For each resource-vertex a domain variable indicates how many task-vertices belong to the corresponding circuit. For each task a domain variable gives the identifier of the resource which can effectively handle that task.

Derived Collection(s)
\[
\text{col}
\left[
\begin{array}{l}
\text{RESOURCE_TASK} - \text{collection(index - int, succ - dvar, name - dvar)}, \\
\text{item(index - RESOURCE.id, succ - RESOURCE.first_task, name - RESOURCE.id)}, \\
\text{item(index - TASK.id, succ - TASK.next_task, name - TASK.resource)}
\end{array}
\right]
\]

Arc input(s)
RESOURCE_TASK
Arc generator

\[CLIQUE \leftrightarrow \text{collection(resource_task1, resource_task2)} \]

Arc arity

2

Arc constraint(s)

- resource_task1.succ = resource_task2.index
- resource_task1.name = resource_task2.name

Graph property(ies)

- NTREE = 0
- NCC = |RESOURCE|
- NVERTEX = |RESOURCE| + |TASK|

For all items of RESOURCE:

Arc input(s)

RESOURCE_TASK

Arc generator

\[CLIQUE \leftrightarrow \text{collection(resource_task1, resource_task2)} \]

Arc arity

2

Arc constraint(s)

- resource_task1.succ = resource_task2.index
- resource_task1.name = resource_task2.name
- resource_task1.name = RESOURCE.id

Graph property(ies)

NVERTEX = RESOURCE.nb_task + 1

Example

\[
\begin{pmatrix}
\text{id} - 1 & \text{first_task} - 5 & \text{nb_task} - 3, \\
\text{id} - 2 & \text{first_task} - 2 & \text{nb_task} - 0, \\
\text{id} - 3 & \text{first_task} - 8 & \text{nb_task} - 2, \\
\text{id} - 4 & \text{next_task} - 7 & \text{resource} - 1, \\
\text{id} - 5 & \text{next_task} - 4 & \text{resource} - 1, \\
\text{id} - 6 & \text{next_task} - 3 & \text{resource} - 3, \\
\text{id} - 7 & \text{next_task} - 1 & \text{resource} - 1, \\
\text{id} - 8 & \text{next_task} - 6 & \text{resource} - 3
\end{pmatrix}
\]

Part (A) of Figure 4.133 shows the initial graphs (of the second graph constraint) associated to resources 1, 2 and 3. Part (B) of Figure 4.133 shows the final graphs (of the second graph constraint) associated to resources 1, 2 and 3. Since we use the NVERTEX graph property, the vertices of the final graphs are stressed in bold. To each resource corresponds a circuit of respectively 3, 0 and 2 task-vertices.

Graph model

The graph model of the cycle_resource constraint illustrates the following points:

- How to differentiate the constraint on the length of a circuit according to a resource that is assigned to a circuit? This is achieved by introducing a collection of resources and by asking a different graph property for each item of that collection.

- How to introduce the concept of name which corresponds to the resource that handle a given task? This is done by adding to the arc constraint associated to the cycle constraint the condition that the name variables of two consecutive vertices should be equal.
Signature
Since the initial graph of the first graph constraint contains $|\text{RESOURCE}| + |\text{TASK}|$ vertices, the corresponding final graph cannot have more than $|\text{RESOURCE}| + |\text{TASK}|$ vertices. Therefore we can rewrite the graph property $\text{NVERTEX} = |\text{RESOURCE}| + |\text{TASK}|$ to $\text{NVERTEX} \geq |\text{RESOURCE}| + |\text{TASK}|$ and simplify NVERTEX to NVERTEX.

Usage
This constraint is useful for some vehicles routing problem where the number of locations to visit depends on the vehicle type that is effectively used. The resource attribute allows expressing various constraints such as:

- The compatibility or incompatibility between tasks and vehicles,
- The fact that certain tasks should be performed by the same vehicle,
- The preassignment of certain tasks to a given vehicle.

Remark
This constraint could be expressed with the cycle constraint of CHIP by using the following optional parameters:

- The resource node parameter [93, page 97],
- The circuit weight parameter [93, page 101],
- The name parameter [93, page 104].

See also cycle

Key words graph constraint resource constraint graph partitioning constraint connected component strongly connected component derived collection
Figure 4.133: Initial and final graph of the cycle resource constraint
4.64 cyclic_change

Origin
Derived from change

Constraint
cyclic_change(NCHANGE, CYCLE_LENGTH, VARIABLES, CTR)

Argument(s)
NCHANGE : dvar
CYCLE_LENGTH : int
VARIABLES : collection(var – dvar)
CTR : atom

Restriction(s)
NCHANGE ≥ 0
NCHANGE < |VARIABLES|
CYCLE_LENGTH > 0
required(VARIABLES, var)
CTR ∈ =, ≠, <, ≥, >, ≤

Purpose
NCHANGE is the number of times that constraint \((X + 1) \mod CYCLE_LENGTH \) CTR Y holds; X and Y correspond to consecutive variables of the collection VARIABLES.

Arc input(s) VARIABLEs
Arc generator
PATH ← collection(variables1, variables2)
Arc arity
2
Arc constraint(s)
(variables1.var + 1) mod CYCLE_LENGTH CTR variables2.var

Graph property(ies)
NARC = NCHANGE

Example
cyclic_change

In the previous example we have the two following changes:

- A first change between 0 and 2,
- A second change between 3 and 1.

However, the sequence 3 0 does not correspond to a change since \((3 + 1) \mod 4\) is equal to 0. Parts (A) and (B) of Figure 4.134 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Automaton
Figure 4.135 depicts the automaton associated to the cyclic_change constraint. To each pair of consecutive variables \((VAR_i, VAR_{i+1})\) of the collection VARIABLES corresponds a 0-1 signature variable \(S_i\). The following signature constraint links \(VAR_i, VAR_{i+1}\) and \(S_i\):

\(((VAR_i + 1) \mod CYCLE_LENGTH) CTR VAR_{i+1} \leftrightarrow S_i\).
Figure 4.134: Initial and final graph of the cyclic_change constraint

Figure 4.135: Automaton of the cyclic_change constraint

Figure 4.136: Hypergraph of the reformulation corresponding to the automaton of the cyclic_change constraint
Usage
This constraint may be used for personnel cyclic timetabling problems where each person has to work according to cycles. In this context each variable of the VARIABLES collection corresponds to the type of work a person performs on a specific day. Because of some perturbation (e.g. illness, unavailability, variation of the workload) it is in practice not reasonable to ask for perfect cyclic solutions. One alternative is to use the cyclic_change constraint and to ask for solutions where one tries to minimize the number of cycle breaks (i.e. the variable NCHANGE).

See also change

Key words timetabling constraint number of changes cyclic automaton automaton with counters sliding cyclic constraint network acyclic no_loop
4.65 cyclic_change_joker

Origin
Derived from cyclic_change

Constraint
cyclic_change_joker(NCHANGE, CYCLE_LENGTH, VARIABLES, CTR)

Argument(s)
- NCHANGE : dvar
- CYCLE_LENGTH : int
- VARIABLES : collection(var – dvar)
- CTR : atom

Restriction(s)
- NCHANGE ≥ 0
- NCHANGE < |VARIABLES|
- required(VARIABLES.var)
- CYCLE_LENGTH > 0
- CTR ∈ [=, ≠, <, ≥, >, ≤]

NCHANGE is the number of times that the following constraint holds:

\[(X + 1) \mod CYCLE_LENGTH \land Y < CYCLE_LENGTH \land X < CYCLE_LENGTH\]

Purpose
X and Y correspond to consecutive variables of the collection VARIABLES.

Arc input(s)
VARIABLES

Arc generator
PATH ← collection(variables1, variables2)

Arc arity
2

Arc constraint(s)
- (variables1.var + 1) mod CYCLE_LENGTH CTR variables2.var
- variables1.var < CYCLE_LENGTH
- variables2.var < CYCLE_LENGTH

Graph property(ies)
\[\text{NARC} = \text{NCHANGE}\]

Example
cyclic_change_joker 2, 4, \{var – 4, var – 3, var – 2, var – 1, var – 4\}, \neq

In the previous example we have the two following changes:

- A first change between 0 and 2,
- A second change between 3 and 1.
But when the joker value 4 is involved, there is no change. This is why no change is counted between values 2 and 4, between 4 and 4 and between 1 and 4. Parts (A) and (B) of Figure 4.137 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Figure 4.137: Initial and final graph of the cyclic_change_joker constraint

Graph model

The *joker values* are those values that are greater than or equal to CYCLE_LENGTH. We do not count any change for those arc constraints involving at least one variable taking a joker value.

Automaton

Figure 4.138 depicts the automaton associated to the cyclic_change_joker constraint. To each pair of consecutive variables (VAR_i, VAR_{i+1}) of the collection VARIABLES corresponds a 0-1 signature variable S_i. The following signature constraint links VAR_i, VAR_{i+1} and S_i:

\[
(((VAR_i + 1) \mod CYCLE_LENGTH) \text{CTR} VAR_{i+1} \land
 (VAR_i < CYCLE_LENGTH) \land (VAR_{i+1} < CYCLE_LENGTH)) \Leftrightarrow S_i.
\]

Usage

The cyclic_change_joker constraint can be used in the same context as the cycle_change constraint with the additional feature: In our example codes 0 to 3 correspond to different type of activities (i.e. working the morning, the afternoon or the night) and code 4 represents a holiday. We want to express the fact that we don’t count any change for two consecutive days d_1, d_2 such that d_1 or d_2 is a holiday.

See also

change

Key words

timetabling constraint, number of changes, cyclic, joker value, automaton, automaton with counters, sliding cyclic(1) constraint network(2), acyclic, no_loop.
Figure 4.138: Automaton of the cyclic_change_joker constraint

Figure 4.139: Hypergraph of the reformulation corresponding to the automaton of the cyclic_change_joker constraint
4.66 decreasing

Origin
Inspired by increasing

Constraint
decreasing(VARIABLES)

Argument(s)
VARIABLES : collection(var – dvar)

Restriction(s)
|VARIABLES| > 0
required(VARIABLES, var)

Purpose
The variables of the collection VARIABLES are decreasing.

Arc input(s)
VARIABLES

Arc generator
PATH ↦ collection(variables1, variables2)

Arc arity
2

Arc constraint(s)
variables1.var ≥ variables2.var

Graph property(ies)
NARC = |VARIABLES| – 1

Example
decreasing({var – 8, var – 4, var – 1, var – 1})

Parts (A) and (B) of Figure 4.140 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

![Graph](image)

Figure 4.140: Initial and final graph of the decreasing constraint
Automaton

Figure 4.141 depicts the automaton associated to the *decreasing* constraint. To each pair of consecutive variables \((\text{VAR}_i, \text{VAR}_{i+1})\) of the collection \(\text{VARIABLES}\) corresponds a 0-1 signature variable \(S_i\). The following signature constraint links \(\text{VAR}_i\), \(\text{VAR}_{i+1}\) and \(S_i\):

\[
\text{VAR}_i < \text{VAR}_{i+1} \Leftrightarrow S_i.
\]

See also [strictly decreasing](#), [increasing](#), [strictly increasing](#)

Key words [decomposition](#), [order constraint](#), [automaton](#), [automaton without counters](#), [sliding cyclic](1) [constraint network](1)

![Automaton Diagram](image)

Figure 4.141: Automaton of the *decreasing* constraint
Figure 4.142: Hypergraph of the reformulation corresponding to the automaton of the decreasing constraint
4.67 deepest_valley

Origin
Derived from valley

Constraint
deepest_valley(DEPTH, VARIABLES)

Argument(s)
DEPTH : dvar
VARIABLES : collection(var − dvar)

Restriction(s)
DEPTH ≥ 0
VARIABLES.var ≥ 0
required(VARIABLES.var)

A variable \(V_k \) \((1 < k < m)\) of the sequence of variables \(\text{VARIABLES} = V_1, \ldots, V_m \) is a valley if and only if there exist an \(i \) \((1 < i \leq k)\) such that \(V_{i-1} > V_i \) and \(V_i = V_{i+1} = \ldots = V_k \) and \(V_k < V_{k+1} \). DEPTH is the minimum value of the valley variables. If no such variable exists DEPTH is equal to the default value MAXINT.

Example
deepest_valley \(2, \left\{ \begin{array}{l}
\text{var} - 5, \\
\text{var} - 3, \\
\text{var} - 4, \\
\text{var} - 8, \\
\text{var} - 8, \\
\text{var} - 2, \\
\text{var} - 7, \\
\text{var} - 1
\end{array} \right. \)

The previous constraint holds since 2 is the deepest valley of the sequence 5 3 4 8 8 2 7 1.

Automaton
Figure 4.144 depicts the automaton associated to the deepest_valley constraint. To each pair of consecutive variables \((\text{VAR}_i, \text{VAR}_{i+1}) \) of the collection \(\text{VARIABLES} \) corresponds a signature variable \(S_i \). The following signature constraint links \(\text{VAR}_i, \text{VAR}_{i+1} \) and \(S_i \):

\[
\text{VAR}_i < \text{VAR}_{i+1} \iff S_i = 0 \land \text{VAR}_i = \text{VAR}_{i+1} \iff S_i = 1 \land \text{VAR}_i > \text{VAR}_{i+1} \iff S_i = 2.
\]
$\text{VAR} = \text{VAR}_{i+1}$

$\text{VAR} < \text{VAR}$

$\text{VAR} > \text{VAR}$

$\text{VAR} < \text{VAR}_{i+1}$

$\text{VAR} > \text{VAR}_{i+1}$

$\text{VAR} = \text{VAR}_{i+1}$

$\text{C} = \min(C, \text{VAR})$

Figure 4.144: Automaton of the deepest valley constraint

Figure 4.145: Hypergraph of the reformulation corresponding to the automaton of the deepest valley constraint
<table>
<thead>
<tr>
<th>See also</th>
<th>valley, highest_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key words</td>
<td>sequence, maxint, automaton, automaton with counters, sliding cyclic(1) constraint network(2)</td>
</tr>
</tbody>
</table>
4.68 derangement

Origin
Derived from cycle

Constraint
derangement(NODES)

Argument(s)
NODES : collection(index – int, succ – dvar)

Restriction(s)
required(NODES,[index,succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES,index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose
Enforce to have a permutation with no cycle of length one. The permutation is depicted by the succ attribute of the NODES collection.

Arc input(s)
NODES

Arc generator
CLIQUE → collection(nodes1,nodes2)

Arc arity
2

Arc constraint(s)
• nodes1.succ = nodes2.index
• nodes1.succ ≠ nodes1.index

Graph property(ies)
NTREE = 0

Example
derangement
\[
\begin{pmatrix}
index - 1 & succ - 2, \\
index - 2 & succ - 1, \\
index - 3 & succ - 5, \\
index - 4 & succ - 3, \\
index - 5 & succ - 4
\end{pmatrix}
\]

In the permutation of the previous example we have the following 2 cycles: 1 → 2 → 1 and 3 → 5 → 4 → 3. Parts (A) and (B) of Figure 4.146 respectively show the initial and final graph. The constraint holds since the final graph does not contain any vertex which do not belong to a circuit (i.e. NTREE = 0).

Graph model
In order to express the binary constraint that links two vertices of the NODES collection one has to make explicit the index value of the vertices. This is why the derangement constraint considers objects that have two attributes:

• One fixed attribute index, which is the identifier of the vertex,
• One variable attribute succ, which is the successor of the vertex.

Forbiding cycles of length one is achieved by the second condition of the arc constraint.
Signature Since 0 is the smallest possible value of \(NTREE \) we can rewrite the graph property \(NTREE = 0 \) to \(NTREE \leq 0 \). This leads to simplify \(NTREE \) to \(NTREE \).

Remark A special case of the cycle\(^1\) constraint.

See also alldifferent, cycle

Key words graph constraint, permutation
Figure 4.146: Initial and final graph of the derangement constraint
4.69 \texttt{differ_from_at_least_k_pos}

\begin{itemize}
 \item \textbf{Origin} \quad Inspired by \cite{56}.
 \item \textbf{Constraint} \quad \texttt{differ_from_at_least_k_pos}(K, VECTOR1, VECTOR2)
 \item \textbf{Type(s)} \quad VECTOR : collection(var – dvar)
 \item \textbf{Argument(s)} \quad K : int
 \hspace{1em} VECTOR1 : VECTOR
 \hspace{1em} VECTOR2 : VECTOR
 \item \textbf{Restriction(s)} \quad \texttt{required}(VECTOR, var)
 \hspace{1em} K \geq 0
 \hspace{1em} K \leq |VECTOR1|
 \hspace{1em} |VECTOR1| = |VECTOR2|
 \item \textbf{Purpose} \quad Enforce two vectors \texttt{VECTOR1} and \texttt{VECTOR2} to differ from at least \(K\) positions.
 \item \textbf{Arc input(s)} \quad \texttt{VECTOR1} \texttt{VECTOR2}
 \item \textbf{Arc generator} \quad \textit{PRODUCT}(=) \mapsto \texttt{collection(vector1,vector2)}
 \item \textbf{Arc arity} \quad 2
 \item \textbf{Arc constraint(s)} \quad \texttt{vector1.var} \neq \texttt{vector2.var}
 \item \textbf{Graph property(ies)} \quad \texttt{NARC} \geq K
 \item \textbf{Example} \quad \texttt{differ_from_at_least_k_pos}
 \begin{align*}
 \{ & \text{war - 2,} \\
 & \text{var - 5,} \\
 & \text{var - 2,} \\
 & \text{var - 0,} \\
 \}^{2,} \\
 \{ & \text{var - 3,} \\
 & \text{var - 6,} \\
 & \text{var - 2,} \\
 & \text{var - 1,} \\
 \}
 \end{align*}
 \end{itemize}

The previous constraint holds since the first and second vectors differ from 3 positions which is greater than or equal to \(K = 2\). Parts (A) and (B) of Figure 4.147 respectively show the initial and final graph. Since we use the \texttt{NARC} graph property, the arcs of the final graph are stressed in bold.

\begin{itemize}
 \item \textbf{Automaton} \quad Figure 4.148 depicts the automaton associated to the \texttt{differ_from_at_least_k_pos} constraint. Let \texttt{VAR1}, and \texttt{VAR2}, be the \(i^{th}\) variables of the \texttt{VECTOR1} and \texttt{VECTOR2} collections. To each pair of variables (\texttt{VAR1}, \texttt{VAR2},) corresponds a signature variable \(S_i\). The following signature constraint links \texttt{VAR1}, \texttt{VAR2}, and \(S_i\): \texttt{VAR1} = \texttt{VAR2}, \(\Leftrightarrow S_i\).
 \item \textbf{Remark} \quad Used in the \textbf{Arc constraint(s)} slot of the \texttt{all_differ_from_at_least_k_pos} constraint.
\end{itemize}
Figure 4.147: Initial and final graph of the `differ_from_at_least_k_pos` constraint

Figure 4.148: Automaton of the `differ_from_at_least_k_pos` constraint

Figure 4.149: Hypergraph of the reformulation corresponding to the automaton of the `differ_from_at_least_k_pos` constraint
Used in: all_differ_from_at_least_k_pos

Key words: value constraint, vector, automaton, automaton with counters, alpha-acyclic constraint network(2)
4.70 \textbf{diffn}

\textbf{Origin} \quad \textbf{[161x686]}

\textbf{Constraint} \quad \textbf{diffn(ORTHOTOPES)}

\textbf{Type(s)} \quad ORTHOTOPE : collection(ori - dvar, siz - dvar, end - dvar)

\textbf{Argument(s)} \quad ORTHOTOPES : collection(orth - ORTHOTOPE)

\textbf{Restriction(s)} \quad |ORTHOTOPE| > 0

\textbf{Purpose} \quad \textbf{Generalized multi-dimensional non-overlapping constraint:} Holds if, for each pair of orthotopes \((O_1, O_2)\), \(O_1\) and \(O_2\) do not overlap. Two orthotopes do not overlap if there exists at least one dimension where their projections do not overlap.

\textbf{Arc input(s)} \quad ORTHOTOPES

\textbf{Arc generator} \quad SELF \quad \textbf{collection(orthotopes)}

\textbf{Arc arity} \quad 1

\textbf{Arc constraint(s)} \quad \textbf{orth_link_ori_siz_end(orthotopes.orth)}

\textbf{Graph property(ies)} \quad \textbf{NARC} = |ORTHOTOPES|

\textbf{Arc input(s)} \quad ORTHOTOPES

\textbf{Arc generator} \quad CLIQUE(\#) \quad \textbf{collection(orthotopes1,orthotopes2)}

\textbf{Arc arity} \quad 2

\textbf{Arc constraint(s)} \quad \textbf{two_orth_do_not_overlap(orthotopes1.orth, orthotopes2.orth)}

\textbf{Graph property(ies)} \quad \textbf{NARC} = |ORTHOTOPES| * |ORTHOTOPES| - |ORTHOTOPES|

\textbf{Example} \quad \textbf{diffn}

\begin{equation}
\begin{pmatrix}
\text{orth} & \text{ori} & \text{siz} & \text{end} \\
\text{ori} - 2 & \text{siz} - 2 & \text{end} - 4 \\
\text{ori} - 1 & \text{siz} - 3 & \text{end} - 4 \\
\text{ori} - 4 & \text{siz} - 4 & \text{end} - 8 \\
\text{ori} - 3 & \text{siz} - 3 & \text{end} - 3 \\
\text{ori} - 9 & \text{siz} - 2 & \text{end} - 11 \\
\text{ori} - 4 & \text{siz} - 3 & \text{end} - 7
\end{pmatrix}
\end{equation}

\text{Parts (A) and (B) of Figure 4.151 respectively show the initial and final graph associated to the second graph constraint. Since we use the \textbf{NARC} graph property, the arcs of the final graph are stressed in bold. Figure 4.151 represents the respective position of the three rectangles of the example. The coordinates of the leftmost lowest corner of each rectangle are stressed in bold.
Figure 4.150: Initial and final graph of the diff n constraint

Figure 4.151: The three rectangles of the example
Graph model

The *diffn* constraint is expressed by using two graph constraints:

- The first graph constraint enforces for each dimension and for each orthotope the link between the corresponding *ori, siz* and *end* attributes.
- The second graph constraint imposes each pair of distinct orthotopes to not overlap.

Signature

Since \(|\text{ORTHOTOPES}|\) is the maximum number of vertices of the final graph of the first graph constraint we can rewrite \(\text{NARC} = |\text{ORTHOTOPES}|\) to \(\text{NARC} \geq |\text{ORTHOTOPES}|\). This leads to simplify \(\text{NARC}\) to \(\text{NARC}\).

Since we use the *CLIQUE(≠)* arc generator on the *ORTHOTOPES* collection, \(|\text{ORTHOTOPES}| \cdot |\text{ORTHOTOPES}| - |\text{ORTHOTOPES}|\) is the maximum number of vertices of the final graph of the second graph constraint. Therefore we can rewrite \(\text{NARC} = |\text{ORTHOTOPES}| \cdot |\text{ORTHOTOPES}| - |\text{ORTHOTOPES}|\) to \(\text{NARC} \geq |\text{ORTHOTOPES}| \cdot |\text{ORTHOTOPES}| - |\text{ORTHOTOPES}|\). Again, this leads to simplify \(\text{NARC}\) to \(\text{NARC}\).

Usage

The *diffn* constraint occurs in placement and scheduling problems. It was for instance used for scheduling problems where one has to both assign each non-preemptive task to a resource and fix its origin so that two tasks which are assigned to the same resource do not overlap. A practical application from the area of the design of memory-dominated embedded systems [95] can be found in [96].

Algorithm

For the two-dimensional case of *diffn* a possible filtering algorithm based on *sweep* is described in [97]. For the \(n\)-dimensional case of *diffn* a filtering algorithm handling the fact that two objects do not overlap is given in [98]. Extensions of the non-overlapping constraint to polygons and to more complex shapes are respectively described in [99] and in [99]. Specialized propagation algorithms for the *squared squares* problem [100] (based on the fact that no waste is permitted) are given in [101] and in [102].

Used in

diffn.column, diffn.include, place.in.pyramid

See also

orth, link, ori, siz, end, two.orth.do.not.overlap

Key words

decomposition, geometrical constraint, orthotope, polygon, non-overlapping, sweep, squared squares
4.71 diffn_column

Origin CHIP: option guillotine cut (column) of diffn

Constraint diffn_column(ORTHOTOPES,N)

Type(s) ORTHOTOPE : collection(ori − dvar,siz − dvar,end − dvar)

Argument(s) ORTHOTOPES : collection(orth − ORTHOTOPE)
N : int

Restriction(s) |ORTHOTOPE| > 0
require_at_least(2,ORTHOTOPE,[ori,siz,end])
ORTHTOPE.siz ≥ 0
required(ORTHOTOPES,orth)
same_size(ORTHOTOPES,orth)
N > 0
N ≤ |ORTHOTOPE|
diffn(ORTHOTOPES)

Purpose

Arc input(s) ORTHOTOPES

Arc generator CLIQUE(<) → collection(orthotopes1,orthotopes2)

Arc arity 2

Arc constraint(s) two_orth_column(orthotopes1.orth,orthotopes2.orth,N)

Graph property(ies) NARC = |ORTHOTOPES| * ((|ORTHOTOPES| − 1)/2

Example

\[
\text{diffn_column} \left(\begin{array}{l}
\text{orth} = \\
\{ \begin{array}{l}
\text{ori} = 1, \text{siz} = 3, \text{end} = 4,\\
\text{ori} = 1, \text{siz} = 1, \text{end} = 2,\\
\text{ori} = 4, \text{siz} = 2, \text{end} = 6,\\
\text{ori} = 1, \text{siz} = 3, \text{end} = 4
\end{array}\end{array}\right), 1
\end{array}\right)
\]

See also diffn two_orth_column diffn_include

Key words decomposition geometrical constraint positioning constraint orthotope guillotine cut
Figure 4.152: Initial and final graph of the diffn_column constraint
4.72 diffn_include

<table>
<thead>
<tr>
<th>Origin</th>
<th>CHIP: option guillotine cut (include) of \texttt{diffn}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint</td>
<td>\texttt{diffn_include(ORTHOTOPES,N)}</td>
</tr>
<tr>
<td>Type(s)</td>
<td>\texttt{ORTHOTOPES} : collection(ori - dvar, siz - dvar, end - dvar)</td>
</tr>
<tr>
<td>Argument(s)</td>
<td>\texttt{ORTHOTOPES} : collection(orth - ORTHOTOPES)</td>
</tr>
<tr>
<td></td>
<td>\texttt{N} : int</td>
</tr>
<tr>
<td>Restriction(s)</td>
<td>\texttt{</td>
</tr>
<tr>
<td></td>
<td>require_at_least(2, ORTHOTOPES, [ori, siz, end])</td>
</tr>
<tr>
<td></td>
<td>ORTHOTOPES.siz \geq 0</td>
</tr>
<tr>
<td></td>
<td>required(ORTHOTOPES, orth)</td>
</tr>
<tr>
<td></td>
<td>same_size(ORTHOTOPES, orth)</td>
</tr>
<tr>
<td></td>
<td>\texttt{N > 0}</td>
</tr>
<tr>
<td></td>
<td>\texttt{N \leq</td>
</tr>
<tr>
<td></td>
<td>\texttt{diffn(ORTHOTOPES)}</td>
</tr>
<tr>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>Arc input(s)</td>
<td>\texttt{ORTHOTOPES}</td>
</tr>
<tr>
<td>Arc generator</td>
<td>\texttt{CLIQUE(<)} \rightarrow \texttt{collection(orthotopes1,orthotopes2)}</td>
</tr>
<tr>
<td>Arc arity</td>
<td>2</td>
</tr>
<tr>
<td>Arc constraint(s)</td>
<td>\texttt{two_orth_include(orthotopes1.orth,orthotopes2.orth,N)}</td>
</tr>
<tr>
<td>Graph property(ies)</td>
<td>\texttt{NARC =</td>
</tr>
<tr>
<td>Example</td>
<td>\texttt{diffn_include \begin{array}{c} \texttt{orth - { ori - 1 siz - 3 end - 4, ori - 1 siz - 1 end - 2 }}, \ \texttt{orth - { ori - 1 siz - 2 end - 3, ori - 2 siz - 3 end - 5 }}, \end{array}, 1}</td>
</tr>
<tr>
<td>See also</td>
<td>\texttt{diffn}, \texttt{two_orth_include}, \texttt{diffn_column}</td>
</tr>
<tr>
<td>Key words</td>
<td>decomposition, geometrical constraint, positioning constraint, orthotope</td>
</tr>
</tbody>
</table>
Figure 4.153: Initial and final graph of the diffn_include constraint
4.73 discrepancy

Origin [103] and [104]

Constraint discrepancy(VARIABLES, K)

Argument(s)
- VARIABLES : collection(var – dvar, bad – sint)
- K : int

Restriction(s)
- required(VARIABLES, var)
- required(VARIABLES, bad)
- \(K \geq 0 \)
- \(K \leq |\text{VARIABLES}| \)

Purpose
- \(K \) is the number of variables of the collection VARIABLES which take their value in their respective sets of bad values.

Arc input(s) VARIABLES

Arc generator
- \(SELF \mapsto \text{collection}(\text{variables}) \)

Arc arity 1

Arc constraint(s)
- in_set(\text{variables}.var, \text{variables}.bad)

Graph property(ies)
- \(\text{NARC} = K \)

Example discrepancy \[
\begin{pmatrix}
\text{var} - 4 & \text{bad} - \{1, 4, 6\}, \\
\text{var} - 5 & \text{bad} - \{0, 1\}, \\
\text{var} - 5 & \text{bad} - \{1, 6, 9\}, \\
\text{var} - 4 & \text{bad} - \{1, 4\}, \\
\text{var} - 1 & \text{bad} - \emptyset
\end{pmatrix}, 2
\]

Parts (A) and (B) of Figure 4.154 respectively show the initial and final graph. Since we use the \(\text{NARC} \) graph property, the unary arcs of the final graph are stressed in bold.

![Figure 4.154: Initial and final graph of the discrepancy constraint](image)

Graph model
- The arc constraint corresponds to the constraint in_set(\text{variables}.var, \text{variables}.bad) defined in this catalog. We employ the \(SELF \) arc generator in order to produce an initial graph with a single loop on each vertex.
Remark

Limited discrepancy search was first introduced by M. L. Ginsberg and W. D. Harvey as a search technique in [105]. Later on, discrepancy based filtering was presented in the PhD thesis of F. Focacci [103, pages 171–172]. Finally the discrepancy constraint was explicitly defined in the PhD thesis of W.-J. van Hoeve [104, page 104].

See also

Key words

value constraint, counting constraint, heuristics, limited discrepancy search
4.74 disjoint

Origin
Derived from `alldifferent`

Constraint
disjoint(VARIABLES1, VARIABLES2)

Argument(s)
VARIABLES1 : collection(var – dvar)
VARIABLES2 : collection(var – dvar)

Restriction(s)
required(VARIABLES1.var)
required(VARIABLES2.var)

Purpose
Each variable of the collection VARIABLES1 should take a value that is distinct from all the values assigned to the variables of the collection VARIABLES2.

Arc input(s)
VARIABLES1 VARIABLES2

Arc generator
PRODUCT \(\rightarrow\) collection(variables1, variables2)

Arc arity
2

Arc constraint(s)
variables1.var = variables2.var

Graph property(ies)
NARC = 0

\[
\begin{pmatrix}
\{\text{var} - 1, \text{var} - 9, \text{var} - 1, \text{var} - 5\}, \\
\{\text{var} - 2, \\
\text{var} - 7, \\
\text{var} - 7, \\
\text{var} - 0, \\
\text{var} - 6, \\
\text{var} - 8\}
\end{pmatrix}
\]

Example
disjoint

In this example, values 1, 5, 9 are used by the variables of VARIABLES1 and values 0, 2, 6, 7, 8 by the variables of VARIABLES2. Since there is no intersection between the two previous sets of values the disjoint constraint holds. Figure [4.153](#) shows the initial graph. Since we use the NARC = 0 graph property the final graph is empty.

Graph model
PRODUCT is used in order to generate the arcs of the graph between all variables of VARIABLES1 and all variables of VARIABLES2. Since we use the NARC = 0 the final graph will be empty.

Signature
Since 0 is the smallest number of arcs of the final graph we can rewrite NARC = 0 to NARC ≤ 0. This leads to simplify NARC to NARC.

Automaton
Figure [4.154](#) depicts the automaton associated to the disjoint constraint. To each variable VAR1, of the collection VARIABLES1 corresponds a signature variable Si, which is equal to 0. To each variable VAR2, of the collection VARIABLES2 corresponds a signature variable \(S + |\text{VARIABLES1}|\), which is equal to 1.
Figure 4.155: Initial graph of the disjoint constraint (the final graph is empty)

Figure 4.156: Automaton of the disjoint constraint
Remark

Despite the fact that this is not an uncommon constraint, it cannot be modelled in a compact way neither with a disequality constraint (i.e. two given variables have to take distinct values) nor with the alldifferent constraint. The disjoint constraint can be seen as a special case of the common (NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2) constraint where NCOMMON1 and NCOMMON2 are both set to 0.

Algorithm

Let us note:

- n_1 the minimum number of distinct values taken by the variables of the collection VARIABLES1.
- n_2 the minimum number of distinct values taken by the variables of the collection VARIABLES2.
- n_{12} the maximum number of distinct values taken by the union of the variables of VARIABLES1 and VARIABLES2.

One invariant to maintain for the disjoint constraint is $n_1 + n_2 \leq n_{12}$. A lower bound of n_1 and n_2 can be obtained by using the algorithms provided in [33, 106]. An exact upper bound of n_{12} can be computed by using a bipartite matching algorithm.

See also disjoint_tasks

Key words value constraint, empty intersection, disequality, bipartite matching, automaton, automaton with array of counters.
4.75 disjoint_tasks

Origin
Derived from `disjoint`

Constraint
`disjoint_tasks(TASKS1, TASKS2)`

Argument(s)
- `TASKS1`: `collection(origin - dvar, duration - dvar, end - dvar)`
- `TASKS2`: `collection(origin - dvar, duration - dvar, end - dvar)`

Restriction(s)
- `require_at_least(2, TASKS1, [origin, duration, end])`
- `TASKS1.duration >= 0`
- `require_at_least(2, TASKS2, [origin, duration, end])`
- `TASKS2.duration >= 0`

Purpose
Each task of the collection `TASKS1` should not overlap any task of the collection `TASKS2`.

Arc input(s)
- `TASKS1`

Arc generator
`SELF ↦ collection(tasks1)`

Arc arity
1

Arc constraint(s)
- `tasks1.origin + tasks1.duration = tasks1.end`

Graph property(ies)
- `NARC = |TASKS1|`

Arc input(s)
- `TASKS2`

Arc generator
`SELF ↦ collection(tasks2)`

Arc arity
1

Arc constraint(s)
- `tasks2.origin + tasks2.duration = tasks2.end`

Graph property(ies)
- `NARC = |TASKS2|`

Arc input(s)
- `TASKS1 TASKS2`

Arc generator
`PRODUCT ↦ collection(tasks1.tasks2)`

Arc arity
2

Arc constraint(s)
- `tasks1.duration > 0`
- `tasks2.duration > 0`
- `tasks1.origin < tasks2.end`
- `tasks2.origin < tasks1.end`

Graph property(ies)
- `NARC = 0`
Example

disjoint tasks

\[
\left\{ \begin{array}{ccc}
\text{origin} & \text{duration} & \text{end} \\
6 & 5 & 11 \\
8 & 2 & 10 \\
2 & 3 & 4 \\
3 & 3 & 6 \\
12 & 1 & 13
\end{array} \right\}
\]

Figure 4.157 shows the initial graph of the third graph constraint. Because of the graph property \(\text{NARC} = 0 \) the corresponding final graph is empty. Figure 4.158 displays the two groups of tasks (i.e. the tasks of \(\text{TASKS1} \) and the tasks of \(\text{TASKS2} \)). Since no task of the first group overlaps any task of the second group, the \(\text{disjoint tasks} \) constraint holds.

Graph model

\(\text{PRODUCT} \) is used in order to generate the arcs of the graph between all the tasks of the collection \(\text{TASKS1} \) and all tasks of the collection \(\text{TASKS2} \).

The first two graph constraints respectively enforce for each task of \(\text{TASKS1} \) and \(\text{TASKS2} \) the fact that the end of a task is equal to the sum of its origin and its duration.

The arc constraint of the third graph constraint depicts the fact that two tasks overlap. Therefore, since we use the graph property \(\text{NARC} = 0 \) the final graph associated to the third graph constraint will be empty and no task of \(\text{TASKS1} \) will overlap any task of \(\text{TASKS2} \).

Signature

Since \(\text{TASKS1} \) is the maximum number of arcs of the final graph associated to the first graph constraint we can rewrite \(\text{NARC} = |\text{TASKS1}| \). This leads to simplify \(\text{NARC} \) to \(\text{NARC} \).
We can apply a similar remark for the second graph constraint.
Finally, since 0 is the smallest number of arcs of the final graph we can rewrite $NARC = 0$ to $NARC \leq 0$. This leads to simplify $NARC$ to $NARC$.

Remark
Despite the fact that this is not an uncommon constraint, it cannot be modelled in a compact way with one single `cumulative` constraint. But it can be expressed by using the `coloured_cumulative` constraint: We assign a first colour to the tasks of $TASKS_1$ as well as a second distinct colour to the tasks of $TASKS_2$. Finally we set up a limit of 1 for the maximum number of distinct colours allowed at each time point.

See also
- disjoint
- coloured_cumulative

Key words
- scheduling constraint
- temporal constraint
- non-overlapping
4.76 disjunctive

Origin	[107]
Constraint	disjunctive\((\text{TASKS})\)
Synonym(s)	one machine.
Argument(s)	\(\text{TASKS} : \text{collection}(\text{origin} - \text{dvar}, \text{duration} - \text{dvar})\)
Restriction(s)	\(\text{required}(\text{TASKS}, [\text{origin}, \text{duration}])\)
\(\text{TASKS}.\text{duration} \geq 0\)	
Purpose	All the tasks of the collection TASKS should not overlap.

Arc input(s)	\(\text{TASKS}\)
Arc generator	\(\text{CLIQUE}(<) \mapsto \text{collection}(\text{tasks1}, \text{tasks2})\)
Arc arity	2
Arc constraint(s)	\(\bigvee \left(\begin{array}{l} \text{tasks1}\text{.duration} = 0, \\
\text{tasks2}\text{.duration} = 0, \\	
\text{tasks1}\text{.origin} + \text{tasks1}\text{.duration} \leq \text{tasks2}\text{.origin}, \\	
\text{tasks2}\text{.origin} + \text{tasks2}\text{.duration} \leq \text{tasks1}\text{.origin} \end{array}\right)\)	
Graph property(ies)	\(\text{NARC} = \mid \text{TASKS} \mid \ast (\mid \text{TASKS} \mid - 1)/2\)

| Example | disjunctive \(\left(\begin{array}{l} \text{origin} - 1 \text{ duration} - 3, \\
\text{origin} - 2 \text{ duration} - 0, \\
\text{origin} - 7 \text{ duration} - 2, \\
\text{origin} - 4 \text{ duration} - 1 \end{array}\right)\) |

Parts (A) and (B) of Figure 4.159 respectively show the initial and final graph. The disjunctive constraint holds since all the arcs of the initial graph belong to the final graph: all the non-overlapping constraints holds.

Graph model	We generate a clique with a non-overlapping constraint between each pair of distinct tasks and state that the number of arcs of the final graph should be equal to the number of arcs of the initial graph.
Remark	A soft version of this constraint, under the hypothesis that all durations are fixed, was presented by P. Baptiste et al. in [108]. In this context the goal was to perform as many tasks as possible within their respective due-dates.
Algorithm	Efficient filtering algorithms for handling the disjunctive constraint are described in [109] and [110].
See also	cumulative diffn
Key words	scheduling constraint, resource constraint, decomposition
Figure 4.159: Initial and final graph of the disjunctive constraint
4.77 distance_between

Origin
N. Beldiceanu

Constraint
distance_between(DIST, VARIABLES1, VARIABLES2, CTR)

Argument(s)
- DIST : dvar
- VARIABLES1 : collection(var - dvar)
- VARIABLES2 : collection(var - dvar)
- CTR : atom

Restriction(s)
- DIST ≥ 0
- DIST ≤ |VARIABLES1| + |VARIABLES2|
- required(VARIABLES1, var)
- required(VARIABLES2, var)
- |VARIABLES1| = |VARIABLES2|
- CTR ∈ [=, ≠, <, ≥, >, ≤]

Purpose
- U, CTR V holds and X, CTR Y does not hold,
- X, CTR Y holds and U, CTR V does not hold.

Arc input(s)
VARIABLES1//VARIABLES2

Arc generator
CLIQUE(≠) → collection(variables1,variables2)

Arc arity
2

Arc constraint(s)
variables1.var CTR variables2.var

Graph property(ies)
DISTANCE = DIST

Example
distance_between

\[
\begin{cases}
\{ \text{var - 3, var - 4} \}, \\
\{ \text{var - 2, var - 6, var - 9} \}, < \\
\{ \text{var - 2, var - 6, var - 9, var - 3, var - 6} \}
\end{cases}
\]

Between solution var-3,var-4,var-6,var-2,var-4 and solution var-2,var-6,var-9,var-3,var-6 there are 2 changes, which respectively correspond to:
Within the final graph associated to solution var-3, var-4, var-6, var-2, var-4, the arc 4 → 1 (i.e. values 2 → 3) does not occur in the final graph associated to var-2, var-6, var-9, var-3, var-6.

Within the final graph associated to solution var-2, var-6, var-9, var-3, var-6, the arc 1 → 4 (i.e. values 2 → 3) does not occur in the final graph associated to var-3, var-4, var-6, var-2, var-4.

Part (A) of Figure 4.160 gives the final graph associated to the solution var-3, var-4, var-6, var-2, var-4, while part (B) shows the final graph corresponding to var-2, var-6, var-9, var-3, var-6. The two arc constraints that differ from one graph to the other are marked by a dotted line.

Figure 4.160: Final graphs of the distance between constraint

Graph model

Within the arc input field, the character / indicates that we generate two distinct graphs. The graph property DISTANCE measures the distance between two digraphs G_1 and G_2. This distance is defined as the sum of the following quantities:

- The number of arcs of G_1 which do not belong to G_2,
- The number of arcs of G_2 which do not belong to G_1.

Usage

Measure the distance between two solutions in terms of the number of constraint changes. This should be put in contrast to the number of value changes which is sometimes superficial.

See also

distance_change

Key words

proximity constraint
4.78 distance_change

<table>
<thead>
<tr>
<th>Origin</th>
<th>Derived from change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint</td>
<td>distance_change(DIST, VARIABLES1, VARIABLES2, CTR)</td>
</tr>
<tr>
<td>Argument(s)</td>
<td>DIST : dvar</td>
</tr>
<tr>
<td></td>
<td>VARIABLES1 : collection(var - dvar)</td>
</tr>
<tr>
<td></td>
<td>VARIABLES2 : collection(var - dvar)</td>
</tr>
<tr>
<td></td>
<td>CTR : atom</td>
</tr>
<tr>
<td>Restriction(s)</td>
<td>DIST ≥ 0</td>
</tr>
<tr>
<td></td>
<td>DIST <</td>
</tr>
<tr>
<td></td>
<td>required(VARIABLES1, var)</td>
</tr>
<tr>
<td></td>
<td>required(VARIABLES2, var)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTR ∈ [=, ≠, <, ≥, >, ≤]</td>
</tr>
<tr>
<td>Purpose</td>
<td>DIST is equal to the number of times one of the following two conditions is true (1 ≤ i < n):</td>
</tr>
<tr>
<td></td>
<td>• VARIABLES1[i].var CTR VARIABLES1[i + 1].var holds and</td>
</tr>
<tr>
<td></td>
<td>VARIABLES2[i].var CTR VARIABLES2[i + 1].var does not hold,</td>
</tr>
<tr>
<td></td>
<td>• VARIABLES2[i].var CTR VARIABLES2[i + 1].var holds and</td>
</tr>
<tr>
<td></td>
<td>VARIABLES1[i].var CTR VARIABLES1[i + 1].var does not hold.</td>
</tr>
<tr>
<td>Arc input(s)</td>
<td>VARIABLES1/ VARIABLES2</td>
</tr>
<tr>
<td>Arc generator</td>
<td>PATH → collection(variables1, variables2)</td>
</tr>
<tr>
<td>Arc arity</td>
<td>2</td>
</tr>
<tr>
<td>Arc constraint(s)</td>
<td>variables1.var CTR variables2.var</td>
</tr>
<tr>
<td>Graph property(ies)</td>
<td>DISTANCE = DIST</td>
</tr>
<tr>
<td>Example</td>
<td>distance_change</td>
</tr>
</tbody>
</table>

Part (A) of Figure [161] gives the final graph associated to the solution var-3, var-3, var-1, var-2, var-2, while part (B) shows the final graph corresponding to var-4, var-4, var-3, var-3, var-3. Since arc 3 → 4 belongs to the first final graph but not to the second one, the distance between the two final graphs is equal to 1.
Graph model
Within the arc input field, the character / indicates that we generate two distinct graphs. The graph property DISTANCE measures the distance between two digraphs G_1 and G_2. This distance is defined as the sum of the following quantities:

- The number of arcs of G_1 which do not belong to G_2.
- The number of arcs of G_2 which do not belong to G_1.

Automaton
Figure 4.162 depicts the automaton associated to the distance_change constraint. Let $(\text{VAR}1_i, \text{VAR}1_{i+1})$ and $(\text{VAR}2_i, \text{VAR}2_{i+1})$ respectively be the i^{th} pairs of consecutive variables of the collections VARIABLES1 and VARIABLES2. To each quadruple $(\text{VAR}1_i, \text{VAR}1_{i+1}, \text{VAR}2_i, \text{VAR}2_{i+1})$ corresponds a 0-1 signature variable S_i. The following signature constraint links these variables:

$$(\text{VAR}1_i = \text{VAR}1_{i+1}) \land (\text{VAR}2_i \neq \text{VAR}2_{i+1}) \lor$$

$$(\text{VAR}1_i \neq \text{VAR}1_{i+1}) \land (\text{VAR}2_i = \text{VAR}2_{i+1}) \rightarrow S_i.$$

Usage
Measure the distance between two solutions according to the change constraint.

Remark
We measure that distance according to a given constraint and not according to the fact that the variables take distinct values.

See also
change, distance between.

Key words
proximity constraint, automaton, automaton with counters, sliding cyclic(2) constraint network(2)

![Figure 4.161: Final graphs of the distance_change constraint](image)
(VAR1 CTR VAR1_{i+1} and VAR2 not CTR VAR2_{i+1}) or (VAR1 not CTR VAR1_{i+1} and VAR2 CTR VAR2_{i+1}), (C=C+1)

\text{Figure 4.162: Automaton of the distance change constraint}

\text{Figure 4.163: Hypergraph of the reformulation corresponding to the automaton of the distance change constraint}
4.79 domain_constraint

Origin

<table>
<thead>
<tr>
<th>Constraint</th>
<th>domain_constraint(VAR, VALUES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument(s)</td>
<td>VAR : dvar</td>
</tr>
<tr>
<td></td>
<td>VALUES : collection(var01 - dvar, value - int)</td>
</tr>
<tr>
<td>Restriction(s)</td>
<td>required(VALUES, [var01, value])</td>
</tr>
<tr>
<td></td>
<td>VALUES.var01 ≥ 0</td>
</tr>
<tr>
<td></td>
<td>VALUES.var01 ≤ 1</td>
</tr>
<tr>
<td></td>
<td>distinct(VALUES, value)</td>
</tr>
</tbody>
</table>

Purpose

Make the link between a domain variable VAR and those 0-1 variables that are associated to each potential value of VAR: The 0-1 variable associated to the value which is taken by variable VAR is equal to 1, while the remaining 0-1 variables are all equal to 0.

Derived Collection(s)

| Derived Collection(s) | col(VALUE - collection(var01 - int, value - dvar), [item(var01 - 1, value - VAR)]) |

Arc input(s)

| Arc input(s) | VALUE VALUES |

Arc generator

| Arc generator | PRODUCT ➔ collection(value, values) |

Arc arity

| Arc arity | 2 |

Arc constraint(s)

| Arc constraint(s) | value.value = values.value ⇔ values.var01 = 1 |

Graph property(ies)

| Graph property(ies) | NARC = | VALUES |

Example

| Example | domain_constraint(5, {var01 - 0 value - 9, var01 - 1 value - 5, var01 - 0 value - 2, var01 - 0 value - 7}) |

In the previous example, the 0-1 variable associated to value 5 is set to 1, while the other 0-1 variables are all set to 0. Parts (A) and (B) of Figure 4.164 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Graph model

The domain_constraint constraint is modelled with the following bipartite graph:

- The first class of vertices corresponds to one single vertex containing the domain variable.
- The second class of vertices contains one vertex for each item of the collection VALUES.
PRODUCT is used in order to generate the arcs of the graph. In our context it takes a collection with one single item $\{\text{var01} \rightarrow \text{value} \rightarrow \text{VAR}\}$ and the collection VALUES.

The arc constraint between the variable VAR and one potential value v expresses the following:

- If the 0-1 variable associated to v is equal to 1, VAR is equal to v.
- Otherwise, if the 0-1 variable associated to v is equal to 0, VAR is not equal to v.

Since all arc constraints should hold the final graph contains exactly $|\text{VALUES}|$ arcs.

Signature

Since the number of arcs of the initial graph is equal to VALUES the maximum number of arcs of the final graph is also equal to VALUES. Therefore we can rewrite the graph property $\text{NARC} = |\text{VALUES}|$ to $\text{NARC} \geq |\text{VALUES}|$. This leads to simplify NARC to NARC.

Automaton

Figure 4.165 depicts the automaton associated to the domain constraint constraint. Let VAR01, and VALUE, respectively be the var01 and the value attributes of the i^{th} item of the VALUES collection. To each triple $(\text{VAR}, \text{VAR01}_i, \text{VALUE}_i)$ corresponds a 0-1 signature variable S_i as well as the following signature constraint: $(\text{VAR} = \text{VALUE}_i) \leftrightarrow \text{VAR01}_i) \leftrightarrow S_i$.

Usage

This constraint is used in order to make the link between a formulation using finite domain constraints and a formulation exploiting 0-1 variables.

See also

[link set to booleans]

Key words

[decomposition] [channeling constraint] [domain channel] [boolean channel] [linear programming] [automaton] [automaton without counters] [centered cyclic(1)] [constraint network(1)] [derived collection]
Figure 4.164: Initial and final graph of the domain constraint

Figure 4.165: Automaton of the domain constraint

Figure 4.166: Hypergraph of the reformulation corresponding to the automaton of the domain constraint
4.80 elem

Origin Derived from element

Constraint elem(ITEM, TABLE)

Usual name element

Argument(s)
ITEM : collection(index – dvar, value – dvar)
TABLE : collection(index – int, value – dvar)

Restriction(s)
required(ITEM, [index, value])
ITEM.index \geq 1
ITEM.index \leq |TABLE|
|ITEM| = 1
required(TABLE, [index, value])
TABLE.index \geq 1
TABLE.index \leq |TABLE|
distinct(TABLE, index)

Purpose
ITEM is equal to one of the entries of the table TABLE.

Arc input(s)
ITEM TABLE

Arc generator
PRODUCT \rightarrow collection(item, table)

Arc arity
2

Arc constraint(s)
• item.index = table.index
• item.value = table.value

Graph property(ies)
NARC = 1

Example
\begin{pmatrix}
\{\text{index} - 3 \text{ value} - 2\}, \\
\{\text{index} - 1 \text{ value} - 6\}, \\
\{\text{index} - 2 \text{ value} - 9\}, \\
\{\text{index} - 3 \text{ value} - 2\}, \\
\{\text{index} - 4 \text{ value} - 9\} \\
\end{pmatrix}

Parts (A) and (B) of Figure 167 respectively show the initial and final graph. Since we use the NARC graph property, the unique arc of the final graph is stressed in bold.

Graph model
We regroup the INDEX and VALUE parameters of the original element constraint element(INDEX, TABLE, VALUE) into the parameter ITEM. We also make explicit the different indices of the table TABLE.

Signature
Since all the index attributes of TABLE are distinct and because of the first condition of the arc constraint the final graph cannot have more than one arc. Therefore we can rewrite NARC = 1 to NARC \geq 1 and simplify \text{NARC} to \text{NARC}.
Figure 4.168 depicts the automaton associated to the \texttt{elem} constraint. Let \texttt{INDEX} and \texttt{VALUE} respectively be the index and the value attributes of the unique item of the \texttt{ITEM} collection. Let \texttt{INDEX}, and \texttt{VALUE}, respectively be the index and the value attributes of the \textit{i}th item of the \texttt{TABLE} collection. To each quadruple (\texttt{INDEX}, \texttt{VALUE}, \texttt{INDEX}_i, \texttt{VALUE}_i) corresponds a 0-1 signature variable \(S_i\) as well as the following signature constraint: \((\texttt{INDEX} = \texttt{INDEX}_i) \land (\texttt{VALUE} = \texttt{VALUE}_i) \iff S_i\).

Usage

Makes the link between the decision variable \texttt{INDEX} and the variable \texttt{VALUE} according to a given table of values \texttt{TABLE}. We now give three typical uses of the \texttt{elem} constraint.

1. In some scheduling problems the duration of a task depends on the machine where the task will be assigned in final schedule. In this case we generate for each task an \texttt{elem} constraint of the following form:

\[
\texttt{elem} \left\{ \begin{array}{l}
\texttt{index} - \texttt{Machine} \quad \texttt{value} - \texttt{Duration} \\
\texttt{index} - 1 \quad \texttt{value} - \texttt{Dur}_1 \\
\texttt{index} - 2 \quad \texttt{value} - \texttt{Dur}_2 \\
\quad \quad \quad \vdots \\
\texttt{index} - m \quad \texttt{value} - \texttt{Dur}_m
\end{array} \right\
\]

where:
- \texttt{Machine} is a domain variable which indicates the resource to which the task will be assigned,
- \texttt{Duration} is a domain variable which corresponds to the duration of the task,
- \texttt{Dur}_1, \texttt{Dur}_2, \ldots, \texttt{Dur}_m are the respective durations of the task according to the hypothesis that it runs on machine 1, 2 or \(m\).

2. In some vehicle routing problems we typically use the \texttt{elem} constraint to express the distance between the \textit{i}th location and the next location visited by a vehicle. For this purpose we generate for each location \textit{i} an \texttt{elem} constraint of the form:

\[
\texttt{elem} \left\{ \begin{array}{l}
\texttt{index} - \texttt{Next}_i \quad \texttt{value} - \texttt{distance}_i \\
\texttt{index} - 1 \quad \texttt{value} - \texttt{Dist}_{i_1} \\
\texttt{index} - 2 \quad \texttt{value} - \texttt{Dist}_{i_2} \\
\quad \quad \quad \vdots \\
\texttt{index} - m \quad \texttt{value} - \texttt{Dist}_{i_m}
\end{array} \right\
\]

where:
- \texttt{Next}_i is a domain variable which gives the index of the location the vehicle will visit just after the \textit{i}th location,
- \texttt{distance}_i is a domain variable which corresponds to the distance between location \textit{i} and the location the vehicle will visit just after,
- \texttt{Dist}_{i_1}, \texttt{Dist}_{i_2}, \ldots, \texttt{Dist}_{i_m} are the respective distances between location \textit{i} and locations 1, 2, \ldots, \textit{m}.

3. In some optimization problems a classical use of the \texttt{elem} constraint consists expressing the link between a discrete choice and its corresponding cost. For each discrete choice we create an \texttt{elem} constraint of the form:
Figure 4.167: Initial and final graph of the \texttt{elem} constraint

Figure 4.168: Automaton of the \texttt{elem} constraint

Figure 4.169: Hypergraph of the reformulation corresponding to the automaton of the \texttt{elem} constraint
\[
\text{elem} = \left\{ \begin{array}{l}
\text{index} - \text{Choice} \quad \text{value} - \text{Cost} \\
\text{index} - 1 \quad \text{value} - \text{Cost}_1, \\
\text{index} - 2 \quad \text{value} - \text{Cost}_2, \\
\vdots \\
\text{index} - m \quad \text{value} - \text{Cost}_m
\end{array} \right.
\]

where:

- \text{Choice} is a domain variable which indicates which alternative will be finally selected.
- \text{Cost} is a domain variable which corresponds to the cost of the decision associated to the value of the \text{Choice} variable,
- \text{Cost}_1, \text{Cost}_2, \ldots, \text{Cost}_m are the respective costs associated to the alternatives 1, 2, \ldots, m.

Remark

Originally, the parameters of the \text{elem} constraint had the form \text{element}(\text{INDEX}, \text{TABLE}, \text{VALUE}), where \text{INDEX} and \text{VALUE} were two domain variables and \text{TABLE} a list of non-negative integers.

See also

\text{element}, \text{element_greatereq}, \text{element_lesseq}, \text{element_sparse}, \text{element_matrix}, \text{elements}, \text{elements_alldifferent}, \text{stage_element}

Key words

\text{array constraint}, \text{data constraint}, \text{table}, \text{functional dependency}, \text{variable indexing}, \text{variable subscript}, \text{automaton}, \text{automaton without counters}, \text{centered cyclic(2)} \text{constraint network(1)}
4.81 element

Origin

\[\text{NARC} \]

Constraint

\(\text{element}(\text{INDEX}, \text{TABLE}, \text{VALUE}) \)

Argument(s)

\[
\begin{align*}
\text{INDEX} & : \text{dvar} \\
\text{TABLE} & : \text{collection}(value - \text{dvar}) \\
\text{VALUE} & : \text{dvar}
\end{align*}
\]

Restriction(s)

\[
\begin{align*}
\text{INDEX} & \geq 1 \\
\text{INDEX} & \leq |\text{TABLE}| \\
\text{required} & (\text{TABLE}, \text{value})
\end{align*}
\]

Purpose

\(\text{VALUE} \) is equal to the INDEX\(^{th} \) item of TABLE.

Derived Collection(s)

\[
\text{col} \left(\begin{array}{c}
\text{ITEM} - \text{collection} (\text{index} - \text{dvar}, \text{value} - \text{dvar}), \\
\text{item} (\text{index} - \text{INDEX}, \text{value} - \text{VALUE})
\end{array} \right)
\]

Arc input(s)

\(\text{ITEM TABLE} \)

Arc generator

\(\text{PRODUCT} \mapsto \text{collection} (\text{item}, \text{table}) \)

Arc arity

2

Arc constraint(s)

- \(\text{item.index} = \text{table.key} \)
- \(\text{item.value} = \text{table.value} \)

Graph property(ies)

\(\text{NARC} = 1 \)

Example

\[
\text{element} \left(3, \left\{ \begin{array}{l}
\text{value} - 6, \\
\text{value} - 9, \\
\text{value} - 2, \\
\text{value} - 9
\end{array} \right\}, 2 \right)
\]

Parts (A) and (B) of Figure 4.170 respectively show the initial and final graph. Since we use the \text{NARC} graph property, the unique arc of the final graph is stressed in bold.

Graph model

The original element constraint with three arguments. We use the derived collection \text{ITEM} for putting together the INDEX and VALUE parameters of the element constraint. Within the arc constraint we use the implicit attribute \text{key} which associates to each item of a collection its position within the collection.

Signature

Because of the first condition of the arc constraint the final graph cannot have more than one arc. Therefore we can rewrite \(\text{NARC} = 1 \) to \(\text{NARC} \geq 1 \) and simplify \(\text{NARC} \) to \(\text{NARC} \).
Figure 4.170: Initial and final graph of the element constraint

Figure 4.171: Automaton of the element constraint

Figure 4.172: Hypergraph of the reformulation corresponding to the automaton of the element constraint
Automaton

Figure 4.171 depicts the automaton associated to the \texttt{element} constraint. Let VALUE_i be the value attribute of the i^{th} item of the \texttt{TABLE} collection. To each triple $(\text{INDEX}, \text{VALUE}, \text{VALUE}_i)$ corresponds a 0-1 signature variable S_i as well as the following signature constraint: $(\text{INDEX} = i \land \text{VALUE} = \text{VALUE}_i) \Leftrightarrow S_i$.

Usage

See \texttt{elem}.

Remark

In the original \texttt{element} constraint of CHIP the index attribute was not explicitly present in the table of values. It was implicitly defined as the position of a value in the previous table.

The \texttt{case} constraint \cite{46} is a generalization of the \texttt{element} constraint, where the table is replaced by a directed acyclic graph describing the set of solutions.

See also

\texttt{elem element_greaterq element_lessq element_sparse element_matrix elements elements_alldifferent stage_element}

Key words

\texttt{array constraint data constraint table functional dependency variable indexing variable subscript automaton automaton without counters centered cyclic(2) constraint network(1) derived collection}
4.82 element_greatereq

Origin

Constraint

\[\text{element_greatereq(ITEM, TABLE)} \]

Argument(s)

\[
\begin{align*}
\text{ITEM} & : \text{collection(index - dvar, value - dvar)} \\
\text{TABLE} & : \text{collection(index - int, value - int)}
\end{align*}
\]

Restriction(s)

\[
\begin{align*}
\text{required(ITEM, [index, value])} \\
\text{ITEM.index} & \geq 1 \\
\text{ITEM.index} & \leq \text{|TABLE|} \\
\text{|ITEM|} & = 1 \\
\text{required(TABLE, [index, value])} \\
\text{TABLE.index} & \geq 1 \\
\text{TABLE.index} & \leq \text{|TABLE|} \\
\text{distinct(TABLE, index)}
\end{align*}
\]

Purpose

\[
\text{ITEM.value is greater than or equal to one of the entries (i.e. the value attribute) of the table TABLE.}
\]

Arc input(s)

\[\text{ITEM TABLE} \]

Arc generator

\[
\text{PRODUCT} \mapsto \text{collection(item, table)}
\]

Arc arity

\[2 \]

Arc constraint(s)

\[
\begin{align*}
\text{item.index} & = \text{table.index} \\
\text{item.value} & \geq \text{table.value}
\end{align*}
\]

Graph property(ies)

\[\text{NARC} = 1 \]

Example

\[
\text{element_greatereq}\left(\begin{align*}
\{&\text{index - 1 value - 8}, \\
&\text{index - 1 value - 6}, \\
&\text{index - 2 value - 9}, \\
&\text{index - 3 value - 2}, \\
&\text{index - 4 value - 9}\}\end{align*}\right)
\]

Parts (A) and (B) of Figure 4.173 respectively show the initial and final graph. Since we use the NARC graph property, the unique arc of the final graph is stressed in bold.

Graph model

Similar to the \text{element} constraint except that the equality constraint of the second condition of the arc constraint is replaced by a greater than or equal to constraint.

Signature

Since all the index attributes of TABLE are distinct and because of the first arc constraint the final graph cannot have more than one arc. Therefore we can rewrite NARC = 1 to NARC \geq 1 and simplify NARC to NARC.
Automaton

Figure 4.174 depicts the automaton associated to the `element_greatereq` constraint. Let INDEX and VALUE respectively be the index and the value attributes of the unique item of the ITEM collection. Let INDEX, and VALUE, respectively be the index and the value attributes of the i-th item of the TABLE collection. To each quadruple \((INDEX, VALUE, INDEX_i, VALUE_i)\) corresponds a 0-1 signature variable \(S_i\) as well as the following signature constraint: \((INDEX = INDEX_i) \land (VALUE \geq VALUE_i)\) \(\iff S_i\).

Usage

Used for modelling variable subscripts in linear constraints \(112\).

See also

- `element` `element_lesseq`

Key words

- array constraint
- data constraint
- binary constraint
- table
- linear programming
- variable subscript
- variable indexing
- automaton
- automaton without counters
- centered cyclic(2) constraint random network
Figure 4.173: Initial and final graph of the element_\textgreater\textequal constraint

Figure 4.174: Automaton of the element_\textgreater\textequal constraint

Figure 4.175: Hypergraph of the reformulation corresponding to the automaton of the element_\textgreater\textequal constraint
4.83 element lesseq

Origin

Constraint

element_lesseq(ITEM, TABLE)

Argument(s)

ITEM : collection(index - dvar, value - dvar)
TABLE : collection(index - int, value - int)

Restriction(s)

required(ITEM, [index, value])
ITEM.index ≥ 1
ITEM.index ≤ |TABLE|
|ITEM| = 1
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose

ITEM.value is less than or equal to one of the entries (i.e. the value attribute) of the table TABLE.

Arc input(s)

ITEM TABLE

Arc generator

PRODUCT → collection(item, table)

Arc arity

2

Arc constraint(s)

• item.index = table.index
• item.value ≤ table.value

Graph property(ies)

NARC = 1

Example

element_lesseq

\[
\{\text{index - 3 value - 1},
\text{index - 1 value - 6},
\text{index - 2 value - 9},
\text{index - 3 value - 2},
\text{index - 4 value - 9}\}
\]

Parts (A) and (B) of Figure 176 respectively show the initial and final graph. Since we use the NARC graph property, the unique arc of the final graph is stressed in bold.

Graph model

Similar to the element constraint except that the equality constraint of the second condition of the arc constraint is replaced by a less than or equal to constraint.

Signature

Since all the index attributes of TABLE are distinct and because of the first arc constraint the final graph cannot have more than one arc. Therefore we can rewrite NARC = 1 to NARC ≥ 1 and simplify NARC to NARC.
Automaton Figure 4.177 depicts the automaton associated to the `element_lesseq` constraint. Let INDEX and VALUE respectively be the index and the value attributes of the unique item of the ITEM collection. Let INDEX_i and VALUE_i respectively be the index and the value attributes of the i^{th} item of the TABLE collection. To each quadruple (INDEX, VALUE, INDEX_i, VALUE_i) corresponds a 0-1 signature variable S_i as well as the following signature constraint: $(\text{INDEX} = \text{INDEX}_i) \land (\text{VALUE} \leq \text{VALUE}_i) \iff S_i$.

Usage Used for modelling variable subscripts in linear constraints \cite{112}.

See also `element`, `element_greatereq`.

Key words `array constraint`, `data constraint`, `binary constraint`, `table`, `linear programming`, `variable subscript`, `variable indexing`, `automaton`, `automaton without counters`, `centered cyclic(2) constraint network(1)`
Figure 4.176: Initial and final graph of the element \texttt{lesseq} constraint

Figure 4.177: Automaton of the element \texttt{lesseq} constraint

Figure 4.178: Hypergraph of the reformulation corresponding to the automaton of the element \texttt{lesseq} constraint
4.84 element_matrix

Origin
CHIP

Constraint
element_matrix(MAX_I, MAX_J, INDEX_I, INDEX_J, MATRIX, VALUE)

Argument(s)
- MAX_I : int
- MAX_J : int
- INDEX_I : dvar
- INDEX_J : dvar
- MATRIX : collection(i - int, j - int, v - int)
- VALUE : dvar

Restriction(s)
- MAX_I ≥ 1
- MAX_J ≥ 1
- INDEX_I ≥ 1
- INDEX_I ≤ MAX_I
- INDEX_J ≥ 1
- INDEX_J ≤ MAX_J
- required(MATRIX, [i,j,v])
- increasing_seq(MATRIX, [i,j])
- MATRIX.i ≥ 1
- MATRIX.i ≤ MAX_I
- MATRIX.j ≥ 1
- MATRIX.j ≤ MAX_J
- |MATRIX| = MAX_I * MAX_J

Purpose
The MATRIX collection corresponds to the two-dimensional matrix MATRIX[1..MAX_I, 1..MAX_J]. VALUE is equal to the entry MATRIX[INDEX_I, INDEX_J] of the previous matrix.

Derived Collection(s)
\[col(ITEM = collection(index_i - dvar, index_j - dvar, value - dvar), \]
\[item(index_i - INDEX_I, index_j - INDEX_J, value - VALUE)) \]

Arc input(s)
ITEM MATRIX

Arc generator
PRODUCT \mapsto collection(item, matrix)

Arc arity
2

Arc constraint(s)
- item.index_i = matrix.i
- item.index_j = matrix.j
- item.value = matrix.v

Graph property(ies)
NARC = 1
Example

$\begin{pmatrix}
 i-1 & j-1 & v-4, \\
 i-1 & j-2 & v-1, \\
 i-1 & j-3 & v-7, \\
 i-2 & j-1 & v-1, \\
 i-2 & j-2 & v-0, \\
 i-2 & j-3 & v-8, \\
 i-3 & j-1 & v-3, \\
 i-3 & j-2 & v-2, \\
 i-3 & j-3 & v-1, \\
 i-4 & j-1 & v-0, \\
 i-4 & j-2 & v-0, \\
 i-4 & j-3 & v-6
\end{pmatrix}$

Parts (A) and (B) of Figure 4.179 respectively show the initial and final graph. Since we use the NARC graph property, the unique arc of the final graph is stressed in bold.

Figure 4.179: Initial and final graph of the element_matrix constraint

Graph model

Similar to the element constraint except that the arc constraint is updated according to the fact that we have a two-dimensional matrix.

Signature

Because of the first condition of the arc constraint the final graph cannot have more than one arc. Therefore we can rewrite $\text{NARC} = 1$ to $\text{NARC} \geq 1$ and simplify NARC to NARC.

Automaton

Figure 4.180 depicts the automaton associated to the element_matrix constraint. Let I_k, J_k and V_k respectively be the i, the j and the v k^{th} attributes of the MATRIX collection. To each sextuple $(\text{INDEX}_I, \text{INDEX}_J, \text{VALUE}, I_k, J_k, V_k)$ corresponds a 0-1 signature variable S_k as well as the following signature constraint: $(\text{INDEX}_I = I_k) \land (\text{INDEX}_J = J_k) \land (\text{VALUE} = V_k) \Leftrightarrow S_k$.

See also element
Figure 4.180: Automaton of the element matrix constraint

Figure 4.181: Hypergraph of the reformulation corresponding to the automaton of the element matrix constraint
Key words

array constraint data constraint ternary constraint matrix automaton
automaton without counters centered cyclic(3) constraint network(1) derived collection
4.85 element_sparse

Origin
CHIP

Constraint
\[
\text{element_sparse} (\text{ITEM}, \text{TABLE}, \text{DEFAULT})
\]

Usual name
element

Argument(s)
- **ITEM**: collection(index - dvar, value - dvar)
- **TABLE**: collection(index - int, value - int)
- **DEFAULT**: int

Restriction(s)
- **required** (ITEM, [index, value])
- **ITEM.index \geq 1**
- **ITEM.index = 1**
- **required** (TABLE, [index, value])
- **TABLE.index \geq 1**
- **distinct** (TABLE, index)

Purpose
\[
\text{ITEM.value is equal to one of the entries of the table TABLE or to the default value DEFAULT if the entry ITEM.index does not exist in TABLE.}
\]

Derived Collection(s)
\[
\text{col} (\text{DEF} - \text{collection}(\text{index} - \text{int}, \text{value} - \text{int}), [\text{item}(\text{index} - 0, \text{value} - \text{DEFAULT})])
\]
\[
\text{col} (\text{TABLE.DEF} - \text{collection}(\text{index} - \text{dvar}, \text{value} - \text{dvar}),
\quad \text{item}(\text{index} - \text{TABLE.index}, \text{value} - \text{TABLE.value}),
\quad \text{item}(\text{index} - \text{DEF.index}, \text{value} - \text{DEF.value}))
\]

Arc input(s)
ITEM, TABLE, DEF

Arc generator
\[
\text{PRODUCT} \mapsto \text{collection(item, table_def)}
\]

Arc arity
2

Arc constraint(s)
- **item.value = table_def.value**
- **item.index = table_def.index \lor table_def.index = 0**

Graph property(ies)
\[
\text{NARC} \geq 1
\]

Example
\[
\text{element_sparse}
\left[
\begin{array}{l}
\text{index} - 2 \text{ value} - 5, \\
\text{index} - 1 \text{ value} - 6, \\
\text{index} - 2 \text{ value} - 5, \\
\text{index} - 4 \text{ value} - 2, \\
\text{index} - 8 \text{ value} - 9
\end{array}
\right)
\]

Parts (A) and (B) of Figure 4.182 respectively show the initial and final graph. Since we use the NARC graph property the final graph is outline with thick lines.

Graph model
The final graph has between one and two arc constraints: It has two arcs when the default value DEFAULT occurs also in the table TABLE; Otherwise it has only one arc.
Automaton

Figure 4.183 depicts the automaton associated to the `element_sparse` constraint. Let `INDEX` and `VALUE` respectively be the index and the value attributes of the unique item of the `ITEM` collection. Let `INDEX_i` and `VALUE_i` respectively be the index and the value attributes of the `i`th item of the `TABLE` collection. To each quintuple `(INDEX, VALUE, DEFAULT, INDEX_i, VALUE_i)` corresponds a signature variable `S_i` as well as the following signature constraint:

\[
\begin{align*}
(\text{INDEX} \neq \text{INDEX}_i \land \text{VALUE} \neq \text{DEFAULT}) & \iff S_i = 0 \land \\
(\text{INDEX} = \text{INDEX}_i \land \text{VALUE} = \text{VALUE}_i) & \iff S_i = 1 \land \\
(\text{INDEX} \neq \text{INDEX}_i \land \text{VALUE} = \text{DEFAULT}) & \iff S_i = 2
\end{align*}
\]

Usage

A sometimes more compact form of the `element` constraint: We are not obliged to specify explicitly the table entries that correspond to the specified default value. This can sometimes reduce drastically memory utilisation.

Remark

The original constraint of CHIP had an additional parameter `SIZE` giving the maximum value of `ITEM.index`.

See also

`element`

Key words

array constraint, data constraint, binary constraint, table, sparse table, sparse functional dependency, variable indexing, automaton, automaton without counters, centered cyclic(2) constraint network(1), derived collection.
Figure 4.182: Initial and final graph of the `element_sparse` constraint

Figure 4.183: Automaton of the `element_sparse` constraint

Figure 4.184: Hypergraph of the reformulation corresponding to the automaton of the `element_sparse` constraint
4.86 elements

Origin

Derived from element

Constraint

\(\text{elements(ITEMS, \text{TABLE})} \)

Argument(s)

\[
\begin{align*}
\text{ITEMS} & : \text{collection}(\text{index} - \text{dvar}, \text{value} - \text{dvar}) \\
\text{TABLE} & : \text{collection}(\text{index} - \text{int}, \text{value} - \text{dvar})
\end{align*}
\]

Restriction(s)

\[
\begin{align*}
\text{required(ITEMS, [index, value])} \\
\text{ITEMS.index} & \geq 1 \\
\text{ITEMS.index} & \leq |\text{TABLE}| \\
\text{required(TABLE, [index, value])} \\
\text{TABLE.index} & \geq 1 \\
\text{TABLE.index} & \leq |\text{TABLE}| \\
\text{distinct(TABLE, index)}
\end{align*}
\]

Purpose

All the items of ITEMS should be equal to one of the entries of the table TABLE.

Arc input(s)

ITEMS TABLE

Arc generator

\(\text{PRODUCT} \mapsto \text{collection(items.table)} \)

Arc arity

2

Arc constraint(s)

- \(\text{items.index} = \text{table.index} \)
- \(\text{items.value} = \text{table.value} \)

Graph property(ies)

\(\text{NARC} = |\text{ITEMS}| \)

Example

\[
\begin{align*}
\text{elements} & \left(\begin{array}{c}
\{\text{index} - 4, \text{value} - 9\}, \\
\{\text{index} - 1, \text{value} - 6\}, \\
\{\text{index} - 2, \text{value} - 9\}, \\
\{\text{index} - 3, \text{value} - 2\}, \\
\{\text{index} - 4, \text{value} - 9\}
\end{array} \right)
\end{align*}
\]

Parts (A) and (B) of Figure 4.185 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Signature

Since all the index attributes of TABLE collection are distinct and because of the first condition \(\text{items.index} = \text{table.index} \) of the arc constraint, a source vertex of the final graph can have at most one successor. Therefore \(|\text{ITEMS}| \) is the maximum number of arcs of the final graph and we can rewrite \(\text{NARC} = |\text{ITEMS}| \) to \(\text{NARC} \geq |\text{ITEMS}| \). So we can simplify NARC to NARC.

Usage

Used for replacing several element constraints sharing exactly the same table by one single constraint.

See also

- element

Key words

- data constraint
- table
- shared table
- functional dependency
Figure 4.185: Initial and final graph of the elements constraint
4.87 elements_alldifferent

Origin Derived from elements and alldifferent

Constraint elements_alldifferent(ITEMS, TABLE)

Synonym(s) elements_alldiff, elements_alldistinct.

Argument(s) ITEMS : collection(index – dvar, value – dvar)
TABLE : collection(index – int, value – dvar)

Restriction(s) required(ITEMS, [index, value])
ITEMS.index ≥ 1
ITEMS.index ≤ |TABLE|
|ITEMS| = |TABLE|
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose All the items of the ITEMS collection should be equal to one of the entries of the table TABLE and all the variables ITEMS.index should take distinct values.

Arc input(s) ITEMS TABLE
Arc generator PRODUCT → collection(items, table)
Arc arity 2

Arc constraint(s) • items.index = table.index
• items.value = table.value

Graph property(ies) NVERTEX = |ITEMS| + |TABLE|

Example elements_alldifferent

Parts (A) and (B) of Figure 4.186 respectively show the initial and final graph. Since we use the NVERTEX graph property, the vertices of the final graph are stressed in bold.

Graph model The fact that all variables ITEMS.index are pairwise different is derived from the conjunctions of the following facts:
From the graph property \(N\text{VERTEX} = |\text{ITEMS}| + |\text{TABLE}| \) it follows that all vertices of the initial graph belong also to the final graph.

A vertex \(v \) belongs to the final graph if there is at least one constraint involving \(v \) that holds.

From the first condition \(\text{items.index} = \text{table.index} \) of the arc constraint, and from the restriction \(\text{distinct(\text{TABLE.index})} \) it follows: For all vertices \(v \) generated from the collection \(\text{ITEMS} \) at most one constraint involving \(v \) holds.

Since the final graph cannot have more than \(|\text{ITEMS}| + |\text{TABLE}| \) vertices one can simplify \(N\text{VERTEX} \) to \(N\text{VERTEX} \).

Usage

Used for replacing by one single \texttt{elements.alldifferent} constraint an \texttt{alldifferent} and a set of \texttt{element} constraints having the following structure:

- The union of the index variables of the \texttt{element} constraints is equal to the set of variables of the \texttt{alldifferent} constraint.
- All the \texttt{element} constraints share exactly the same table.

For instance, the constraint given in the previous example is equivalent to the conjunction of the following set of constraints:

\[
\text{alldifferent}\{\text{var} - 2, \text{var} - 1, \text{var} - 4, \text{var} - 3\}
\]

\[
\begin{align*}
\text{element} & \quad \{ \text{index - 2 value - 9 } \} \\
& \quad \{ \text{index - 1 value - 6 } \} \\
& \quad \{ \text{index - 2 value - 9 } \} \\
& \quad \{ \text{index - 3 value - 2 } \} \\
& \quad \{ \text{index - 4 value - 9 } \} \\
\end{align*}
\]

As a practical example of utilization of the \texttt{elements.alldifferent} constraint we show how to model the link between a permutation consisting of one single cycle and its expanded form. For instance, to the permutation 3, 6, 5, 2, 4, 1 corresponds the sequence
Let us note $S_1, S_2, S_3, S_4, S_5, S_6$ the permutation and $V_1 V_2 V_3 V_4 V_5 V_6$ its expanded form.

The constraint:

\[
\begin{align*}
\text{elements_alldifferent} & = \\
& \{ \begin{array}{ll}
\text{index} & \text{value} \\
V_1 & V_2 \\
V_2 & V_3 \\
V_3 & V_4 \\
V_4 & V_5 \\
V_5 & V_6 \\
V_6 & V_1 \\
1 & S_1 \\
2 & S_2 \\
3 & S_3 \\
4 & S_4 \\
5 & S_5 \\
6 & S_6
\end{array} \}
\end{align*}
\]

models the fact that $S_1, S_2, S_3, S_4, S_5, S_6$ corresponds to a permutation with one single cycle. It also expresses the link between the variables $S_1, S_2, S_3, S_4, S_5, S_6$ and $V_1, V_2, V_3, V_4, V_5, V_6$.

See also \texttt{alldifferent}, \texttt{element}

Key words \texttt{data_constraint}, \texttt{table}, \texttt{functional_dependency}, \texttt{permutation}, \texttt{disequality}
Figure 4.186: Initial and final graph of the \texttt{allDifferent} constraint

Figure 4.187: Two representations of a permutation containing one single cycle
4.88 elements_sparse

Origin
Derived from `element_sparse`

Constraint
elements_sparse(ITEMS, TABLE, DEFAULT)

Argument(s)
- ITEMS : collection(index - dvar, value - dvar)
- TABLE : collection(index - int, value - int)
- DEFAULT : int

Restriction(s)
- required(ITEMS, [index, value])
- ITEMS.index \(\geq 1\)
- required(TABLE, [index, value])
- TABLE.index \(\geq 1\)
- distinct(TABLE, index)

Purpose
All the items of ITEMS should be equal to one of the entries of the table TABLE or to the default value DEFAULT if the entry ITEMS.index does not occur among the values of the index attribute of the TABLE collection.

Derived Collection(s)
\[
\begin{align*}
\text{col(DEF} & \text{ - collection(index - int, value - int), [item(index - 0, value - DEFAULT)])} \\
\text{TABLE_DEF} & \text{ - collection(index - dvar, value - dvar),} \\
\text{col} & \left[\text{item(index - TABLE.index, value - TABLE.index),} \\
& \text{item(index - DEF.index, value - DEF.value)} \right]
\end{align*}
\]

Arc input(s)
ITEMS TABLE_DEF

Arc generator
\[PRODUCT \mapsto \text{collection(items, table_def)}\]

Arc arity
2

Arc constraint(s)
- \(\text{items.value} = \text{table_def.value}\)
- \(\text{items.index} = \text{table_def.index} \lor \text{table_def.index} = 0\)

Graph property(ies)
\(\text{NSOURCE} = |\text{ITEMS}|\)

Example
\[
\begin{align*}
\text{elements_sparse} & \left[\begin{array}{c}
\text{index - 8} & \text{value - 9}, \\
\text{index - 3} & \text{value - 5}, \\
\text{index - 2} & \text{value - 5}
\end{array} \right] \\
\text{index - 1} & \text{value - 6}, \\
\text{index - 2} & \text{value - 5}, \\
\text{index - 4} & \text{value - 2}, \\
\text{index - 8} & \text{value - 9}
\end{align*}
\]

Parts (A) and (B) of Figure 4.188 respectively show the initial and final graph. Since we use the NSOURCE graph property, the vertices of the final graph are drawn with a double circle.
Graph model

An item of the ITEMS collection may have up to two successors (see for instance the third item of the ITEMS collection of the previous example). Therefore we use the graph property $\text{NSOURCE} = |\text{ITEMS}|$ for enforcing the fact that each item of the ITEMS collection has at least one successor.

Signature

On the one hand note that ITEMS is equal to the number of sources of the initial graph. On the other hand observe that, in the initial graph, all the vertices which are not sources correspond to sinks. Since isolated vertices are eliminated from the final graph the sinks of the initial graph cannot become sources of the final graph. Therefore the maximum number of sources of the final graph is equal to ITEMS. We can rewrite $\text{NSOURCE} = |\text{ITEMS}|$ to $\text{NSOURCE} \geq |\text{ITEMS}|$ and simplify NSOURCE to NSOURCE.

Usage

Used for replacing several element constraints sharing exactly the same sparse table by one single constraint.

See also

element, element_sparse

Key words

data constraint, table, shared table, sparse table, sparse functional dependency, derived collection
Figure 4.188: Initial and final graph of the \texttt{elements.sparse} constraint
4.89 eq_set

Origin
Used for defining `allDifferent_between_sets`.

Constraint
`eq_set(SET1, SET2)`

Argument(s)
- `SET1 : svar`
- `SET2 : svar`

Purpose
Constraint the set `SET1` to be equal to the set `SET2`.

Example
`eq_set({3, 5}, {3, 5})`

Used in
`allDifferent_between_sets`

Key words
- predefined constraint
- binary constraint
- equality constraint involving set variables
4.90 exactly

Origin Derived from \textit{at least} and \textit{at most}.

Constraint \textit{exactly}(N, \text{\textit{VARIABLES}}, \text{\textit{VALUE}})

Argument(s) \begin{align*}
N & : \text{int} \\
\text{\textit{VARIABLES}} & : \text{collection(var - dvar)} \\
\text{\textit{VALUE}} & : \text{int}
\end{align*}

Restriction(s) \begin{align*}
N & \geq 0 \\
N & \leq |\text{\textit{VARIABLES}}| \\
\text{\textit{VARIABLES}}.\text{\textit{var}} & \text{\textit{required}}(\text{\textit{VARIABLES}}, \text{\textit{var}})
\end{align*}

Purpose \underline{Exactly \(N\) variables of the \textit{VARIABLES} collection are assigned to value \textit{VALUE}.}

Arc input(s) \text{\textit{VARIABLES}}

Arc generator \textit{SELF} \mapsto \text{\textit{collection}}(\textit{variables})

Arc arity 1

Arc constraint(s) \text{\textit{variables}}.\text{\textit{var}} = \text{\textit{VALUE}}

Graph property(ies) \text{\textit{NARC}} = N

Example \textit{exactly}(2, \{\text{\textit{var}} - 4, \text{\textit{var}} - 2, \text{\textit{var}} - 4, \text{\textit{var}} - 5\}, 4)

Parts (A) and (B) of Figure 4.189 respectively show the initial and final graph. Since we use the \textit{NARC} graph property, the unary arcs of the final graph are stressed in bold. The \textit{exactly} constraint holds since exactly 2 variables are assigned to value 4.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{example_graph.png}
\caption{Figure 4.189: Initial and final graph of the \textit{exactly} constraint}
\end{figure}

Graph model Since we use a unary arc constraint (VALUE is fixed) we employ the \textit{SELF} arc generator in order to produce a graph with a single loop on each vertex.

Automaton Figure 4.190 depicts the automaton associated to the \textit{exactly} constraint. To each variable \textit{VAR}_i of the collection \textit{VARIABLES} corresponds a 0-1 signature variable \textit{S}_i. The following signature constraint links \textit{VAR}_i and \textit{S}_i: \textit{VAR}_i = \text{\textit{VALUE}} \leftrightarrow \textit{S}_i.
Figure 4.190: Automaton of the exactly constraint

Figure 4.191: Hypergraph of the reformulation corresponding to the automaton of the exactly constraint
See also

at least, at most, among

Key words

value constraint, counting constraint, automaton, automaton with counters, alpha-acyclic constraint network(2)
4.91 global_cardinality

Origin CHARME

Constraint

`global_cardinality(VARIABLES, VALUES)`

Synonym(s)

distribute, distribution, gcc, card_var_gcc, egcc.

Argument(s)

- **VARIABLES**: `collection(var - dvar)`
- **VALUES**: `collection(val - int, noccurrence - dvar)`

Restriction(s)

- `required(VARIABLES, var)`
- `required(VARIABLES, val)`
- `distinct(VARIABLES, val)`
- `VALUES.noccurrence ≥ 0`
- `VALUES.noccurrence ≤ |VARIABLES|`

Purpose

Each value `VALUES[i].val (1 ≤ i ≤ |VALUES|)` should be taken by exactly `VALUES[i].noccurrence` variables of the VARIABLES collection.

For all items of VALUES:

- **Arc input(s)** VARIABLES
- **Arc generator** `SELF ↦ collection(variables)`
- **Arc arity** 1
- **Arc constraint(s)** `variables.var = VALUES.val`

Graph property(ies)

\[\text{NVERTEX} = \text{VALUES.noccurrence} \]

\[
\begin{align*}
\text{Example} & \quad \text{global_cardinality} \\
& \quad \left(\begin{array}{c}
\text{var} - 3. \\
\text{var} - 3. \\
\text{var} - 8. \\
\text{var} - 6 \\
\text{val} - 3 \quad \text{noccurrence} - 2, \\
\text{val} - 5 \quad \text{noccurrence} - 0, \\
\text{val} - 6 \quad \text{noccurrence} - 1
\end{array} \right)
\end{align*}
\]

The constraint holds since values 3, 5 and 6 are respectively used 2, 0 and 1 times and since no constraint was specified for value 8. Part (A) of Figure 4.192 shows the initial graphs associated to each value 3, 5 and 6 of the VALUES collection. Part (B) of Figure 4.192 shows the two final graphs respectively associated to values 3 and 6 which are both assigned to the variables of the VARIABLES collection (since value 5 is not assigned to any variable of the VARIABLES collection the final graph associated to value 5 is empty). Since we use the NVERTEX graph property, the vertices of the final graphs are stressed in bold.
Graph model
Since we want to express one unary constraint for each value we use the “For all items of VALUES” iterator.

Automaton
Figure 4.193 depicts the automaton associated to the global_cardinality constraint. To each item of the collection VARIABLES corresponds a signature variable S_i, which is equal to 0. To each item of the collection VALUES corresponds a signature variable $S_{i+|\text{VALUES}|}$, which is equal to 1.

Usage
We show how to use the global_cardinality constraint in order to model the magic series problem \cite{113, page 155] with one single global_cardinality constraint. A non-empty finite series $S = (s_0, s_1, \ldots, s_n)$ is magic if and only if there are s_i occurrences of i in S for each integer i ranging from 0 to n. This leads to the following constraint:

\[
\text{global_cardinality} \left(\begin{array}{l}
\text{var} - s_0, \text{var} - s_1, \ldots, \text{var} - s_n \\
\text{val} - 0 \text{noccurrence} - s_0, \\
\text{val} - 1 \text{noccurrence} - s_1, \\
\vdots \\
\text{val} - n \text{noccurrence} - s_n
\end{array} \right)
\]

Remark
This is a generalized form of the original global_cardinality constraint: In the original global_cardinality constraint \cite{19}, one specifies for each value its minimum and maximum number of occurrences; Here we give for each value v a domain variable which indicates how many time value v is effectively used. By setting the minimum and maximum values of this variable to the appropriate constants we can express the same thing as in the original global_cardinality constraint. However, as shown in the magic series problem, we can also use this variable in other constraints.

A last difference with the original global_cardinality constraint comes from the fact that there is no constraint on the values which are not mentioned in the VALUES collection. In the original global_cardinality these values could not be assigned to the variables of the VARIABLES collection.

Within \cite{32} the global_cardinality constraint is called distribution. Within \cite{80} the global_cardinality constraint is called card_var_gcc. Within \cite{114} the global_cardinality constraint is called sgcc or rgcc. This later case corresponds to the fact that some variables are duplicated within the VARIABLES collection.

W.-J. van Hoeve et al. present two soft versions of the global_cardinality constraint in \cite{12}.

Algorithm
A flow algorithm that handles the original global_cardinality constraint is described in \cite{19}. The two approaches that were used to design bound-consistency algorithms for

![Figure 4.192: Initial and final graph of the global_cardinality constraint](image)

\texttt{alldifferent} were generalized for the \texttt{global_cardinality} constraint. The algorithm in [115] identifies Hall intervals and the one in [24] exploits convexity to achieve a fast implementation of the flow-based arc-consistency algorithm. The later algorithm can also compute bound-consistency for the count variables [116]. An improved algorithm for achieving arc-consistency is described in [27]. In the same paper, it is shown that it is NP-hard to compute arc-consistency for the count variables.

\textbf{See also}

\begin{itemize}
\item among\texttt{count, nvalue, max_nvalue, min_nvalue, global_cardinality_with_costs}
\item symmetric_gcc
\item symmetric_cardinality
\item colored_matrix
\item same_and_global_cardinality
\end{itemize}

\textbf{Key words}

\begin{itemize}
\item value_constraint
\item assignment
\item magic_series
\item Hall_interval
\item bound_consistency
\item flow
\item duplicated_variables
\item automaton
\item automaton_with_array_of_counters
\end{itemize}
Figure 4.193: Automaton of the global cardinality constraint
4.92 global_cardinality_low_up

Origin
Used for defining \textit{sliding_distribution}.

Constraint
\texttt{global_cardinality_low_up(VARIABLES, VALUES)}

Argument(s)
\begin{itemize}
 \item \texttt{VARIABLES} : \texttt{collection(var - dvar)}
 \item \texttt{VALUES} : \texttt{collection(val - int, omin - int, omax - int)}
\end{itemize}

Restriction(s)
\begin{itemize}
 \item \texttt{required(VARIABLES, var)}
 \item \texttt{|VALUES| > 0}
 \item \texttt{required(VALUES, [val, omin, omax])}
 \item \texttt{distinct(VALUES, val)}
 \item \texttt{VALUES.omin \geq 0}
 \item \texttt{VALUES.omax \leq |VARIABLES|}
 \item \texttt{VALUES.omin \leq VALUES.omax}
\end{itemize}

Purpose
\texttt{The constraint holds since values 3, 5 and 6 are respectively used 2, 0 and 1 times and since no constraint was specified for value 8. Part (A) of Figure 4.192 shows the initial graphs associated to each value 3, 5 and 6 of the VALUES collection. Part (B) of Figure 4.192 shows the two final graphs respectively associated to values 3 and 6 which are both assigned to the variables of the VARIABLES collection (since value 5 is not assigned to any variable of the VARIABLES collection the final graph associated to value 5 is empty). Since we use the NVERTEX graph property, the vertices of the final graphs are stressed in bold.}

\begin{enumerate}
 \item \texttt{NVERTEX \geq VALUES.omin}
 \item \texttt{NVERTEX \leq VALUES.omax}
\end{enumerate}
Graph model
Since we want to express one unary constraint for each value we use the “For all items of VALUES” iterator.

Algorithm
[19].

Used in
sliding_distribution

See also
global_cardinality, sliding_distribution

Key words
value constraint, assignment, flow

Figure 4.194: Initial and final graph of the global_cardinality_low_up constraint
4.93 global_cardinality_with_costs

Origin [117]

Constraint

Synonym(s) gcc, cost_gcc.

Argument(s)
VARIABLES : collection(var - dvar)
VALUES : collection(val - int, nocurrence - dvar)
MATRIX : collection(i - int, j - int, c - int)
COST : dvar

Restriction(s)
required(VARIABLES, var)
required(VALUES, [val, nocurrence])
distinct(VALUES, val)
VALUES.nocurrence ≥ 0
VALUES.nocurrence ≤ |VARIABLES|
required(MATRIX, [i, j, c])
increasing_seq(MATRIX, [i, j])
MATRIX.i ≥ 1
MATRIX.i ≤ |VARIABLES|
MATRIX.j ≥ 1
MATRIX.j ≤ |VALUES|
|MATRIX| = |VARIABLES| * |VALUES|

Purpose
Each value VALUES.[i].val should be taken by exactly VALUES.[i].nocurrence variables of the VARIABLES collection. In addition the COST of an assignment is equal to the sum of the elementary costs associated to the fact that we assign the i_th variable of the VARIABLES collection to the j_th value of the VALUES collection. These elementary costs are given by the MATRIX collection.

For all items of VALUES:

Arc input(s) VARIABLES
Arc generator SELF ⟷ collection(variables)
Arc arity 1
Arc constraint(s) variables.var = VALUES.val
Graph property(ies) NVERTEX = VALUES.nocurrence
Arc input(s) VARIABLES VALUES
Arc generator PRODUCT ⟷ collection(variables, values)
Arc arity 2
Arc constraint(s) \(\text{variables}.\text{var} = \text{values}.\text{val}\)
Graph property(ies) \(\text{SUM}_\text{WEIGHT}_\text{ARC}(\text{MATRIX}[(\text{variables}.\text{key} - 1) \ast |\text{VALUES}| + \text{values}.\text{key}].c) = \text{COST}\)

\[
\begin{pmatrix}
\{ \text{var} - 3, \} \\
\{ \text{var} - 3, \} \\
\{ \text{var} - 3, \} \\
\{ \text{var} - 6 \}
\end{pmatrix}
\begin{pmatrix}
\{ \text{val} - 3 \text{ noccurrence} - 3, \} \\
\{ \text{val} - 5 \text{ noccurrence} - 0, \} \\
\{ \text{val} - 6 \text{ noccurrence} - 1 \}
\end{pmatrix}
\]

\[
\begin{pmatrix}
i - 1 & j - 1 & c - 4, \\
i - 1 & j - 2 & c - 1, \\
i - 1 & j - 3 & c - 7, \\
i - 2 & j - 1 & c - 1, \\
i - 2 & j - 2 & c - 0, \\
i - 2 & j - 3 & c - 8, \\
i - 3 & j - 1 & c - 3, \\
i - 3 & j - 2 & c - 2, \\
i - 3 & j - 3 & c - 1, \\
i - 4 & j - 1 & c - 0, \\
i - 4 & j - 2 & c - 0, \\
i - 4 & j - 3 & c - 6
\end{pmatrix}
\]

14

Example \(\text{global}_\text{cardinality}_\text{with}_\text{costs}\)

Parts (A) and (B) of Figure 4.195 respectively show the initial and final graph associated to the second graph constraint.

![Graph model](image)

Figure 4.195: Initial and final graph of the \text{global}_\text{cardinality}_\text{with}_\text{costs} constraint

Graph model The first graph constraint enforces each value of the VALUES collection to be taken by a specific number of variables of the VARIABLES collection. It is identical to the graph...
constraint used in the \texttt{global_cardinality} constraint. The second graph constraint expresses the fact that the \texttt{COST} variable is equal to the sum of the elementary costs associated to each variable-value assignment. All these elementary costs are recorded in the \texttt{MATRIX} collection. More precisely, the cost c_{ij} is recorded in the attribute c of the $((i - 1) \cdot |\text{VALUES}| + j)^{th}$ entry of the \texttt{MATRIX} collection. This is ensured by the increasing restriction which enforces the fact that the items of the \texttt{MATRIX} collection are sorted in lexicographically increasing order according to attributes i and j.

Usage

A classical utilisation of the \texttt{global_cardinality_with_costs} constraint corresponds to the following assignment problem. We have a set of persons \mathcal{P} as well as a set of jobs \mathcal{J} to perform. Each job requires a number of persons restricted to a specified interval. In addition each person p has to be assigned to one specific job taken from a subset \mathcal{J}_p of \mathcal{J}. There is a cost C_{pj} associated to the fact that person p is assigned to job j. The previous problem is modelled with one single \texttt{global_cardinality_with_costs} constraint where the persons and the jobs respectively correspond to the items of the \texttt{VARIABLES} and \texttt{VALUES} collection.

The \texttt{global_cardinality_with_costs} constraint can also be used for modelling a conjunction \texttt{alldifferent}(X_1, X_2, \ldots, X_n) and $\alpha_1 \cdot X_1 + \alpha_2 \cdot X_2 + \ldots + \alpha_n \cdot X_n = \text{COST}$. For this purpose we set the domain of the \texttt{noccurrence} variables to $\{0, 1\}$ and the cost attribute c of a variable X_i and one of its potential value j to $\alpha_i \cdot j$. In practice this can be used for the \textit{magic squares} and the \textit{magic hexagon} problems where all the α_i are set to 1.

Algorithm

[20]

See also

\texttt{global_cardinality}, \texttt{weighted_partial_alldiff}

Key words

\texttt{cost filtering constraint}, \texttt{assignment}, \texttt{cost matrix}, \texttt{weighted assignment}, \texttt{scalar product}, \texttt{magic square}, \texttt{magic hexagon}
4.94 global_contiguity

Origin : [35]
Constraint : global_contiguity(VARIABLES)
Argument(s) : VARIABLES : collection(var − dvar)
Restriction(s) : required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose : Enforce all variables of the VARIABLES collection to be assigned to 0 or 1. In addition, all variables assigned to value 1 appear contiguously.

Arc input(s) : VARIABLES
Arc generator : PATH → collection(variables1,variables2)
 LOOP → collection(variables1,variables2)
Arc arity : 2
Arc constraint(s) : · variables1.var = variables2.var
 · variables1.var = 1

Graph property(ies) : NCC ≤ 1

Example : global_contiguity (
 \{ var − 0,
 \{ var − 1,
 \{ var − 1,
 \{ var − 0 \}

Parts (A) and (B) of Figure 4.196 respectively show the initial and final graph. The global_contiguity constraint holds since the final graph does not contain more than one connected component. This connected component corresponds to 2 contiguous variables which are both assigned to 1.

Graph model : Each connected component of the final graph corresponds to one set of contiguous variables that all take value 1.

Automaton : Figure 4.197 depicts the automaton associated to the global_contiguity constraint. To each variable VARi of the collection VARIABLES corresponds a signature variable, which is equal to VARi. There is no signature constraint.

Usage : The paper [35] introducing this constraint refers to hardware configuration problems.

Algorithm : A filtering algorithm for this constraint is described in [35].

See also : group, inflexion

Key words : connected component, convex, Berge-acyclic constraint network, automaton, automaton without counters.
Figure 4.196: Initial and final graph of the global contiguity constraint

Figure 4.197: Automaton of the global contiguity constraint

Figure 4.198: Hypergraph of the reformulation corresponding to the automaton of the global contiguity constraint
4.95 **golomb**

Origin
Inspired by [118].

Constraint
golomb(VARIABLES)

Argument(s)
VARIABLES : collection(var − dvar)

Restriction(s)
required(VARIABLES, var)
VARIABLES.var ≥ 0

Purpose
Enforce all differences $X_i - X_j$ between two variables X_i and X_j ($i > j$) of the collection VARIABLES to be distinct.

Derived Collection(s)
col \(\left(\text{PAIRS} − \text{collection}(x − \text{dvar}, y − \text{dvar}), \quad [> − \text{item}(x − \text{VARIABLES.var}, y − \text{VARIABLES.var})]\right)\)

Arc input(s)
PAIRS

Arc generator
CLIQUE \(\mapsto\) collection(pairs1.pairs2)

Arc arity
2

Arc constraint(s)
pairs1.y − pairs1.x = pairs2.y − pairs2.x

Graph property(ies)
MAX_NSCC ≤ 1

Example
golomb({var − 0, var − 1, var − 4, var − 6})

Parts (A) and (B) of Figure 4.199 respectively show the initial and final graph. Since we use the MAX_NSCC graph property we show one of the largest strongly connected component of the final graph. The constraint holds since all the strongly connected components have at most one vertex: the differences 1, 2, 3, 4, 5, 6 that one can construct from the values 0, 1, 4, 6 assigned to the variables of the VARIABLES collection are all distinct. Figure 4.200 gives a graphical interpretation of the solution given in the example in term of a graph: Each vertex corresponds to a variable, while each arc depicts a difference between two variables. One can observe that these differences are all distinct.

Graph model
When applied on the collection of items \{VAR1, VAR2, VAR3, VAR4\}, the generator of derived collection generates the following collection of items: \{VAR2 VAR1, VAR3 VAR1, VAR3 VAR2, VAR4 VAR1, VAR4 VAR2, VAR4 VAR3\}. Note that we use a binary arc constraint between two vertices and that this binary constraint involves four variables.

Usage
This constraint refers to the Golomb ruler problem. We quote the definition from [119]: “A Golomb ruler is a set of integers (marks) $a_1 < \cdots < a_k$ such that all the differences $a_i - a_j$ ($i > j$) are distinct”.

Remark
Different constraints models for the Golomb ruler problem were presented in [120].
Figure 4.199: Initial and final graph of the golomb constraint

Figure 4.200: Graphical representation of the solution 0,1,4,6
Algorithm

At a first glance, one could think that, because it looks so similar to the \texttt{alldifferent} constraint, we could have a perfect polynomial filtering algorithm. However this is not true since one retrieves the same variable in different vertices of the graph. This leads to the fact that one has incompatible arcs in the bipartite graph (the two classes of vertices correspond to the pair of variables and to the fact that the difference between two pairs of variables takes a specific value). However one can still reuse a similar filtering algorithm as for the \texttt{alldifferent} constraint, but this will not lead to perfect pruning.

See also

\texttt{alldifferent}

Key words

\texttt{Golomb ruler} \texttt{disequality} \texttt{difference} \texttt{derived collection}
4.96 graph_crossing

Origin
N. Beldiceanu

Constraint
graph_crossing(NCROSS, NODES)

Argument(s)
NCROSS : dvar
NODES : collection(succ \dash dvar, x \dash int, y \dash int)

Restriction(s)
NCROSS \geq 0
required(NODES, [succ, x, y])
NODES.succ \geq 1
NODES.succ \leq |NODES|

Purpose
NCROSS is the number of proper intersections between line-segments, where each line-segment
is an arc of the directed graph defined by the arc linking a node and its unique successor.

Arc input(s)
NODES

Arc generator
CLIQUE(\langle \rangle) \mapsto collection(n1, n2)

Arc arity
2

Arc constraint(s)
\cdot \max(n1.x, NODES[n1.succ].x) \geq \min(n2.x, NODES[n2.succ].x)
\cdot \max(n2.x, NODES[n2.succ].x) \geq \min(n1.x, NODES[n1.succ].x)
\cdot \max(n1.y, NODES[n1.succ].y) \geq \min(n2.y, NODES[n2.succ].y)
\cdot \max(n2.y, NODES[n2.succ].y) \geq \min(n1.y, NODES[n1.succ].y)
\cdot (n2.x - NODES[n1.succ].x) \times (NODES[n1.succ].y - n1.y) -
(n1.x - NODES[n2.succ].x) \times (n2.y - NODES[n2.succ].y) \neq 0
\cdot (NODES[n1.succ].x - n1.x) \times (n2.y - NODES[n2.succ].y) -
(n2.x - n1.x) \times (NODES[n2.succ].y - NODES[n1.succ].y) \neq 0
\cdot \text{sign} \left(\frac{(n2.x - NODES[n1.succ].x) \times (NODES[n1.succ].y - n1.y) -
(NODES[n1.succ].x - n1.x) \times (n2.y - NODES[n2.succ].y)}{(n2.x - n1.x) \times (NODES[n2.succ].y - NODES[n1.succ].y)} \right) \neq 0

Graph property(ies)
NARC = NCROSS

Example
graph_crossing
\begin{align*}
succ - 1 & \quad x - 4 & \quad y - 7, \\
succ - 1 & \quad x - 2 & \quad y - 5, \\
succ - 1 & \quad x - 7 & \quad y - 6, \\
succ - 2 & \quad x - 1 & \quad y - 2, \\
succ - 3 & \quad x - 2 & \quad y - 2, \\
succ - 2 & \quad x - 5 & \quad y - 3, \\
succ - 3 & \quad x - 8 & \quad y - 2, \\
succ - 9 & \quad x - 6 & \quad y - 2, \\
succ - 10 & \quad x - 10 & \quad y - 6, \\
succ - 8 & \quad x - 10 & \quad y - 1
\end{align*}

Parts (A) and (B) of Figure 4.201 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold. Each arc of the final graph corresponds to a proper intersection between two line-segments. Figure 4.202 shows the line-segments associated to the NODES collection. One can observe the following line-segments intersection:

- Arcs $8 \rightarrow 9$ and $7 \rightarrow 3$ cross,
- Arcs $5 \rightarrow 3$ and $7 \rightarrow 3$ cross also.

Figure 4.201: Initial and final graph of the graph_crossing constraint

Figure 4.202: A graph covering with 2 line-segments intersections

Graph model

Each node is described by its coordinates x and y, and by its successor succ in the final covering. Note that the coordinates are initially fixed. We use the arc generator $\text{CLIQUE}(\prec)$ in order to avoid counting twice the same line-segment crossing.
Usage
This is a general crossing constraint that can be used in conjunction with one graph covering constraint such as cycle, tree, or map. In many practical problems one wants not only to cover a graph with specific patterns but also to avoid too much crossing between the arcs of the final graph.

Remark
We did not give a specific crossing constraint for each graph covering constraint. We feel that it is better to start first with a more general constraint before going in the specificity of the pattern that is used for covering the graph.

See also
crossing, two_layer_edge_crossing, cycle, tree, map

Key words
gEometrical constraint, line-segments intersection
4.97 group

Origin
CHIP

Constraint
group(NGROUP, MIN_SIZE, MAX_SIZE, MIN_DIST, MAX_DIST, NVAL, VARIABLES, VALUES)

Argument(s)
NGROUP : dvar
MIN_SIZE : dvar
MAX_SIZE : dvar
MIN_DIST : dvar
MAX_DIST : dvar
NVAL : dvar
VARIABLES : collection(var - dvar)
VALUES : collection(val - int)

Restriction(s)
NGROUP ≥ 0
MIN_SIZE ≥ 0
MAX_SIZE ≥ MIN_SIZE
MIN_DIST ≥ 0
MAX_DIST ≥ MIN_DIST
NVAL ≥ 0
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Let n be the number of variables of the collection VARIABLES. Let $X_i, X_{i+1}, \ldots, X_j$ ($1 \leq i \leq j \leq n$) be consecutive variables of the collection of variables VARIABLES such that all the following conditions simultaneously apply:

Purpose

- All variables X_i, \ldots, X_j take their value in the set of values VALUES,
- $i = 1$ or X_{i-1} does not take a value in VALUES,
- $j = n$ or X_{j+1} does not take a value in VALUES.

We call such a set of variables a group. The constraint group is true if all the following conditions hold:

- There are exactly $NGROUP$ groups of variables,
- MIN_SIZE is the number of variables of the smallest group,
- MAX_SIZE is the number of variables of the largest group,
- MIN_DIST is the minimum number of variables between two consecutive groups or between one border and one group,
- MAX_DIST is the maximum number of variables between two consecutive groups or between one border and one group,
- $NVAL$ is the number of variables that take their value in the set of values VALUES.

Arc input(s) VARIABLES

Arc generator

PATH → collection(variables1, variables2)
LOOP → collection(variables1, variables2)
Arc arity

2

Arc constraint(s)

- in(variables1.var, VALUES)
- in(variables2.var, VALUES)

Graph property(ies)

- NCC = NGROUP
- MIN_NCC = MIN_SIZE
- MAX_NCC = MAX_SIZE
- NVERTEX = NVAL

Arc input(s) VARIABLES

Arc generator

PATH \rightarrow \text{collection}(variables1, variables2)
LOOP \rightarrow \text{collection}(variables1, variables2)

Arc arity

2

Arc constraint(s)

- not_in(variables1.var, VALUES)
- not_in(variables2.var, VALUES)

Graph property(ies)

- MIN_NCC = MIN_DIST
- MAX_NCC = MAX_DIST

Example

\[
\begin{pmatrix}
\text{var } 2, \\
\text{var } 8, \\
\text{var } 1, \\
\text{var } 7, \\
\text{var } 4, \\
\text{var } 5, \\
\text{var } 1, \\
\text{var } 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
\text{val } 0, \\
\text{val } 2, \\
\text{val } 4, \\
\text{val } 6, \\
\text{val } 8
\end{pmatrix}
\]

The previous constraint holds since:

- The final graph of the first graph constraint has two connected components. Therefore the number of groups NGROUP is equal to two.
- The number of vertices of the smallest connected component of the final graph of the first graph constraint is equal to one. Therefore MIN_SIZE is equal to one.
- The number of vertices of the largest connected component of the final graph of the first graph constraint is equal to two. Therefore MAX_SIZE is equal to two.
- The number of vertices of the smallest connected component of the final graph of the second graph constraint is equal to two. Therefore MIN_DIST is equal to two.
- The number of vertices of the largest connected component of the final graph of the second graph constraint is equal to four. Therefore MAX_DIST is equal to four.
The number of vertices of the final graph of the first graph constraint is equal to three. Therefore IVAL is equal to three.

Parts (A) and (B) of Figure 4.203 respectively show the initial and final graph associated to the first graph constraint. Since we use the NVERTEX graph property, the vertices of the final graph are stressed in bold. In addition, since we use the MIN NCC and the MAX NCC graph properties, we also show the smallest and largest connected components of the final graph.

Figure 4.203: Initial and final graph of the group constraint

Graph model

We use two graph constraints for modelling the group constraint: A first one for specifying the constraints on NGROUP, MIN SIZE, MAX SIZE and IVAL, and a second one for stating the constraints on MIN DIST and MAX DIST. In order to generate the initial graph related to the first graph constraint we use:

- The arc generators PATH and LOOP,
- The binary constraint \(\text{variables1.var} \in \text{VALUES} \land \text{variables2.var} \in \text{VALUES} \).

This produces an initial graph depicted in part (A) of Figure 4.203. We use PATH LOOP and the binary constraint \(\text{variables1.var} \in \text{VALUES} \land \text{variables2.var} \in \text{VALUES} \) in order to catch the two following situations:

- A binary constraint has to be used in order to get the notion of group: *Consecutive* variables that take their value in VALUES.
If we only use \textit{PATH} then we would lose the groups that are composed from one single variable since the predecessor and the successor arc would be destroyed; this is why we use also the \textit{LOOP} arc generator.

Automaton

Figures 4.204, 4.205, 4.207, 4.209, 4.210 and 4.212 depict the different automata associated to the group constraint. For the automata that respectively compute \textit{NGROUP}, \textit{MIN_SIZE}, \textit{MAX_SIZE}, \textit{MIN_DIST}, \textit{MAX_DIST} and \textit{NVAL} we have a 0-1 signature variable \(S_i \) for each variable \(\text{VAR}_i \) of the collection \(\text{VARIABLES} \). The following signature constraint links \(\text{VAR}_i \) and \(S_i \): \(\text{VAR}_i \in \text{VALUES} \Leftrightarrow S_i \).

\[\text{not_in} \left(\text{VAR}_i, \text{VALUES} \right) \]
\[\text{in} \left(\text{VAR}_i, \text{VALUES} \right) \]
\[\{ C = C + 1 \} \]

Usage

A typical use of the group constraint in the context of timetabling is as follow: The value of the \(i^{th} \) variable of the \textit{VARIABLES} collection corresponds to the type of shift (i.e. night, morning, afternoon, rest) performed by a specific person on day \(i \). A complete period of
Figure 4.206: Automaton for the MIN_SIZE parameter of the group constraint

Figure 4.207: Automaton for the MAX_SIZE parameter of the group constraint

Figure 4.208: Hypergraphs of the reformulations corresponding to the automata of the MIN_SIZE and MAX_SIZE parameters of the group constraint
Figure 4.209: Automaton for the MIN_DIST parameter of the group constraint

Figure 4.210: Automaton for the MAX_DIST parameter of the group constraint

Figure 4.211: Hypergraphs of the reformulations corresponding to the automata of the MIN_DIST and MAX_DIST parameters of the group constraint
Figure 4.212: Automaton for the NVAL parameter of the group constraint

Figure 4.213: Hypergraph of the reformulation corresponding to the automaton of the NVAL parameter of the group constraint
work is represented by the variables of the VARIABLES collection. In this context the group constraint expresses for a person:

- The number of periods of consecutive night shift during a complete period of work.
- The total number of night shift during a complete period of work.
- The maximum number of allowed consecutive night shift.
- The minimum number of days (which do not correspond to night shift) between two consecutive sequences of night shift.

Remark

For this constraint we use the possibility to express directly more than one constraint on the characteristics of the final graph we want to obtain. For more propagation, it is crucial to keep this in one single constraint, since strong relations relate the different characteristics of a graph. This constraint is very similar to the group constraint introduced in CHIP, except that here, the MIN_DIST and MAX_DIST constraints apply also for the two borders: we cannot start or end with a group of \(k \) consecutive variables that take their values outside VALUES and such that \(k \) is less than MIN_DIST or \(k \) is greater than MAX_DIST.

See also

[group skip isolated item][change continuity][stretch path]

Key words

[time tabling constraint][connected component][automaton][automaton with counters][alpha-acyclic constraint network(2)][alpha-acyclic constraint network(3)][vpartition][consecutive loops are connected]
4.98 group_skip_isolated_item

Origin Derived from group

Constraint

\[
\text{group_skip_isolated_item(NGROUP, MIN_SIZE, MAX_SIZE, NVAL, VARIABLES, VALUES)}
\]

Argument(s)

- \(NGROUP \): dvar
- \(MIN_SIZE \): dvar
- \(MAX_SIZE \): dvar
- \(NVAL \): dvar
- \(VARIABLES \): collection(var - dvar)
- \(VALUES \): collection(val - int)

Restriction(s)

- \(NGROUP \geq 0 \)
- \(MIN_SIZE \geq 0 \)
- \(MAX_SIZE \geq MIN_SIZE \)
- \(NVAL \geq 0 \)
- \(\text{required(VARIABLES, var)} \)
- \(\text{required(VALUES, val)} \)
- \(\text{distinct(VALUES, val)} \)

Let \(n \) be the number of variables of the collection \(VARIABLES \). Let \(X_i, X_{i+1}, \ldots, X_j \) (\(1 \leq i < j \leq n \)) be consecutive variables of the collection of variables \(VARIABLES \) such that the following conditions apply:

- All variables \(X_i, \ldots, X_j \) take their value in the set of values \(VALUES \),
- \(i = 1 \) or \(X_{i-1} \) does not take a value in \(VALUES \),
- \(j = n \) or \(X_{j+1} \) does not take a value in \(VALUES \).

We call such a set of variables a group. The constraint \(\text{group_skip_isolated_item} \) is true if all the following conditions hold:

- There are exactly \(NGROUP \) groups of variables,
- The number of variables of the smallest group is \(MIN_SIZE \),
- The number of variables of the largest group is \(MAX_SIZE \),
- The number of variables that take their value in the set of values \(VALUES \) is equal to \(NVAL \).

Arc input(s)

\(VARIABLES \)

Arc generator

\(CHAIN \rightarrow \text{collection(variables1,variables2)} \)

Arc arity

2

Arc constraint(s)

- \(\text{in(variables1.var, VALUES)} \)
- \(\text{in(variables2.var, VALUES)} \)
Graph property(ies)

- $\text{NSCC} = \text{NGROUP}$
- $\text{MIN}_\text{NSCC} = \text{MIN}_\text{SIZE}$
- $\text{MAX}_\text{NSCC} = \text{MAX}_\text{SIZE}$
- $\text{NVERTEX} = \text{NVAL}$

Example

\[
\begin{align*}
\text{group.skip.isolated.item} &= \{ \text{val} - 0, \\
& \quad \text{val} - 2, \\
& \quad \text{val} - 4, \\
& \quad \text{val} - 6, \\
& \quad \text{val} - 8 \}, \\
&\quad \{ \text{var} - 2, \\
&\quad \text{var} - 8, \\
&\quad \text{var} - 1, \\
&\quad \text{var} - 7, \\
&\quad \text{var} - 4, \\
&\quad \text{var} - 5, \\
&\quad \text{var} - 1, \\
&\quad \text{var} - 1, \\
&\quad \text{var} - 1 \}, \\
&\quad \{ 1, 2, 2, 3, \} \\
&\quad \{ \text{var} - 2, \\
&\quad \text{var} - 8, \\
&\quad \text{var} - 1, \\
&\quad \text{var} - 7, \\
&\quad \text{var} - 4, \\
&\quad \text{var} - 5, \\
&\quad \text{var} - 1, \\
&\quad \text{var} - 1, \\
&\quad \text{var} - 1 \}, \\
&\quad \{ \text{val} - 0, \\
&\quad \text{val} - 2, \\
&\quad \text{val} - 4, \\
&\quad \text{val} - 6, \\
&\quad \text{val} - 8 \} \\
&\quad 1, 2, 2, 3, \}
\end{align*}
\]

The previous constraint holds since:

- The final graph contains one strongly connected component. Therefore the number of groups is equal to one.
- The unique strongly connected component of the final graph contains two vertices. Therefore MIN_SIZE and MAX_SIZE are both equal to two.
- The number of vertices of the final graph is equal to two. Therefore NVAL is equal to two.

Parts (A) and (B) of Figure 4.214 respectively show the initial and final graph.

Graph model

We use the CHAIN arc generator in order to produce the initial graph. This creates the graph depicted in part (A) of Figure 4.214. We use CHAIN together with the arc constraint $\text{variables1.var} \in \text{VALUES} \land \text{variables2.var} \in \text{VALUES}$ in order to skip the isolated variables that take a value in VALUES that we don’t want to count as a group. This is why, on the example, value 4 is not counted as a group.

Automaton

Figures 4.215, 4.217, 4.218 and 4.220 depict the different automata associated to the $\text{group.skip.isolated.item}$ constraint. For the automata that respectively compute NGROUP, MIN_SIZE, MAX_SIZE and NVAL we have a 0-1 signature variable S_i for each variable VAR_i of the collection VARIABLES. The following signature constraint links VAR_i and S_i: $\text{VAR}_i \in \text{VALUES} \leftrightarrow S_i$.

Usage

This constraint is useful in order to specify rules about how rest days should be allocated to a person during a period of n consecutive days. In this case VALUES are the codes for the rest days (perhaps one single value) and VARIABLES corresponds to the amount of work done during n consecutive days. We can then express a rule like: In a month one should have at least 4 periods of at least 2 rest days; Isolated rest days are not counted as rest periods.

See also group, change.continuity, stretch.path
Figure 4.214: Initial and final graph of the group_skip_isolated_item constraint

Figure 4.215: Automaton for the \texttt{NGROUP} parameter of the group_skip_isolated_item constraint
Figure 4.216: Hypergraph of the reformulation corresponding to the automaton of the NGROUP parameter of the group_skip_isolated_item constraint

Figure 4.217: Automaton for the MIN_SIZE parameter of the group_skip_isolated_item constraint
Figure 4.218: Automaton for the \textit{MAX_SIZE} parameter of the \texttt{group_skip_isolated_item} constraint

Figure 4.219: Hypergraphs of the reformulations corresponding to the automata of the \texttt{MIN_SIZE} and \texttt{MAX_SIZE} parameters of the \texttt{group_skip_isolated_item} constraint
Figure 4.220: Automaton for the \texttt{NVAL} parameter of the \texttt{group_skip_isolated_item} constraint

Figure 4.221: Hypergraph of the reformulation corresponding to the automaton of the \texttt{NVAL} parameter of the \texttt{group_skip_isolated_item} constraint
Key words

- timetabling constraint
- strongly connected component
- automaton
- automaton with counters
- alpha-acyclic constraint network(2)
- alpha-acyclic constraint network(3)
4.99 heighest_peak

<table>
<thead>
<tr>
<th>Origin</th>
<th>Derived from peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint</td>
<td>heighest_peak(HEIGHT, VARIABLES)</td>
</tr>
<tr>
<td>Argument(s)</td>
<td>HEIGHT : dvar</td>
</tr>
<tr>
<td></td>
<td>VARIABLES : collection(var - dvar)</td>
</tr>
<tr>
<td>Restriction(s)</td>
<td>HEIGHT ≥ 0</td>
</tr>
<tr>
<td></td>
<td>VARIABLES.var ≥ 0</td>
</tr>
<tr>
<td></td>
<td>required(VARIABLES, var)</td>
</tr>
</tbody>
</table>

Purpose

A variable V_k ($1 < k < m$) of the sequence of variables $\text{VARIABLES} = V_1, \ldots, V_m$ is a peak if and only if there exist an i ($1 < i \leq k$) such that $V_{i-1} < V_i$ and $V_i = V_{i+1} = \ldots = V_k$ and $V_k > V_{k+1}$. HEIGHT is the maximum value of the peak variables. If no such variable exists HEIGHT is equal to 0.

Example

```
heighest_peak S_i

\[
\begin{pmatrix}
\text{var - 1,} \\
\text{var - 1,} \\
\text{var - 4,} \\
\text{var - 8,} \\
\text{var - 6,} \\
\text{var - 2,} \\
\text{var - 7,} \\
\text{var - 1}
\end{pmatrix}
\]
```

The previous constraint holds since 8 is the maximum peak of the sequence 1 1 4 8 6 2 7 1.

![Graph](image-url)

Automaton

Figure 4.222 depicts the automaton associated to the heighest_peak constraint. To each pair of consecutive variables $(\text{VAR}_i, \text{VAR}_{i+1})$ of the collection VARIABLES corresponds a signature variable S_i. The following signature constraint links VAR_i, VAR_{i+1} and S_i:

$\text{VAR}_i > \text{VAR}_{i+1} \iff S_i = 0 \land \text{VAR}_i = \text{VAR}_{i+1} \iff S_i = 1 \land \text{VAR}_i < \text{VAR}_{i+1} \iff S_i = 2$.

![Automaton Diagram](image-url)
Figure 4.223: Automaton of the heighest peak constraint

Figure 4.224: Hypergraph of the reformulation corresponding to the automaton of the heighest peak constraint
See also peak, deepest valley

Key words sequence, automaton, automaton with counters, sliding cyclic constraint network(2)
4.100 in

Origin Domain definition.
Constraint in(VAR, VALUES)
Argument(s) VAR : dvar
VALUES : collection(val - int)
Restriction(s) required(VALUES, val)
distinct(VALUES, val)
Purpose Enforce the domain variable VAR to take a value within the values described by the VALUES collection.

Derived Collection(s) col(VARIABLES - collection(var - dvar),[item(var - VAR)])
Arc input(s) VARIABLES VALUES
Arc generator PRODUCT → collection(variables, values)
Arc arity 2
Arc constraint(s) variables.var = values.val
Graph property(ies) NARC = 1

Example in(3, {val - 1, val - 3})

Parts (A) and (B) of Figure 4.225 respectively show the initial and final graph. Since we use the NARC graph property, the unique arc of the final graph is stressed in bold.

![Graph Diagram](image)

Figure 4.225: Initial and final graph of the in constraint

Signature Since all the val attributes of the VALUES collection are distinct and because of the arc constraint variables.var = values.val, the final graph contains at most one arc. Therefore we can rewrite NARC = 1 to NARC ≥ 1 and simplify NARC to NARC.
Automaton

Figure 4.226 depicts the automaton associated to the in constraint. Let VAL_i be the val attribute of the i^{th} item of the VALUES collection. To each pair $(\text{VAR}, \text{VAL}_i)$ corresponds a 0-1 signature variable S_i, as well as the following signature constraint: $\text{VAR} = \text{VAL}_i \Leftrightarrow S_i$.

![Automaton of the in constraint](image)

Figure 4.226: Automaton of the in constraint

![Hypergraph of the reformulation corresponding to the automaton of the in constraint](image)

Figure 4.227: Hypergraph of the reformulation corresponding to the automaton of the in constraint

Remark
Entailment occurs immediately after posting this constraint.

Used in
among | cardinality_atmost_partition | group | group_skip_isolated_item | in_same_partition

See also
not_in | in_same_partition

Key words
value constraint | unary constraint | included | domain definition | automaton | automaton without counters | centered cyclic(1) constraint network(1) | derived collection
4.101 in_relation

Origin
Constraint explicitly defined by tuples of values.

Constraint
in_relation(VARIABLES, TUPLES_OF_VALS)

Synonym(s)
extension.

Type(s)
TUPLE_OF_VARS : collection(var – dvar)
TUPLE_OF_VALS : collection(val – int)

Argument(s)
VARIABLES : TUPLE_OF_VARS
TUPLES_OF_VALS : collection(tuple – TUPLE_OF_VALS)

Restriction(s)
required(TUPLE_OF_VARS, var)
required(TUPLE_OF_VALS, val)
min_size(TUPLES_OF_VALS, tuple) = |VARIABLES|
max_size(TUPLES_OF_VALS, tuple) = |VARIABLES|

Purpose
Enforce the tuple of variables VARIABLES to take its value out of a set of tuples of values TUPLES_OF_VALS. The value of a tuple of variables \(\langle V_1, V_2, \ldots, V_n \rangle\) is a tuple of values \(\langle U_1, U_2, \ldots, U_n \rangle\) if and only if \(V_1 = U_1 \land V_2 = U_2 \land \ldots \land V_n = U_n\).

Derived Collection(s)
col(TUPLES_OF_VARS – collection(vec – TUPLE_OF_VARS), [item(vec – VARIABLES)])

Arc input(s)
TUPLES_OF_VARS TUPLES_OF_VALS

Arc generator
PRODUCT \(\rightarrow\) collection(tuples_of_vars, tuples_of_vals)

Arc arity
2

Arc constraint(s)
vec_eq_tuple(tuples_of_vars.vec, tuples_of_vals.tuple)

Graph property(ies)
NARC \(\geq 1\)

Example
\[
in_relation \left(\begin{array}{c} \{ \text{var} – 5, \text{var} – 3, \text{var} – 3 \}, \\ \{ \text{tuple} – \{ \text{val} – 5, \text{val} – 2, \text{val} – 3 \}, \\ \{ \text{tuple} – \{ \text{val} – 5, \text{val} – 2, \text{val} – 6 \}, \\ \{ \text{tuple} – \{ \text{val} – 5, \text{val} – 3, \text{val} – 3 \} \end{array} \right) \right)
\]

Parts (A) and (B) of Figure 4.228 respectively show the initial and final graph. Since we use the NARC graph property, the unique arc of the final graph is stressed in bold.

Usage
Quite often some constraints cannot be easily expressed, neither by a formula, nor by a regular pattern. In this case one has to define the constraint by specifying in extension the combinations of allowed values.
Remark

Within [54] this constraint is called extension.

See also

element

Key words

data constraint tuple extension relation derived collection
Figure 4.228: Initial and final graph of the in relation constraint
4.102 \textit{in_same_partition}

\textbf{Origin} \hspace{1cm} Used for defining several entries of this catalog.

\textbf{Constraint} \hspace{1cm} \textit{in_same_partition}(\text{VAR1, VAR2, PARTITIONS})

\textbf{Type(s)} \hspace{1cm} VALUES : collection(val - int)

\textbf{Argument(s)} \hspace{1cm} VAR1 : dvar
VAR2 : dvar
PARTITIONS : collection(p - VALUES)

\textbf{Restriction(s)} \hspace{1cm} required(VALUES, val)
distinct(VALUES, val)
required(PARTITIONS, p)
|PARTITIONS| \geq 2

\textbf{Purpose} \hspace{1cm} Enforce VAR1 and VAR2 to be respectively assigned to values \(v_1\) and \(v_2\) that both belong to a same partition of the collection PARTITIONS.

\textbf{Derived Collection(s)} \hspace{1cm} \text{col}(\text{VARIABLES} - \text{collection}(\text{var} - \text{dvar}), [\text{item}(\text{var} - \text{VAR1}), \text{item}(\text{var} - \text{VAR2})])

\textbf{Arc input(s)} \hspace{1cm} VARIABLES PARTITIONS

\textbf{Arc generator} \hspace{1cm} \textit{PRODUCT} \mapsto \text{collection}(\text{variables, partitions})

\textbf{Arc arity} \hspace{1cm} 2

\textbf{Arc constraint(s)} \hspace{1cm} \text{in}(\text{variables.var, partitions.p})

\textbf{Graph property(ies)} \hspace{1cm} • NSOURCE = 2
• NSINK = 1

\textbf{Example} \hspace{1cm} \textit{in_same_partition} \left(\begin{array}{l}
6, 2, \\
\{ p \in \{\text{val} - 1, \text{val} - 3\}, \\
\{ p \in \{\text{val} - 4\}, \\
\{ p \in \{\text{val} - 2, \text{val} - 6\} \}
\end{array} \right)

Parts (A) and (B) of Figure 4.229 respectively show the initial and final graph. Since we both use the \textbf{NSOURCE} and \textbf{NSINK} graph properties, the source and sink vertices of the final graph are shown with a double circle.

\textbf{Graph model} \hspace{1cm} VAR1 and VAR2 are put together in the derived collection VARIABLES. Since both VAR1 and VAR2 should take their value in one of the partition depicted by the PARTITIONS collection, the final graph should have two sources corresponding respectively to VAR1 and VAR2. Since two, possibly distinct, values should be assigned to VAR1 and VAR2 and since these values belong to the same partition \(p\) the final graph should only have one sink. This sink corresponds in fact to partition \(p\).
Observe that the sinks of the initial graph cannot become sources of the final graph since isolated vertices are eliminated from the final graph. Since the final graph contains two sources it also includes one arc between a source and a sink. Therefore the minimum number of sinks of the final graph is equal to one. So we can rewrite $\text{NSINK} = 1$ to $\text{NSINK} \geq 1$ and simplify NSINK to NSINK.

Figure 4.230 depicts the automaton associated to the `in_same_partition` constraint. Let VALUES_i be the p attribute of the i^{th} item of the `PARTITIONS` collection. To each triple $(\text{VAR1}, \text{VAR2}, \text{VALUES}_i)$ corresponds a 0-1 signature variable S_i as well as the following signature constraint: $(\text{VAR1} \in \text{VALUES}_i) \land (\text{VAR2} \in \text{VALUES}_i) \Leftrightarrow S_i$.

Used in
- `alldifferent_partition`
- `balance_partition`
- `change_partition`
- `common_partition`
- `nclass`
- `same_partition`
- `soft_same_partition_var`
- `soft_used_by_partition_var`
- `used_by_partition`

See also
- `in`

Key words
- `value constraint`
- `partition`
- `automaton`
- `automaton without counters`
- `centered cyclic(2)`
- `constraint network`
- `derived collection`

Figure 4.229: Initial and final graph of the **in_same_partition constraint**
Figure 4.230: Automaton of the \textit{in_same_partition} constraint

\begin{center}
\begin{tikzpicture}
 \node (s) at (0,0) [circle,draw,minimum size=1cm] {s};
 \node (t) at (0,-2) [circle,draw,minimum size=1cm] {t};
 \draw[->] (s) -- node[auto] {not_in(VAR1,VALUES_1) or not_in(VAR2,VALUES_1)} (t);
 \draw[->] (s) -- node[auto] {in(VAR1,VALUES_1) and in(VAR2,VALUES_1)} (t);
\end{tikzpicture}
\end{center}

Figure 4.231: Hypergraph of the reformulation corresponding to the automaton of the \textit{in_same_partition} constraint

\begin{center}
\begin{tikzpicture}
 \node (s0) at (0,0) [circle,draw,minimum size=1cm] {s_0 = s};
 \node (s1) at (1,0) [circle,draw,minimum size=1cm] {s_1};
 \node (s2) at (2,0) [circle,draw,minimum size=1cm] {s_2};
 \node (sn) at (3,0) [circle,draw,minimum size=1cm] {s_n};
 \node (q0) at (0,-1) [circle,draw,minimum size=1cm] {q_0 = s};
 \node (q1) at (1,-1) [circle,draw,minimum size=1cm] {q_1};
 \node (q2) at (2,-1) [circle,draw,minimum size=1cm] {q_2};
 \node (qn) at (3,-1) [circle,draw,minimum size=1cm] {q_n = t};
 \node (var1) at (1.5,-2) [rectangle,draw,minimum size=1cm] {VAR1};
 \node (var2) at (2.5,-2) [rectangle,draw,minimum size=1cm] {VAR2};
 \draw[->] (s0) -- (q0);
 \draw[->] (s1) -- (q1);
 \draw[->] (s2) -- (q2);
 \draw[->] (sn) -- (qn);
 \draw[->] (s0) -- (var1);
 \draw[->] (s1) -- (var1);
 \draw[->] (s2) -- (var2);
 \draw[->] (sn) -- (var2);
\end{tikzpicture}
\end{center}
4.103 in_set

Origin
Used for defining constraints with set variables.

Constraint
\text{in_set}(\text{VAL}, \text{SET})

Argument(s)
\begin{align*}
\text{VAL} & : \text{dvar} \\
\text{SET} & : \text{svar}
\end{align*}

Purpose
Constraint variable VAL to belong to set SET.

Example
\text{in_set}(3, \{1, 3\})

Used in
\text{clique, cutset, discrepancy, inverse_set, k_cut, link_set_to_booleans, path_from_to, strongly_connected, sum, sum_set, symmetric_cardinality, symmetric_gcc, tour}

Key words
\text{predefined constraint, value constraint, included, constraint involving set variables}
4.104 increasing

Origin
KOALOG

Constraint
increasing(VARIABLES)

Argument(s)
VARIABLES : collection(var - dvar)

Restriction(s)
|VARIABLES| > 0
required(VARIABLES.var)

Purpose
The variables of the collection VARIABLES are increasing.

Arc input(s)
VARIABLES

Arc generator
PATH \leftarrow collection(variables1,variables2)

Arc arity
2

Arc constraint(s)
variables1.var \leq variables2.var

Graph property(ies)
NARC = |VARIABLES| - 1

Example
increasing({var - 1, var - 1, var - 4, var - 8})

Parts (A) and (B) of Figure 4.232 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Figure 4.232: Initial and final graph of the increasing constraint
Automaton

Figure 4.233 depicts the automaton associated to the increasing constraint. To each pair of consecutive variables \(\text{VAR}_i, \text{VAR}_{i+1} \) of the collection VARIABLES corresponds a 0-1 signature variable \(S_i \). The following signature constraint links \(\text{VAR}_i, \text{VAR}_{i+1} \) and \(S_i \):

\[\text{VAR}_i > \text{VAR}_{i+1} \Leftrightarrow S_i \]

See also

- strictly_increasing
- decreasing
- strictly_decreasing

Key words

- decomposition
- order constraint
- automaton
- automaton without counters
- sliding cyclic(1) constraint network(1)

Figure 4.233: Automaton of the increasing constraint
Figure 4.234: Hypergraph of the reformulation corresponding to the automaton of the increasing constraint
4.105 indexed_sum

Origin
N. Beldiceanu

Constraint
indexed_sum(ITEMS, TABLE)

Argument(s)
ITEMS : collection(index - dvar, weight - dvar)
TABLE : collection(index - int, sum - dvar)

Restriction(s)
|ITEMS| > 0
|TABLE| > 0
required(ITEMS, [index, weight])
ITEMS.index ≥ 0
ITEMS.index < |TABLE|
required(TABLE, [index, sum])
TABLE.index ≥ 0
TABLE.index < |TABLE|
increasing_seq(TABLE, index)

Purpose
Given several items of the collection ITEMS (each of them having a specific fixed index as well as a weight which may be negative or positive), and a table TABLE (each entry of TABLE corresponding to a sum variable), assign each item to an entry of TABLE so that the sum of the weights of the items assigned to that entry is equal to the corresponding sum variable.

For all items of TABLE:

Arc input(s)
ITEMS TABLE

Arc generator
PRODUCT \rightarrow collection(items, table)

Arc arity
2

Arc constraint(s)
items.index = table.index

SUCC \rightarrow

Sets

\[
\begin{bmatrix}
\text{source}, \\
\text{variables} - \text{col} \left(\text{VARIABLES} - \text{collection(var - dvar)}, \right) \\
\text{item(var - ITEMS.weight)}
\end{bmatrix}
\]

Constraint(s) on sets

\text{sum}_\text{ctr}(\text{variables}, \text{_}\text{=}\text{TABLE.sum})

Example

\[
\begin{bmatrix}
\text{index - 2 weight - 4,} \\
\text{index - 0 weight - 6,} \\
\text{index - 2 weight - 1} \\
\text{index - 0 sum - 6,} \\
\text{index - 1 sum - 0,} \\
\text{index - 2 sum - 3}
\end{bmatrix}
\]
Part (A) of Figure 4.235 shows the initial graphs associated to entries 0, 1 and 2. Part (B) of Figure 4.235 shows the corresponding final graphs associated to entries 0 and 2. Each source vertex of the final graph can be interpreted as an item assigned to a specific entry of TABLE. The indexed_sum constraint holds since the sum variables associated to each entry of TABLE are equal to the sum of the weights of the items assigned to the corresponding entry.

![Graph model](image)

Figure 4.235: Initial and final graph of the indexed_sum constraint

Graph model We enforce the indexed_sum constraint on the weight of the items that are assigned to the same entry.

See also bin_packing

Key words assignment, variable indexing, variable subscript
4.106 inflexion

Origin
N. Beldiceanu

Constraint

\[
\text{inflexion}(N, \text{VARIABLES})
\]

Argument(s)

\[
\begin{align*}
N & : \text{dvar} \\
\text{VARIABLES} & : \text{collection}(\text{var} - \text{dvar})
\end{align*}
\]

Restriction(s)

\[
\begin{align*}
N & \geq 1 \\
N & \leq |\text{VARIABLES}| \\
\text{required}(\text{VARIABLES}, \text{var})
\end{align*}
\]

Purpose

\[
N \text{ is equal to the number of times that the following conjunctions of constraints hold:}
\]

- \(X_i \text{CTR} X_{i+1} \land X_i \neq X_{i+1}\),
- \(X_{i+1} = X_{i+2} \land \cdots \land X_{j-2} = X_{j-1}\),
- \(X_{j-1} \neq X_j \land X_{j-1} \lnot \text{CTR} X_j\),

where \(X_k\) is the \(k^\text{th}\) item of the \text{VARIABLES} collection and \(1 \leq i, i+2 \leq j, j \leq n\) and \(\text{CTR}\) is \(<\) or \(>\).

Example

\[
\text{inflexion } 3, \left\{ \begin{array}{l}
\text{var} - 1, \\
\text{var} - 1, \\
\text{var} - 4, \\
\text{var} - 8, \\
\text{var} - 8, \\
\text{var} - 2, \\
\text{var} - 7, \\
\text{var} - 1
\end{array} \right\}
\]

The previous constraint holds since the sequence 1 1 4 8 8 2 7 1 contains three inflexions peaks which respectively correspond to values 8, 2 and 7.

![Figure 4.236: The sequence and its three inflexions](image_url)
Automaton Figure 4.237 depicts the automaton associated to the inflexion constraint. To each pair of consecutive variables \((\text{VAR}_i, \text{VAR}_{i+1}) \) of the collection VARIABLES corresponds a signature variable \(S_i \). The following signature constraint links \(\text{VAR}_i, \text{VAR}_{i+1} \) and \(S_i \): \((\text{VAR}_i > \text{VAR}_{i+1} \Leftrightarrow S_i = 0) \land (\text{VAR}_i = \text{VAR}_{i+1} \Leftrightarrow S_i = 1) \land (\text{VAR}_i < \text{VAR}_{i+1} \Leftrightarrow S_i = 2)\).

Figure 4.237: Automaton of the inflexion constraint

Usage Useful for constraining the number of inflexions of a sequence of domain variables.

Remark Since the arity of the arc constraint is not fixed, the inflexion constraint cannot be currently described. However, this would not hold anymore if we were introducing a slot that specifies how to merge adjacent vertices of the final graph.

See also peak, valley

Key words sequence, automaton, automaton with counters, sliding cyclic(1) constraint network(2)
4.107 int_value_precede

<table>
<thead>
<tr>
<th>Origin</th>
<th>[121]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint</td>
<td>int_value_precede(S, T, VARIABLES)</td>
</tr>
<tr>
<td>Argument(s)</td>
<td>S : int</td>
</tr>
<tr>
<td></td>
<td>T : int</td>
</tr>
<tr>
<td>VARIABLES</td>
<td>collection(var – dvar)</td>
</tr>
<tr>
<td>Restriction(s)</td>
<td>S \neq T</td>
</tr>
<tr>
<td></td>
<td>required(VARIABLES, var)</td>
</tr>
<tr>
<td>Purpose</td>
<td>If value T occurs in the collection of variables VARIABLES then its first occurrence should be preceded by an occurrence of value S.</td>
</tr>
<tr>
<td>Example</td>
<td>int_value_precede (0, 1, { var – 4, \var – 0, var – 6, \var – 1, \var – 0 })</td>
</tr>
<tr>
<td></td>
<td>The int_value_precede constraint holds since the first occurrence of value 0 precedes the first occurrence of value 1.</td>
</tr>
<tr>
<td>Automaton</td>
<td>Figure 4.239 depicts the automaton associated to the int_value_precede constraint. Let VAR$_i$ be the i^{th} variable of the VARIABLES collection. To each triple (S, T, VAR$_i$) corresponds a signature variable S$_i$ as well as the following signature constraint: (VAR$_i$ = S \iff S$_i$ = 1) \land (VAR$_i$ = T \iff S$_i$ = 2) \land (VAR$_i$ \neq S \land VAR$_i$ \neq T \iff S$_i$ = 3).</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Figure 4.239: Automaton of the int_value_precede constraint</td>
</tr>
</tbody>
</table>

Algorithm | A filtering algorithm for maintaining value precedence is presented in [121]. Its complexity is linear to the number of variables of the collection VARIABLES. |

See also | int_value_precede_chain, set_value_precede |

Key words | order constraint, symmetry, indistinguishable values, value precedence, Berge-acyclic constraint network, automaton, automaton without counters |
Figure 4.240: Hypergraph of the reformulation corresponding to the automaton of the int_value_precede constraint
4.108 int_value_precede_chain

Origin

[121]

Constraint

`int_value_precede_chain(VALUES, VARIABLES)`

Argument(s)

`VALUES : collection(val - int)`
`VARIABLES : collection(var - dvar)`

Restriction(s)

`required(VALUES, val)`
`distinct(VALUES, val)`
`required(VARIABLES, var)`

Purpose

Assuming n denotes the number of items of the `VALUES` collection, the following condition holds for every $i \in [1, n - 1]$: When it exists, the first occurrence of the $(i + 1)^{th}$ value of the `VALUES` collection should be preceded by the first occurrence of the i^{th} value of the `VALUES` collection.

Example

```
int_value_precede_chain
  {{val - 4, val - 0, val - 1},
   {var - 4, var - 0, var - 6, var - 1, var - 0}}
```

The `int_value_precede_chain` constraint holds since:

- The first occurrence of value 4 occurs before the first occurrence of value 0.
- The first occurrence of value 0 occurs before the first occurrence of value 1.

Automaton

Figure [241] depicts the automaton associated to the `int_value_precede_chain` constraint. Let `VAR_i` be the i^{th} variable of the `VARIABLES` collection. Let `VAL_j` ($1 < j < |VALUES|$) denotes the j^{th} value of the `VALUES` collection. To each variable `VAR_i` corresponds a signature variable `S_i` as well as the following signature constraint: `(VAR_i = 0) \land (VAR = VAL_1 \leftrightarrow S_i = 1) \land (VAR = VAL_2 \leftrightarrow S_i = 2) \land \cdots \land (VAR_i = VAL_{|VALUES|} \leftrightarrow S_i = |VALUES|)`.

Algorithm

The reformulation associated to the previous automaton achieves to arc-consistency.

See also

- `int_value_precede`

Key words

- order constraint
- symmetry
- indistinguishable values
- value precedence
- Berge-acyclic constraint network
- automaton
- automaton without counters
Figure 4.241: Automaton of the \texttt{int_value_precede_chain} constraint

Figure 4.242: Hypergraph of the reformulation corresponding to the automaton of the \texttt{int_value_precede_chain} constraint
4.109 interval_and_count

Origin

Constraint

Argument(s)

ATMOST : int
COLOURS : collection(val = int)
TASKS : collection(origin = dvar, colour = dvar)
SIZE_INTERVAL : int

Restriction(s)

ATMOST ≥ 0
required(COLOURS.val)
distinct(COLOURS.val)
required(TASKS, [origin, colour])
SIZE_INTERVAL > 0

Purpose

First consider the set of tasks of the TASKS collection, where each task has a specific colour which may not be initially fixed. Then consider the intervals of the form \([k \cdot \text{SIZE}_\text{INTERVAL}, k \cdot \text{SIZE}_\text{INTERVAL} + \text{SIZE}_\text{INTERVAL} - 1]\), where \(k\) is an integer. The \text{interval_and_count} constraint enforces that, for each interval \(I_k\) previously defined, the total number of tasks which both are assigned to \(I_k\) and take their colour in COLOURS does not exceed the limit ATMOST.

Arc input(s)

TASKS TASKS

Arc generator

PRODUCT \(\rightarrow\) collection(tasks1, tasks2)

Arc arity

2

Arc constraint(s)

tasks1.origin/\text{SIZE}_\text{INTERVAL} = tasks2.origin/\text{SIZE}_\text{INTERVAL}

Succ \(\rightarrow\)

Sets

source,

variables \(\rightarrow\) col (VARIABLES \(\rightarrow\) collection(var = dvar),

[item(var = TASKS.colour)]

Constraint(s) on sets

among_low_up(0, ATMOST, variables, COLOURS)

Example

interval_and_count

\[
\begin{pmatrix}
2, \{\text{val} - 4\}, \\
\text{origin} - 1 & \text{colour} - 4, \\
\text{origin} - 0 & \text{colour} - 9, \\
\text{origin} - 10 & \text{colour} - 4, \\
\text{origin} - 4 & \text{colour} - 4
\end{pmatrix}
\]

Figure 4.243 shows the solution associated to the previous example. The constraint \text{interval_and_count} holds since, for each interval, the number of tasks taking colour 4 does not exceed the limit 2. Parts (A) and (B) of Figure 4.244 respectively show the initial and final graph. Each connected component of the final graph corresponds to items which are all assigned to the same interval.
Figure 4.243: Solution with the use of each interval

Figure 4.244: Initial and final graph of the interval and count constraint
Graph model

We use a bipartite graph where each class of vertices corresponds to the different tasks of the TASKS collection. There is an arc between two tasks if their origins belong to the same interval. Finally, we enforce an among low up constraint on each set S of successors of the different vertices of the final graph. This puts a restriction on the maximum number of tasks of S for which the colour attribute takes its value in COLOURS.

Automaton

Figure 4.245 depicts the automaton associated to the interval_and_count constraint. Let COLOUR, be the colour attribute of the ith item of the TASKS collection. To each pair (COLOURS, COLOURi) corresponds a signature variable Si as well as the following signature constraint: COLOURi ∈ COLOURS ⇔ Si.

Usage

This constraint was originally proposed for dealing with timetabling problems. In this context the different intervals are interpreted as morning and afternoon periods of different consecutive days. Each colour corresponds to a type of course (i.e., French, mathematics). There is a restriction on the maximum number of courses of a given type each morning as well as each afternoon.

Remark

If we want to only consider intervals that correspond to the morning or to the afternoon we could extend the interval_and_count constraint in the following way:

- We introduce two extra parameters REST and QUOTIENT that correspond to non-negative integers such that REST is strictly less than QUOTIENT.
- We add the following condition to the arc constraint:
 \((\text{tasks1.origin/\text{SIZE_INTERVAL}} \equiv \text{REST} \mod \text{QUOTIENT})\)

Now, if we want to express a constraint on the morning intervals, we set REST to 0 and QUOTIENT to 2.

See also

count, among_low_up

Key words
timetabling constraint, resource constraint, temporal constraint, assignment, interval, coloured, automaton, automaton with array of counters.
4.110 interval_and_sum

Origin
Derived from *cumulative*

Constraint
\[\text{interval_and_sum}(\text{SIZE}_\text{INTERVAL}, \text{TASKS}, \text{LIMIT}) \]

Argument(s)
- \(\text{SIZE}_\text{INTERVAL} \): int
- \(\text{TASKS} \): collection(origin – dvar, height – dvar)
- \(\text{LIMIT} \): int

Restriction(s)
- \(\text{SIZE}_\text{INTERVAL} > 0 \)
- \(\text{required}(\text{TASKS}, \text{[origin, height]}) \)
- \(\text{TASKS}.\text{height} \geq 0 \)
- \(\text{LIMIT} \geq 0 \)

Purpose
A maximum resource capacity constraint: We have to fix the origins of a collection of tasks in such a way that, for all the tasks that are allocated to the same interval, the sum of the heights does not exceed a given capacity. All the intervals we consider have the following form: \([k \cdot \text{SIZE}_\text{INTERVAL}, k \cdot \text{SIZE}_\text{INTERVAL} + \text{SIZE}_\text{INTERVAL} - 1]\), where \(k\) is an integer.

Arc input(s)
\(\text{TASKS} \)

Arc generator
\(\text{PRODUCT} \leftrightarrow \text{collection}(\text{tasks1}, \text{tasks2}) \)

Arc arity
2

Arc constraint(s)
\(\text{tasks1}.\text{origin}/\text{SIZE}_\text{INTERVAL} = \text{tasks2}.\text{origin}/\text{SIZE}_\text{INTERVAL} \)

Sets
- \(\text{SUCC} \)
- \(\text{variables} - \text{col} \)

Constraint(s) on sets
\(\text{sum}_{\text{ctr}}(\text{variables}, \leq \text{LIMIT}) \)

Example
\(\text{interval_and_sum} \left(\begin{array}{c}
\text{origin} - 1 \text{ height} - 2, \\
\text{origin} - 10 \text{ height} - 2, \\
\text{origin} - 10 \text{ height} - 3, \\
\text{origin} - 4 \text{ height} - 1
\end{array} \right), 5 \)

Figure [4.246] shows the solution associated to the previous example. The constraint \(\text{interval_and_sum} \) holds since the sum of the heights of the tasks that are located in the same interval does not exceed the limit 5. Each task \(t\) is depicted by a rectangle \(r\) associated to the interval to which the task \(t\) is assigned. The rectangle \(r\) is labelled with the position of \(t\) within the items of the \(\text{TASKS}\) collection. The origin of task \(t\) is represented by a small black square located within its corresponding rectangle \(r\). Finally, the height of a rectangle \(r\) is equal to the height of the task \(t\) to which it corresponds.

Parts (A) and (B) of Figure [4.237] respectively show the initial and final graph. Each connected component of the final graph corresponds to items which are all assigned to the same interval.
Figure 4.246: Solution showing for each interval the corresponding tasks

Figure 4.247: Initial and final graph of the interval and sum constraint
Graph model

We use a bipartite graph where each class of vertices corresponds to the different tasks of the **TASKS** collection. There is an arc between two tasks if their origins belong to the same interval. Finally, we enforce a **sum** constraint on each set S of successors of the different vertices of the final graph. This puts a restriction on the maximum value of the sum of the height attributes of the tasks of S.

Automaton

Figure 4.248 depicts the automaton associated to the **interval** and **sum** constraint. To each item of the collection **TASKS** corresponds a signature variable S_i, which is equal to 1.

![Automaton Diagram](image)

Figure 4.248: Automaton of the **interval** and **sum** constraint

Usage

This constraint can be used for timetabling problems. In this context, the different intervals are interpreted as morning and afternoon periods of different consecutive days. We have a capacity constraint for all tasks that are assigned to the same morning or afternoon of a given day.

Key words

timetabling constraint, **resource constraint**, **temporal constraint**, **assignment**, **interval**, **automaton**, **automaton with array of counters**
4.111 inverse

Origin
CHIP

Constraint
\texttt{inverse(NODES)}

Synonym(s)
assignment.

Argument(s)
\texttt{NODES : collection(index - int, succ - dvar, pred - dvar)}

Restriction(s)
\texttt{required(NODES, [index, succ, pred])}
\texttt{NODES.index \geq 1}
\texttt{NODES.index \leq |NODES|}
\texttt{distinct(NODES, index)}
\texttt{NODES.succ \geq 1}
\texttt{NODES.succ \leq |NODES|}
\texttt{NODES.pred \geq 1}
\texttt{NODES.pred \leq |NODES|}

Purpose
Enforce each vertex of a digraph to have exactly one predecessor and one successor. In addition the following property also holds: If the successor of the \(i^{th}\) node is the \(j^{th}\) node then the predecessor of the \(j^{th}\) node is the \(i^{th}\) node.

Arc input(s)
\texttt{NODES}

Arc generator
\texttt{CLIQUE \mapsto collection(nodes1, nodes2)}

Arc arity
2

Arc constraint(s)
- \texttt{nodes1.succ = nodes2.index}
- \texttt{nodes2.pred = nodes1.index}

Graph property(ies)
\texttt{NARC = |NODES|}

Example
\texttt{inverse}
\[
\begin{pmatrix}
\text{index} - 1 & \text{succ} - 2 & \text{pred} - 2, \\
\text{index} - 2 & \text{succ} - 1 & \text{pred} - 1, \\
\text{index} - 3 & \text{succ} - 5 & \text{pred} - 4, \\
\text{index} - 4 & \text{succ} - 3 & \text{pred} - 5, \\
\text{index} - 5 & \text{succ} - 4 & \text{pred} - 3
\end{pmatrix}
\]

Parts (A) and (B) of Figure \ref{figure:example} respectively show the initial and final graph. Since we use the \texttt{NARC} graph property, the arcs of the final graph are stressed in bold.

Graph model
In order to express the binary constraint that links two vertices one has to make explicit the identifier of the vertices. This is why the \texttt{inverse} constraint considers objects that have three attributes:

- One fixed attribute \texttt{index} that is the identifier of the vertex,
- One variable attribute \texttt{succ} that is the successor of the vertex,
• One variable attribute \texttt{pred} that is the predecessor of the vertex.

Signature

Since all the \texttt{index} attributes of the \texttt{NODES} collection are distinct and because of the first condition \texttt{nodes1.succ = nodes2.index} of the arc constraint all the vertices of the final graph have at most one predecessor.

Since all the \texttt{index} attributes of the \texttt{NODES} collection are distinct and because of the second condition \texttt{nodes2.pred = nodes1.index} of the arc constraint all the vertices of the final graph have at most one successor.

From the two previous remarks it follows that the final graph is made up from disjoint paths and disjoint circuits. Therefore the maximum number of arcs of the final graph is equal to its maximum number of vertices \texttt{NODES}. So we can rewrite the graph property \texttt{NARC = |NODES|} to \texttt{NARC \geq |NODES|} and simplify \texttt{NARC} to \texttt{NARC}.

Automaton

Figure 4.2 depicts the automaton associated to the \texttt{inverse} constraint. To each item of the collection \texttt{NODES} corresponds a signature variable \texttt{S_i}, which is equal to 1.

Usage

This constraint is used in order to make the link between the successor and the predecessor variables. This is sometimes required by specific heuristics that use both predecessor and successor variables. In some problems, the successor and predecessor variables are respectively interpreted as column an row variables. This is for instance the case in the \texttt{n-queens} problem (i.e. place \texttt{n} queens on a \texttt{n} by \texttt{n} chessboard in such a way that no two queens are on the same row, the same column or the same diagonal) when we use the following model: To each column of the chessboard we associate a variable which gives the row where the corresponding queen is located. Symmetrically, to each row of the chessboard we create a variable which indicates the column where the associated queen is placed. Having these two sets of variables, we can now write a heuristics which selects the column or the row for which we have the fewest number of alternatives for placing a queen.

Remark

In the original \texttt{inverse} constraint of CHIP the \texttt{index} attribute was not explicitly present. It was implicitly defined as the position of a variable in a list.

See also

\texttt{cycle} \texttt{inverse-set}

Key words

\texttt{graph constraint} \texttt{Channeling constraint} \texttt{permutation channel} \texttt{permutation} \texttt{dual model} \texttt{n-queen} \texttt{automaton} \texttt{automaton with array of counters}
Figure 4.249: Initial and final graph of the inverse constraint

Figure 4.250: Automaton of the inverse constraint
4.112 inverse_set

Origin
Derived from inverse

Constraint
inverse_set(X, Y)

Argument(s)
X : collection(index – int, set – svar)
Y : collection(index – int, set – svar)

Restriction(s)
required(X, [index, set])
required(Y, [index, set])
increasing_seq(X, index)
increasing_seq(Y, index)
X.index ≥ 1
X.index ≤ |Y|
Y.index ≥ 1
Y.index ≤ |X|
X.set ≥ 1
X.set ≤ |Y|
Y.set ≥ 1
Y.set ≤ |X|

Purpose
If value j belongs to the x set variable of the i^th item of the X collection then value i belongs also to the y set variable of the j^th item of the Y collection.

Arc input(s)
X Y

Arc generator
PRODUCT \(\rightarrow\) collection(x, y)

Arc arity
2

Arc constraint(s)
in_set(y.index, x.set) \(\leftrightarrow\) in_set(x.index, y.set)

Graph property(ies)
NARC = |X| * |Y|

Example
inverse_set

<table>
<thead>
<tr>
<th>index</th>
<th>set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2, 4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Parts (A) and (B) of Figure 4.251 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.
Usage
The **inverse set** constraint can for instance be used in order to model problems where one has to place items on a rectangular board in such a way that a column or a line can have more than one item. We have one set variable for each line of the board; its values are the column indexes corresponding to the positions where an item is placed. Similarly we have also one set variable for each column of the board; its values are the line indexes corresponding to the positions where an item is placed. The **inverse set** constraint maintains the link between the lines and the columns variables. Figure 4.252 shows the board associated to the example.

See also
[inverse]

Key words
[Channeling constraint, set channel, dual model, constraint involving set variables]
Figure 4.251: Initial and final graph of the inverse set constraint

Figure 4.252: Board associated to the example
4.11.3 ith_pos_different_from_0

Origin
Used for defining the automaton of \(\text{min}_n \).

Constraint
\(\text{ith_pos_different_from_0}(\text{ITH}, \text{POS}, \text{VARIABLES}) \)

Argument(s)
- \(\text{ITH} \) : int
- \(\text{POS} \) : dvar
- \(\text{VARIABLES} \) : collection(var - dvar)

Restriction(s)
- \(\text{ITH} \geq 1 \)
- \(\text{ITH} \leq |\text{VARIABLES}| \)
- \(\text{POS} \geq \text{ITH} \)
- \(\text{POS} \leq |\text{VARIABLES}| \)
- \(\text{required}(\text{VARIABLES}, \text{var}) \)

Purpose
\(\text{POS} \) is the position of the \(\text{ITH}^{\text{th}} \) non-zero item of the sequence of variables \(\text{VARIABLES} \).

Example
\(\text{ith_pos_different_from_0}(2, 4, [\text{var - 3, var - 0, var - 0, var - 8, var - 6}]) \)

The previous constraint holds since 4 corresponds to the position of the \(2^{\text{th}} \) non-zero item of the sequence 3 0 0 8 6.

Automaton
Figure 4.253 depicts the automaton associated to the \(\text{ith_pos_different_from_0} \) constraint. To each variable \(\text{VAR}_i \) of the collection \(\text{VARIABLES} \) corresponds a 0-1 signature variable \(S_i \). The following signature constraint links \(\text{VAR}_i \) and \(S_i \): \(\text{VAR}_i = 0 \Leftrightarrow S_i \).

\[\{ C = 0, D = 0 \} \]

\(\text{VAR}_1 = 0, \) \(\{ \text{if } C < \text{ITH} \text{ then } D = D + 1 \} \)

\(\text{VAR}_1 > 0, \) \(\{ \text{if } C < \text{ITH} \text{ then } C = C + 1, D = D + 1 \} \)

\(\$ \)

Figure 4.253: Automaton of the \(\text{ith_pos_different_from_0} \) constraint

See also \(\text{min}_n \).
Figure 4.254: Hypergraph of the reformulation corresponding to the automaton of the $\text{ith_pos_different_from_0}$ constraint.
4.114 \(k_cut \)

Origin
E. Althaus

Constraint
\(k_cut(K, NODES) \)

Argument(s)
- \(K \) : int
- \(NODES : \) collection(index – int, succ – svar)

Restriction(s)
- \(K \geq 1 \)
- \(K \leq |NODES| \)
- required\((NODES, [index, succ])\)
- \(NODES.index \geq 1 \)
- \(NODES.index \leq |NODES| \)
- distinct\((NODES, index)\)

Purpose
Select some arcs of a digraph in order to have at least \(K \) connected components (an isolated vertex is counted as one connected component).

Arc input(s)
\(NODES \)

Arc generator
\(CLIQUE \rightarrow \) collection\((nodes1, nodes2)\)

Arc arity
2

Arc constraint(s)
\(nodes1.index = nodes2.index \lor in_set\((nodes2.index, nodes1.succ)\) \)

Graph property(ies)
\(NCC \geq K \)

Example
\(k_cut \left(\begin{array}{c}
\text{index} - 1 & \text{succ} = 0, \\
\text{index} - 2 & \text{succ} = \{3, 5\}, \\
\text{index} - 3 & \text{succ} = \{5\}, \\
\text{index} - 4 & \text{succ} = 0, \\
\text{index} - 5 & \text{succ} = \{2, 3\}
\end{array} \right) \)

Part (A) of Figure 4.255 shows the initial graph from which we have choose to start. It is derived from the set associated to each vertex. Each set describes the potential values of the succ attribute of a given vertex. Part (B) of Figure 4.255 gives the final graph associated to the example. The \(k_cut \) constraint holds since we have at least \(K = 3 \) connected components in the final graph.

See also
link_set_to_booleans

Key words
- graph constraint
- linear programming
- connected component
- constraint involving set variables
Figure 4.255: Initial and final graph of the \(k \)-cut set constraint
4.115 lex2

Origin [123]

Constraint \textit{lex2(MATRIX)}

Synonym(s) double_lex, row_and_column_lex.

Type(s) \textit{VECTOR}: \textit{collection(var - dvar)}

Argument(s) \textit{MATRIX}: \textit{collection(vec - VECTOR)}

Restriction(s)
required(VECTOR, var)
required(MATRIX, vec)
same_size(MATRIX, vec)

Purpose Given a matrix of domain variables, enforces that both adjacent rows, and adjacent columns are lexicographically ordered (adjacent rows and adjacent columns can be equal).

Example \begin{align*}
\text{lex2} \left(\begin{array}{c}
\text{vec} - \{ \text{var} - 2, \text{var} - 2, \text{var} - 3 \}, \\
\text{vec} - \{ \text{var} - 2, \text{var} - 3, \text{var} - 1 \}
\end{array} \right) \end{align*}

Usage A symmetry-breaking constraint.

Remark The idea of this symmetry-breaking constraint can already be found in the following articles of A.Lubiw [124, 125].

In block designs you sometimes want repeated blocks, so using the non-strict order would be required in this case.

See also \texttt{strict_lex2, allperm, lex_lesseq, lex_chain_lesseq}

Key words
\texttt{predefined_constraint, order_constraint, matrix, matrix_model, symmetry, matrix_symmetry, lexicographic_order}
4.116 lex_alldifferent

Origin J. Pearson

Constraint lex_alldifferent(VECTORS)

Synonym(s) lex_alldiff, lex_alldistinct.

Type(s) VECTORS : collection(vec – vec)

Argument(s) VECTORS : collection(vec – VECTORS)

Restriction(s) required(VECTORS, vec)

Purpose All the vectors of the collection VECTORS are distinct. Two vectors \((u_1, u_2, \ldots, u_n)\) and \((v_1, v_2, \ldots, v_n)\) are distinct if and only if there exist \(i \in [1, n]\) such that \(u_i \neq v_i\).

Arc input(s) VECTORS

Arc generator CLIQUE(<) \rightarrow collection(vec1, vec2)

Arc arity 2

Arc constraint(s) lex_alldifferent(vec1, vec2)

Graph property(ies) \textbf{NARC} = |VECTORS| \cdot (|VECTORS| - 1) / 2

Example lex_alldifferent \left(\begin{array}{c}
\text{vec} - \{\text{var} - 5, \text{var} - 2, \text{var} - 3\}, \\
\text{vec} - \{\text{var} - 5, \text{var} - 2, \text{var} - 6\}, \\
\text{vec} - \{\text{var} - 5, \text{var} - 3, \text{var} - 3\}
\end{array} \right)

Parts (A) and (B) of Figure 4.256 respectively show the initial and final graph. Since we use the \textbf{NARC} graph property, the arcs of the final graph are stressed in bold.

Signature Since we use the CLIQUE(<) arc generator on the VECTORS collection the number of arcs of the initial graph is equal to \(|\text{VECTORS}| \cdot (|\text{VECTORS}| - 1) / 2\). For this reason we can rewrite \textbf{NARC} = |VECTORS| \cdot (|VECTORS| - 1) / 2 to \textbf{NARC} \geq |VECTORS| \cdot (|VECTORS| - 1) / 2 and simplify \textbf{NARC} to \textbf{NARC}.

See also alldifferent, lex_different

Key words decomposition, vector, bipartite matching
Figure 4.256: Initial and final graph of the \texttt{lex_alldifferent} constraint
4.117 \textbf{lex_between}

\textbf{Origin}

\textbf{Constraint}

\texttt{lex_between(\texttt{LOWER_BOUND}, \texttt{VECTOR}, \texttt{UPPER_BOUND})}

\textbf{Argument(s)}

\begin{enumerate}
 \item \texttt{LOWER_BOUND} : \texttt{collection(var – int)}
 \item \texttt{VECTOR} : \texttt{collection(var – dvar)}
 \item \texttt{UPPER_BOUND} : \texttt{collection(var – int)}
\end{enumerate}

\textbf{Restriction(s)}

\begin{enumerate}
 \item \texttt{required(\texttt{LOWER_BOUND}, var)}
 \item \texttt{required(\texttt{VECTOR}, var)}
 \item \texttt{required(\texttt{UPPER_BOUND}, var)}
 \item \texttt{\texttt{|LOWER_BOUND| = VECTOR|}}
 \item \texttt{\texttt{|UPPER_BOUND| = VECTOR|}}
 \item \texttt{\texttt{lex_lesseq(\texttt{LOWER_BOUND}, \texttt{VECTOR})}}
 \item \texttt{\texttt{lex_lesseq(\texttt{VECTOR}, \texttt{UPPER_BOUND})}}
\end{enumerate}

\textbf{Purpose}

The vector \texttt{VECTOR} is lexicographically greater than or equal to the fixed vector \texttt{LOWER_BOUND} and lexicographically smaller than or equal to the fixed vector \texttt{UPPER_BOUND}.

\textbf{Example}

\begin{itemize}
 \item \texttt{\texttt{\texttt{lex_between}}} \begin{itemize}
 \item \{\texttt{var – 5,\ var – 2,\ var – 3,\ var – 9}\}
 \item \{\texttt{var – 5,\ var – 2,\ var – 6,\ var – 2}\}
 \item \{\texttt{var – 5,\ var – 2,\ var – 6,\ var – 3}\}
 \end{itemize}
\end{itemize}

\textbf{Automaton}

Figure \ref{fig:automaton} depicts the automaton associated to the \texttt{lex_between} constraint. Let \(L_i \), \(V_i \) and \(U_i \) respectively be the \texttt{var} attributes of the \(i^{th} \) items of the \texttt{LOWER_BOUND}, the \texttt{VECTOR} and the \texttt{UPPER_BOUND} collections. To each triple \((L_i, V_i, U_i)\) corresponds a signature variable \(S_i \) as well as the following signature constraint:

\begin{itemize}
 \item \((L_i < V_i) \land (V_i < U_i) \Leftrightarrow S_i = 0 \land \)
 \item \((L_i < V_i) \land (V_i = U_i) \Leftrightarrow S_i = 1 \land \)
 \item \((L_i = V_i) \land (V_i < U_i) \Leftrightarrow S_i = 3 \land \)
 \item \((L_i = V_i) \land (V_i = U_i) \Leftrightarrow S_i = 4 \land \)
 \item \((L_i = V_i) \land (V_i > U_i) \Leftrightarrow S_i = 5 \land \)
 \item \((L_i > V_i) \land (V_i < U_i) \Leftrightarrow S_i = 6 \land \)
 \item \((L_i > V_i) \land (V_i = U_i) \Leftrightarrow S_i = 7 \land \)
 \item \((L_i > V_i) \land (V_i > U_i) \Leftrightarrow S_i = 8. \)
\end{itemize}

\textbf{Usage}

This constraint does usually not occur explicitly in practice. However it shows up indirectly in the context of the \texttt{\texttt{lex_chain_less}} and the \texttt{\texttt{lex_chain_lesseq}} constraints: In order to have a complete filtering algorithm for the \texttt{\texttt{lex_chain_less}} and the \texttt{\texttt{lex_chain_lesseq}} constraints one has to come up with a complete filtering algorithm for the \texttt{\texttt{lex_between}}
Figure 4.257: Automaton of the `lex_between` constraint

Figure 4.258: Hypergraph of the reformulation corresponding to the automaton of the `lex_between` constraint
constraint. The reason is that the \texttt{lex_chain_less} as well as the \texttt{lex_chain_lesseq} constraints both compute feasible lower and upper bounds for each vector they mention. Therefore one ends up with a \texttt{lex_between} constraint for each vector of the \texttt{lex_chain_less} and \texttt{lex_chain_lesseq} constraints.

Algorithm \cite{126}.

See also \texttt{lex_less} \texttt{lex_lesseq} \texttt{lex_greater} \texttt{lex_greatereq} \texttt{lex_chain_less} \texttt{lex_chain_lesseq}.

Key words order constraint vector symmetry lexicographic order Berge-acyclic constraint network automaton automaton without counters.
4.118 lex_chain_less

Origin

Constraint: lex_chain_less(VECTORS)

Usual name: lex_chain

Type(s): VECTOR: collection(var - dvar)

Argument(s): VECTORS: collection(vec - VECTOR)

Restriction(s):
- required(VECTOR, var)
- required(VECTORS, vec)
- same_size(VECTORS, vec)

For each pair of consecutive vectors VECTOR$_i$ and VECTOR$_{i+1}$ of the VECTORS collection we have that VECTOR$_i$ is lexicographically strictly less than VECTOR$_{i+1}$. Given two vectors, \vec{X} and \vec{Y} of n components, (X_0, \ldots, X_n) and (Y_0, \ldots, Y_n), \vec{X} is lexicographically strictly less than \vec{Y} if and only if $X_0 < Y_0$ or $X_0 = Y_0$ and (X_1, \ldots, X_n) is lexicographically strictly less than (Y_1, \ldots, Y_n).

Purpose

For each pair of consecutive vectors VECTOR$_i$ and VECTOR$_{i+1}$ of the VECTORS collection we have that VECTOR$_i$ is lexicographically strictly less than VECTOR$_{i+1}$. Given two vectors, \vec{X} and \vec{Y} of n components, (X_0, \ldots, X_n) and (Y_0, \ldots, Y_n), \vec{X} is lexicographically strictly less than \vec{Y} if and only if $X_0 < Y_0$ or $X_0 = Y_0$ and (X_1, \ldots, X_n) is lexicographically strictly less than (Y_1, \ldots, Y_n).

Arc input(s)

VECTORS

Arc generator

PATH \rightarrow collection(vectors1, vectors2)

Arc arity

2

Arc constraint(s)

lex_less(vectors1.vec, vectors2.vec)

Graph property(ies)

NARC = |VECTORS| - 1

Example

lex_chain_less

Parts (A) and (B) of Figure [1259] respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold. The lex_chain_less constraint holds since all the arc constraints of the initial graph are satisfied.
Signature

Since we use the \textit{PATH} arc generator on the \textit{VECTORS} collection the number of arcs of the initial graph is equal to $|\text{VECTORS}| - 1$. For this reason we can rewrite $\text{NARC} = |\text{VECTORS}| - 1$ to $\text{NARC} \geq |\text{VECTORS}| - 1$ and simplify NARC to NARC.

Usage

This constraint was motivated for breaking symmetry: More precisely when one wants to lexicographically order the consecutive columns of a matrix of decision variables. A further motivation is that using a set of lexicographic ordering constraints between two vectors does usually not allows to come up with a complete pruning.

Algorithm

A complete filtering algorithm for a chain of lexicographical constraints is presented in [126].

See also

\texttt{lex_between} \texttt{lex_chain_lesseq} \texttt{lex_less} \texttt{lex_lesseq} \texttt{lex_greater}
\texttt{lex_greatereq}

Key words

\texttt{decomposition} \texttt{order_constraint} \texttt{vector_symmetry} \texttt{matrix_symmetry} \texttt{lexicographic_order}
Figure 4.259: Initial and final graph of the \texttt{lex_chain_less} constraint
4.119 lex_chain_lesseq

Origin
Constraint
Usual name
Type(s)
Argument(s)
Restriction(s)

lex_chain_lesseq(VECTORS)
lex_chain

VECTOR : collection(var – dvar)
VECTORS : collection(vec – VECTOR)
required(VECTOR, var)
required(VECTORS, vec)
same_size(VECTORS, vec)

For each pair of consecutive vectors VECTOR_i and VECTOR_i+1 of the VECTORS collection we have that VECTOR_i is lexicographically less than or equal to VECTOR_i+1. Given two vectors, X and Y of n components, \langle X_0, \ldots, X_n \rangle and \langle Y_0, \ldots, Y_n \rangle, X is lexicographically less than or equal to Y if and only if n = 0 or X_0 < Y_0 or X_0 = Y_0 and \langle X_1, \ldots, X_n \rangle is lexicographically less than or equal to \langle Y_1, \ldots, Y_n \rangle.

Purpose

Arc input(s)
Arc generator
Arc arity
Arc constraint(s)

VECTORS
PATH \mapsto \text{collection}(\text{vectors1, vectors2})
2
lex_lesseq(\text{vectors1.vec, vectors2.vec})

Graph property(ies)

\text{NARC} = |\text{VECTORS}| - 1

Example

\begin{align*}
\text{vec} & \quad \text{vec} \\
\text{var} - 5, & \quad \text{var} - 5, \\
\text{var} - 2, & \quad \text{var} - 2, \\
\text{var} - 3, & \quad \text{var} - 3, \\
\text{var} - 9 & \quad \text{var} - 9 \\
\text{var} - 5, & \quad \text{var} - 5, \\
\text{var} - 2, & \quad \text{var} - 2, \\
\text{var} - 6, & \quad \text{var} - 6, \\
\text{var} - 2 & \quad \text{var} - 2
\end{align*}

Parts (A) and (B) of Figure 4.260 respectively show the initial and final graph. Since we use the \text{NARC} graph property, the arcs of the final graph are stressed in bold. The lex_chain_lesseq constraint holds since all the arc constraints of the initial graph are satisfied.
Since we use the PATH arc generator on the VECTORS collection the number of arcs of the initial graph is equal to \(|\text{VECTORS}| - 1\). For this reason we can rewrite \(\text{NARC} = |\text{VECTORS}| - 1\) to \(\text{NARC} \geq |\text{VECTORS}| - 1\) and simplify \(\text{NARC}\) to \(\text{NARC}\).

This constraint was motivated for breaking symmetry: More precisely when one wants to lexicographically order the consecutive columns of a matrix of decision variables. A further motivation is that using a set of lexicographic ordering constraints between two vectors does usually not allows to come up with a complete pruning.

A complete filtering algorithm for a chain of lexicographical constraints is presented in [126].

See also \texttt{lex_between}, \texttt{lex_chain_less}, \texttt{lex_less}, \texttt{lex_lesseq}, \texttt{lex_greater}, \texttt{lex_greatereq}

Key words \texttt{decomposition}, \texttt{order constraint}, \texttt{vector}, \texttt{symmetry}, \texttt{matrix symmetry}, \texttt{lexicographic order}
Figure 4.260: Initial and final graph of the lex_chain lesseq constraint
4.120 lex_different

<table>
<thead>
<tr>
<th>Origin</th>
<th>Used for defining \texttt{lex_alldifferent}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint</td>
<td>\texttt{lex_different(VECTOR1, VECTOR2)}</td>
</tr>
</tbody>
</table>
| Argument(s) | \begin{align*}
\text{VECTOR1} & : \text{collection(var – dvar)} \\
\text{VECTOR2} & : \text{collection(var – dvar)}
\end{align*} |
| Restriction(s) | \begin{align*}
\text{required(VECTOR1, var)} \\
\text{required(VECTOR2, var)} \\
|VECTOR1| = |VECTOR2|
\end{align*} |
| Purpose | Vectors \text{VECTOR1} and \text{VECTOR2} differ from at least one component. |

Arc input(s)	\text{VECTOR1} \text{ VECTOR2}
Arc generator	\text{PRODUCT}(=) ↔ \text{collection(vector1, vector2)}
Arc arity	2
Arc constraint(s)	\text{vector1}.var ≠ \text{vector2}.var
Graph property(ies)	\text{NARC} ≥ 1

| Example | \text{lex_different}\left(\{\text{var} - 5, \text{var} - 2, \text{var} - 7, \text{var} - 1\}, \\
\{\text{var} - 5, \text{var} - 3, \text{var} - 7, \text{var} - 1\}\right) |

Parts (A) and (B) of Figure 4.261 respectively show the initial and final graph. Since we use the \texttt{NARC} graph property, the unique arc of the final graph is stressed in bold. It corresponds to a component where the two vectors differ.

| Automaton | Figure 4.262 depicts the automaton associated to the \texttt{lex_different} constraint. Let \text{VAR1}_i and \text{VAR2}_i, respectively be the \text{var} attributes of the \text{i}^{th} \text{ items of the \text{VECTOR1} and the \text{VECTOR2} collections. To each pair (\text{VAR1}_i, \text{VAR2}_i) corresponds a 0-1 signature variable \text{S}_i, as well as the following signature constraint: \text{VAR1}_i = \text{VAR2}_i \Leftrightarrow \text{S}_i. |

| Used in | \texttt{lex_alldifferent} |
| See also | \texttt{lex_greatereq, lex_less, lex_lesseq} |

| Key words | \texttt{vector, disequality, Berge-acyclic constraint network, automaton, automaton without counters} |
Figure 4.261: Initial and final graph of the \texttt{lex_different} constraint

Figure 4.262: Automaton of the \texttt{lex_different} constraint

Figure 4.263: Hypergraph of the reformulation corresponding to the automaton of the \texttt{lex_different} constraint
4.121 lex_greater

Origin CHIP

Constraint $\text{lex_greater}(\text{VECTOR1}, \text{VECTOR2})$

Argument(s)
VECTOR1 : collection(var − dvar)
VECTOR2 : collection(var − dvar)

Restriction(s)
required(VECTOR1.var)
required(VECTOR2.var)
$|\text{VECTOR1}| = |\text{VECTOR2}|$

Purpose
VECTOR1 is lexicographically strictly greater than VECTOR2. Given two vectors, \vec{X} and \vec{Y} of n components, (X_0, \ldots, X_n) and (Y_0, \ldots, Y_n), \vec{X} is lexicographically strictly greater than \vec{Y} if and only if $X_0 > Y_0$ or $X_0 = Y_0$ and (X_1, \ldots, X_n) is lexicographically strictly greater than (Y_1, \ldots, Y_n).

Derived Collection(s)
$\text{col}(\text{DESTINATION} - \text{collection(index − int, x − int, y − int)})$
$\text{col}(\text{COMPONENTS} - \text{collection(index − int, x − dvar, y − dvar)})$

Arc input(s)
COMPONENTS DESTINATION

Arc generator
$\text{PRODUCT}(\text{PATH}, \text{VOID}) \mapsto \text{collection(item1, item2)}$

Arc arity
2

Arc constraint(s)
item2.index > 0 ∧ item1.x = item1.y ∨ item2.index = 0 ∧ item1.x > item1.y

Graph property(ies)
$\text{PATH_FROM_TO}(\text{index}, 1, 0) = 1$

Example
$\text{lex_greater} \left(\{\text{var} - 5, \text{var} - 2, \text{var} - 7, \text{var} - 1\}, \{\text{var} - 5, \text{var} - 2, \text{var} - 6, \text{var} - 2\} \right)$

Parts (A) and (B) of Figure 4.264 respectively show the initial and final graph. Since we use the PATH_FROM_TO graph property we show the following information on the final graph:

- The vertices which respectively correspond to the start and the end of the required path are stressed in bold.
- The arcs on the required path are also stressed in bold.

Graph model
The vertices of the initial graph are generated in the following way:

- We create a vertex c_i for each pair of components which both have the same index i.
- We create an additional dummy vertex called d.
The arcs of the initial graph are generated in the following way:

- We create an arc between \(c_i \) and \(d \). We associate to this arc the arc constraint \(\text{item}_1.x > \text{item}_2.y \).
- We create an arc between \(c_i \) and \(c_{i+1} \). We associate to this arc the arc constraint \(\text{item}_1.x = \text{item}_2.y \).

The \textit{lex.greater} constraint holds when there exist a path from \(c_1 \) to \(d \). This path can be interpreted as a sequence of \textit{equality} constraints on the prefix of both vectors, immediately followed by a \textit{greater than} constraint.

Signature

Since the maximum value returned by the graph property \texttt{PATH_FROM_TO} is equal to 1 we can rewrite \texttt{PATH_FROM_TO(index,1,0)} = 1 to \texttt{PATH_FROM_TO(index,1,0)} \(\geq 1 \). Therefore we simplify \texttt{PATH_FROM_TO} to \texttt{PATH_FROM_TO}.

Automaton

Figure 4.265 depicts the automaton associated to the \textit{lex.greater} constraint. Let \texttt{VAR1}_i and \texttt{VAR2}_i respectively be the \texttt{var} attributes of the \(i^{th} \) items of the \texttt{VECTOR1} and the \texttt{VECTOR2} collections. To each pair \((\texttt{VAR1}_i, \texttt{VAR2}_i)\) corresponds a signature variable \(S_i \) as well as the following signature constraint: \((\texttt{VAR1}_i < \texttt{VAR2}_i \iff S_i = 1) \land (\texttt{VAR1}_i = \texttt{VAR2}_i \iff S_i = 2) \land (\texttt{VAR1}_i > \texttt{VAR2}_i \iff S_i = 3)\).

Remark

A \textit{multiset ordering} constraint and its corresponding filtering algorithm are described in [127].

Algorithm

The first complete filtering algorithm for this constraint was presented in [36]. A second complete filtering algorithm, detecting entailment in a more eager way, was given in [128]. This second algorithm was derived from a deterministic finite automata. A third complete filtering algorithm extending the algorithm presented in [36] detecting entailment is given in the PhD thesis of Z.Kiziltan [129, page 95]. The previous thesis [129, pages 105–109] presents also a filtering algorithm handling the fact that a given variable has more than one occurrence.

See also

\texttt{lex.between} \quad \texttt{lex.greatereq} \quad \texttt{lex.less} \quad \texttt{lex.lesseq} \quad \texttt{lex.chain.less}

Key words

\texttt{order constraint} \quad \texttt{vector} \quad \texttt{symmetry} \quad \texttt{matrix symmetry} \quad \texttt{lexicographic order}

\texttt{multiset ordering} \quad \texttt{duplicated variables} \quad \texttt{Berge-acyclic constraint network} \quad \texttt{automaton}

\texttt{automaton without counters} \quad \texttt{derived collection}
Figure 4.264: Initial and final graph of the lex_{greater} constraint

Figure 4.265: Automaton of the lex_{greater} constraint

Figure 4.266: Hypergraph of the reformulation corresponding to the automaton of the lex_{greater} constraint
4.122 \text{lex_greatereq}

\begin{tabular}{|l|}
\hline
\textbf{Origin} & CHIP \\
\hline
\textbf{Constraint} & \text{lex_greatereq(VECTOR1, VECTOR2)} \\
\hline
\textbf{Argument(s)} & \begin{align*}
\text{VECTOR1} & : \text{collection(var - dvar)} \\
\text{VECTOR2} & : \text{collection(var - dvar)}
\end{align*} \\
\hline
\textbf{Restriction(s)} & \begin{align*}
\text{required(VECTOR1.var)} \\
\text{required(VECTOR2.var)} \\
|\text{VECTOR1}| & = |\text{VECTOR2}|
\end{align*} \\
\hline
\textbf{Purpose} & \begin{align*}
\text{VECTOR1 is lexicographically greater than or equal to VECTOR2. Given two vectors, } & \vec{X} \text{ and } \vec{Y} \text{ of } n \text{ components, } (X_0, \ldots, X_n) \text{ and } (Y_0, \ldots, Y_n), \text{ } \vec{X} \text{ is lexicographically greater than or equal to } \vec{Y} \text{ if and only if } n = 0 \text{ or } X_0 > Y_0 \text{ or } X_0 = Y_0 \text{ and } (X_1, \ldots, X_n) \text{ is lexicographically greater than or equal to } (Y_1, \ldots, Y_n).
\end{align*} \\
\hline
\textbf{Derived Collection(s)} & \begin{align*}
\text{col} & \left(\right. \\
\text{DESTINATION} & : \text{collection(index} = \text{int}, x = \text{int}, y = \text{int}), \\
& \left. \text{item(index} = 0, x = 0, y = 0) \right) \\
\text{col} & \left(\right. \\
\text{COMPONENTS} & : \text{collection(index} = \text{int}, x = \text{dvar}, y = \text{dvar}), \\
& \left. \text{item(index} = \text{VECTOR1.key}, x = \text{VECTOR1.var}, y = \text{VECTOR2.var}) \right)
\end{align*} \\
\hline
\textbf{Arc input(s)} & \begin{align*}
\text{COMPONENTS} & \text{ DESTINATION}
\end{align*} \\
\hline
\textbf{Arc generator} & \begin{align*}
\text{PRODUCT}(\text{PATH, VOID}) & \mapsto \text{collection(item1.item2)}
\end{align*} \\
\hline
\textbf{Arc arity} & 2 \\
\hline
\textbf{Arc constraint(s)} & \begin{align*}
\bigvee & \begin{align*}
\text{item2.index} & > 0 \land \text{item1.x} = \text{item1.y}, \\
\text{item1.index} & < |\text{VECTOR1}| \land \text{item2.index} = 0 \land \text{item1.x} > \text{item1.y}, \\
\text{item1.index} & = |\text{VECTOR1}| \land \text{item2.index} = 0 \land \text{item1.x} \geq \text{item1.y}
\end{align*}
\end{align*} \\
\hline
\textbf{Graph property(ies)} & \begin{align*}
\text{PATH_FROM_TO(index.1, 0)} & = 1
\end{align*} \\
\hline
\textbf{Example} & \begin{align*}
\text{\text{lex_greatereq} \{ } & \begin{align*}
& \{\text{var} - 5, \text{var} - 2, \text{var} - 8, \text{var} - 9\}, \\
& \{\text{var} - 5, \text{var} - 2, \text{var} - 6, \text{var} - 2\}
\end{align*} \\
\text{\text{lex_greatereq} \{ } & \begin{align*}
& \{\text{var} - 5, \text{var} - 2, \text{var} - 3, \text{var} - 9\}, \\
& \{\text{var} - 5, \text{var} - 2, \text{var} - 3, \text{var} - 9\}
\end{align*}
\end{align*} \\
\hline
\end{tabular}

Parts (A) and (B) of Figure 4.267 respectively show the initial and final graph associated to the first example. Since we use the \text{PATH_FROM_TO} graph property we show on the final graph the following information:

\begin{itemize}
\item The vertices which respectively correspond to the start and the end of the required path are stressed in bold.
\item The arcs on the required path are also stressed in bold.
\end{itemize}
Graph model

The vertices of the initial graph are generated in the following way:

- We create a vertex c_i for each pair of components which both have the same index i.
- We create an additional dummy vertex called d.

The arcs of the initial graph are generated in the following way:

- We create an arc between c_i and d. When c_i was generated from the last components of both vectors, we associate to this arc the arc constraint $\text{item}_1.x \geq \text{item}_2.y$. Otherwise, we associate to this arc the arc constraint $\text{item}_1.x > \text{item}_2.y$.
- We create an arc between c_i and c_{i+1}. We associate to this arc the arc constraint $\text{item}_1.x = \text{item}_2.y$.

The lex.greatereq constraint holds when there exist a path from c_1 to d. This path can be interpreted as a maximum sequence of equality constraints on the prefix of both vectors, eventually followed by a greater than constraint.

Signature

Since the maximum value returned by the graph property PATH.FROM.TO is equal to 1 we can rewrite $\text{PATH.FROM.TO}(\text{index}, 1, 0) = 1$ to $\text{PATH.FROM.TO}(\text{index}, 1, 0) \geq 1$. Therefore we simplify PATH.FROM.TO to PATH.FROM.TO.

Automaton

Figure 4.268 depicts the automaton associated to the lex.greatereq constraint. Let VAR1_i and VAR2_i respectively be the var attributes of the i^{th} items of the VECTOR1 and the VECTOR2 collections. To each pair $(\text{VAR1}_i, \text{VAR2}_i)$ corresponds a signature variable S_i as well as the following signature constraint: $(\text{VAR1}_i < \text{VAR2}_i \Leftrightarrow S_i = 1) \land (\text{VAR1}_i = \text{VAR2}_i \Leftrightarrow S_i = 2) \land (\text{VAR1}_i > \text{VAR2}_i \Leftrightarrow S_i = 3)$.

Remark

A multiset ordering constraint and its corresponding filtering algorithm are described in [127].

Algorithm

The first complete filtering algorithm for this constraint was presented in [36]. A second complete filtering algorithm, detecting entailment in a more eager way, was given in [128]. This second algorithm was derived from a deterministic finite automata. A third complete filtering algorithm extending the algorithm presented in [36] detecting entailment is given in the PhD thesis of Z.Kiziltan [129, page 95]. The previous thesis [129, pages 105–109] presents also a filtering algorithm handling the fact that a given variable has more than one occurrence.

See also lex.between, lex.greater, lex.less, lex.lesseq, lex.chain.less.

Key words order constraint, vector, symmetry, matrix symmetry, $\text{lexicographic order}$, multiset ordering, $\text{duplicated variables}$, $\text{Berge-acyclic constraint network}$, automaton, $\text{automaton without counters}$, $\text{derived collection}$.
Figure 4.267: Initial and final graph of the \texttt{lex.greatereq} constraint

![Graph](image)

Figure 4.268: Automaton of the \texttt{lex.greatereq} constraint

![Automaton](image)

Figure 4.269: Hypergraph of the reformulation corresponding to the automaton of the \texttt{lex.greatereq} constraint

![Hypergraph](image)
4.123 lex_less

Origin
CHIP

Constraint
lex_less(VECTOR1,VECTOR2)

Argument(s)
VECTOR1 : collection(var − dvar)
VECTOR2 : collection(var − dvar)

Restriction(s)
required(VECTOR1.var)
required(VECTOR2.var)
|VECTOR1| = |VECTOR2|

Purpose
VECTOR1 is lexicographically strictly less than VECTOR2. Given two vectors, \(\vec{X} \) and \(\vec{Y} \) of \(n \) components, \((X_0, \ldots, X_n) \) and \((Y_0, \ldots, Y_n) \), \(\vec{X} \) is lexicographically strictly less than \(\vec{Y} \) if and only if \(X_0 < Y_0 \) or \(X_0 = Y_0 \) and \((X_1, \ldots, X_n) \) is lexicographically strictly less than \((Y_1, \ldots, Y_n) \).

Derived Collection(s)
\[
\begin{align*}
&\text{col}\left(\text{DESTINATION} - \text{collection(index} - \text{int},x - \text{int},y - \text{int})\right) \\
&\mid\text{item(index} - 0,x - 0,y - 0)\mid \\
&\text{col}\left(\text{COMPONENTS} - \text{collection(index} - \text{int},x - \text{dvar},y - \text{dvar})\right) \\
&\mid\text{item(index} - \text{VECTOR1.key} - \text{VECTOR1.var}.,x - \text{VECTOR2.var})\mid \\
\end{align*}
\]

Arc input(s)
COMPONENTS DESTINATION

Arc generator
\(PRODUCT(\text{PATH, VOID}) \mapsto \text{collection(item1,item2)} \)

Arc arity
2

Arc constraint(s)
item2.index > 0 \land item1.x = item1.y \lor item2.index = 0 \land item1.x < item1.y

Graph property(ies)
\(PATH_{\text{FROM TO}}(\text{index},1,0) = 1 \)

Example
\[
\text{lex_less}\left(\{\text{var} - 5,\text{var} - 2,\text{var} - 3,\text{var} - 9\},\{\text{var} - 5,\text{var} - 2,\text{var} - 6,\text{var} - 2\}\right)
\]

Parts (A) and (B) of Figure 4.270 respectively show the initial and final graph. Since we use the \(PATH_{\text{FROM TO}} \) graph property we show on the final graph the following information:

- The vertices which respectively correspond to the start and the end of the required path are stressed in bold.
- The arcs on the required path are also stressed in bold.

Graph model
The vertices of the initial graph are generated in the following way:

- We create a vertex \(c_i \) for each pair of components which both have the same index \(i \).
- We create an additional dummy vertex called \(d \).
The arcs of the initial graph are generated in the following way:

- We create an arc between c_i and d. We associate to this arc the arc constraint $\text{item}_1.x < \text{item}_2.y$.
- We create an arc between c_i and c_{i+1}. We associate to this arc the arc constraint $\text{item}_1.x = \text{item}_2.y$.

The $\text{lex}._\text{less}$ constraint holds when there exist a path from c_1 to d. This path can be interpreted as a sequence of equality constraints on the prefix of both vectors, immediately followed by a less than constraint.

Signature

Since the maximum value returned by the graph property $\text{PATH}_\text{FROM}_\text{TO}$ is equal to 1 we can rewrite $\text{PATH}_\text{FROM}_\text{TO}(\text{index}, 1, 0) = 1$ to $\text{PATH}_\text{FROM}_\text{TO}(\text{index}, 1, 0) \geq 1$. Therefore we simplify $\text{PATH}_\text{FROM}_\text{TO}$ to $\text{PATH}_\text{FROM}_\text{TO}$.

Automaton

Figure 4.271 depicts the automaton associated to the $\text{lex}._\text{less}$ constraint. Let VAR_1_i and VAR_2_i respectively be the var attributes of the i^{th} items of the \text{VECTOR}_1 and the \text{VECTOR}_2 collections. To each pair ($\text{VAR}_1_i, \text{VAR}_2_i$) corresponds a signature variable S_i as well as the following signature constraint: $(\text{VAR}_1_i < \text{VAR}_2_i \leftrightarrow S_i = 1) \land (\text{VAR}_1_i = \text{VAR}_2_i \leftrightarrow S_i = 2) \land (\text{VAR}_1_i > \text{VAR}_2_i \leftrightarrow S_i = 3)$.

Remark

A multiset ordering constraint and its corresponding filtering algorithm are described in [127].

Algorithm

The first complete filtering algorithm for this constraint was presented in [36]. A second complete filtering algorithm, detecting entailment in a more eager way, was given in [128]. This second algorithm was derived from a deterministic finite automata. A third complete filtering algorithm extending the algorithm presented in [36] detecting entailment is given in the PhD thesis of Z.Kiziltan [129, page 95]. The previous thesis [129, pages 105–109] presents also a filtering algorithm handling the fact that a given variable has more than one occurrence.

Used in

- \text{lex_chain_less}

See also

- \text{lex_between}
- \text{lex_lesseq}
- \text{lex_greater}
- \text{lex_greatereq}
- \text{lex_chain_lesseq}

Key words

- order constraint
- vector
- symmetry
- matrix symmetry
- lexicographic order
- multiset ordering
- duplicated variables
- Berge-acyclic constraint network
- automaton
- automaton without counters
- derived collection
Figure 4.270: Initial and final graph of the lex_\leq constraint

Figure 4.271: Automaton of the lex_\leq constraint

Figure 4.272: Hypergraph of the reformulation corresponding to the automaton of the lex_\leq constraint
4.124 lex

Origin

CHIP

Constraint

```
lex,lesseq(VECTOR1, VECTOR2)
```

Argument(s)

```
VECTOR1 : collection(var – dvar)
VECTOR2 : collection(var – dvar)
```

Restriction(s)

```
required(VECTOR1.var)
required(VECTOR2.var)
|VECTOR1| = |VECTOR2|
```

Purpose

VECTOR1 is lexicographically less than or equal to VECTOR2. Given two vectors, \(\vec{X} \) and \(\vec{Y} \) of \(n \) components, \((X_0, \ldots, X_n) \) and \((Y_0, \ldots, Y_n) \), \(\vec{X} \) is lexicographically less than or equal to \(\vec{Y} \) if and only if \(n = 0 \) or \(X_0 < Y_0 \) or \(X_0 = Y_0 \) and \((X_1, \ldots, X_n) \) is lexicographically less than or equal to \((Y_1, \ldots, Y_n) \).

Derived Collection(s)

```
col
  DESTINATION – collection(index – int, x – int, y – int),
  [item(index – 0, x – 0, y – 0)]

  COMPONENTS – collection(index – int, x – dvar, y – dvar),
  [item(index – VECTOR1.key, x – VECTOR1.var, y – VECTOR2.var)]
```

Arc input(s)

COMPONENTS DESTINATION

Arc generator

```
PRODUCT(PATH, VOID) \(\mapsto\) collection(item1, item2)
```

Arc arity

2

Arc constraint(s)

```
\(\forall\)
  item2.index > 0 \land item1.x = item1.y,
  item1.index < |VECTOR1| \land item2.index = 0 \land item1.x < item1.y,
  item1.index = |VECTOR1| \land item2.index = 0 \land item1.x \leq item1.y
```

Graph property(ies)

```
PATH_FROM_TO(index1, 0) = 1
```

Example

```
lex,lesseq \{\{var – 5, var – 2, var – 3, var – 1\},
\{var – 5, var – 2, var – 6, var – 2\}\}
lex,lesseq \{\{var – 5, var – 2, var – 3, var – 9\},
\{var – 5, var – 2, var – 3, var – 9\}\}
```

Parts (A) and (B) of Figure 4.273 respectively show the initial and final graph associated to the first example. Since we use the PATH_FROM_TO graph property we show on the final graph the following information:

- The vertices which respectively correspond to the start and the end of the required path are stressed in bold.
- The arcs on the required path are also stressed in bold.
Graph model

The vertices of the initial graph are generated in the following way:

- We create a vertex \(c_i \) for each pair of components which both have the same index \(i \).
- We create an additional dummy vertex called \(d \).

The arcs of the initial graph are generated in the following way:

- We create an arc between \(c_i \) and \(d \). When \(c_i \) was generated from the last components of both vectors we associate to this arc the arc constraint \(\text{item}_1 \cdot x \leq \text{item}_2 \cdot y \); otherwise we associate to this arc the arc constraint \(\text{item}_1 \cdot x < \text{item}_2 \cdot y \).
- We create an arc between \(c_i \) and \(c_{i+1} \). We associate to this arc the arc constraint \(\text{item}_1 \cdot x = \text{item}_2 \cdot y \).

The \texttt{lex} _\texttt{lesseq} constraint holds when there exist a path from \(c_1 \) to \(d \). This path can be interpreted as a maximum sequence of equality constraints on the prefix of both vectors, eventually followed by a less than constraint.

Signature

Since the maximum value returned by the graph property \texttt{PATH_FROM_TO} is equal to 1 we can rewrite \texttt{PATH_FROM_TO(index,1,0)} = 1 to \texttt{PATH_FROM_TO(index,1,0)} \geq 1. Therefore we simplify \texttt{PATH_FROM_TO} to \texttt{PATH_FROM_TO}.

Automaton

Figure 4.274 depicts the automaton associated to the \texttt{lex} _\texttt{lesseq} constraint. Let \texttt{VAR1} and \texttt{VAR2}, respectively be the \texttt{var} attributes of the \(i^{th} \) items of the \texttt{VECTOR1} and the \texttt{VECTOR2} collections. To each pair (\texttt{VAR1}, \texttt{VAR2}) corresponds a signature variable \(S_i \) as well as the following signature constraint: (\(\text{VAR1} < \text{VAR2} \Rightarrow S_i = 1 \)) \land (\text{VAR1} = \text{VAR2} \Rightarrow S_i = 2) \land (\text{VAR1} > \text{VAR2} \Rightarrow S_i = 3) \).

Remark

A multiset ordering constraint and its corresponding filtering algorithm are described in [127].

Algorithm

The first complete filtering algorithm for this constraint was presented in [36]. A second complete filtering algorithm, detecting entailment in a more eager way, was given in [128]. This second algorithm was derived from a deterministic finite automata. A third complete filtering algorithm extending the algorithm presented in [36] detecting entailment is given in the PhD thesis of Z.Kiziltan [129, page 95]. The previous thesis [129, pages 105–109] presents also a filtering algorithm handling the fact that a given variable has more than one occurrence.

Used in

\texttt{lex_between lex_chain_lesseq}

See also

\texttt{lex_less lex_greater lex_greatereq lex_chain_less}

Key words

\texttt{order_constraint vector symmetry matrix_symmetry lexicographic_order multiset_ordering duplicated_variables Berge-acyclic_constraint_network automaton automaton_without_counters derived_collection}
Figure 4.273: Initial and final graph of the \texttt{lex_lesseq} constraint

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure4.273.png}
\caption{Initial and final graph of the \texttt{lex_lesseq} constraint}
\end{figure}

Figure 4.274: Automaton of the \texttt{lex_lesseq} constraint

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure4.274.png}
\caption{Automaton of the \texttt{lex_lesseq} constraint}
\end{figure}

Figure 4.275: Hypergraph of the reformulation corresponding to the automaton of the \texttt{lex_lesseq} constraint

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure4.275.png}
\caption{Hypergraph of the reformulation corresponding to the automaton of the \texttt{lex_lesseq} constraint}
\end{figure}
4.125 link_set_to_booleans

Origin
Inspired by domain constraint.

Constraint
link_set_to_booleans(SVAR, BOOLANS)

Argument(s)
SVAR : svar
BOOLEANS : collection(bool − dvar, val − int)

Restriction(s)
required(BOOLEANS, [bool, val])
BOOLEANS.bool ≥ 0
BOOLEANS.bool ≤ 1
distinct(BOOLEANS, val)

Purpose
Make the link between a set variable SVAR and those 0-1 variables that are associated to each potential value belonging to SVAR: The 0-1 variables, which are associated to a value belonging to the set variable SVAR, are equal to 1, while the remaining 0-1 variables are all equal to 0.

Derived Collection(s)
col(set − collection(one − int, setvar − svar), [item(one − 1, setvar − SVAR)])

Arc input(s)
SET BOOLANS

Arc generator
PRODUCT ⊡ collection(set, booleans)

Arc arity
2

Arc constraint(s)
booleans.bool = set.one ⊡ in_set(BOOLEANS.val, set.setvar)

Graph property(ies)
NARC = [BOOLEANS]

Example
link_set_to_booleans

\[
\begin{pmatrix}
{1, 3, 4}, \\
\{bool - 0 \text{ val} - 0, \\
bool - 1 \text{ val} - 1, \\
bool - 0 \text{ val} - 2, \\
bool - 1 \text{ val} - 3, \\
bool - 1 \text{ val} - 4, \\
bool - 0 \text{ val} - 5
\end{pmatrix}
\]

In the previous example, the 0-1 variables associated to the values 1, 3 and 4 are all set to 1, while the other 0-1 variables are set to 0. The link_set_to_booleans constraint holds since the final graph contains exactly 6 arcs (one for each 0-1 variable). Parts (A) and (B) of Figure 4.276 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Graph model
The link_set_to_booleans constraint is modelled with the following bipartite graph. The first set of vertices corresponds to one single vertex containing the set variable. The second class of vertices contains one vertex for each item of the collection BOOLANS. The arc constraint between the set variable SVAR and one potential value v of the set variable expresses the following:
• If the 0-1 variable associated to \(v \) is equal to 1 then \(v \) should belong to \(\text{SVAR} \).
• Otherwise if the 0-1 variable associated to \(v \) is equal to 0 then \(v \) should not belong to \(\text{SVAR} \).

Since all arc constraints should hold the final graph contains exactly \(|\text{BOOLEANS}|\) arcs.

Signature
Since the initial graph contains \(|\text{BOOLEANS}|\) arcs the maximum number of arcs of the final graph is equal to \(|\text{BOOLEANS}|\). Therefore we can rewrite the graph property \(\text{NARC} = |\text{BOOLEANS}| \) to \(\text{NARC} \geq |\text{BOOLEANS}| \) and simplify \(\text{NARC} \) to \(\text{NARC} \).

Usage
This constraint is used in order to make the link between a formulation using set variables and a formulation based on linear programming.

See also
- domain_constraint
- clique
- symmetric_gcc
- tour
- strongly_connected
- path_from_to

Key words
- decomposition
- value_constraint
- channeling_constraint
- set_channel
- linear_programming
- constraint_involving_set_variables
- derived_collection
Figure 4.276: Initial and final graph of the `link_set_to_booleans` constraint
4.126 longest_change

Origin
Derived from change

Constraint
\(\text{longest_change} \{ \text{SIZE}, \text{VARIABLES}, \text{CTR} \} \)

Argument(s)
- \(\text{SIZE} \) : dvar
- \(\text{VARIABLES} \) : collection(var - dvar)
- \(\text{CTR} \) : atom

Restriction(s)
- \(\text{SIZE} \geq 0 \)
- \(\text{SIZE} < |\text{VARIABLES}| \)
- \(\text{required(\text{VARIABLES}, \text{var})} \)
- \(\text{CTR} \in [\,=, \neq, <, \geq, >, \leq] \)

Purpose
\(\text{SIZE} \) is the maximum number of consecutive variables of the collection \(\text{VARIABLES} \) for which constraint \(\text{CTR} \) holds in an uninterrupted way. We count a change when \(X \text{CTR} Y \) holds; \(X \) and \(Y \) are two consecutive variables of the collection \(\text{VARIABLES} \).

Arc input(s)
\(\text{VARIABLES} \)

Arc generator
\(\text{PATH} \mapsto \text{collection(\text{variables1,variables2})} \)

Arc arity
2

Arc constraint(s)
\(\text{variables1.var CTR variables2.var} \)

Graph property(ies)
\(\text{MAX_NCC} = \text{SIZE} \)

Example
\(\text{longest_change} \ 4, \ \{ \begin{array}{l}
\text{var} - 8, \\
\text{var} - 8, \\
\text{var} - 3, \\
\text{var} - 4, \\
\text{var} - 1, \\
\text{var} - 1, \\
\text{var} - 5, \\
\text{var} - 5, \\
\text{var} - 2
\end{array} \}, \neq \)

Parts (A) and (B) of Figure 4.277 respectively show the initial and final graph. Since we use the \(\text{MAX_NCC} \) graph property we show the largest connected component of the final graph. It corresponds to the longest period of uninterrupted changes: Sequence 8, 3, 4, 1, which involves 4 consecutive variables.

Graph model
In order to specify the longest_change constraint, we use \(\text{MAX_NCC} \), which is the number of vertices of the largest connected component. Since the initial graph corresponds to a path, this will be the length of the longest path in the final graph.
Figure 4.277: Initial and final graph of the longest_change constraint

Figure 4.278: Automaton of the longest_change constraint
Automaton

Figure 4.278 depicts the automaton associated to the longest change constraint. To each pair of consecutive variables (VAR_i, VAR_{i+1}) of the collection VARIABLES corresponds a 0-1 signature variable S_i. The following signature constraint links VAR_i, VAR_{i+1} and S_i:

VAR_i, CTR VAR_{i+1} ⇔ S_i.

See also change

Key words timetabling constraint, automaton, automaton with counters, sliding cyclic(1) constraint network(3)

Figure 4.279: Hypergraph of the reformulation corresponding to the automaton of the longest change constraint
4.127 map

Origin

Inspired by [130]

Constraint

map(NBCYCLE, NBTREE, NODES)

Argument(s)

NBCYCLE : dvar
NBTREE : dvar
NODES : collection(index - int, succ - dvar)

Restriction(s)

NBCYCLE ≥ 0
NBTREE ≥ 0
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Number of trees and number of cycles of a map. We take the description of a map from [130, page 459]:

Purpose

Every map decomposes into a set of connected components, also called connected maps. Each component consists of the set of all points that wind up on the same cycle, with each point on the cycle attached to a tree of all points that enter the cycle at that point.

Arc input(s)

NODES

Arc generator

CLIQUE → collection(nodes1.nodes2)

Arc arity

2

Arc constraint(s)

nodes1.succ = nodes2.index

Graph property(ies)

• NCC = NBCYCLE
• NTREE = NBTREE

Example

map 2, 3, \begin{align*}
\text{index - 1 succ - 5,} \\
\text{index - 2 succ - 9,} \\
\text{index - 3 succ - 8,} \\
\text{index - 4 succ - 2,} \\
\text{index - 5 succ - 9,} \\
\text{index - 6 succ - 2,} \\
\text{index - 7 succ - 9,} \\
\text{index - 8 succ - 8,} \\
\text{index - 9 succ - 1}
\end{align*}

Parts (A) and (B) of Figure 4.280 respectively show the initial and final graph. Since we use the NCC graph property, we display the two connected components of the
final graph. Each of them corresponds to a connected map. The first connected map is made up from one circuit and two trees, while the second one consists of one circuit and one tree. Since we also use the NTREE graph property, we display with a double circle those vertices which do not belong to any circuit but for which at least one successor belong to a circuit.

![Initial and final graph of the map constraint](image)

Figure 4.280: Initial and final graph of the map constraint

Graph model

Observe that, for the argument NBTREE of the map constraint, we consider a definition different from the one used for the argument NTREES of the tree constraint:

- In the map constraint the number of trees NBTREE is equal to the number of vertices of the final graph, which both do not belong to any circuit and have a successor which is located on a circuit. Therefore we count three trees in the previous example.
- In the tree constraint the number of trees NTREES is equal to the number of connected components of the final graph.

See also

- cycle
- tree
- graph_crossing

Key words

- graph_constraint
- graph_partitioning_constraint
- connected_component
4.128 max_index

Origin N. Beldiceanu

Constraint \text{max_index}(\text{MAX_INDEX}, \text{VARIABLES})

Argument(s)
- \text{MAX_INDEX} : dvar
- \text{VARIABLES} : collection(index \text{ int \ var \ dvar})

Restriction(s)
- |\text{VARIABLES}| > 0
- \text{MAX_INDEX} \geq 0
- \text{MAX_INDEX} \leq |\text{VARIABLES}|
- \text{required}(\text{VARIABLES}, [\text{index}, \text{var}])
- \text{VARIABLES}.\text{index} \geq 1
- \text{VARIABLES}.\text{index} \leq |\text{VARIABLES}|
- \text{distinct}(\text{VARIABLES}.\text{index})

Purpose
\text{MAX_INDEX} is the index of the variables corresponding to the maximum value of the collection of variables \text{VARIABLES}.

Arc input(s) \text{VARIABLES}

Arc generator \text{CLIQUE} \mapsto \text{collection}(\text{variables1}, \text{variables2})

Arc arity 2

Arc constraint(s)
\text{variables1}.\text{key} = \text{variables2}.\text{key} \lor \text{variables1}.\text{var} > \text{variables2}.\text{var}

Graph property(ies) \text{ORDER}(0, 0, \text{index}) = \text{MAX_INDEX}

Example
\text{max_index} = \begin{pmatrix} 3, & \text{index} - 1 & \text{var} - 3, \\ \text{index} - 2 & \text{var} - 2, \\ \text{index} - 3 & \text{var} - 7, \\ \text{index} - 4 & \text{var} - 2, \\ \text{index} - 5 & \text{var} - 6 \end{pmatrix}

Parts (A) and (B) of Figure 4.281 respectively show the initial and final graph. Since we use the \text{ORDER} graph property, the vertex of rank 0 (without considering the loops) of the final graph is shown in gray.

Automaton Figure 4.282 depicts the automaton associated to the \text{max_index} constraint. To each item of the collection \text{VARIABLES} corresponds a signature variable \text{S}_i, which is equal to 0.

See also \text{min_index}

Key words \text{order constraint} \text{maximum} \text{automaton} \text{automaton with counters} \text{alpha-acyclic constraint network}(4)
{M=-1000000, I=0, J=0}

Figure 4.281: Initial and final graph of the max_index constraint

Figure 4.282: Automaton of the max_index constraint

Figure 4.283: Hypergraph of the reformulation corresponding to the automaton of the max_index constraint
4.129 \texttt{max_n}

Origin \[33\]

Constraint \texttt{max_n(MAX, RANK, VARIABLES)}

Argument(s)
- \texttt{MAX} : dvar
- \texttt{RANK} : int
- \texttt{VARIABLES} : collection(var \rightarrow dvar)

Restriction(s)
- \(|\text{VARIABLES}| > 0\)
- \(\text{RANK} \geq 0\)
- \(\text{RANK} < |\text{VARIABLES}|\)
 \texttt{required(VARIABLES, var)}

Purpose
\texttt{MAX} is the maximum value of rank \texttt{RANK} (i.e. the \texttt{RANK}th largest distinct value) of the collection of domain variables \texttt{VARIABLES}. Sources have a rank of 0.

Arc input(s) \texttt{VARIABLES}

Arc generator \texttt{CLIQUE \rightarrow collection(variables1, variables2)}

Arc arity 2

Arc constraint(s)
- \texttt{variables1.key = variables2.key} \lor \texttt{variables1.var > variables2.var}

Graph property(ies) \texttt{ORDER}(\texttt{RANK, MININT, var}) = \texttt{MAX}

Example
\[
\begin{pmatrix}
 \text{max}_n & 6, 1, \\
 \text{var} - 3, & \text{var} - 1, \\
 \text{var} - 7, & \text{var} - 1, \\
 \text{var} - 6 & \\
\end{pmatrix}
\]

Parts (A) and (B) of Figure 4.284 respectively show the initial and final graph. Since we use the \texttt{ORDER} graph property, the vertex of rank 1 (without considering the loops) of the final graph is shown in gray.

Algorithm \[33\]

See also \texttt{maximum min_n}

Key words \texttt{order constraint rank maximum}
Figure 4.284: Initial and final graph of the \max_n constraint
4.130 max_nvalue

<table>
<thead>
<tr>
<th>Origin</th>
<th>Derived from nvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint</td>
<td>max_nvalue(MAX, VARIABLES)</td>
</tr>
<tr>
<td>Argument(s)</td>
<td>MAX : dvar</td>
</tr>
<tr>
<td></td>
<td>VARIABLES : collection(var - dvar)</td>
</tr>
<tr>
<td>Restriction(s)</td>
<td>MAX ≥ 1</td>
</tr>
<tr>
<td></td>
<td>MAX ≤</td>
</tr>
<tr>
<td></td>
<td>required(VARIABLES, var)</td>
</tr>
<tr>
<td>Purpose</td>
<td>MAX is the maximum number of times that the same value is taken by the variables of the collection VARIABLES.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arc input(s)</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc generator</td>
<td>CLIQUE → collection(variables1,variables2)</td>
</tr>
<tr>
<td>Arc arity</td>
<td>2</td>
</tr>
<tr>
<td>Arc constraint(s)</td>
<td>variables1.var = variables2.var</td>
</tr>
<tr>
<td>Graph property(ies)</td>
<td>MAX_NSCC = MAX</td>
</tr>
</tbody>
</table>

Example

\[
\text{max_nvalue} = 3, \quad \left\{ \begin{array}{l}
\text{var} = 9, \\
\text{var} = 1, \\
\text{var} = 7, \\
\text{var} = 1, \\
\text{var} = 6, \\
\text{var} = 7, \\
\text{var} = 7, \\
\text{var} = 4, \\
\text{var} = 9
\end{array} \right.
\]

In the previous example, values 1, 4, 6, 7, 9 are respectively used 3, 1, 1, 3, 2 times. So the maximum number of time MAX that a same value occurs is 3. Parts (A) and (B) of Figure 4.285 respectively show the initial and final graph. Since we use the MAX_NSCC graph property, we show the largest strongly connected component of the final graph.

Graph model

Because of the arc constraint, each strongly connected component of the final graph corresponds to a distinct value which is assigned to a subset of variables of the VARIABLES collection. Therefore the number of vertices of the largest strongly connected component is equal to the mostly used value.

Automaton

Figure 4.286 depicts the automaton associated to the max_nvalue constraint. To each item of the collection VARIABLES corresponds a signature variable S_i, which is equal to 0.
Figure 4.285: Initial and final graph of the max_nvalue constraint

Figure 4.286: Automaton of the max_nvalue constraint
Usage

This constraint may be used in order to replace a set of \texttt{count} or \texttt{among} constraints were one would have to generate explicitly one constraint for each potential value. Also useful for constraining the number of occurrences of the mostly used value without knowing this value in advance and without giving explicitly an upper limit on the number of occurrences of each value as it is done in the \texttt{global_cardinality} constraint.

See also

\texttt{nvalue}, \texttt{min_nvalue}

Key words

\texttt{value constraint}, \texttt{assignment}, \texttt{maximum number of occurrences}, \texttt{maximum}, \texttt{automaton}, \texttt{automaton with array of counters}, \texttt{equivalence}
4.131 max_size_set_of_consecutive_var

Origin
N. Beldiceanu

Constraint
max_size_set_of_consecutive_var(MAX, VARIABLES)

Argument(s)
MAX : dvar
VARIABLES : collection(var - dvar)

Restriction(s)
MAX \geq 1
MAX \leq |VARIABLES|
required(VARIABLES.var)

Purpose
MAX is the size of the largest set of variables of the collection VARIABLES which all take their value in a set of consecutive values.

Arc input(s)
VARIABLES

Arc generator
CLIQUE \rightarrow collection(variables1,variables2)

Arc arity
2

Arc constraint(s)
abs(variables1.var - variables2.var) \leq 1

Graph property(ies)
MAX_NSCC = MAX

Example
max_size_set_of_consecutive_var 6,
\{ var - 3,
var - 1,
var - 3,
var - 7,
var - 4,
var - 1,
var - 2,
var - 8,
var - 7,
var - 6 \}

In the previous example, the following sets of variables \{ var - 3, var - 1, var - 3, var - 4, var - 1, var - 2 \} and \{ var - 7, var - 8, var - 7, var - 6 \} take their values in the two following sets of consecutive values \{1, 2, 3, 4\} and \{6, 7, 8\}. The max_size_set_of_consecutive_var constraint holds since the cardinality of the largest set of variables is 6. Parts (A) and (B) of Figure 4.287 respectively show the initial and final graph. Since we use the MAX_NSCC graph property, we show the largest strongly connected component of the final graph.

Graph model
Since the arc constraint is symmetric each strongly connected component of the final graph corresponds exactly to one connected component of the final graph.

See also
nset_of_consecutive_values

Key words
value constraint, consecutive values, maximum
Figure 4.287: Initial and final graph of the max_size set of consecutive var constraint
4.132 maximum

Origin CHIP

Constraint \(\text{maximum}(\text{MAX}, \text{VARIABLES}) \)

Argument(s)
\[
\begin{align*}
\text{MAX} & : \text{dvar} \\
\text{VARIABLES} & : \text{collection}(\text{var} - \text{dvar})
\end{align*}
\]

Restriction(s)
\[
|\text{VARIABLES}| > 0 \\
\text{required}(\text{VARIABLES}, \text{var})
\]

Purpose \(\text{MAX} \) is the maximum value of the collection of domain variables \(\text{VARIABLES} \).

Arc input(s) \(\text{VARIABLES} \)

Arc generator \(\text{CLIQUE} \leftrightarrow \text{collection}(\text{variables1}, \text{variables2}) \)

Arc arity 2

Arc constraint(s)
\[
\text{variables1.key} = \text{variables2.key} \lor \text{variables1.var} > \text{variables2.var}
\]

Graph property(ies) \(\text{ORDER}(0, \text{MININT}, \text{var}) = \text{MAX} \)

Example \[
\begin{align*}
\text{maximum} & : \left\{ \begin{array}{c}
\text{var} - 3, \\
\text{var} - 2, \\
\text{var} - 7, \\
\text{var} - 2, \\
\text{var} - 6
\end{array} \right\}
\end{align*}
\]

Parts (A) and (B) of Figure 4.288 respectively show the initial and final graph. Since we use the \(\text{ORDER} \) graph property, the vertex of rank 0 (without considering the loops) of the final graph is shown in gray.

Graph model We use a similar definition that the one that was utilized for the \(\text{minimum} \) constraint. Within the arc constraint, we replace the comparaison operator \(<\) by \(\geq\).

Automaton Figure 4.289 depicts the automaton associated to the \(\text{maximum} \) constraint. Let \(\text{VAR}_i \) be the \(i^{th} \) variable of the \(\text{VARIABLES} \) collection. To each pair \((\text{MAX}, \text{VAR}_i) \) corresponds a signature variable \(S_i \) as well as the following signature constraint: \((\text{MAX} > \text{VAR}_i \Leftrightarrow S_i = 0) \land (\text{MAX} = \text{VAR}_i \Leftrightarrow S_i = 1) \land (\text{MAX} < \text{VAR}_i \Leftrightarrow S_i = 2) \).

Usage In some project scheduling problems one has to introduce dummy activities which correspond for instance to the completion time of a given set of activities. In this context one can use the \(\text{maximum} \) constraint to get the maximum end of a set of tasks.

Remark Note that \(\text{maximum} \) is a constraint and not just a function that computes the maximum value of a collection of variables: The values of \(\text{MAX} \) influence the variables and reciprocally the values of the variables influence \(\text{MAX} \).
Figure 4.288: Initial and final graph of the maximum constraint

Figure 4.289: Automaton of the maximum constraint
Algorithm [33].

See also minimum.

Key words order constraint, maximum, automaton, automaton without counters, centered cyclic(1) constraint network(1).

Figure 4.290: Hypergraph of the reformulation corresponding to the automaton of the maximum constraint
4.133 maximum_modulo

Origin Derived from maximum

Constraint

maximum_modulo(MAX, VARIABLES, M)

Argument(s)

MAX : dvar
VARIABLES : collection(var − dvar)
M : int

Restriction(s)

|VARIABLES| > 0
M > 0
required(VARIABLES, var)

Purpose

MAX is a maximum value of the collection of domain variables VARIABLES according to the following partial ordering: (X mod M) < (Y mod M).

Arc input(s) VARIABLES
Arc generator CLIQUE → collection(variables1, variables2)
Arc arity 2
Arc constraint(s) variables1.key = variables2.key ∨ variables1.var mod M > variables2.var mod M

Graph property(ies) ORDER(0, MININT, var) = MAX

Example

maximum_modulo 5, {var − 9, var − 1, var − 7, var − 6, var − 5}, 3

Parts (A) and (B) of Figure 4.291 respectively show the initial and final graph. Since we use the ORDER graph property, the vertex of rank 0 (without considering the loops) of the final graph is shown in gray.

See also maximum, minimum_modulo

Key words order constraint, modulo, maximum
Figure 4.291: Initial and final graph of the maximum modulo constraint
4.134 min_index

Origin

N. Beldiceanu

Constraint

min_index(MIN_INDEX, VARIABLES)

Argument(s)

MIN_INDEX : dvar
VARIABLES : collection(index - int. var - dvar)

Restriction(s)

| VARIABLES| > 0
MIN_INDEX ≥ 0
MIN_INDEX ≤ |VARIABLES|
required(VARIABLES, [index, var])
VARIABLES.index ≥ 1
VARIABLES.index ≤ |VARIABLES|
distinct(VARIABLES.index)

Purpose

MIN_INDEX is the index of the variables corresponding to the minimum value of the collection of variables VARIABLES.

Arc input(s)

VARIABLES

Arc generator

CLIQUE → collection(variables1, variables2)

Arc arity

2

Arc constraint(s)

variables1.key = variables2.key ∨ variables1.var < variables2.var

Graph property(ies)

ORDER(0, 0, index) = MIN_INDEX

Example

min_index 2, 4,
 { index - 1 var - 3,
 index - 2 var - 2,
 index - 3 var - 7,
 index - 4 var - 2,
 index - 5 var - 6
 },

min_index 4, 2,
 { index - 1 var - 3,
 index - 2 var - 2,
 index - 3 var - 7,
 index - 4 var - 2,
 index - 5 var - 6
 }

Parts (A) and (B) of Figure 4.292 respectively show the initial and final graph associated to both examples. Since we use the ORDER graph property, the vertices of rank 0 (without considering the loops) of the final graph are shown in gray.

Graph model

Within the context of scheduling, assume the variables of the VARIABLES collection correspond to the starts of a set of tasks. Then MIN_INDEX gives the indexes of those tasks which can be scheduled first.
Figure 4.292: Initial and final graph of the min_index constraint

\[
\{M=1000000, I=0, J=0\}
\]

\[
S \xrightarrow{\text{if } \text{VAR}_i < M \text{ then } M=\text{VAR}_i; } J=J+1
\]

\[
: \text{MIN_INDEX}=i
\]

Figure 4.293: Automaton of the min_index constraint

Figure 4.294: Hypergraph of the reformulation corresponding to the automaton of the min_index constraint
Figure 4.293 depicts the automaton associated to the min_index constraint. Figure 4.293 depicts the automaton associated to the min_index constraint. To each item of the collection VARIABLES corresponds a signature variable S_i, which is equal to 0.

See also

- max_index

Key words

- order constraint
- minimum
- automaton
- automaton with counters
- alpha-acyclic constraint network(4)
4.135 min_n

Origin

Constraint

Argument(s)

MIN : dvar
RANK : int
VARIABLES : collection(var - dvar)

Restriction(s)

| VARIABLES | > 0
RANK ≥ 0
RANK < |VARIABLES|
required(VARIABLES, var)

Purpose

MIN is the minimum value of rank RANK (i.e. the RANKth smallest distinct value) of the collection of domain variables VARIABLES. Sources have a rank of 0.

Arc input(s)

VARIABLES

Arc generator

CLIQUE → collection(variables1,variables2)

Arc arity

2

Arc constraint(s)

variables1.key = variables2.key ∨ variables1.var < variables2.var

Graph property(ies)

ORDER(RANK, MAXINT, var) = MIN

Example

min_n

\[
\left(\begin{array}{c}
\text{var} - 3, \\
\text{var} - 1, \\
\text{var} - 7, \\
\text{var} - 1, \\
\text{var} - 6
\end{array} \right)
\]

Note that identical values are only counted once. This is why the minimum of order 1 is 3 instead of 1 in the previous example. Parts (A) and (B) of Figure 4.295 respectively show the initial and final graph. Since we use the ORDER graph property, the vertex of rank 1 (without considering the loops) of the final graph is shown in gray.

Graph model

A generalization of the minimum constraint.

Automaton

Figure 4.296 depicts the automaton associated to the min_n constraint. Figure 4.296 depicts the automaton associated to the min_n constraint. To each item of the collection VARIABLES corresponds a signature variable S_i, which is equal to 1.

Algorithm

See also

minimum max_n with_pos different_from_0

Key words

order constraint rank minimum maxint automaton automaton with array of counters
Figure 4.295: Initial and final graph of the \min_n constraint

\[
\{C[_] = 0, D = \text{maxint}\}
\]

\[
\text{ith_pos_different_from_0}(\text{RANK} + 1, M, C)\]

\[
\text{MIN} = M + D - 1
\]

Figure 4.296: Automaton of the \min_n constraint
4.136 min_nvalue

<table>
<thead>
<tr>
<th>Origin</th>
<th>N. Beldiceanu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint</td>
<td>min_nvalue(MIN, VARIABLES)</td>
</tr>
<tr>
<td>Argument(s)</td>
<td>MIN : dvar</td>
</tr>
<tr>
<td></td>
<td>VARIABLES : collection(var - dvar)</td>
</tr>
<tr>
<td>Restriction(s)</td>
<td>MIN ≥ 1</td>
</tr>
<tr>
<td></td>
<td>MIN ≤</td>
</tr>
<tr>
<td></td>
<td>required(VARIABLES, var)</td>
</tr>
<tr>
<td>Purpose</td>
<td>MIN is the minimum number of times that the same value is taken by the variables of the collection VARIABLES.</td>
</tr>
</tbody>
</table>

Arc input(s)
VARIABLES

Arc generator
CLIQUE → collection(variables1, variables2)

Arc arity
2

Arc constraint(s)
variables1.var = variables2.var

Graph property(ies)
MIN_NSCC = MIN

Example

\[
\text{min_nvalue}(2, \left\{ \begin{array}{c}
\text{var} - 9, \\
\text{var} - 1, \\
\text{var} - 7, \\
\text{var} - 1, \\
\text{var} - 7, \\
\text{var} - 7, \\
\text{var} - 7, \\
\text{var} - 9
\end{array} \right\})
\]

In the previous example, values 1, 7, 9 are respectively used 3, 5, 2 times. So the minimum number of time that a same value occurs is 2. Parts (A) and (B) of Figure 4.297 respectively show the initial and final graph. Since we use the MIN_NSCC graph property, we show the smallest strongly connected component of the final graph.

Automaton
Figure 4.298 depicts the automaton associated to the min_nvalue constraint. To each item of the collection VARIABLES corresponds a signature variable S_i, which is equal to 0.

Usage
This constraint may be used in order to replace a set of *count* or *among* constraints were one would have to generate explicitly one constraint for each potential value. Also useful for constraining the number of occurrences of the less used value without knowing this value in advance and without giving explicitly a lower limit on the number of occurrences of each value as it is done in the *global_cardinality* constraint.
Figure 4.297: Initial and final graph of the min_nvalue constraint

Figure 4.298: Automaton of the min_nvalue constraint
See also

- nvalue
- max nvalue

Key words

- value constraint
- assignment
- minimum number of occurrences
- minimum
- automaton
- automaton with array of counters
- equivalence
4.137 \texttt{min_size_set_of_consecutive_var}

\begin{itemize}
\item \textbf{Origin} \quad N. Beldiceanu
\item \textbf{Constraint} \quad \texttt{min_size_set_of_consecutive_var(MIN, VARIABLES)}
\item \textbf{Argument(s)} \quad MIN : dvar
\quad VARIABLES : collection(var – dvar)
\item \textbf{Restriction(s)} \quad MIN \geq 1
\quad MIN \leq |VARIABLES|
\quad \text{required}(VARIABLES, var)
\item \textbf{Purpose} \quad MIN is the size of the smallest set of variables of the collection VARIABLES which all take their value in a set of consecutive values.
\item \textbf{Arc input(s)} \quad VARIABLES
\item \textbf{Arc generator} \quad CLIQUE \leftrightarrow \text{collection}(variables1, variables2)
\item \textbf{Arc arity} \quad 2
\item \textbf{Arc constraint(s)} \quad \text{abs}(variables1.var – variables2.var) \leq 1
\item \textbf{Graph property(ies)} \quad \texttt{MIN_NSCC = MIN}
\item \textbf{Example} \quad \texttt{min_size_set_of_consecutive_var} \quad \begin{align*}
\begin{pmatrix}
 \text{var} - 3, \\
 \text{var} - 1, \\
 \text{var} - 3, \\
 \text{var} - 7, \\
 \text{var} - 4, \\
 \text{var} - 1, \\
 \text{var} - 2, \\
 \text{var} - 8, \\
 \text{var} - 7, \\
 \text{var} - 6
\end{pmatrix}
\end{align*}
\end{itemize}

In the previous example, the following sets of variables \{\text{var} - 3, \text{var} - 1, \text{var} - 3, \text{var} - 4, \text{var} - 1, \text{var} - 2\} and \{\text{var} - 7, \text{var} - 8, \text{var} - 7, \text{var} - 6\} take their values in the two following sets of consecutive values \{1, 2, 3, 4\} and \{6, 7, 8\}. The \texttt{min_size_set_of_consecutive_var} constraint holds since the cardinality of the smallest set of variables is 4. Parts (A) and (B) of Figure 4.299 respectively show the initial and final graph. Since we use the \texttt{MIN_NSCC} graph property, we show the smallest strongly connected component of the final graph.

\textbf{Graph model} \quad Since the arc constraint is symmetric each strongly connected component of the final graph corresponds exactly to one connected component of the final graph.

\textbf{See also} \quad \texttt{nset_of_consecutive_values}

\textbf{Key words} \quad value constraint, assignment, consecutive values, minimum
Figure 4.299: Initial and final graph of the \texttt{min}_\texttt{size}_\texttt{set}_\texttt{of}_\texttt{consecutive}_\texttt{var}_\texttt{constraint}
4.138 minimum

<table>
<thead>
<tr>
<th>Origin</th>
<th>CHIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint</td>
<td>(\text{minimum}(\text{MIN, VARIABLES}))</td>
</tr>
<tr>
<td>Argument(s)</td>
<td>(\text{MIN} : \text{dvar}) (\text{VARIABLES} : \text{collection(var – dvar)})</td>
</tr>
<tr>
<td>Restriction(s)</td>
<td>(</td>
</tr>
<tr>
<td>Purpose</td>
<td>(\text{MIN}) is the minimum value of the collection of domain variables (\text{VARIABLES}).</td>
</tr>
<tr>
<td>Arc input(s)</td>
<td>(\text{VARIABLES})</td>
</tr>
<tr>
<td>Arc generator</td>
<td>(\text{CLIQUE} \mapsto \text{collection(variables1, variables2)})</td>
</tr>
<tr>
<td>Arc arity</td>
<td>2</td>
</tr>
<tr>
<td>Arc constraint(s)</td>
<td>(\text{variables1.key} = \text{variables2.key} \lor \text{variables1.var} < \text{variables2.var})</td>
</tr>
<tr>
<td>Graph property(ies)</td>
<td>(\text{ORDER}(0, \text{MAXINT, var}) = \text{MIN})</td>
</tr>
</tbody>
</table>

Example

\[
\text{minimum} \left(\begin{array}{l}
\text{var} - 3, \\
\text{var} - 2, \\
\text{var} - 7, \\
\text{var} - 2, \\
\text{var} - 6
\end{array} \right)
\]

Parts (A) and (B) of Figure 4.300 respectively show the initial and final graph. Since we use the \(\text{ORDER} \) graph property, the vertices of rank 0 (without considering the loops) of the final graph are shown in gray.

Graph model
The condition \(\text{variables1.key} = \text{variables2.key} \) holds if and only if \(\text{variables1} \) and \(\text{variables2} \) corresponds to the same vertex. It is used in order to enforce to keep all the vertices of the initial graph. \(\text{ORDER}(0, \text{MAXINT, var}) \) refers to the source vertices of the graph, i.e. those vertices that do not have any predecessor.

Automaton
Figure 4.301 depicts the automaton associated to the \(\text{minimum} \) constraint. Let \(\text{VAR}_i \) be the \(i^{th} \) variable of the \(\text{VARIABLES} \) collection. To each pair \((\text{MIN, VAR}_i)\) corresponds a signature variable \(S_i \) as well as the following signature constraint: \((\text{MIN} < \text{VAR}_i \iff S_i = 0) \land (\text{MIN} = \text{VAR}_i \iff S_i = 1) \land (\text{MIN} > \text{VAR}_i \iff S_i = 2) \).

Remark
Note that \(\text{minimum} \) is a constraint and not just a function that computes the minimum value of a collection of variables: The values of \(\text{MIN} \) influence the variables and reciprocally the values of the variables influence \(\text{MIN} \).

Algorithm
[33].
Figure 4.300: Initial and final graph of the minimum constraint

Figure 4.301: Automaton of the minimum constraint
Used in: minimum_greater_than, next_element, next_greater_element

See also: maximum

Key words: order constraint, minimum, maxint, automaton, automaton without counters, centered cyclic(1) constraint network(1)

Figure 4.302: Hypergraph of the reformulation corresponding to the automaton of the minimum constraint
4.139 minimum_except_0

Origin Derived from minimum

Constraint minimum_except_0(MIN, VARIABLES)

Argument(s) MIN : dvar
VARIABLES : collection(var – dvar)

Restriction(s) |VARIABLES| > 0
required(VARIABLES.var)
VARIABLES.var ≥ 0

Purpose MIN is the minimum value of the collection of domain variables VARIABLES, ignoring all variables that take 0 as value.

Arc input(s) VARIABLES

Arc generator CLIQUE → collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var ≠ 0
• variables2.var ≠ 0
• variables1.key = variables2.key ∨ variables1.var < variables2.var

Graph property(ies) ORDER(0, MAXINT, var) = MIN

Example

\[
\begin{align*}
\text{minimum_except_0} & \quad 3, \quad \left\{ \begin{array}{l}
\text{var} - 3, \\
\text{var} - 7, \\
\text{var} - 6, \\
\text{var} - 7, \\
\text{var} - 4, \\
\text{var} - 7 \\
\end{array} \right. \\
\text{minimum_except_0} & \quad 2, \quad \left\{ \begin{array}{l}
\text{var} - 3, \\
\text{var} - 2, \\
\text{var} - 0, \\
\text{var} - 7, \\
\text{var} - 2, \\
\text{var} - 6 \\
\end{array} \right. \\
\text{minimum_except_0} & \quad 1000000, \quad \left\{ \begin{array}{l}
\text{var} - 0, \\
\text{var} - 0 \\
\end{array} \right. \\
\end{align*}
\]

Parts (A) and (B) of Figure 4.303 respectively show the initial and final graph of
the second example. Since we use the ORDER graph property, the vertices of rank 0 (without considering the loops) of the final graph are shown in gray.

Since the graph associated to the third example does not contain any vertex, ORDER returns the default value MAXINT.

Graph model Because of the first two conditions of the arc constraint, all vertices that correspond to 0 will be removed from the final graph.

Automaton Figure 4.304 depicts the automaton associated to the minimum_except_0 constraint. Let \(V_A \) be the \(i \)th variable of the VARIABLES collection. To each pair \((\text{MIN}, V_A)\) corresponds a signature variable \(S_i \) as well as the following signature constraint:

\[
((V_A = 0) \land (\text{MIN} \neq \text{MAXINT})) \iff S_i = 0 \\
((V_A = 0) \land (\text{MIN} = \text{MAXINT})) \iff S_i = 1 \\
((V_A \neq 0) \land (\text{MIN} = V_A)) \iff S_i = 2 \\
((V_A \neq 0) \land (\text{MIN} < V_A)) \iff S_i = 3.
\]

Remark The joker value 0 makes sense only because we restrict the variables of the VARIABLES collection to take non-negative values.

See also minimum, min_value

Key words order constraint, joker value, minimum, maxint, automaton, automaton without counters, centered cyclic(1) constraint network(1)
Figure 4.303: Initial and final graph of the $\text{minimum except } 0$ constraint

Figure 4.304: Automaton of the $\text{minimum except } 0$ constraint

Figure 4.305: Hypergraph of the reformulation corresponding to the automaton of the $\text{minimum except } 0$ constraint
4.140 minimum_greater_than

Origin
N. Beldiceanu

Constraint
minimum_greater_than(VAR1, VAR2, VARIABLES)

Argument(s)
VAR1 : dvar
VAR2 : dvar
VARIABLES : collection(var – dvar)

Restriction(s)
\[|VARIABLES| > 0\]
\[\text{required(VARIABLES.var)}\]

Purpose
VAR1 is the smallest value strictly greater than VAR2 of the collection of variables VARIABLES. This concretely means that there exist at least one variable of VARIABLES which take a value strictly greater than VAR1.

Derived Collection(s)
col(ITEM – collection(var – dvar), [item(var – VAR2)])

Arc input(s)
ITEM VARIABLES

Arc generator
PRODUCT \(\rightarrow\) collection(item.var)

Arc arity
2

Arc constraint(s)
item.var < variables.var

Graph property(ies)
NARC > 0

Sets
SUCC \(\rightarrow\) [source, variables]

Constraint(s) on sets
minimum(VAR1, variables)

Example
minimum_greater_than(5, 3, \{\text{var – 8, var – 5, var – 3, var – 8}\})

The minimum_greater_than constraint holds since value 5 is the smallest value strictly greater than value 3 among values 8, 5, 3 and 8. Parts (A) and (B) of Figure \ref{fig:example} respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold. The source and the sinks of the final graph respectively correspond to the variable VAR2 and to the variables of the VARIABLES collection which are strictly greater than VAR2. VAR1 is set to the smallest value of the var attribute of the sinks of the final graph.

Graph model
Similar to the next_greater_element constraint, except that there is no order on the variables of the collection VARIABLES.
Automaton

Figure 4.307 depicts the automaton associated to the minimum_greater_than constraint. Let \(\text{VAR}_i \) be the \(i^{th} \) variable of the VARIABLES collection. To each triple \((\text{VAR}_1, \text{VAR}_2, \text{VAR}_i)\) corresponds a signature variable \(S_i \) as well as the following signature constraint:

\[
\begin{align*}
((\text{VAR}_i < \text{VAR}_1) \land (\text{VAR}_i \leq \text{VAR}_2)) & \iff S_i = 0 \land \\
((\text{VAR}_i = \text{VAR}_1) \land (\text{VAR}_i \leq \text{VAR}_2)) & \iff S_i = 1 \land \\
((\text{VAR}_i > \text{VAR}_1) \land (\text{VAR}_i \leq \text{VAR}_2)) & \iff S_i = 2 \land \\
((\text{VAR}_i < \text{VAR}_1) \land (\text{VAR}_i > \text{VAR}_2)) & \iff S_i = 3 \land \\
((\text{VAR}_i = \text{VAR}_1) \land (\text{VAR}_i > \text{VAR}_2)) & \iff S_i = 4 \land \\
((\text{VAR}_i > \text{VAR}_1) \land (\text{VAR}_i > \text{VAR}_2)) & \iff S_i = 5.
\end{align*}
\]

The automaton is constructed in order to fulfill the following conditions:

- We look for an item of the VARIABLES collection such that \(\text{VAR}_i = \text{VAR}_1 \) and \(\text{VAR}_i > \text{VAR}_2 \).
- There should not exist any item of the VARIABLES collection such that \(\text{VAR}_i < \text{VAR}_1 \) and \(\text{VAR}_i > \text{VAR}_2 \).

See also

- next_greater_element

Key words

- order constraint
- minimum
- automaton
- automaton without counters
- centered cyclic(2) constraint network
- derived collection
Figure 4.306: Initial and final graph of the \texttt{minimum_greater_than} constraint

Figure 4.307: Automaton of the \texttt{minimum_greater_than} constraint
Figure 4.308: Hypergraph of the reformulation corresponding to the automaton of the minimum_greater_than constraint
4.141 minimum_modulo

Origin
Derived from minimum

Constraint
minimum_modulo(MIN, VARIABLES, M)

Argument(s)
MIN : dvar
VARIABLES : collection(var – dvar)
M : int

Restriction(s)
|VARIABLES| > 0
M > 0
required(VARIABLES, var)

Purpose
MIN is a minimum value of the collection of domain variables VARIABLES according to the
following partial ordering: (X mod M) < (Y mod M).

Arc input(s)
VARIABLES

Arc generator
CLIQUE \mapsto collection(variables1, variables2)

Arc arity
2

Arc constraint(s)
variables1.key = variables2.key \lor variables1.var \mod M < variables2.var \mod M

Graph property(ies)
ORDER(0, MAXINT, var) = MIN

Example
minimum_modulo

\[
\begin{pmatrix}
\text{var} - 9, \\
\text{var} - 1, \\
\text{var} - 6, \\
\text{var} - 5, \\
\text{var} - 9, \\
\text{var} - 1, \\
\text{var} - 6, \\
\text{var} - 5
\end{pmatrix}
\]

minimum_modulo

\[
\begin{pmatrix}
6, \\
\text{var} - 7, \\
\text{var} - 5
\end{pmatrix}
\]

\[
\begin{pmatrix}
9, \\
\text{var} - 7, \\
\text{var} - 5
\end{pmatrix}
\]

Parts (A) and (B) of Figure 4.309 respectively show the initial and final graph associated
to the second example. Since we use the ORDER graph property, the vertex of
rank 0 (without considering the loops) associated to value 9 is shown in gray.

Graph model
We use a similar definition that the one that was utilized for the minimum constraint. Within
the arc constraint we replace the condition $X < Y$ by the condition $(X \text{ mod } M) < (Y \text{ mod } M)$.

See also
minimum, maximum_modulo

Key words
order constraint, modulo, maxint, minimum
Figure 4.309: Initial and final graph of the minimum modulo constraint
4.142 minimum_weight_alldifferent

Origin [131]

Constraint

minimum_weight_alldifferent(VARIABLES, MATRIX, COST)

Synonym(s)

minimum_weight_alldiff, minimum_weight_alldistinct, min_weight_alldiff, min_weight_alldifferent, min_weight_alldistinct.

Argument(s)

VARIABLES : collection(var – dvar)
MATRIX : collection(i – int, j – int, c – int)
COST : dvar

Restriction(s)

|VARIABLES| > 0
required(VARIABLES, var)
VARIABLES.var ≥ 1
VARIABLES.var ≤ |VARIABLES|
required(MATRIX, [i, j, c])
increasing_seq(MATRIX, [i, j])
MATRIX.i ≥ 1
MATRIX.i ≤ |VARIABLES|
MATRIX.j ≥ 1
MATRIX.j ≤ |VARIABLES|
|MATRIX| = |VARIABLES| * |VARIABLES|

Purpose

All variables of the VARIABLES collection should take a distinct value located within interval [1, |VARIABLES|]. In addition COST is equal to the sum of the costs associated to the fact that we assign value i to variable j. These costs are given by the matrix MATRIX.

Arc input(s)

VARIABLES

Arc generator

CLIQUE ↦ collection(variables1, variables2)

Arc arity

2

Arc constraint(s)

variables1.var = variables2.key

Graph property(ies)

• NTREE = 0
• SUM_WEIGHT_ARC(MATRIX([variables1.key − 1] * |VARIABLES| + variables1.var).c) = COST
Example

minimum_weight_alldifferent

\[
\begin{pmatrix}
\{ \text{var} - 2, \\
\text{var} - 3, \\
\text{var} - 1, \\
\text{var} - 4 \}
\end{pmatrix},
\]

\[
\begin{pmatrix}
\{ i - 1, j - 1 \ c - 4, \\
i - 1, j - 2 \ c - 1, \\
i - 1, j - 3 \ c - 7, \\
i - 1, j - 4 \ c - 0, \\
i - 2, j - 1 \ c - 1, \\
i - 2, j - 2 \ c - 0, \\
i - 2, j - 3 \ c - 8, \\
i - 2, j - 4 \ c - 2, \\
i - 3, j - 1 \ c - 3, \\
i - 3, j - 2 \ c - 2, \\
i - 3, j - 3 \ c - 1, \\
i - 3, j - 4 \ c - 6, \\
i - 4, j - 1 \ c - 0, \\
i - 4, j - 2 \ c - 0, \\
i - 4, j - 3 \ c - 6, \\
i - 4, j - 4 \ c - 5
\}
\end{pmatrix}, 17
\]

The cost 17 corresponds to the sum \(\text{MATRIX}[(1 - 1) \cdot 4 + 2].c + \text{MATRIX}[(2 -

![Graph](image)

Figure 4.310: Initial and final graph of the minimum_weight_alldifferent constraint

1) \cdot 4 + 3].c + \text{MATRIX}[(3 - 1) \cdot 4 + 1].c + \text{MATRIX}[(4 - 1) \cdot 4 + 4].c =
\text{MATRIX}[2].c + \text{MATRIX}[7].c + \text{MATRIX}[9].c + \text{MATRIX}[16].c = 1 + 8 + 3 + 5.

Parts (A) and (B) of Figure 4.310 respectively show the initial and final graph. Since we use the \text{SUM_WEIGHT_ARC} graph property, the arcs of the final graph are stressed in bold; We also indicate their corresponding weight.

Graph model

Since each variable takes one value, and because of the arc constraint \text{variables1 = variables.key}, each vertex of the initial graph belongs to the final graph and has exactly
one successor. Therefore the sum of the out-degrees of the vertices of the final graph is equal to the number of vertices of the final graph. Since the sum of the in-degrees is equal to the sum of the out-degrees, it is also equal to the number of vertices of the final graph. Since $\text{N TREE} = 0$, each vertex of the final graph belongs to a circuit. Therefore each vertex of the final graph has at least one predecessor. Since we saw that the sum of the in-degrees is equal to the number of vertices of the final graph, each vertex of the final graph has exactly one predecessor. We conclude that the final graph consists of a set of vertex-disjoint elementary circuits.

Finally the graph constraint expresses the fact that the COST variable is equal to the sum of the elementary costs associated to each variable-value assignment. All these elementary costs are recorded in the MATRIX collection. More precisely, the cost c_{ij} is recorded in the attribute c of the $((i-1) \cdot |\text{VARIABLES}| + j)^{th}$ entry of the MATRIX collection. This is ensured by the increasing restriction which enforces the fact that the items of the MATRIX collection are sorted in lexicographically increasing order according to attributes i and j.

Algorithm

A filtering algorithm is described in [132]. It can be used for handling both side of the minimum weight alldifferent constraint:

- Evaluating a lower bound of the COST variable and pruning the variables of the VARIABLES collection in order to not exceed the maximum value of COST.
- Evaluating an upper bound of the COST variable and pruning the variables of the VARIABLES collection in order to not be under the minimum value of COST.

See also

- alldifferent
- global_cardinality_with_costs
- weighted_partial_alldiff

Key words

- cost filtering constraint
- assignment
- cost matrix
- weighted assignment
- one_succ
4.143 nclass

Origin Derived from nvalue

Constraint \(\text{nclass(NCLASS, VARIABLES, PARTITIONS)} \)

Type(s) \(\text{VALUES : collection(val - int)} \)

Argument(s) \(\text{NCLASS : dvar} \)
\(\text{VARIABLES : collection(var - dvar)} \)
\(\text{PARTITIONS : collection(p - VALUES)} \)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
NCLASS \(\geq 0 \)
NCLASS \(\leq \min(|\text{VARIABLES}|, |\text{PARTITIONS}|) \)
required(VALUES, var)
required(PARTITIONS, p)
|\text{PARTITIONS}| \(\geq 2 \)

Purpose Number of partitions of the collection PARTITIONS such that at least one value is assigned to at least one variable of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator \(\text{CLIQUE} \mapsto \text{collection(variables1, variables2)} \)

Arc arity 2

Arc constraint(s) in_same_partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) \(\text{NSCC} = \text{NCLASS} \)

Example nclass

\[
\begin{pmatrix}
\text{var - 3,} \\
\text{var - 2,} \\
\text{var - 7,} \\
\text{var - 2,} \\
\text{var - 6,}
\end{pmatrix},
\begin{pmatrix}
\text{p - \{val - 1, val - 3\},} \\
\text{p - \{val - 4\},} \\
\text{p - \{val - 2, val - 6\}}
\end{pmatrix}
\]

Parts (A) and (B) of Figure 4.311 respectively show the initial and final graph. Since we use the NSCC graph property we show the different strongly connected components of the final graph. Each strongly connected component corresponds to one class of values which were assigned to some variables of the VARIABLES collection. We effectively use two classes of values that respectively correspond to values \{3\} and \{2, 6\}. Note that we do not consider value 7 since it does not belong to the different classes of values we gave: all corresponding arc constraints do not hold.
Algorithm

See also

Key words
Figure 4.311: Initial and final graph of the \textit{nclass} constraint
4.144 nequivalence

Origin
Derived from \texttt{nvalue}

Constraint
\[
\text{nequivalence}(\text{NEQUIV}, M, \text{VARIABLES})
\]

Argument(s)
- \text{NEQUIV} : dvar
- \text{M} : int
- \text{VARIABLES} : collection(var - dvar)

Restriction(s)
- \text{NEQUIV} \geq \min(1, |\text{VARIABLES}|)
- \text{NEQUIV} \leq \min(\text{M}, |\text{VARIABLES}|)
- \text{M} > 0
- \text{required}(\text{VARIABLES}, \text{var})

Purpose
\text{NEQUIV} is the number of distinct rests obtained by dividing the variables of the collection \text{VARIABLES} by \text{M}.

Arc input(s)
\text{VARIABLES}

Arc generator
\text{CLIQUE} \rightarrow \text{collection}(\text{variables1}, \text{variables2})

Arc arity
2

Arc constraint(s)
\text{variables1}.\text{var} \mod \text{M} = \text{variables2}.\text{var} \mod \text{M}

Graph property(ies)
\text{NSCC} = \text{NEQUIV}

Example
\[
\text{nequivalence} \left(\begin{array}{c} \text{var} - 3, \\ \text{var} - 2, \\ \text{var} - 5, \\ \text{var} - 6, \\ \text{var} - 15, \\ \text{var} - 3, \\ \text{var} - 3 \end{array} \right)
\]

Parts (A) and (B) of Figure 4.312 respectively show the initial and final graph. Since we use the \text{NSCC} graph property we show the different strongly connected components of the final graph. Each strongly connected component corresponds to one equivalence class: We have two equivalence classes that respectively correspond to values \{3, 6, 15\} and \{2, 5\}.

Algorithm
Since constraints \(X = Y\) and \(X \equiv Y \mod M\) are similar, one should also use a similar algorithm as the one [33, 106] provided for constraint \texttt{nvalue}.

See also
\texttt{nvalue}, \texttt{nclass}, \texttt{interval}, \texttt{pair}

Key words
\texttt{counting constraint}, \texttt{value partitioning constraint}, \texttt{number of distinct equivalence classes}, \texttt{strongly connected component}, \texttt{equivalence}
Figure 4.312: Initial and final graph of the nequivalence constraint
4.145 **next_element**

Origin
N. Beldiceanu

Constraint
`next_element(THRESHOLD, INDEX, TABLE, VAL)`

Argument(s)
- `THRESHOLD`: `dvar`
- `INDEX`: `dvar`
- `TABLE`: `collection(index - int, value - dvar)`
- `VAL`: `dvar`

Restriction(s)
- `INDEX ≥ 1`
- `INDEX ≤ |TABLE|`
- `required(TABLE, [index, value])`
- `TABLE.index ≥ 1`
- `TABLE.index ≤ |TABLE|`
- `distinct(TABLE, index)`

Purpose
INDEX is the smallest entry of TABLE strictly greater than THRESHOLD containing value VAL.

Derived Collection(s)
```
col (ITEM - collection(index - dvar, value - dvar),
     [item(index - THRESHOLD, value - VAL)])
```

Arc input(s)
ITEM TABLE

Arc generator
`PRODUCT` \mapsto `collection(item, table)`

Arc arity
2

Arc constraint(s)
- `item.index < table.index`
- `item.value = table.value`

Graph property(ies)
`NARC > 0`

Sets
```
SUCC $\leftarrow$
- `source`,
- `variables - col(VARIABLES - collection(var - dvar), [item(var - TABLE.index)])`
```

Constraint(s) on sets
`minimum(INDEX, variables)`

Example
```
next_element(2, 3,
             { index - 1 value - 1,
             index - 2 value - 8,
             index - 3 value - 9,
             index - 4 value - 5,
             index - 5 value - 9 }, 9)
```

The `next_element` constraint holds since 3 is the smallest entry located after entry 2 that contains value 9. Parts (A) and (B) of Figure 4.313 respectively show the initial and final graph associated to the second graph constraint. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.
Automaton

Figure 4.314 depicts the automaton associated to the \texttt{next_element} constraint. Let I_k and V_k respectively be the index and the value attributes of the k^{th} item of the \texttt{TABLE} collections. To each quintuple $(\text{THRESHOLD}, \text{INDEX}, \text{VAL}, I_k, V_k)$ corresponds a signature variable S_k as well as the following signature constraint:

\[
\begin{align*}
((I_k \leq \text{THRESHOLD}) \land (I_k < \text{INDEX}) \land (V_k = \text{VAL})) & \iff S_k = 0 \land \\
((I_k \leq \text{THRESHOLD}) \land (I_k < \text{INDEX}) \land (V_k \neq \text{VAL})) & \iff S_k = 1 \land \\
((I_k \leq \text{THRESHOLD}) \land (I_k = \text{INDEX}) \land (V_k = \text{VAL})) & \iff S_k = 2 \land \\
((I_k \leq \text{THRESHOLD}) \land (I_k = \text{INDEX}) \land (V_k \neq \text{VAL})) & \iff S_k = 3 \land \\
((I_k \leq \text{THRESHOLD}) \land (I_k > \text{INDEX}) \land (V_k = \text{VAL})) & \iff S_k = 4 \land \\
((I_k \leq \text{THRESHOLD}) \land (I_k > \text{INDEX}) \land (V_k \neq \text{VAL})) & \iff S_k = 5 \land \\
((I_k > \text{THRESHOLD}) \land (I_k < \text{INDEX}) \land (V_k = \text{VAL})) & \iff S_k = 6 \land \\
((I_k > \text{THRESHOLD}) \land (I_k < \text{INDEX}) \land (V_k \neq \text{VAL})) & \iff S_k = 7 \land \\
((I_k > \text{THRESHOLD}) \land (I_k = \text{INDEX}) \land (V_k = \text{VAL})) & \iff S_k = 8 \land \\
((I_k > \text{THRESHOLD}) \land (I_k = \text{INDEX}) \land (V_k \neq \text{VAL})) & \iff S_k = 9 \land \\
((I_k > \text{THRESHOLD}) \land (I_k > \text{INDEX}) \land (V_k = \text{VAL})) & \iff S_k = 10 \land \\
((I_k > \text{THRESHOLD}) \land (I_k > \text{INDEX}) \land (V_k \neq \text{VAL})) & \iff S_k = 11.
\end{align*}
\]

The automaton is constructed in order to fulfill the following conditions:

- We look for an item of the \texttt{TABLE} collection such that $\text{INDEX}_i > \text{THRESHOLD}$ and $\text{INDEX}_i = \text{INDEX}$ and $\text{VALUE}_i = \text{VAL}$.
- There should not exist any item of the \texttt{TABLE} collection such that $\text{INDEX}_i > \text{THRESHOLD}$ and $\text{INDEX}_i < \text{INDEX}$ and $\text{VALUE}_i = \text{VAL}$.

Usage

Originally introduced for modelling the fact that a nucleotide has to be consumed as soon as possible at cycle INDEX after a given cycle represented by variable THRESHOLD.

See also

\texttt{minimum_greater_than} \texttt{next_greater_element}

Key words

\texttt{data constraint } \texttt{minimum } \texttt{table } \texttt{automaton } \texttt{automaton without counters} \texttt{centered cyclic(3) constraint network(1) derived collection}
Figure 4.313: Initial and final graph of the next_element constraint

Figure 4.314: Automaton of the next_element constraint
Figure 4.315: Hypergraph of the reformulation corresponding to the automaton of the \textit{next element} constraint
4.146 next_greater_element

Origin
M. Carlsson

Constraint
next_greater_element(VAR1, VAR2, VARIABLES)

Argument(s)
VAR1 : dvar
VAR2 : dvar
VARIABLES : collection(var – dvar)

Restriction(s)
|VARIABLES| > 0
required(VARIABLES, var)

Purpose
VAR2 is the value strictly greater than VAR1 located at the smallest possible entry of the table TABLE. In addition, the variables of the collection VARIABLES are sorted in strictly increasing order.

Derived Collection(s)
col(V – collection(var – dvar), [item(var – VAR1)])

Arc input(s)
VARIABLES

Arc generator
PATH ⤷ collection(variables1, variables2)

Arc arity
2

Arc constraint(s)
variables1.var < variables2.var

Graph property(ies)
NARC = |VARIABLES| – 1

Arc input(s)
V VARIABLES

Arc generator
PRODUCT ⤷ collection(v, variables)

Arc arity
2

Arc constraint(s)
v.var < variables.var

Graph property(ies)
NARC > 0

Sets
SUCC ⤷ [source, variables]

Constraint(s) on sets
minimum(VAR2, variables)

Example
next_greater_element

\[
\begin{pmatrix}
7, 8, \\
\{ var – 3, \} \\
\{ var – 5, \} \\
\{ var – 8, \} \\
\{ var – 9 \}
\end{pmatrix}
\]

The next_greater_element constraint holds since:
- VAR2 is fixed to the first value 8 strictly greater than VAR1 = 7.
- The var attributes of the items of the collection VARIABLES are sorted in strictly increasing order.

Parts (A) and (B) of Figure 4.316 respectively show the initial and final graph associated to the second graph constraint. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

![Diagram](image)

Figure 4.316: Initial and final graph of the next_greater_element constraint

Signature

Since the first graph constraint uses the PATH arc generator on the VARIABLES collection, the number of arcs of the corresponding initial graph is equal to |VARIABLES| − 1. Therefore the maximum number of arcs of the final graph is equal to |VARIABLES| − 1. For this reason we can rewrite $NARC = |VARIABLES| − 1$ to $NARC \geq |VARIABLES| − 1$ and simplify $NARC$ to $NARC$.

Usage

Originally introduced for modelling the fact that a nucleotide has to be consumed as soon as possible at cycle VAR2 after a given cycle VAR1.

Remark

Similar to the minimum_greater_than constraint, except for the fact that the var attributes are sorted.

See also

- minimum_greater_than
- next_element

Key words

- order constraint
- minimum
- data constraint
- table
- derived collection
4.147 ninterval

Origin Derived from nvalue

Constraint \(\text{ninterval}(\text{NVAL, VARIABLES, SIZE_INTERVAL}) \)

Argument(s)
\[\begin{align*}
\text{NVAL} & : \text{dvar} \\
\text{VARIABLES} & : \text{collection(var - dvar)} \\
\text{SIZE_INTERVAL} & : \text{int}
\end{align*} \]

Restriction(s)
\[\begin{align*}
\text{NVAL} & \geq \min(1, |\text{VARIABLES}|) \\
\text{NVAL} & \leq |\text{VARIABLES}| \\
\text{required}(\text{VARIABLES, var}) \\
\text{SIZE_INTERVAL} & > 0
\end{align*} \]

Purpose Consider the intervals of the form \([\text{SIZE_INTERVAL} \cdot k, \text{SIZE_INTERVAL} \cdot k + \text{SIZE_INTERVAL} - 1]\) where \(k\) is an integer. NVAL is the number of intervals for which at least one value is assigned to at least one variable of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator \(\text{CLIQUE} \mapsto \text{collection(variables1, variables2)} \)

Arc arity 2

Arc constraint(s) \(\text{variables1.var/SIZE_INTERVAL} = \text{variables2.var/SIZE_INTERVAL} \)

Graph property(ies) \(\text{NSCC} = \text{NVAL} \)

Example \[\text{ninterval} \left(2, \begin{align*}
\text{var} - 3, \\
\text{var} - 1, \\
\text{var} - 9
\end{align*} \right), 4 \]

Usage The ninterval constraint is useful for counting the number of effectively used periods, no matter how many times each period is used. A period can for example stand for a hour or for a day.

Algorithm [33, 106].

See also nvalue, nclass, nequivalence, npair.

Key words counting constraint, value partitioning constraint, number of distinct equivalence classes, interval, strongly connected component, equivalence.
Figure 4.317: Initial and final graph of the ninterval constraint
4.148 no_peak

Origin
Derived from peak

Constraint
no_peak(VARIABLES)

Argument(s)
VARIABLES : collection(var - dvar)

Restriction(s)
|VARIABLES| > 0
required(VARIABLES, var)

Purpose
A variable \(V_k \) \((1 < k < m)\) of the sequence of variables VARIABLES = \(V_1, \ldots, V_m \) is a peak if and only if there exist an \(i \) \((1 < i < k)\) such that \(V_{i-1} < V_i \) and \(V_i = V_{i+1} = \ldots = V_k \) and \(V_k > V_{k+1} \). The total number of peaks of the sequence of variables VARIABLES is equal to 0.

Example
\[
\begin{pmatrix}
\text{var} - 1, \\
\text{var} - 1, \\
\text{var} - 4, \\
\text{var} - 8, \\
\text{var} - 8
\end{pmatrix}
\]

The previous constraint holds since the sequence 1 1 4 8 8 does not contain any peak.

Figure 4.318: A sequence without any peak

Automaton
Figure 4.319 depicts the automaton associated to the no_peak constraint. To each pair of consecutive variables \((\text{VAR}_i, \text{VAR}_{i+1})\) of the collection VARIABLES corresponds a signature variable \(S_i \). The following signature constraint links \(\text{VAR}_i, \text{VAR}_{i+1} \) and \(S_i \): \((\text{VAR}_i < \text{VAR}_{i+1} \leftrightarrow S_i = 0) \land (\text{VAR}_i = \text{VAR}_{i+1} \leftrightarrow S_i = 1) \land (\text{VAR}_i > \text{VAR}_{i+1} \leftrightarrow S_i = 2)\).

See also
peak no_valley valley

Key words
sequence automaton automaton without counters sliding cyclic(1) constraint network(1)
Figure 4.319: Automaton of the no peak constraint

Figure 4.320: Hypergraph of the reformulation corresponding to the automaton of the no peak constraint
4.149 no_valley

Origin Derived from valley
Constraint no_valley(VARIABLES)
Argument(s) VARIABLES : collection(var − dvar)
Restriction(s) |VARIABLES| > 0

required(VARIABLES, var)

Purpose A variable \(V_k \) (1 < k < m) of the sequence of variables VARIABLES = \(V_1, \ldots, V_m \) is a valley

if and only if there exist an i (1 < i < k) such that \(V_{i-1} > V_i \) and \(V_i = V_{i+1} = \ldots = V_k \) and \(V_k < V_{k+1} \). The total number of valleys of the sequence of variables VARIABLES is equal to 0.

Example no_valley

\[
\begin{cases}
 \text{var} - 1, \\
 \text{var} - 1, \\
 \text{var} - 4, \\
 \text{var} - 8, \\
 \text{var} - 8, \\
 \text{var} - 2
\end{cases}
\]

The previous constraint holds since the sequence 1 1 4 8 8 2 does not contain any valley.

Figure 4.321: A sequence without any valley

Automaton Figure 4.322 depicts the automaton associated to the no_valley constraint. To each pair of consecutive variables (\(\text{VAR}_i, \text{VAR}_{i+1} \)) of the collection VARIABLES corresponds a signature variable \(S_i \). The following signature constraint links \(\text{VAR}_i, \text{VAR}_{i+1} \) and \(S_i \): \((\text{VAR}_i < \text{VAR}_{i+1} \iff S_i = 0 \) \) \(\land (\text{VAR}_i = \text{VAR}_{i+1} \iff S_i = 1 \) \) \(\land (\text{VAR}_i > \text{VAR}_{i+1} \iff S_i = 2 \).

See also valley no_peak peak

Key words sequence automaton automaton without counters sliding cyclic(1) constraint network(1)
Figure 4.322: Automaton of the \texttt{no_valley} constraint

Figure 4.323: Hypergraph of the reformulation corresponding to the automaton of the \texttt{no_valley} constraint
4.150 not_all_equal

Origin CHIP
Constraint not_all_equal\((\text{VARIABLES})\)
Argument(s) \text{VARIABLES} : collection\((\text{var} - \text{dvar})\)
Restriction(s) required\((\text{VARIABLES}, \text{var})\)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Purpose The variables of the collection \text{VARIABLES} should take more than one single value.

Arc input(s) \text{VARIABLES}
Arc generator $\text{CLIQUE} \rightarrow \text{collection}\((\text{variables1}, \text{variables2})\)$
Arc arity 2
Arc constraint(s) \text{variables1.var} = \text{variables2.var}
Graph property(ies) NSCC > 1

Example $$\begin{pmatrix}
\text{var} - 3, \\
\text{var} - 1, \\
\text{var} - 3, \\
\text{var} - 3
\end{pmatrix}$$

Parts (A) and (B) of Figure 4.324 respectively show the initial and final graph. Since we use the NSCC graph property we show the different strongly connected components of the final graph. Each strongly connected component corresponds to one value which is assigned to some variables of the \text{VARIABLES} collection. The not_all_equal holds since the final graph contains more than one strongly connected component.

Automaton Figure 4.325 depicts the automaton associated to the not_all_equal constraint. To each pair of consecutive variables \((\text{VAR}_i, \text{VAR}_{i+1})\) of the collection \text{VARIABLES} corresponds a signature variable \(S_i\). The following signature constraint links \(\text{VAR}_i, \text{VAR}_{i+1}\) and \(S_i\):

$$\text{VAR}_i = \text{VAR}_{i+1} \leftrightarrow S_i.$$

Algorithm If the intersection of the domains of the variables of the \text{VARIABLES} collection is empty the not_all_equal constraint is entailed. Otherwise, when only one single variable \(V\) remains not fixed, remove the unique value (unique since the constraint is not entailed) taken by the other variables from the domain of \(V\).

See also nvalue

Key words value constraint, disequality, automaton, automaton without counters, sliding cyclic(1) constraint network(1), equivalence
Figure 4.324: Initial and final graph of the not_all_equal constraint

Figure 4.325: Automaton of the not_all_equal constraint

Figure 4.326: Hypergraph of the reformulation corresponding to the automaton of the not_all_equal constraint
4.151 **not_in**

Origin Derived from **in**

Constraint

```plaintext
not_in(VAR, VALUES)
```

Argument(s)

```plaintext
VAR : dvar
VALUES : collection(val - int)
```

Restriction(s)

```plaintext
required(VALUES, val)
distinct(VALUES, val)
```

Purpose

Remove the values of the VALUES collection from domain variable VAR.

Derived Collection(s)

```plaintext
col(VARIABLES - collection(var - dvar), [item(var - VAR)])
```

Arc input(s)

VARIABLES VALUES

Arc generator

```plaintext
PRODUCT ⨝ collection(variables, values)
```

Arc arity

2

Arc constraint(s)

```plaintext
variables.var = values.val
```

Graph property(ies)

```plaintext
NARC = 0
```

Example

```plaintext
not_in(2, {val - 1, val - 3})
```

Figure 4.327 shows the initial graph associated to the previous example. Since we use the NARC = 0 graph property the final graph is empty.

![Initial graph of the not_in constraint](image)

Signature

Since 0 is the smallest number of arcs of the final graph we can rewrite NARC = 0 to NARC ≤ 0. This leads to simplify NARC to NARC.
Figure 4.328 depicts the automaton associated to the `not in` constraint. Let VAL_i be the val attribute of the i^{th} item of the VALUES collection. To each pair $(\text{VAR}, \text{VAL}_i)$ corresponds a 0-1 signature variable S_i as well as the following signature constraint: $\text{VAR} = \text{VAL}_i \Leftrightarrow S_i$.

Remark

Entailment occurs immediately after posting this constraint.

Used in

[group]

See also

[see]

Key words

[value constraint, unary constraint, excluded, disequality, domain definition, automaton, automaton without counters, centered cyclic(1) constraint network(1), derived collection]

Figure 4.328: Automaton of the `not in` constraint
Figure 4.329: Hypergraph of the reformulation corresponding to the automaton of the not_in constraint
4.152 npair

Origin

Derived from $nvalue$

Constraint

npair(NVAL,PAIRS)

Argument(s)

NVAL : dvar
PAIRS : collection(x, dvar,y, dvar)

Restriction(s)

NVAL $\geq \min(1,|PAIRS|)$
NVAL $\leq |PAIRS|$
required(PAIRS,$[x,y]$)

Purpose

NVAL is the number of distinct pairs of values assigned to the pairs of variables of the collection PAIRS.

Arc input(s)

PAIRS

Arc generator

$CLIQUE \mapsto collection(pairs1,pairs2)$

Arc arity

2

Arc constraint(s)

\bullet pairs1.x = pairs2.x
\bullet pairs1.y = pairs2.y

Graph property(ies)

NSCC = NVAL

Example

npair(2, \{(x - 3, y - 1),
(x - 1, y - 5),
(x - 3, y - 1),
(x - 3, y - 1),
(x - 1, y - 5)\})

Parts (A) and (B) of Figure 4.330 respectively show the initial and final graph. Since we use the NSCC graph property we show the different strongly connected components of the final graph. Each strongly connected component corresponds to one pair of values which is assigned to some pairs of variables of the PAIRS collection. In our example we have the following pairs of values: (3,1) and (1,5).

Remark

This is an example of a number of distinct values constraint where there is more than one attribute that is associated to each vertex of the final graph.

See also

$nvalue$, $nclass$, $nequivalence$, $ninterval$

Key words

counting constraint, value partitioning constraint, number of distinct equivalence classes, pair, strongly connected component, equivalence
Figure 4.330: Initial and final graph of the npair constraint
4.153 nset_of_consecutive_values

Origin
N. Beldiceanu

Constraint
nset_of_consecutive_values(N, VARIABLES)

Argument(s)
N : dvar
VARIABLES : collection(var - dvar)

Restriction(s)
N ≥ 1
N ≤ |VARIABLES|
required(VARIABLES, var)

Purpose
N is the number of set of consecutive values used by the variables of the collection VARIABLES.

Arc input(s)
VARIABLES

Arc generator
CLIQUE ⊝ collection(variables1, variables2)

Arc arity
2

Arc constraint(s)
abs(variables1.var - variables2.var) ≤ 1

Graph property(ies)
NSCC = N

Example
nset_of_consecutive_values

\[
\begin{pmatrix}
\text{var} - 3, \\
\text{var} - 1, \\
\text{var} - 7,
\end{pmatrix}
\begin{pmatrix}
\text{2}, \\
\text{var} - 1, \\
\text{var} - 2, \\
\text{var} - 8
\end{pmatrix}
\]

In this example, the variables of the collection VARIABLES use the following two sets of consecutive values: \{1, 2, 3\} and \{7, 8\}. Parts (A) and (B) of Figure 4.331 respectively show the initial and final graph. Since we use the NSCC graph property, we show the two strongly connected components of the final graph.

Graph model
Since the arc constraint is symmetric each strongly connected component of the final graph corresponds exactly to one connected component of the final graph.

Usage
Used for specifying the fact that the values have to be used in a compact way is achieved by setting \(N\) to 1.

See also
min_size_set_of_consecutive_var

Key words
value constraint, consecutive values, strongly connected component
Figure 4.331: Initial and final graph of the `nset_of_consecutive_values` constraint
4.154 nvalue

Origin [73]

Constraint nvalue(NVAL, VARIABLES)

Synonym(s) cardinality_on_attributes_values.

Argument(s) NVAL : dvar
VARIABLES : collection(var - dvar)

Restriction(s) NVAL ≥ min(1, |VARIABLES|)
NVAL ≤ |VARIABLES|
required(VARIABLES.var)

Purpose NVAL is the number of distinct values taken by the variables of the collection VARIABLES.

Arc input(s) VARIABLES

Arc generator CLIQUE ↦ collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC = NVAL

Example

\[
nvalue \begin{pmatrix} 4, \\
\{ \text{var} - 3, \\
\text{var} - 1, \\
\text{var} - 7, \\
\text{var} - 1, \\
\text{var} - 6 \} \end{pmatrix}
\]

Parts (A) and (B) of Figure 4.332 respectively show the initial and final graph. Since we use the NSCC graph property we show the different strongly connected components of the final graph. Each strongly connected component corresponds to one value which is assigned to some variables of the VARIABLES collection. The 4 following values 1, 3, 6 and 7 are used by the variables of the VARIABLES collection.

Automaton Figure 4.333 depicts the automaton associated to the nvalue constraint. To each item of the collection VARIABLES corresponds a signature variable S_i, which is equal to 0.

Usage This constraint occurs in many practical applications. In the context of timetabling one wants to set up a limit on the maximum number of activity types it is possible to perform. For frequency allocation problems, one optimisation criteria corresponds to the fact that you want to minimize the number of distinct frequencies that you use all over the entire network. The nvalue constraint generalizes several constraints like:
Figure 4.332: Initial and final graph of the `nvalue` constraint

Figure 4.333: Automaton of the `nvalue` constraint
- `alldifferent(VARIABLES)`: in order to get the `alldifferent` constraint, one has to set `NVAL` to the total number of variables.
- `not_all_equal(VARIABLES)`: in order to get the `not_all_equal` constraint, one has to set the minimum value of `NVAL` to 2.

Remark

This constraint appears in [73, page 339] under the name of *Cardinality on Attributes Values*. A constraint called `k – diff` enforcing that a set of variables takes at least `k` distinct values appears in the PhD thesis of J.-C. Régis [133].

Algorithm

\[33 \quad [106 \quad 54] \]

Used in

\[\text{track} \]

See also

`alldifferent`, `not_all_equal`, `nvalues`, `nvalues_except_0`, `npair`, `nvalue_on_intersection`, `among_diff_0`

Key words

`counting constraint`, `value partitioning constraint`, `number of distinct equivalence classes`, `number of distinct values`, `strongly connected component`, `domination`, `automaton`, `automaton with array of counters`, `equivalence`
4.155 nvalue_on_intersection

Origin Derived from {common} and {nvalue}
Constraint nvalue_on_intersection(NVAL, VARIABLES1, VARIABLES2)
Argument(s) NVAL : dvar
 VARIABLES1 : collection(var – dvar)
 VARIABLES2 : collection(var – dvar)
Restriction(s) NVAL ≥ 0
 NVAL ≤ |VARIABLES1|
 NVAL ≤ |VARIABLES2|
 required(VARIABLES1, var)
 required(VARIABLES2, var)
Purpose NVAL is the number of distinct values which both occur in the VARIABLES1 and VARIABLES2 collections.
Arc input(s) VARIABLES1 VARIABLES2
Arc generator PRODUCT → collection(variables1,variables2)
Arc arity 2
Arc constraint(s) variables1.var = variables2.var
Graph property(ies) NCC = NVAL

Example nvalue_on_intersection
 \[
 \begin{cases}
 2, & \{\text{var} - 1, \\
 \text{var} - 9, \\
 \text{var} - 1, \\
 \text{var} - 5
 \end{cases}
 \]

Parts (A) and (B) of Figure 4.334 respectively show the initial and final graph. Since we use the NCC graph property we show the connected components of the final graph. The variable NVAL is equal to this number of connected components. Observe that all the vertices corresponding to the variables that take values 5, 2 or 6 were removed from the final graph since there is no arc for which the associated equality constraint holds.

See also nvalue, common, alldifferent on intersection, same intersection
Key words counting constraint, number of distinct values, connected component, constraint on the intersection
Figure 4.334: Initial and final graph of the nvalue on intersection constraint
4.156 nvalues

Origin
Inspired by `nvalue` and `count`.

Constraint
nvalues(VARIABLES, RELOP, LIMIT)

Argument(s)
- VARIABLES : collection(var – dvar)
- RELOP : atom
- LIMIT : dvar

Restriction(s)
- required(VARIABLES, var)
- RELOP ∈ [=, !, <, ≥, >, ≤]

Purpose
Let \(N \) be the number of distinct values assigned to the variables of the VARIABLES collection. Enforce condition \(N \) RELOP LIMIT to hold.

Arc input(s)
VARIABLES

Arc generator
`CLIQUE` → collection(variables1, variables2)

Arc arity
2

Arc constraint(s)

variables1.var = variables2.var

Graph property(ies)
NSCC RELOP LIMIT

Example
\[
\begin{align*}
nvalues & \left\{ \begin{array}{l}
\text{var} - 4,
\text{var} - 5,
\text{var} - 5,
\text{var} - 4,
\text{var} - 1,
\text{var} - 5
\end{array} \right. , =, 3
\end{align*}
\]

Parts (A) and (B) of Figure 4.335 respectively show the initial and final graph. Since we use the NSCC graph property we show the different strongly connected components of the final graph. Each strongly connected component corresponds to one value which is assigned to some variables of the VARIABLES collection. The 3 following values 1, 4 and 5 are used by the variables of the VARIABLES collection.

Usage
Used in the Constraint(s) on sets slot for defining some constraints like `assign_and_nvalues` `circuit_cluster` or `coloured_cumulative`.

Used in
- `assign_and_nvalues`
- `circuit_cluster`
- `coloured_cumulative`
- `coloured_cumulatives`

See also
- `nvalues_except_0`
- `nvalue`

Key words
- counting constraint
- value partitioning constraint
- number of distinct equivalence classes
- number of distinct values
- strongly connected component
- equivalence
Figure 4.335: Initial and final graph of the nvalues constraint
4.157 nvalues_except_0

Origin
Derived from `nvalues`

Constraint

\[\text{nvalues_except_0(VARIABLES, RELOP, LIMIT)} \]

Argument(s)
- `VARIABLES`: `collection(var - dvar)`
- `RELOP`: `atom`
- `LIMIT`: `dvar`

Restriction(s)
- `required(VARIABLES, var)`
- `RELOP \in \{ =, \neq, \leq, \geq, >, \leq \}`

Purpose
Let \(N \) be the number of distinct values, different from 0, assigned to the variables of the `VARIABLES` collection. Enforce condition \(N \ RELOP \ LIMIT \) to hold.

Arc input(s)
- `VARIABLES`

Arc generator
`CLIQUE \mapsto collection(variables1, variables2)`

Arc arity
2

Arc constraint(s)
- `variables1.var \neq 0`
- `variables1.var = variables2.var`

Graph property(ies)
- `NSCC RELOP LIMIT`

Example

\[
\text{nvalues_except_0}\begin{pmatrix}
\text{var - 4,} \\
\text{var - 5,} \\
\text{var - 5,} \\
\text{var - 4,} \\
\text{var - 0,} \\
\text{var - 1}
\end{pmatrix}, 3
\]

Parts (A) and (B) of Figure 12.33 respectively show the initial and final graph. Since we use the `NSCC` graph property we show the different strongly connected components of the final graph. Each strongly connected component corresponds to one value distinct from 0 which is assigned to some variables of the `VARIABLES` collection. Beside value 0, the 3 following values 1, 4 and 5 are assigned to the variables of the `VARIABLES` collection.

Used in
`cycle_or_accessibility`

See also
`nvalues`, `nvalue`, `assign_and_nvalues`

Key words
- `counting constraint`
- `value partitioning constraint`
- `number of distinct values`
- `strongly connected component`
- `joker value`
Figure 4.336: Initial and final graph of the `nvalues_except_0` constraint
4.158 one_tree

Origin
Inspired by [134]

Constraint
one_tree(NODES)

Argument(s)
NODES : collection

(id - atom, index - int, type - int, father - dvar, depth1 - dvar, depth2 - dvar)

Restriction(s)
required(NODES, [id, index, type, father, depth1, depth2])
NODES.index \geq 1
NODES.index \leq |NODES|
distinct(NODES, index)
in_list(NODES, type, [2, 3, 6])
NODES.father \geq 1
NODES.father \leq |NODES|
NODES.depth1 \geq 0
NODES.depth1 \leq |NODES|
NODES.depth2 \geq 0
NODES.depth2 \leq |NODES|

Purpose
Merge two trees that have some leaves in common so that all the precedence constraints induced by the father relation of both trees are preserved.

Arc input(s)
NODES

Arc generator
CLIQUE \mapsto collection(nodes1, nodes2)

Arc arity
2

Arc constraint(s)
\bigvee \bigwedge

Graph property(ies)
- MAX_NSCC \leq 1
- NCC = 1
- NVERTEX = |NODES|
The information about the two trees to merge is modelled in the following way:

\[
\begin{align*}
\text{id} & \quad \text{index} & \quad \text{type} & \quad \text{father} & \quad \text{depth1} & \quad \text{depth2} \\
\text{id} & \quad \text{index} & \quad \text{type} & \quad \text{father} & \quad \text{depth1} & \quad \text{depth2} \\
\text{id} & \quad \text{index} & \quad \text{type} & \quad \text{father} & \quad \text{depth1} & \quad \text{depth2} \\
\text{id} & \quad \text{index} & \quad \text{type} & \quad \text{father} & \quad \text{depth1} & \quad \text{depth2} \\
\text{id} & \quad \text{index} & \quad \text{type} & \quad \text{father} & \quad \text{depth1} & \quad \text{depth2} \\
\text{id} & \quad \text{index} & \quad \text{type} & \quad \text{father} & \quad \text{depth1} & \quad \text{depth2} \\
\text{id} & \quad \text{index} & \quad \text{type} & \quad \text{father} & \quad \text{depth1} & \quad \text{depth2} \\
\text{id} & \quad \text{index} & \quad \text{type} & \quad \text{father} & \quad \text{depth1} & \quad \text{depth2} \\
\text{id} & \quad \text{index} & \quad \text{type} & \quad \text{father} & \quad \text{depth1} & \quad \text{depth2} \\
\text{id} & \quad \text{index} & \quad \text{type} & \quad \text{father} & \quad \text{depth1} & \quad \text{depth2} \\
\end{align*}
\]

Figure 4.337 shows the two trees we want to merge. Note that the leaves a and f occur in both trees. In order to ease the link with the merged tree given in part (B) of Figure 4.338, each vertex of the original trees contains the id, the index, the type, the father and the corresponding depth.

![Diagram of two trees](image)

Figure 4.337: The two trees to merge

Part (A) and (B) of Figure 4.338 respectively show the initial and final graph. Since we use the NVERTEX graph property, the vertices of the final graph are stressed in bold.

Graph model

The information about the two trees to merge is modelled in the following way:
Figure 4.338: Initial and final graph of the one_tree constraint
A vertex which only belongs to the first (respectively second) tree has its type attribute set to 2 (respectively 3), while a vertex which belongs to both trees has its type attribute set to 6. This encoding was selected so that the statement \(\text{type mod } 2 = 0 \) (respectively \(\text{type mod } 3 = 0 \)) allows determining whether a vertex belongs or not to the first (respectively second) tree.

For a vertex belonging to the first (respectively second) tree, the depth1 (respectively depth2) attribute indicates the depth of that vertex in the corresponding tree.

The arc constraint is a disjunction of two conditions which respectively capture the following ideas:

- The first condition describes the fact that we link a vertex to itself. This vertex corresponds to the root of the merged tree we construct.
- The first part of the second condition describes the fact that we link a child vertex \(\text{nodes1} \) to its father \(\text{nodes2} \). The last part of the second condition expresses the fact that we want to preserve the father relation imposed by the first and second trees. This is achieved by using the following idea: When the child vertex \(\text{nodes1} \) belongs to the first (respectively second) tree we enforce a strict inequality between the depth1 (respectively depth2) attributes of \(\text{nodes1} \) and \(\text{nodes2} \); Otherwise we enforce an equality constraint.

Finally we use the following three graph properties in order to enforce to get a merged tree:

- The first graph property \(\text{MAX_NSCC} \leq 1 \) enforces the fact that the size of the largest strongly connected component does not exceed one. This avoid having circuits containing more than one vertex. In fact the root of the merged tree is a strongly connected component with one single vertex.
- The second graph property \(\text{NCC} = 1 \) imposes having only one single tree.
- Finally the third graph property \(\text{NVERTEX} = |\text{NODES}| \) imposes that the merged tree contains effectively all the vertices of the first and second tree.

Remark

A compact way to model the construction of a tree of life [134].

See also [tree]

Key words graph constraint, tree, bioinformatics, phylogeny, obscure.
4.159 orchard

Origin

Constraint

Arc input(s)

Arc generator

Arc arity

Arc constraint(s)

Graph property(ies)

Example

The 10 alignments of 3 trees correspond to the following triples of trees: (1, 2, 3), (1, 4, 8), (1, 5, 9), (2, 4, 7), (2, 5, 8), (2, 6, 9), (3, 5, 7), (3, 6, 8), (4, 5, 6), (7, 8, 9). Figure shows the 9 trees and the 10 alignments corresponding to the example.
Graph model

The arc generator $\text{CLIQUE}(<)$ with an arity of three is used in order to generate all the arcs of the directed hypergraph. Each arc is an ordered triple of trees. We use the restriction $<$ in order to generate one single arc for each set of three trees. This is required, since otherwise we would count more than once a given alignment of three trees. The formula used within the arc constraint expresses the fact that the three points of respective coordinates $(\text{trees}_1.x, \text{trees}_1.y)$, $(\text{trees}_2.x, \text{trees}_2.y)$ and $(\text{trees}_3.x, \text{trees}_3.y)$ are aligned. It corresponds to the development of the expression:

\[
\begin{align*}
\text{trees}_1.x & \quad \text{trees}_2.y & 1 \\
\text{trees}_2.x & \quad \text{trees}_2.y & 1 \\
\text{trees}_3.x & \quad \text{trees}_3.y & 1 \\
\end{align*}
= 0
\]

Key words

geometrical constraint, alignment, hypergraph
Figure 4.339: Nine trees with 10 alignments of 3 trees
4.160 orth_link_ori_siz_end

Origin
Used by several constraints between orthotopes

Constraint
orth_link_ori_siz_end(ORTHOTOPE)

Argument(s)
ORTHOTOPE : collection(ori - dvar, siz - dvar, end - dvar)

Restriction(s)
\(|ORTHOTOPE| > 0 \)
的要求_at_least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz \(\geq 0\)

Purpose
Enforce for each item of the ORTHOTOPE collection the constraint ori + siz = end.

Arc input(s)
ORTHOTOPE

Arc generator
SELF \(\rightarrow\) collection(orthotope)

Arc arity
1

Arc constraint(s)
orthotope.ori + orthotope.siz = orthotope.end

Graph property(ies)
\(\text{NARC} = |ORTHOTOPE|\)

Example
orth_link_ori_siz_end \(\left(\begin{array}{c}
\{ \text{ori} - 2 \text{ siz} - 2 \text{ end} - 4 \} \\
\{ \text{ori} - 1 \text{ siz} - 3 \text{ end} - 4 \}
\end{array}\right)\)

Parts (A) and (B) of Figure 4.340 respectively show the initial and final graph. Since we use the NARC graph property, the unary arcs of the final graph are stressed in bold.

![Figure 4.340: Initial and final graph of the orth_link_ori_siz_end constraint](image)

Signature
Since we use the SELF arc generator on the ORTHOTOPE collection the number of arcs of the initial graph is equal to |ORTHOTOPE|. Therefore the maximum number of arcs of the final graph is also equal to |ORTHOTOPE|. For this reason we can rewrite the graph property \(\text{NARC} = |ORTHOTOPE|\) to \(\text{NARC} \geq |ORTHOTOPE|\) and simplify \(\text{NARC}\) to \(\text{NARC}\).

Usage
Used in the Arc constraint(s) slot for defining some constraints like differ, place_in_pyramid or orths_are_connected.
Used in: orth on the ground, orth on top of orth, orths are connected, two orth are in contact, two orth column, two orth do not overlap, two orth include.

Key words: decomposition, orthotope.
4.161 orth_on_the_ground

Origin
Used for defining place_in_pyramid

Constraint
$$\text{orth_on_the_ground(ORTHOTOPE, VERTICALDIM)}$$

Argument(s)
ORTHOTOPE : collection(ori - dvar, siz - dvar, end - dvar)
VERTICALDIM : int

Restriction(s)
|ORTHOTOPE| > 0
require_at_least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
VERTICALDIM ≥ 1
VERTICALDIM ≤ |ORTHOTOPE|
orth_link ori, siz_end(ORTHOTOPE)

Purpose
The ori attribute of the VERTICAL_DIMth item of the ORTHOTOPE collection should be fixed to one.

Arc input(s)
ORTHOTOPE

Arc generator
$$SELF \rightarrow \text{collection(orthotope)}$$

Arc arity
1

Arc constraint(s)
• orthotope.key = VERTICAL_DIM
• orthotope.ori = 1

Graph property(ies)
$$\text{NARC} = 1$$

Example
$$\text{orth_on_the_ground} \left(\left\{ \begin{array}{c} \text{ori} - 1 \quad \text{siz} - 2 \quad \text{end} - 3, \\ \text{ori} - 2 \quad \text{siz} - 3 \quad \text{end} - 5 \end{array} \right\}, 1 \right)$$

Parts (A) and (B) of Figure 4.341 respectively show the initial and final graph. Since we use the NARC graph property, the unary arc of the final graph is stressed in bold.

Figure 4.341: Initial and final graph of the orth_on_the_ground constraint
Since all the key attributes of the ORTHOTOPES collection are distinct, because of the first condition of the arc constraint, and since we use the SELF arc generator the final graph contains at most one arc. Therefore we can rewrite the graph property $\text{NARC} = 1$ to $\text{NARC} \geq 1$ and simplify NARC to NARC.

Signed in

- place_in_pyramid

See also

- place_in_pyramid

Key words

- geometrical constraint
- orthotope
4.162 orth_on_top_of_orth

Origin

Used for defining `place_in_pyramid`

Constraint

`orth_on_top_of_orth(ORTHOTOPE1, ORTHOTOPE2, VERTICAL_DIM)`

Type(s)

ORTHOTOPE : collection(ori - dvar, siz - dvar, end - dvar)

Argument(s)

ORTHOTOPE1 : ORTHOTOPE
ORTHOTOPE2 : ORTHOTOPE
VERTICAL_DIM : int

Restriction(s)

1. `|ORTHOTOPE| > 0`
2. `require_at_least(2, ORTHOTOPE, [ori, siz, end])`
3. `ORTHOTOPE.siz ≥ 0`
4. `ORTHOTOPE1 = [ORTHOTOPE2]`
5. `VERTICAL_DIM ≥ 1`
6. `VERTICAL_DIM ≤ |ORTHOTOPE1|`
7. `orth_link_ori_siz_end(ORTHOTOPE1)`
8. `orth_link_ori_siz_end(ORTHOTOPE2)`

Purpose

ORTHOTOPE1 is located on top of ORTHOTOPE2 which concretely means:

- In each dimension different from VERTICAL_DIM the projection of ORTHOTOPE1 is included in the projection of ORTHOTOPE2.
- In the dimension VERTICAL_DIM the origin of ORTHOTOPE1 coincide with the end of ORTHOTOPE2.

Arc input(s)

ORTHOTOPE1 ORTHOTOPE2

Arc generator

`PRODUCT(=) → collection(orthotope1, orthotope2)`

Arc arity

2

Arc constraint(s)

- `orthotope1.key ≠ VERTICAL_DIM`
- `orthotope2.ori ≤ orthotope1.ori`
- `orthotope1.end ≤ orthotope2.end`

Graph property(ies)

`NARC = |ORTHOTOPE1| - 1`

Arc input(s)

ORTHOTOPE1 ORTHOTOPE2

Arc generator

`PRODUCT(=) → collection(orthotope1, orthotope2)`

Arc arity

2

Arc constraint(s)

- `orthotope1.key = VERTICAL_DIM`
- `orthotope1.ori = orthotope2.end`
Graph property(ies)
NARC = 1

Example

$$\text{orth_on_top_of_orth} \left(\begin{array}{c} \text{ori} - 5, \text{siz} - 2, \text{end} - 7, \\ \text{ori} - 3, \text{siz} - 3, \text{end} - 6, \\ \text{ori} - 3, \text{siz} - 5, \text{end} - 8, \\ \text{ori} - 1, \text{siz} - 2, \text{end} - 3 \end{array} \right)$$

Parts (A) and (B) of Figure 4.342 respectively show the initial and final graph associated to the second graph constraint. Since we use the \textbf{NARC} graph property, the unique arc of the final graph is stressed in bold.

![Graphs](image)

Figure 4.342: Initial and final graph of the \texttt{orth_on_top_of_orth} constraint

Graph model
The first and second graph constraints respectively express the first and second conditions stated in the \texttt{Purpose} slot defining the \texttt{orth_on_top_of_orth} constraint.

Signature
Consider the second graph constraint. Since all the key attributes of the \texttt{ORTHOTOPE1} collection are distinct, because of the arc constraint \texttt{orthotope1.key = VERTICAL_DIM}, and since we use the \texttt{PRODUCT(=)} arc generator the final graph contains at most one arc. Therefore we can rewrite the graph property \texttt{NARC = 1} to \texttt{NARC >= 1} and simplify \texttt{NARC} to \texttt{NARC}.

Used in
\texttt{place_in_pyramid}

See also
\texttt{place_in_pyramid}

Key words
\texttt{geometrical constraint, non-overlapping, orthotope}
4.163 orths_are_connected

Origin
N. Beldiceanu

Constraint
orths_are_connected(ORTHOTOPES)

Type(s)
ORTHOTOPE : collection(ori – dvar, siz – dvar, end – dvar)

Argument(s)
ORTHOTOPES : collection(orth – ORTHOTOPE)

Restriction(s)
ORTHOTOPE | > 0
require_at_least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz > 0
required(ORTHOTOPES, orth)
same_size(ORTHOTOPES, orth)

Purpose
There should be one single group of connected orthotopes. Two orthotopes touch each other (i.e. are connected) if they overlap in all dimensions except one, and if, for the dimension where they do not overlap, the distance between the two orthotopes is equal to 0.

Arc input(s)
ORTHOTOPES

Arc generator
SELF → collection(orthotopes)

Arc arity
1

Arc constraint(s)
orth_link ori siz end(orthotopes.orth)

Graph property(ies)
NARC = |ORTHOTOPES|

Example
orths_are_connected
Parts (A) and (B) of Figure 4.343 respectively show the initial and final graph. Since we use the \texttt{NVERTEX} graph property the vertices of the final graph are stressed in bold. Since we also use the \texttt{NCC} graph property we show the unique connected component of the final graph. An arc between two vertices indicates that two rectangles are in contact. Figure 4.344 shows the rectangles associated to the example. One can observe that:

- Rectangle 2 touch rectangle 1,
- Rectangle 1 touch rectangle 2 and rectangle 4,
- Rectangle 4 touch rectangle 1 and rectangle 3,
- Rectangle 3 touch rectangle 4.

![Figure 4.343: Initial and final graph of the orths are connected constraint](image)

![Figure 4.344: Four connected rectangles](image)

Signature

Since the first graph constraint uses the \texttt{SELF} arc generator on the \texttt{ORTHOTOPES} collection the corresponding initial graph contains $|\text{ORTHOTOPES}|$ arcs. Therefore the final graph of the first graph constraint contains at most $|\text{ORTHOTOPES}|$ arcs and we can rewrite $\texttt{NARC} = |\text{ORTHOTOPES}|$ to $\texttt{NARC} \geq |\text{ORTHOTOPES}|$. So we can simplify \texttt{NARC} to \texttt{NARC}.
Consider now the second graph constraint. Since its corresponding initial graph contains \(|\text{ORTHOTOPES}|\) vertices, its final graph has a maximum number of vertices also equal to \(|\text{ORTHOTOPES}|\). Therefore we can rewrite \(N_{\text{VERTEX}} = |\text{ORTHOTOPES}|\) to \(N_{\text{VERTEX}} \geq |\text{ORTHOTOPES}|\) and simplify \(N_{\text{VERTEX}}\) to \(N_{\text{VERTEX}}\). From the graph property \(N_{\text{VERTEX}} = |\text{ORTHOTOPES}|\) and from the restriction \(|\text{ORTHOTOPES}| > 0\) the final graph is not empty. Therefore it contains at least one connected component. So we can rewrite \(N_{\text{CC}} = 1\) to \(N_{\text{CC}} \leq 1\) and simplify \(N_{\text{CC}}\) to \(N_{\text{CC}}\).

Usage

In floor planning problem there is a typical constraint, which states that one should be able to access every room from any room.

See also

[two_orth_are_in_contact](#)

Key words

[geometrical constraint][touch][contact][non-overlapping][orthotope]
4.164 path_from_to

Origin [12]
Constraint path_from_to(FROM, TO, NODES)
Usual name path
Argument(s)
FROM : int
TO : int
NODES : collection(index - int, succ - svar)
Restriction(s)
FROM ≥ 1
FROM ≤ |NODES|
TO ≥ 1
TO ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
Purpose Select some arcs of a digraph G so that there is still a path between two given vertices of G.

Arc input(s) NODES
Arc generator CLIQUE → collection(nodes1, nodes2)
Arc arity 2
Arc constraint(s) in_set(nodes2, index, nodes1, succ)
Graph property(ies) PATH_FROM_TO(index, FROM, TO) = 1

Example
\[
\text{path_from_to(} \begin{pmatrix}
 \text{index - 1, succ - 0,} \\
 \text{index - 2, succ - 0,} \\
 \text{index - 3, succ - \{5\},} \\
 \text{index - 4, succ - \{5\},} \\
 \text{index - 5, succ - \{2, 3\}\})
\end{pmatrix}\)
\]

Part (A) of Figure 4.345 shows the initial graph from which we choose to start. It is derived from the set associated to each vertex. Each set describes the potential values of the succ attribute of a given vertex. Part (B) of Figure 4.45 gives the final graph associated to the example. Since we use the PATH_FROM_TO graph property we show on the final graph the following information:

- The vertices which respectively correspond to the start and the end of the required path are stressed in bold.
- The arcs on the required path are also stressed in bold.
The path_from_to constraint holds since there is a path from vertex 4 to vertex 3 (4 and 3 refer to the index attribute of a vertex).

Signature

Since the maximum value returned by the graph property PATH_FROM_TO is equal to 1 we can rewrite PATH_FROM_TO(index, FROM, TO) = 1 to PATH_FROM_TO(index, FROM, TO) ≥ 1. Therefore we simplify PATH_FROM_TO to PATH_FROM_TO.

See also

- temporal_path
- link_set_to_booleans

Key words

- graph constraint
- path
- linear programming
- constraint involving set variables
Figure 4.345: Initial and final graph of the path from to set constraint
4.165 pattern

Origin

Constraint pattern(VARIABLES, PATTERNS)

Type(s) PATTERN : collection(var − int)

Argument(s) VARIABLES : collection(var − dvar)

PATTERNS : collection(pat − PATTERNS)

Restriction(s) required(PATTERN, var)

change(0, PATTERN, =)

required(VARIABLES, var)

required(PATTERNS, pat)

same_size(PATTERNS, pat)

Purpose

We quote the definition from the original paper [34, page 157] introducing the pattern constraint. We call a \(k \)-pattern any sequence of \(k \) elements such that no two successive elements have the same value. Consider a set \(V = \{v_1, v_2, \ldots, v_m\} \) and a sequence \(s = (s_1, s_2, \ldots, s_n) \) of elements of \(V \). Consider now the sequence \((v_{i_1}, v_{i_2}, \ldots, v_{i_k}) \) of the types of the successive stretches that appear in \(s \). Let \(P \) be a set of \(k \)-pattern. Vector \(s \) satisfies \(P \) if and only if every subsequence of \(k \) elements in \((v_{i_1}, v_{i_2}, \ldots, v_{i_k}) \) belongs to \(P \).

Example

\[
\begin{pmatrix}
\{\text{var} - 1, \\
\text{var} - 1, \\
\text{var} - 2, \\
\text{var} - 2, \\
\text{var} - 2, \\
\text{var} - 1, \\
\text{var} - 3, \\
\text{var} - 3,
\end{pmatrix}
\]

Usage

The pattern constraint was originally introduced within the context of staff scheduling. In this context, the value of the \(i^{th} \) variable of the VARIABLES collection corresponds to the type of shift performed by a person on the \(i^{th} \) day. A stretch is a maximum sequence of consecutive variables which are all assigned to the same value. The pattern constraint imposes that each sequence of \(k \) consecutive stretches belongs to a given list of patterns.

Remark

A generalization of the pattern constraint to the regular constraint enforcing the fact that a sequence of variables corresponds to a regular expression is presented in [5].

See also stretch_path, sliding_distribution, group
| Key words | predefined constraint | timetabling constraint | sliding sequence constraint |
4.166 peak

Origin Derived from inflexion

Constraint peak(N, VARIABLES)

Argument(s)

\[
\begin{align*}
N &: \text{dvar} \\
\text{VARIABLES} &: \text{collection(var - dvar)}
\end{align*}
\]

Restriction(s)

\[
N \geq 0 \\
2 * N \leq \max(|\text{VARIABLES}| - 1, 0) \\
\text{required(\text{VARIABLES}, var)}
\]

Purpose A variable \(V_k (1 < k < m)\) of the sequence of variables \(\text{VARIABLES} = V_1, \ldots, V_m\) is a peak if and only if there exist an \(i (1 < i \leq k)\) such that \(V_{i-1} < V_i\) and \(V_i = V_{i+1} = \ldots = V_k\) and \(V_k > V_{k+1}\). \(N\) is the total number of peaks of the sequence of variables \(\text{VARIABLES}\).

Example

\[
\begin{align*}
\text{peak} &: 2, \begin{cases}
\text{var} - 1, \\
\text{var} - 4, \\
\text{var} - 8, \\
\text{var} - 6, \\
\text{var} - 2, \\
\text{var} - 7, \\
\text{var} - 1
\end{cases}
\end{align*}
\]

The previous constraint holds since the sequence 1 1 4 8 6 2 7 1 contains two peaks which correspond to the variables which are assigned to values 8 and 7.

Automaton Figure 4.347 depicts the automaton associated to the peak constraint. To each pair of consecutive variables \((\text{VAR}_i, \text{VAR}_{i+1})\) of the collection \(\text{VARIABLES}\) corresponds a signature variable \(S_i\). The following signature constraint links \(\text{VAR}_i, \text{VAR}_{i+1}\) and \(S_i\): \((\text{VAR}_i > \text{VAR}_{i+1} \iff S_i = 0) \land (\text{VAR}_i = \text{VAR}_{i+1} \iff S_i = 1) \land (\text{VAR}_i < \text{VAR}_{i+1} \iff S_i = 2)\).
VAR > VAR_{i+1} \quad VAR = VAR_{i+1} \quad VAR < VAR_i \quad VAR < VAR_{i+1}

\text{ut:} \quad N=C \quad C=0 \quad \{C=C+1\}

Figure 4.347: Automaton of the peak constraint

Figure 4.348: Hypergraph of the reformulation corresponding to the automaton of the peak constraint
Usage
Useful for constraining the number of peaks of a sequence of domain variables.

Remark
Since the arity of the arc constraint is not fixed, the peak constraint cannot be currently described. However, this would not hold anymore if we were introducing a slot that specifies how to merge adjacent vertices of the final graph.

See also
no_peak, inflexion, valley

Key words
sequence, automaton, automaton with counters, sliding cyclic(1) constraint network(2)
4.167 period

Origin
N. Beldiceanu

Constraint
\(\text{period}((\text{PERIOD}, \text{VARIABLES}, \text{CTR})) \)

Argument(s)
\begin{align*}
\text{PERIOD} & : \text{dvar} \\
\text{VARIABLES} & : \text{collection}(\text{var} - \text{dvar}) \\
\text{CTR} & : \text{atom}
\end{align*}

Restriction(s)
\begin{align*}
\text{PERIOD} & \geq 1 \\
\text{PERIOD} & \leq |\text{VARIABLES}| \\
\text{required} & (\text{VARIABLES}, \text{var}) \\
\text{CTR} & \in [=, \neq, <, \geq, >, \leq]
\end{align*}

Purpose
Let us note \(V_0, V_1, \ldots, V_{m-1} \) the variables of the \text{VARIABLES} collection. \text{PERIOD} is the period of the sequence \(V_0 V_1 \ldots V_{m-1} \) according to constraint \text{CTR}. This means that \text{PERIOD} is the smallest natural number such that \(V_i \text{ CTR} V_{i+\text{PERIOD}} \) holds for all \(i \in 0, 1, \ldots, m - \text{PERIOD} - 1 \).

Example
\[
\begin{pmatrix}
\text{var} - 1, \\
\text{var} - 1, \\
\text{var} - 4, \\
\text{var} - 1, \\
\text{var} - 1, \\
\text{var} - 4, \\
\text{var} - 1, \\
\text{var} - 1
\end{pmatrix}, =
\]

The smallest period of the previous sequence is equal to 3.

Algorithm
When \text{CTR} corresponds to the equality constraint, a potentially incomplete filtering algorithm based on 13 deductions rules is described in [136]. The generalization of these rules to the case where \text{CTR} is not the equality constraint is discussed.

See also
\texttt{period_except_0}

Key words
\begin{footnotesize}
\text{predefined constraint, periodic, timetabling constraint, scheduling constraint, sequence, border}
\end{footnotesize}
4.168 period_except_0

Origin Derived from period

Constraint period_except_0(PERIOD, VARIABLES, CTR)

Argument(s)
PERIOD : dvar
VARIABLES : collection(var - dvar)
CTR : atom

Restriction(s)
PERIOD ≥ 1
PERIOD ≤ |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, ≠, <, ≥, >, ≤]

Purpose Let us note \(V_0, V_1, \ldots, V_{m-1} \) the variables of the VARIABLES collection. PERIOD is the period of the sequence \(V_0 V_1 \ldots V_{m-1} \) according to constraint CTR. This means that PERIOD is the smallest natural number such that \(V_i \ CTR V_{i + \text{PERIOD}} \lor V_i = 0 \lor V_{i + \text{PERIOD}} = 0 \) holds for all \(i \in 0, 1, \ldots, m - \text{PERIOD} - 1 \).

Example period_except_0(3, \{\begin{array}{c}
\text{var - 1}, \\
\text{var - 1}, \\
\text{var - 4}, \\
\text{var - 1}, \\
\text{var - 1}, \\
\text{var - 0}, \\
\text{var - 1}, \\
\text{var - 1}
\end{array}, \), =)

Since value 0 is considered as a joker the fact that 4 is different from 0 does not matter. Therefore, the smallest period of the previous sequence is equal to 3.

Usage Useful for timetabling problems where a person should repeat some work pattern over an over except when he is unavailable for some reason. The value 0 represents the fact that he is unavailable, while the other values are used in the work pattern.

Algorithm See [136].

See also period

Key words predefined constraint periodic timetabling constraint scheduling constraint sequence joker value
4.169 place_in_pyramid

Origin N. Beldiceanu

Constraint place_in_pyramid(ORTHOTOPE, VERTICAL_DIM)

Type(s) ORTHOTOPE : collection(ori - dvar, siz - dvar, end - dvar)

Argument(s) ORTHOTOPE : collection(orth - ORTHOTOPE)

VERTICAL_DIM : int

Restriction(s) |ORTHOTOPE| > 0

require_at_least(2, ORTHOTOPE, [ori, siz, end])

ORTHOTOPE.siz ≥ 0

same_size(ORTHOTOPE.orth)

VERTICAL_DIM ≥ 1

diffn(ORTHOTOPE)

Purpose For each pair of orthotopes (O₁, O₂) of the collection ORTHOTOPE, O₁ and O₂ do not overlap.
(two orthotopes do not overlap if there exists at least one dimension where their projections do not overlap). In addition, each orthotope of the collection ORTHOTOPE should be supported by one other orthotope or by the ground. The vertical dimension is given by the parameter VERTICAL_DIM.

Arc input(s) ORTHOTOPE

Arc generator CLIQUE \(\mapsto\) collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s) \(\bigwedge\left(\begin{array}{c}
\text{orthotopes1.key} = \text{orthotopes2.key}, \\
\text{orth on the ground(orthotopes1.orth, VERTICAL_DIM)}
\end{array}\right)\),

\(\bigwedge\left(\begin{array}{c}
\text{orthotopes1.key} \neq \text{orthotopes2.key}, \\
\text{orth on top of orth(orthotopes1.orth, orthotopes2.orth, VERTICAL_DIM)}
\end{array}\right)\)

Graph property(ies) NARC = |ORTHOTOPE|

Example place_in_pyramid

\[
\begin{align*}
\text{orth} & \rightarrow \left\{ \begin{array}{l}
\text{ori} - 1 \text{ siz} - 3 \text{ end} - 4, \\
\text{ori} - 1 \text{ siz} - 2 \text{ end} - 3, \\
\text{ori} - 1 \text{ siz} - 2 \text{ end} - 3, \\
\text{ori} - 3 \text{ siz} - 3 \text{ end} - 6, \\
\text{ori} - 5 \text{ siz} - 6 \text{ end} - 11, \\
\text{ori} - 1 \text{ siz} - 2 \text{ end} - 3, \\
\text{ori} - 5 \text{ siz} - 2 \text{ end} - 7, \\
\text{ori} - 3 \text{ siz} - 2 \text{ end} - 5, \\
\text{ori} - 8 \text{ siz} - 3 \text{ end} - 11, \\
\text{ori} - 3 \text{ siz} - 2 \text{ end} - 5, \\
\text{ori} - 8 \text{ siz} - 2 \text{ end} - 10, \\
\text{ori} - 5 \text{ siz} - 2 \text{ end} - 7
\end{array}\right\}, 2
\end{align*}
\]
Parts (A) and (B) of Figure 4.349 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold. Figure 4.350 depicts the placement associated to the example.

Figure 4.349: Initial and final graph of the place_in_pyramid constraint

Figure 4.350: Solution corresponding to the final graph

Graph model

The arc constraint of the graph constraint enforces one of the following conditions:

- If the arc connects the same orthotope O then the ground directly supports O,
- Otherwise, if we have an arc from a orthotope O_1 to a distinct orthotope O_2, the condition is: O_1 is on top of O_2 (i.e. in all dimensions, except dimension VERTICAL_DIM, the projection of O_1 is included in the projection of O_2, while in dimension VERTICAL_DIM the projection of O_1 is located after the projection of O_2).

Usage

The diffn constraint is not enough if one wants to produce a placement where no orthotope floats in the air. This constraint is usually handled with a heuristic during the enumeration phase.

See also

orth_on_top_of_orth *orth_on_the_ground*
Key words: geometrical constraint, non-overlapping, orthotope.
4.170 polyomino

Origin
Inspired by [137].

Constraint
polyomino(CELLS)

Argument(s)

```plaintext
CELLS : collection(index - int, right - dvar, left - dvar, up - dvar, down - dvar)
```

Restriction(s)

```plaintext
CELLS.index ≥ 1
CELLS.index ≤ |CELLS|
|CELLS| ≥ 1
required(CELLS, [index, right, left, up, down])
distinct(CELLS, index)
CELLS.right ≥ 0
CELLS.right ≤ |CELLS|
CELLS.left ≥ 0
CELLS.left ≤ |CELLS|
CELLS.up ≥ 0
CELLS.up ≤ |CELLS|
CELLS.down ≥ 0
CELLS.down ≤ |CELLS|
```

Enforce all cells of the collection CELLS to be connected. Each cell is defined by the following attributes:

1. The `index` attribute of the cell, which is an integer between 1 and the total number of cells, is unique for each cell.
2. The `right` attribute, which is the index of the cell located immediately to the right of that cell (or 0 if no such cell exists).
3. The `left` attribute, which is the index of the cell located immediately to the left of that cell (or 0 if no such cell exists).
4. The `up` attribute, which is the index of the cell located immediately on top of that cell (or 0 if no such cell exists).
5. The `down` attribute, which is the index of the cell located immediately above that cell (or 0 if no such cell exists).

This corresponds to a polyomino [118].

Purpose

- Enforce all cells of the collection CELLS to be connected.
- Each cell is defined by the following attributes:
 - `index`: An integer between 1 and the total number of cells, unique for each cell.
 - `right`: Index of the cell to the right, 0 if none.
 - `left`: Index of the cell to the left, 0 if none.
 - `up`: Index of the cell above, 0 if none.
 - `down`: Index of the cell below, 0 if none.

This corresponds to a polyomino [118].

Arc input(s)

```plaintext
CELLS
```

Arc generator

```plaintext
CLIQUE(≠) → collection(cells1, cells2)
```

Arc arity

2

Arc constraint(s)

```plaintext
\[
\begin{align*}
\text{cells1.right} &= \text{cells2.index} \land \text{cells2.left} = \text{cells1.index}, \\
\text{cells1.left} &= \text{cells2.index} \land \text{cells2.right} = \text{cells1.index}, \\
\text{cells1.up} &= \text{cells2.index} \land \text{cells2.down} = \text{cells1.index}, \\
\text{cells1.down} &= \text{cells2.index} \land \text{cells2.up} = \text{cells1.index}
\end{align*}
\]
```
Graph property(ies)

- \(N\text{VERTEX} = |\text{CELLS}| \)
- \(\text{NCC} = 1 \)

Example

polyomino

\[
\begin{align*}
\text{index 1} & : \text{right} - 0, \text{left} - 0, \text{up} - 2, \text{down} - 0, \\
\text{index 2} & : \text{right} - 3, \text{left} - 0, \text{up} - 0, \text{down} - 1, \\
\text{index 3} & : \text{right} - 0, \text{left} - 2, \text{up} - 4, \text{down} - 0, \\
\text{index 4} & : \text{right} - 5, \text{left} - 0, \text{up} - 0, \text{down} - 3, \\
\text{index 5} & : \text{right} - 0, \text{left} - 4, \text{up} - 0, \text{down} - 0
\end{align*}
\]

Parts (A) and (B) of Figure 4.351 respectively show the initial and final graph. Since we use the \(N\text{VERTEX} \) graph property the vertices of the final graph are stressed in bold. Since we also use the \(\text{NCC} \) graph property we show the unique connected component of the final graph. An arc between two vertices indicates that two cells are directly connected. Figure 4.352 shows the polyomino associated to the previous example.

![Graph model](image)

Figure 4.351: Initial and final graph of the polyomino constraint

![Polyomino](image)

Figure 4.352: Polyomino corresponding to the final graph

Graph model

The graph constraint models the fact that all the cells are connected. We use the \(\text{CLIQUE}(\neq) \) arc generator in order to only consider connections between two distinct cells. The first graph property \(N\text{VERTEX} = |\text{CELLS}| \) avoid the case isolated cells.
while the second graph property $\text{NCC} = 1$ enforces to have one single group of connected cells.

Signature

From the graph property $\text{NVERTEX} = |\text{CELLS}|$ and from the restriction $|\text{CELLS}| \geq 1$ we have that the final graph is not empty. Therefore it contains at least one connected component. So we can rewrite $\text{NCC} = 1$ to $\text{NCC} \leq 1$ and simplify NCC to NCC.

Usage

Enumeration of polyominoes.

Key words

- geometrical constraint
- strongly connected component
- pentomino
4.171 product ctr

Origin Arithmetic constraint.

Constraint product ctr(VARIABLES, CTR, VAR)

Argument(s) VARIABLES : collection(var – dvar)
CTR : atom
VAR : dvar

Restriction(s) required(VARIABLES, var)
CTR \in \{=, \neq, <, >, \leq, \geq\}

Purpose Constraint the product of a set of domain variables. More precisely let \(P \) denotes the product of the variables of the VARIABLES collection. Enforce the following constraint to hold: \(P \ CTR \ VAR \).

Arc input(s) VARIABLES

Arc generator SELF \mapsto \text{collection(variables)}

Arc arity 1

Arc constraint(s) TRUE

Graph property(ies) \text{PRODUCT}(\text{VARIABLES, var}) \ CTR \ VAR

Example product ctr\((\{\text{var – 2, var – 1, var – 4}\}, =, 8)\)

Parts (A) and (B) of Figure 4.353 respectively show the initial and final graph. Since we use the TRUE arc constraint both graphs are identical.

\[
\begin{array}{c}
\text{A) } \hspace{2cm} \text{B) } \\
\text{PRODUCT(VARIABLES, var)=2*1*4=8}
\end{array}
\]

Figure 4.353: Initial and final graph of the product ctr constraint

Graph model Since we want to keep all the vertices of the initial graph we use the SELF arc generator together with the TRUE arc constraint. This predefined arc constraint always holds.

Used in cumulative_product

See also sum ctr, range ctr

Key words arithmetic constraint, product
4.172 range ctr

Origin
Arithmetic constraint.

Constraint
\(\text{range}_\text{ctr} (\text{VARIABLES, CTR, VAR}) \)

Argument(s)
\begin{align*}
\text{VARIABLES} & : \text{collection}(\text{var} - \text{dvar}) \\
\text{CTR} & : \text{atom} \\
\text{VAR} & : \text{dvar}
\end{align*}

Restriction(s)
\begin{align*}
\text{required} & (\text{VARIABLES, var}) \\
\text{CTR} & \in \{=, \neq, <, \geq, >, \leq\}
\end{align*}

Purpose
Constraint the difference between the maximum value and the minimum value of a set of domain variables. More precisely let \(R \) denotes the difference between the largest and the smallest variables of the VARIABLES collection. Enforce the following constraint to hold: \(R \leq \text{CTR} \leq \text{VAR} \).

Arc input(s)
\text{VARIABLES}

Arc generator
\text{SELF} \Rightarrow \text{collection}(\text{variables})

Arc arity
1

Arc constraint(s)
\text{TRUE}

Graph property(ies)
\text{RANGE}(\text{VARIABLES, var}) \leq \text{CTR} \leq \text{VAR}

Example
\(\text{range}_\text{ctr}(\{\text{var} - 1, \text{var} - 9, \text{var} - 4\}, =, 8) \)

Parts (A) and (B) of Figure 4.354 respectively show the initial and final graph. Since we use the \text{TRUE} arc constraint both graphs are identical.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.354}
\caption{Initial and final graph of the range ctr constraint}
\end{figure}

Graph model
Since we want to keep all the vertices of the initial graph we use the \text{SELF} arc generator together with the \text{TRUE} arc constraint. This predefined arc constraint always holds.

Used in

See also
\text{sum ctr, product ctr}

Key words
arithmetic constraint, range
4.173 relaxed_sliding_sum

Origin
CHIP

Constraint
relaxed_sliding_sum(ATLEAST, ATMOST, LOW, UP, SEQ, VARIABLES)

Argument(s)
- ATLEAST : int
- ATMOST : int
- LOW : int
- UP : int
- SEQ : int
- VARIABLES : collection(var – dvar)

Restriction(s)
- ATLEAST \(\geq 0 \)
- ATMOST \(\geq \) ATLEAST
- ATMOST \(\leq \) |VARIABLES| – SEQ + 1
- UP \(\geq \) LOW
- SEQ \(> 0 \)
- SEQ \(\leq \) |VARIABLES|
- required(VARIABLES, var)

Purpose
Constrains that there exist between ATLEAST and ATMOST sequences of SEQ consecutive variables of the collection VARIABLES such that the sum of the variables is in interval [LOW, UP].

Arc input(s)
VARIABLES

Arc generator
\(PATH \mapsto \text{collection} \)

Arc arity
SEQ

Arc constraint(s)
- \(\text{sum}_\text{ctr}(\text{collection}, \geq, \text{LOW}) \)
- \(\text{sum}_\text{ctr}(\text{collection}, \leq, \text{UP}) \)

Graph property(ies)
- NARC \(\geq \) ATLEAST
- NARC \(\leq \) ATMOST

Example
relaxed_sliding_sum \(\begin{cases} 3, 4, \var 2, \\ 3, 4, \var 4, \\ 3, 4, \var 2, \\ \end{cases} \)

The final directed hypergraph associated to the previous example is given by Figure 4.355. For each vertex of the graph we show its corresponding position within the collection of variables. The constraint associated to each arc corresponds to a conjunction of two \(\text{sum}_\text{ctr} \) constraints involving 4 consecutive variables. We did not put vertex...
1 since the single arc constraint that mentions vertex 1 does not hold (i.e. the sum $2 + 4 + 2 + 0 = 8$ is not located in interval $[3, 7]$). However, the directed hypergraph contains 3 arcs, so the relaxed sliding sum constraint is satisfied since it was requested to have between 3 and 4 arcs.

Algorithm \[65\].

See also sliding sum sum ctr.

Key words Sliding sequence constraint soft constraint relaxation sequence hypergraph.
4.174 same

Origin N. Beldiceanu

Constraint same(VARIABLES1, VARIABLES2)

Argument(s)

VARIABLES1 : collection(var - dvar)
VARIABLES2 : collection(var - dvar)

Restriction(s)

| VARIABLES1 | = | VARIABLES2 |
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose The variables of the VARIABLES2 collection correspond to the variables of the VARIABLES1 collection according to a permutation.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT \(\mapsto \) collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies)

- for all connected components: NSOURCE = NSINK
- NSOURCE = |VARIABLES1|
- NSINK = |VARIABLES2|

Example same

\[
\begin{pmatrix}
\text{var - 1,} \\
\text{var - 9,} \\
\text{var - 1,} \\
\text{var - 5,} \\
\text{var - 2,} \\
\text{var - 1,} \\
\text{var - 9,} \\
\text{var - 1,} \\
\text{var - 1,} \\
\text{var - 2,} \\
\text{var - 5}
\end{pmatrix}
\]

Parts (A) and (B) of Figure B.35 respectively show the initial and final graph. Since we use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since there is a constraint on each connected component of the final graph we also show the different connected components. Each of them corresponds to an equivalence class according to the arc constraint. The same constraint holds since:
Each connected component of the final graph has the same number of sources and of sinks.

- The number of sources of the final graph is equal to $|VARIABLES1|$.
- The number of sinks of the final graph is equal to $|VARIABLES2|$.

![Initial and final graph of the same constraint](image)

Signature

Since the initial graph contains only sources and sinks, and since isolated vertices are eliminated from the final graph, we make the following observations:

- Sources of the initial graph cannot become sinks of the final graph.
- Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the PRODUCT arc generator on the collections $VARIABLES1$ and $VARIABLES2$, we have that the maximum number of sources and sinks of the final graph is respectively equal to $|VARIABLES1|$ and $|VARIABLES2|$. Therefore we can rewrite $NSOURCE = |VARIABLES1|$ to $NSOURCE \geq |VARIABLES1|$ and simplify $NSOURCE$ to $NSOURCE$. In a similar way, we can rewrite $NSINK = |VARIABLES2|$ to $NSINK \geq |VARIABLES2|$ and simplify $NSINK$ to $NSINK$.

Automaton

To each item of the collection $VARIABLES1$ corresponds a signature variable S_1, which is equal to 0. To each item of the collection $VARIABLES2$ corresponds a signature variable $S_{i+|VARIABLES1|}$, which is equal to 1.

Usage

The same constraint can be used in the following contexts:

- Pairing problems taken from [25]. The organization Doctors Without Borders has a list of doctors and a list of nurses, each of whom volunteered to go on one mission in the next year. Each volunteer specifies a list of possible dates and each mission involves one doctor and one nurse. The task is to produce a list of pairs such that
each pair includes a doctor and a nurse who are available at the same date and each
volunteer appears in exactly one pair. The problem is modelled by a \texttt{same} \((D = d_1, d_2, \ldots, d_m, N = n_1, n_2, \ldots, n_m)\) constraint where each doctor is represented by a domain variable in \(D\) and each nurse by a domain variable in \(N\). For a given
doctor or nurse the corresponding domain variable gives the dates when the person
is available. When the number of nurses is different from the number of doctors we
replace the \texttt{same} constraint by a \texttt{used_by} constraint.

- Timetabling problems where we wish to produce fair schedules for different persons
is a second use of the \texttt{same} constraint. Assume we need to generate a plan over a
period of \(D\) consecutive days for \(P\) persons. For each day \(d\) and each person \(p\) we
need to decide whether person \(p\) works in the morning shift, in the afternoon shift,
in the night shift or does not work at all on day \(d\). In a fair schedule, the number of
morning shifts should be the same for all the persons. The same condition holds
for the afternoon and the night shifts as well as for the days off. We create for each
person \(p\) the sequence of variables \(v_{p,1}, v_{p,2}, \ldots, v_{p,D}\). \(v_{p,D}\) is equal to one of \(0, 1, 2\)
and 3, depending on whether person \(p\) does not work, works in the morning, in the
afternoon or during the night on day \(d\). We can use \(P - 1\) \texttt{same} constraints to express
the fact that \(v_{1,1}, v_{1,2}, \ldots, v_{1,D}\) should be a permutation of \(v_{p,1}, v_{p,2}, \ldots, v_{p,D}\) for
each \((1 < p \leq P)\).

- The \texttt{same} constraint can also be used as a channelling constraint for modelling the
following recurring pattern: Given the number of 1s in each line and each column
of a 0-1 matrix \(M\) with \(n\) lines and \(m\) columns, reconstruct the matrix. This pattern usually occurs with additional constraints about compatible positions of the 1s,
or about the overall shape reconstructed from all the 1’s (e.g. convexity, connectivity).
If we restrict ourself to the basic pattern there is an \(O(mn)\) algorithm for
reconstructing a \(m \times n\) matrix from its horizontal and vertical directions [138]. We
show how to model this pattern with the \texttt{same} constraint. Let \(l_i\) \((1 \leq i \leq n)\) and
\(c_j\) \((1 \leq j \leq m)\) denote respectively, the required number of 1s in the \(i\)th line and
the \(j\)th column of \(M\). We number the entries of the matrix as shown in the left-hand
side of [4.358]. For line \(i\) we create \(l_i\) domain variables \(v_{i,k}\) where \(k \in [1, l_i]\). Similarly,
for each column \(j\) we create \(c_j\) domain variables \(u_{j,k}\) where \(k \in [1, c_j]\). The
domain of each variable contains the set of entries that belong to the row or column
that the variable corresponds to. Thus, each domain variable represents a 1 which
appears in the designated row or column. Let \(V\) be the set of variables corresponding
to rows and \(U\) be the set of variables corresponding to columns. To make sure that
each 1 is placed in a different entry, we impose the constraint \texttt{alldifferent}(\(U\)). In
addition, the constraint \texttt{same}(\(U, V\)) enforces that the 1s exactly coincide on the lines
and the columns. A solution is shown on the right-hand side of [4.358]. Note that the
\texttt{same_and_global_cardinality} constraint allows to model the matrix reconstruction
problem without the additional \texttt{alldifferent} constraint.

\begin{remark}
The \texttt{same} constraint is a relaxed version of the \texttt{sort} constraint introduced in [19]. We
don’t enforce the second collection of variables to be sorted in increasing order.

If we interpret the collections \texttt{VARIABLES1} and \texttt{VARIABLES2} as two multisets variables [140], the \texttt{same} constraint can be considered as an equality constraint between two multisets variables.

The \texttt{same} constraint can be modeled by two \texttt{global_cardinality} constraints. For in-
stance, the \texttt{same} constraint
\end{remark}
Figure 4.357: Automaton of the same constraint

Figure 4.358: Modelling the 0-1 matrix reconstruction problem with the same constraint
same \[\left\{ \begin{array}{l} \text{var} - x_1, \text{var} - x_2 \\ \text{var} - y_1, \text{var} - y_2 \end{array} \right\} \]

where the union of the domains of the different variables is \(\{1, 2, 3, 4\} \) corresponds to the conjunction of the following two \textit{global_cardinality} constraints:

\[
\text{global_cardinality} \left(\left\{ \begin{array}{l} \text{val} - 1 \text{noccurrence} - c_1 \\ \text{val} - 2 \text{noccurrence} - c_2 \\ \text{val} - 3 \text{noccurrence} - c_3 \\ \text{val} - 4 \text{noccurrence} - c_4 \end{array} \right\} \right)
\]

As shown by the next example, the consistency for all variables of the two \textit{global_cardinality} constraints does not implies consistency for the corresponding \textit{same} constraint. This is for instance the case when the domains of \(x_1, x_2, y_1 \) and \(y_2 \) are respectively equal to \(\{1, 2\}, \{3, 4\}, \{1, 2, 3, 4\} \) and \(\{3, 4\} \). The conjunction of the two \textit{global_cardinality} constraints does not remove values 3 and 4 from \(y_1 \).

In his PhD thesis, W.-J. van Hoeve introduces a soft version of the \textit{same} constraint where the cost is the minimum number of variables to unassign in order to get back to a solution \cite{page 78}. In the context of the \textit{same} constraint this violation cost corresponds to the difference between the number of variables in VARIABLES1 and the number of values which both occur in VARIABLES1 and in VARIABLES2 (provided that one value of VARIABLES1 matches at most one value of VARIABLES2).

Algorithm

In \cite{141, 25} and \cite{142} it is shown how to model this constraint by a flow network that enables to compute arc-consistency and bound-consistency. Unlike the networks used for \textit{alldifferent} and \textit{global_cardinality}, the network now has three sets of nodes, so the algorithms are more complex, in particular the efficient bound-consistency algorithm.

See also

\textit{colored_matrix}, \textit{correspondence}, \textit{same_interval}, \textit{same_modulo}, \textit{same_partition}, \textit{same_and_global_cardinality}, \textit{same_intersection}

Key words

\textit{constraint between two collections of variables}, \textit{channeling constraint}, \textit{permutation}, \textit{multiset}, \textit{equality between multisets}, \textit{flow}, \textit{bound-consistency}, \textit{automaton}, \textit{automaton with array of counters}
4.175 same_and_global_cardinality

<table>
<thead>
<tr>
<th>Origin</th>
<th>Derived from same and global_cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint</td>
<td>same_and_global_cardinality(VARIABLES1, VARIABLES2, VALUES)</td>
</tr>
<tr>
<td>Synonym(s)</td>
<td>sgcc, same_gcc, same_and_gcc, swc, same_with_cardinalities.</td>
</tr>
<tr>
<td>Argument(s)</td>
<td>VARIABLES1 : collection(var – dvar)</td>
</tr>
<tr>
<td></td>
<td>VARIABLES2 : collection(var – dvar)</td>
</tr>
<tr>
<td></td>
<td>VALUES : collection(val – int.noccurrence – dvar)</td>
</tr>
<tr>
<td>Restriction(s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>required(VARIABLES1, var)</td>
</tr>
<tr>
<td></td>
<td>required(VARIABLES2, var)</td>
</tr>
<tr>
<td></td>
<td>required(VALUES, [val, noccurrence])</td>
</tr>
<tr>
<td></td>
<td>distinct(VALUES, val)</td>
</tr>
<tr>
<td></td>
<td>VALUES.noccurrence ≥ 0</td>
</tr>
<tr>
<td></td>
<td>VALUES.noccurrence ≤</td>
</tr>
<tr>
<td>Purpose</td>
<td>The variables of the VARIABLES2 collection correspond to the variables of the VARIABLES1 collection according to a permutation. In addition, each value VALUES[i].val (1 ≤ i ≤</td>
</tr>
<tr>
<td>Arc input(s)</td>
<td>VARIABLES1 VARIABLES2</td>
</tr>
<tr>
<td>Arc generator</td>
<td>PRODUCT ⊸ collection(variables1, variables2)</td>
</tr>
<tr>
<td>Arc arity</td>
<td>2</td>
</tr>
<tr>
<td>Arc constraint(s)</td>
<td>variables1.var = variables2.var</td>
</tr>
<tr>
<td>Graph property(ies)</td>
<td>• for all connected components: NSOURCE = NSINK</td>
</tr>
<tr>
<td></td>
<td>• NSOURCE =</td>
</tr>
<tr>
<td></td>
<td>• NSINK =</td>
</tr>
</tbody>
</table>

For all items of VALUES:

Arc input(s)	VARIABLES1
Arc generator	SELF ⊸ collection(variables)
Arc arity	1
Arc constraint(s)	variables.var = VALUES.val
Graph property(ies)	NVERTEX = VALUES.noccurrence
The values 1, 9, 1, 5, 2, 1 assigned to \(|VARIABLES_1| \) correspond to a permutation of the values 9, 1, 1, 1, 2, 5 assigned to \(|VARIABLES_2| \).

- The values 1, 2, 5, 7 and 6 are respectively used 3, 1, 1, 0 and 1 times.

Figure 4.359: Initial and final graph of the \texttt{same_and_global_cardinality} constraint
Usage
The `same_and_global_cardinality` constraint can be used for modeling the following assignment problem with one single constraint. The organization Doctors Without Borders has a list of doctors and a list of nurses, each of whom volunteered to go on one rescue mission. Each volunteer specifies a list of possible dates and each mission should include one doctor and one nurse. In addition we have for each date the minimum and maximum number of missions that should be effectively done. The task is to produce a list of pairs such that each pair includes a doctor and a nurse who are available on the same date and each volunteer appears in exactly one pair so that for each day we build the required number of missions.

Algorithm
In [143], the flow network that was used to model the `same` constraint [141, 25] is extended to support the cardinalities. Then, algorithms are developed to compute arc-consistency and bound-consistency.

See also
`same`, `global_cardinality`

Key words
`constraint between two collections of variables`, `value constraint`, `permutation`, `multiset`, `equality between multisets`, `assignment`, `demand profile`
4.176 same_intersection

Origin
Derived from \text{same} and \text{common}

Constraint
\text{same_intersection}(\text{VARIABLES1}, \text{VARIABLES2})

Argument(s)
\text{VARIABLES1} : collection(var \rightarrow dvar)
\text{VARIABLES2} : collection(var \rightarrow dvar)

Restriction(s)
required(\text{VARIABLES1},\text{var})
required(\text{VARIABLES2},\text{var})

Purpose
Each value which occurs both in the \text{VARIABLES1} and in the \text{VARIABLES2} collections has the same number of occurrences in \text{VARIABLES1} as well as in \text{VARIABLES2}.

Arc input(s)
\text{VARIABLES1} \text{VARIABLES2}

Arc generator
\text{PRODUCT} \mapsto \text{collection(\text{variables1}, \text{variables2})}

Arc arity
2

Arc constraint(s)
\text{variables1.var} = \text{variables2.var}

Graph property(ies)
for all connected components: \text{NSOURCE} = \text{NSINK}

Example
same_intersection
\begin{pmatrix}
\text{var} - 1, \\
\text{var} - 9, \\
\text{var} - 1, \\
\text{var} - 5, \\
\text{var} - 2, \\
\text{var} - 1 \\
\end{pmatrix}

Parts (A) and (B) of Figure 4.360 respectively show the initial and final graph. The \text{same_intersection} constraint holds since each connected component of the final graph has the same number of sources and sinks. Note that all the vertices corresponding to the variables that take values 2, 3 or 8 were removed from the final graph since there is no arc for which the associated equality constraint holds.

See also
\text{same} \text{common} \text{alldifferent on intersection} \text{nvalue on intersection}

Key words
constraint between two collections of variables constraint on the intersection
Figure 4.360: Initial and final graph of the same intersection constraint
4.177 same_{interval}

Origin
Derived from [same]

Constraint
\text{same}_{interval}(\text{VARIABLES1}, \text{VARIABLES2}, \text{SIZE}_{INTERVAL})

Argument(s)
\begin{align*}
\text{VARIABLES1} & : \text{collection(var} \text{ -- dvar)} \\
\text{VARIABLES2} & : \text{collection(var} \text{ -- dvar)} \\
\text{SIZE}_{INTERVAL} & : \text{int}
\end{align*}

Restriction(s)
\begin{align*}
|\text{VARIABLES1}| &= |\text{VARIABLES2}| \\
\text{required(\text{VARIABLES1}, \text{var})} & \text{required(\text{VARIABLES2}, \text{var})} \\
\text{SIZE}_{INTERVAL} & > 0
\end{align*}

Purpose
Let \(N_i \) (respectively \(M_i \)) denote the number of variables of the collection \text{VARIABLES1} (respectively \text{VARIABLES2}) that take a value in the interval \([\text{SIZE}_{INTERVAL} \cdot i, \text{SIZE}_{INTERVAL} \cdot i + \text{SIZE}_{INTERVAL} - 1]\). For all integer \(i \) we have \(N_i = M_i \).

Arc input(s)
\text{VARIABLES1, VARIABLES2}

Arc generator
\text{PRODUCT} \mapsto \text{collection(variables1, variables2)}

Arc arity
2

Arc constraint(s)
\text{variables1.var}/\text{SIZE}_{INTERVAL} = \text{variables2.var}/\text{SIZE}_{INTERVAL}

Graph property(ies)
\begin{itemize}
\item for all connected components: \text{NSOURCE} = \text{NSINK}
\item \text{NSOURCE} = |\text{VARIABLES1}|
\item \text{NSINK} = |\text{VARIABLES2}|
\end{itemize}

Example
same_{interval}
\[
\begin{pmatrix}
\{ \text{var} - 1, \\
\text{var} - 7, \\
\text{var} - 6, \\
\text{var} - 0, \\
\text{var} - 1, \\
\text{var} - 7 \\
\{ \text{var} - 8, \\
\text{var} - 8, \\
\text{var} - 8, \\
\text{var} - 0, \\
\text{var} - 1, \\
\text{var} - 2 \}
\end{pmatrix}
, 3
\]

In the previous example, the third parameter \text{SIZE}_{INTERVAL} defines the following family of intervals \([3 \cdot k, 3 \cdot k + 2]\), where \(k \) is an integer. Parts (A) and (B) of Figure 4.361 respectively show the initial and final graph. Since we use the \text{NSOURCE} and \text{NSINK} graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since there is a constraint on each connected component of the final
graph we also show the different connected components. Each of them corresponds to an equivalence class according to the arc constraint. The \texttt{same}_\texttt{interval} constraint holds since:

- Each connected component of the final graph has the same number of sources and of sinks.
- The number of sources of the final graph is equal to $|\text{VARIABLES1}|$.
- The number of sinks of the final graph is equal to $|\text{VARIABLES2}|$.

![Graph illustration](image)

\textbf{Signature}

Since the initial graph contains only sources and sinks, and since isolated vertices are eliminated from the final graph, we make the following observations:

- Sources of the initial graph cannot become sinks of the final graph,
- Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the \texttt{PRODUCT} arc generator on the collections VARIABLES1 and VARIABLES2, we have that the maximum number of sources and sinks of the final graph is respectively equal to $|\text{VARIABLES1}|$ and $|\text{VARIABLES2}|$. Therefore we can rewrite $\text{NSOURCE} = |\text{VARIABLES1}|$ to $\text{NSOURCE} \geq |\text{VARIABLES1}|$ and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite $\text{NSINK} = |\text{VARIABLES2}|$ to $\text{NSINK} \geq |\text{VARIABLES2}|$ and simplify NSINK to NSINK.

\textbf{Algorithm}

See algorithm of the \texttt{same}_\texttt{interval} constraint.

\textbf{See also}

- \texttt{same}_\texttt{constraint}

\textbf{Key words}

- \texttt{constraint\ between\ two\ collections\ of\ variables}
- \texttt{permutation}
- \texttt{interval}
4.178 same_modulo

Origin Derived from [same]

Constraint same_modulo(VARIABLES1, VARIABLES2, M)

Argument(s) VARIABLES1 : collection(var – dvar)
VARIABLES2 : collection(var – dvar)
M : int

Restriction(s) |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose For each integer R in $[0, M - 1]$, let $N1_R$ (respectively $N2_R$) denote the number of variables of VARIABLES1 (respectively VARIABLES2) which have R as a rest when divided by M. For all R in $[0, M - 1]$ we have that $N1_R = N2_R$.

Arc input(s) VARIABLES1 VARIABLES2
Arc generator $PRODUCT \mapsto collection(variables1, variables2)$
Arc arity 2
Arc constraint(s) variables1.var mod M = variables2.var mod M
Graph property(ies) • for all connected components: NSOURCE = NSINK
• NSOURCE = |VARIABLES1|
• NSINK = |VARIABLES2|

Example same_modulo

Parts (A) and (B) of Figure 1.362 respectively show the initial and final graph. Since we use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since there is a constraint on each connected component of the final graph we also show the different connected components. Each of them corresponds to an equivalence class according to the arc constraint. The same_modulo constraint holds since:
Each connected component of the final graph has the same number of sources and of sinks.

The number of sources of the final graph is equal to \(|\text{VARIABLES}_1|\).

The number of sinks of the final graph is equal to \(|\text{VARIABLES}_2|\).

Figure 4.362: Initial and final graph of the same modulo constraint

Signature

Since the initial graph contains only sources and sinks, and since isolated vertices are eliminated from the final graph, we make the following observations:

- Sources of the initial graph cannot become sinks of the final graph.
- Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the \(\text{PRODUCT}\) arc generator on the collections \(\text{VARIABLES}_1\) and \(\text{VARIABLES}_2\), we have that the maximum number of sources and sinks of the final graph is respectively equal to \(|\text{VARIABLES}_1|\) and \(|\text{VARIABLES}_2|\). Therefore we can rewrite \(\text{NSOURCE} = |\text{VARIABLES}_1|\) to \(\text{NSOURCE} \geq |\text{VARIABLES}_1|\) and simplify \(\text{NSOURCE}\) to \(\text{NSOURCE}\). In a similar way, we can rewrite \(\text{NSINK} = |\text{VARIABLES}_2|\) to \(\text{NSINK} \geq |\text{VARIABLES}_2|\) and simplify \(\text{NSINK}\) to \(\text{NSINK}\).

See also

- [modulo]

Key words

- Constraint between two collections of variables
- permutation
- modulo
4.179 same_partition

Origin

Derived from

Constraint

\text{same_partition(VARIABLES1, VARIABLES2, PARTITIONS)}

Type(s)

VALUES : collection(val – int)

Argument(s)

VARIABLES1 : collection(var – dvar)
VARIABLES2 : collection(var – dvar)
PARTITIONS : collection(p – VALUES)

Restriction(s)

\text{required(VALUES, val)}
\text{distinct(VALUES, val)}
\text{|VARIABLES1| = |VARIABLES2|}
\text{required(VARIABLES1_var)}
\text{required(VARIABLES2_var)}
\text{required(PARTITIONS_var)}
\text{|PARTITIONS| \geq 2}

Purpose

For each integer \(i\) in \([1, |\text{PARTITIONS}|]\), let \(N1_i\) (respectively \(N2_i\)) denote the number of variables of \(\text{VARIABLES1}\) (respectively \(\text{VARIABLES2}\)) which take their value in the \(i^{th}\) partition of the collection \(\text{PARTITIONS}\). For all \(i\) in \([1, |\text{PARTITIONS}|]\) we have \(N1_i = N2_i\).

Arc input(s)

VARIABLES1 VARIABLES2

Arc generator

\(PRODUCT \mapsto \text{collection(variables1, variables2)}\)

Arc arity

2

Arc constraint(s)

\text{in_same_partition(variables1_var, variables2_var, PARTITIONS)}

Graph property(ies)

- for all connected components: \(\text{NSOURCE} = \text{NSINK}\)
- \(\text{NSOURCE} = |\text{VARIABLES1}|\)
- \(\text{NSINK} = |\text{VARIABLES2}|\)

Example

\(\left\{ \begin{array}{l}
\text{var} - 1, \\
\text{var} - 2, \\
\text{var} - 6, \\
\text{var} - 3, \\
\text{var} - 1, \\
\text{var} - 2 \\
\text{var} - 6, \\
\text{var} - 6, \\
\text{var} - 2, \\
\text{var} - 3, \\
\text{var} - 1, \\
\text{var} - 3 \\
p - \{\text{val} - 1, \text{val} - 3\}, \\
p - \{\text{val} - 4\}, \\
p - \{\text{val} - 2, \text{val} - 6\}
\end{array} \right.\)
Parts (A) and (B) of Figure 4.363 respectively show the initial and final graph. Since we use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since there is a constraint on each connected component of the final graph we also show the different connected components. Each of them corresponds to an equivalence class according to the arc constraint. The same_partition constraint holds since:

- Each connected component of the final graph has the same number of sources and of sinks.
- The number of sources of the final graph is equal to $|\text{VARIABLES}_1|$.
- The number of sinks of the final graph is equal to $|\text{VARIABLES}_2|$.

![Figure 4.363: Initial and final graph of the same_partition constraint](image)

Signature

Since the initial graph contains only sources and sinks, and since isolated vertices are eliminated from the final graph, we make the following observations:

- Sources of the initial graph cannot become sinks of the final graph,
- Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the PRODUCT arc generator on the collections VARIABLES1 and VARIABLES2, we have that the maximum number of sources and sinks of the final graph is respectively equal to $|\text{VARIABLES}_1|$ and $|\text{VARIABLES}_2|$. Therefore we can rewrite $\text{NSOURCE} = |\text{VARIABLES}_1|$ to $\text{NSOURCE} \geq |\text{VARIABLES}_1|$ and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite $\text{NSINK} = |\text{VARIABLES}_2|$ to $\text{NSINK} \geq |\text{VARIABLES}_2|$ and simplify NSINK to NSINK.

See also

[same_in_same_partition](#)

Key words

constraint between two collections of variables, permutation, partition
4.180 sequence_folding

Origin
J. Pearson

Constraint
sequence_folding(LETTERS)

Argument(s)
LETTERS : collection(index – int, next – dvar)

Restriction(s)
|LETTERS| ≥ 1
required(LETTERS, [index, next])
LETTERS.index ≥ 1
LETTERS.index ≤ |LETTERS|
increasing_seq(LETTERS, index)
LETTERS.next ≥ 1
LETTERS.next ≤ |LETTERS|

Purpose
Express the fact that a sequence is folded in a way that no crossing occurs. A sequence is modelled by a collection of letters. For each letter l1 of a sequence, we indicate the next letter l2 located after l1 which is directly in contact with l1 (l1 itself if such a letter does not exist).

Arc input(s)
LETTERS

Arc generator
SELF → collection(letters)

Arc arity
1

Arc constraint(s)
letters.next ≥ letters.index

Graph property(ies)
NARC = |LETTERS|

Arc input(s)
LETTERS

Arc generator
CLIQUE(⟨) → collection(letters1, letters2)

Arc arity
2

Arc constraint(s)
letters2.index ≥ letters1.next ∨ letters2.next ≤ letters1.next

Graph property(ies)
NARC = |LETTERS| * (|LETTERS| − 1)/2

Example
sequence_folding

\[
\begin{pmatrix}
\text{index} - 1 & \text{next} - 1, \\
\text{index} - 2 & \text{next} - 8, \\
\text{index} - 3 & \text{next} - 3, \\
\text{index} - 4 & \text{next} - 5, \\
\text{index} - 5 & \text{next} - 5, \\
\text{index} - 6 & \text{next} - 7, \\
\text{index} - 7 & \text{next} - 7, \\
\text{index} - 8 & \text{next} - 8, \\
\text{index} - 9 & \text{next} - 9
\end{pmatrix}
\]
Parts (A) and (B) of Figure 4.364 respectively show the initial and final graph. Since we use the **NARC** graph property, the arcs of the final graph are stressed in bold. Figure 4.365 gives the folded sequence associated to the previous example. Each number represents the index of an item.

![Figure 4.364: Initial and final graph of the sequence folding constraint](image1)

![Figure 4.365: Folded sequence associated to the example](image2)

Graph model

In the list of restrictions note the *increasing* statement which imposes the items of the **LETTERS** collection to be ordered in increasing order of their index attribute. This is used so that the arc generator **CLIQUE(＜)** only generates arcs between vertices for which the indices are increasing. The arc constraint of the second graph constraint avoids the following conditions to be both true:
The second letter is located before the letter associated to the first letter,

- The letter associated to the second letter is located after the letter associated to the first letter.

Observe that, from the previous remark, we know that the first letter is located before the second letter. The graph property enforces all arcs constraints to hold.

Signature

Consider the first graph constraint. Since we use the \textit{SELF} arc generator on the \texttt{LETTERS} collection the maximum number of arcs of the final graph is equal to |\texttt{LETTERS}|. Therefore we can rewrite the graph property \(\texttt{NARC} = |\texttt{LETTERS}|\) to \(\texttt{NARC} \geq |\texttt{LETTERS}|\) and simplify \texttt{NARC} to \texttt{NARC}.

Consider now the second graph constraint. Since we use the \texttt{CLIQUE(\textlangle}) arc generator on the \texttt{LETTERS} collection the maximum number of arcs of the final graph is equal to |\texttt{LETTERS}| : (|\texttt{LETTERS}| − 1)/2. Therefore we can rewrite the graph property \(\texttt{NARC} = |\texttt{LETTERS}| \cdot (|\texttt{LETTERS}| − 1)/2\) to \(\texttt{NARC} \geq |\texttt{LETTERS}| \cdot (|\texttt{LETTERS}| − 1)/2\) and simplify \texttt{NARC} to \texttt{NARC}.

Automaton

Figure 4.366 depicts the automaton associated to the sequence folding constraint. Consider the \(i^{th}\) and the \(j^{th}\) \((i < j)\) items of the collection \texttt{LETTERS}. Let \texttt{INDEX}_i and \texttt{NEXT}_i, respectively denote the index and the next attributes of the \(i^{th}\) item of the collection \texttt{LETTERS}. Similarly, let \texttt{INDEX}_j and \texttt{NEXT}_j respectively denote the index and the next attributes of the \(j^{th}\) item of the collection \texttt{LETTERS}. To each quadruple \((\texttt{INDEX}_i, \texttt{NEXT}_i, \texttt{INDEX}_j, \texttt{NEXT}_j)\) corresponds a signature variable \(S_{i,j}\), which takes its value in \(\{0, 1, 2\}\), as well as the following signature constraint:

\[
\begin{align*}
& (\texttt{INDEX}_i \leq \texttt{NEXT}_i) \land (\texttt{INDEX}_j \leq \texttt{NEXT}_j) \land (\texttt{NEXT}_i \leq \texttt{NEXT}_j) \iff S_{i,j} = 0 \land \\
& (\texttt{INDEX}_i \leq \texttt{NEXT}_i) \land (\texttt{INDEX}_j \leq \texttt{NEXT}_j) \land (\texttt{NEXT}_i > \texttt{INDEX}_j) \land (\texttt{NEXT}_j \leq \texttt{NEXT}_i) \iff S_{i,j} = 1.
\end{align*}
\]

![Figure 4.366: Automaton of the sequence folding constraint](image)

Usage

Motivated by RNA folding \cite{144}.

Key words

\texttt{decomposition, geometrical constraint, sequence, bioinformatics, automaton, automaton without counters}.
4.181 set_value_precede

Origin

Constraint

set_value_precede(S, T, VARIABLES)

Argument(s)

\begin{align*}
S & : \text{int} \\
T & : \text{int} \\
\text{VARIABLES} & : \text{collection}(\text{var - svar})
\end{align*}

Restriction(s)

\begin{align*}
S \neq T \\
\text{required}(\text{VARIABLES, var})
\end{align*}

Purpose

If there exists a set variable v_1 of VARIABLES such that S does not belong to v_1 and T does, then there also exists a set variable v_2 preceding v_1 such that S belongs to v_2 and T does not.

Example

\begin{align*}
\text{set_value_precede} \left(2, 1, \begin{cases}
\text{var} \in \{0, 2\}, \\
\text{var} \in \{0, 1\}, \\
\text{var} \in \emptyset, \\
\text{var} \in \{1\}
\end{cases} \right)
\end{align*}

The set_value_precede constraint holds since the first occurrence of value 2 precedes the first occurrence of value 1.

Algorithm

A filtering algorithm for maintaining value precedence on a sequence of set variables is presented in [121]. Its complexity is linear to the number of variables of the collection VARIABLES.

See also

\textit{int_value_precede}

Key words

\textit{order constraint, symmetry, indistinguishable values, value precedence, constraint involving set variables}
4.182 shift

Origin
N. Beldiceanu

Constraint
\(\text{shift(\text{MIN_BREAK, MAX_RANGE, TASKS})}\)

Argument(s)
- \(\text{MIN_BREAK} : \text{int}\)
- \(\text{MAX_RANGE} : \text{int}\)
- \(\text{TASKS} : \text{collection(id \text{-- int}, \text{origin \text{-- dvar}}, \text{end \text{-- dvar}})}\)

Restriction(s)
- \(\text{MIN_BREAK} > 0\)
- \(\text{MAX_RANGE} > 0\)
- \(\text{required(TASKS, [id, origin, end])}\)
- \(\text{distinct(TASKS, id)}\)

The difference between the end of the last task of a shift and the origin of the first task of a shift should not exceed the quantity \(\text{MAX_RANGE}\). Two tasks \(t_1\) and \(t_2\) belong to the same shift if at least one of the following conditions is true:
- Task \(t_2\) starts after the end of task \(t_1\) at a distance that is less than or equal to the quantity \(\text{MIN_BREAK}\).
- Task \(t_1\) starts after the end of task \(t_2\) at a distance that is less than or equal to the quantity \(\text{MIN_BREAK}\).
- Task \(t_1\) overlaps task \(t_2\).

Purpose
- Task \(t_2\) starts after the end of task \(t_1\) at a distance that is less than or equal to the quantity \(\text{MIN_BREAK}\).
- Task \(t_1\) starts after the end of task \(t_2\) at a distance that is less than or equal to the quantity \(\text{MIN_BREAK}\).
- Task \(t_1\) overlaps task \(t_2\).

Arc input(s)
\(\text{TASKS}\)

Arc generator
\(\text{SELF \rightarrow collection(tasks)}\)

Arc arity
1

Arc constraint(s)
- \(\text{tasks.end} \geq \text{tasks.origin}\)
- \(\text{tasks.end} - \text{tasks.origin} \leq \text{MAX_RANGE}\)

Graph property(ies)
\(\text{NARC} = |\text{TASKS}|\)

Arc input(s)
\(\text{TASKS}\)

Arc generator
\(\text{CLIQUE \rightarrow collection(tasks1, tasks2)}\)

Arc arity
2

Arc constraint(s)
\(\sqrt{\left(\text{tasks2.origin} \geq \text{tasks1.end} \land \text{tasks2.origin} - \text{tasks1.end} \leq \text{MIN_BREAK},\right.\)}\)
\(\left.\text{tasks1.origin} \geq \text{tasks2.end} \land \text{tasks1.origin} - \text{tasks2.end} \leq \text{MIN_BREAK},\right.\)
\(\left.\text{tasks2.origin} < \text{tasks1.end} \land \text{tasks1.origin} < \text{tasks2.end}\right)\)

Sets
\(\text{CC} \rightarrow \left[\text{variables} - \text{col}\left(\text{VARIABLES} - \text{collection(var \text{-- dvar}}),\right.\right.\)
\(\left.\text{item[var - TASKS.origin]}, \text{item[var - TASKS.end]}\right)\right]\)
Constraint(s) on sets
\[\text{range}_{\text{ctr}}(\text{variables}, \leq \text{MAX RANGE}) \]

Example

\[
\text{shift} \begin{cases}
\text{id} - 1 & \text{origin} - 17 & \text{end} - 20, \\
\text{id} - 2 & \text{origin} - 7 & \text{end} - 10, \\
\text{id} - 3 & \text{origin} - 2 & \text{end} - 4, \\
\text{id} - 4 & \text{origin} - 21 & \text{end} - 22, \\
\text{id} - 5 & \text{origin} - 5 & \text{end} - 6
\end{cases}
\]

Parts (A) and (B) of Figure 4.367 respectively show the initial and final graph associated to the second graph constraint. Since we use the set generator CC we show the two connected components of the final graph. They respectively correspond to the two shifts which are displayed in Figure 4.368. Each task is drawn as a rectangle with its corresponding id in the middle. We indicate the distance between two consecutives tasks of a same shift and check that it is less than or equal to the value of the MIN_BREAK parameter (6 in the example). Since each shift has a range that is less than or equal to the MAX_RANGE parameter, the shift constraint holds (the range of a shift is the difference between the end of the last task of the shift and the origin of the first task of the shift).

\[\begin{array}{c}
\text{TASKS} \\
1 \\
2 \\
3 \\
4 \\
5
\end{array} \quad \begin{array}{c}
\text{SET}\#1 \\
1:1,17,20 \\
2:2,7,10 \\
4:4,21,22
\end{array} \quad \begin{array}{c}
\text{SET}\#2 \\
3:3,2,4 \\
5:5,5,6
\end{array} \]

(A) \quad (B)

Figure 4.367: Initial and final graph of the shift constraint

\[\begin{array}{c}
\text{first shift} \\
\text{range} = 8 \\
3 \quad 5 \quad 2 \quad 1 \\
2 \quad 5 \quad 7 \quad 17 \quad 21 \\
\end{array} \quad \begin{array}{c}
\text{break} = 7 \\
\end{array} \quad \begin{array}{c}
\text{second shift} \\
\text{range} = 5 \\
1 \quad 4 \\
17 \quad 21
\end{array} \]

Figure 4.368: The two shifts of the example

Graph model

The first graph constraint enforces the following two constraints between the attributes of each task:
• The end of a task should not be situated before its start,
• The duration of a task should not be greater than the \text{MAX_RANGE} parameter.

The second graph constraint decomposes the final graph in connected components where each component corresponds to a given shift. Finally, the constraint(s) on sets field restricts the stretch of each shift.

Signature

Consider the first graph constraint. Since we use the \text{SELF} arc generator on the \text{TASKS} collection the maximum number of arcs of the final graph is equal to $|\text{TASKS}|$. Therefore we can rewrite the graph property $\text{NARC} = |\text{TASKS}|$ to $\text{NARC} \geq |\text{TASKS}|$ and simplify \text{NARC} to \text{NARC}.

Usage

The shift constraint can be used in machine scheduling problems where one has to shut down a machine for maintenance purpose after a given maximum utilisation of that machine. In this case the \text{MAX_RANGE} parameter indicates the maximum possible utilisation of the machine before maintenance, while the \text{MIN_BREAK} parameter gives the minimum time needed for maintenance.

The shift constraint can also be used for timetabling problems where the rest period of a person can move in time. In this case \text{MAX_RANGE} indicates the maximum possible working time for a person, while \text{MIN_BREAK} specifies the minimum length of the break that follows a working time period.

See also

\text{sliding_time_window}

Key words

scheduling constraint, timetabling constraint, temporal constraint
4.183 size_maximal_sequence_alldifferent

<table>
<thead>
<tr>
<th>Origin</th>
<th>N. Beldiceanu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint</td>
<td>size_maximal_sequence_alldifferent(SIZE, VARIABLES)</td>
</tr>
<tr>
<td>Synonym(s)</td>
<td>size_maximal_sequence_alldiff, size_maximal_sequence_alldistinct.</td>
</tr>
<tr>
<td>Argument(s)</td>
<td>SIZE : dvar</td>
</tr>
<tr>
<td></td>
<td>VARIABLES : collection(var – dvar)</td>
</tr>
<tr>
<td>Restriction(s)</td>
<td>SIZE ≥ 0</td>
</tr>
<tr>
<td></td>
<td>SIZE ≤</td>
</tr>
<tr>
<td></td>
<td>required(VARIABLES, var)</td>
</tr>
<tr>
<td>Purpose</td>
<td>SIZE is the size of the maximal sequence (among all sequences of consecutives variables of the collection VARIABLES) for which the alldifferent constraint holds.</td>
</tr>
<tr>
<td>Arc input(s)</td>
<td>VARIABLES</td>
</tr>
<tr>
<td>Arc generator</td>
<td>PATH _N → collection</td>
</tr>
<tr>
<td>Arc arity</td>
<td>*</td>
</tr>
<tr>
<td>Arc constraint(s)</td>
<td>alldifferent(collection)</td>
</tr>
<tr>
<td>Graph property(ies)</td>
<td>NARC = SIZE</td>
</tr>
</tbody>
</table>

Example

\[
\text{size_maximal_sequence_alldifferent}(4, \begin{array}{c}
\text{var} - 2, \\
\text{var} - 2, \\
\text{var} - 4, \\
\text{var} - 5, \\
\text{var} - 2, \\
\text{var} - 7, \\
\text{var} - 4
\end{array})
\]

The previous constraint holds since the constraint alldifferent(var - 4, var - 5, var - 2, var - 7) holds and since the following three constraints do not hold:

- alldifferent(var - 2, var - 2, var - 4, var - 5, var - 2).
- alldifferent(var - 2, var - 4, var - 5, var - 2, var - 7).
- alldifferent(var - 4, var - 5, var - 2, var - 7, var - 4).

Graph model

Observe that this is an example of global constraint where the arc constraints don’t have the same arity. However they correspond to the same type of constraint.

See also

alldifferent, size_maximal_starting_sequence_alldifferent

Key words

sliding sequence constraint, conditional constraint, sequence, hypergraph.
4.184 **size_maximal_starting_sequence_alldifferent**

Origin
N. Beldiceanu

Constraint
`size_maximal_starting_sequence_alldifferent(SIZE, VARIABLES)`

Synonym(s)
`size_maximal_starting_sequence_alldiff, size_maximal_starting_sequence_alldistinct`

Argument(s)
- `SIZE` : `dvar`
- `VARIABLES` : `collection(var − dvar)`

Restriction(s)
- `SIZE ≥ 0`
- `SIZE ≤ |VARIABLES|`
 - `required(VARIABLES, var)`

Purpose
`SIZE` is the size of the maximal sequence (among all sequences of consecutives variables of the collection `VARIABLES` starting at position one) for which the `alldifferent` constraint holds.

Arc input(s)
`VARIABLES`

Arc generator
`PATH_1 ← collection`

Arc arity
`

Arc constraint(s)
`alldifferent(collection)`

Graph property(ies)
`NARC = SIZE`

Example
`size_maximal_starting_sequence_alldifferent 4, \{ var − 9, var − 2, var − 4, var − 5 \}`

The previous constraint holds since the constraint `alldifferent(var − 9, var − 2, var − 4, var − 5)` holds and since `alldifferent(var − 9, var − 2, var − 4, var − 5, var − 2)` does not hold. Parts (A) and (B) of Figure 4.369 respectively show the initial and final graph.

Graph model
Observe that this is an example where the arc constraints don't have the same arity. However they correspond to the same constraint.

Remark
A conditional constraint [145] with the specific structure that one can relax the constraints on the last variables of the collection `VARIABLES`.

See also
`alldifferent, size_maximal_sequence_alldifferent`

Key words
`sliding sequence constraint, conditional constraint, sequence, hypergraph`
Figure 4.369: Initial and final graph of the size_maximal_starting_sequence_alldifferent constraint
4.185 sliding_card_skip0

Origin
N. Beldiceanu

Constraint
`sliding_card_skip0(ATLEAST, ATMOST, VARIABLES, VALUES)`

Argument(s)
- `ATLEAST`: int
- `ATMOST`: int
- `VARIABLES`: collection(var − dvar)
- `VALUES`: collection(val − int)

Restriction(s)
- `ATLEAST` ≥ 0
- `ATMOST` ≥ `ATLEAST`
- `required(VARIABLES, var)`
- `required(VALUES, val)`
- `distinct(VALUES, val)`
- `VALUES.val ≠ 0`

Let n be the total number of variables of the collection `VARIABLES`. A maximum non-zero set of consecutive variables $X_i...X_j$ ($1 ≤ i ≤ j ≤ n$) is defined in the following way:

- All variables $X_i, ..., X_j$ take a non-zero value,
- $i = 1$ or X_{i-1} is equal to 0,
- $j = n$ or X_{j+1} is equal to 0.

Enforces that each maximum non-zero set of consecutive variables of the collection `VARIABLES` contains at least `ATLEAST` and at most `ATMOST` values from the collection of values `VALUES`.

Arc input(s)
`VARIABLES`

Arc generator
- `PATH` → `collection(variables1, variables2)`
- `LOOP` → `collection(variables1, variables2)`

Arc arity
2

Arc constraint(s)
- `variables1.var ≠ 0`
- `variables2.var ≠ 0`

Sets
`CC` → `variables`

Constraint(s) on sets
`among_low_up(ATLEAST, ATMOST, variables, VALUES)`

Example
`sliding_card_skip0 2, 3, {var − 0, var − 7, var − 2, var − 9, var − 0, var − 0, var − 9, var − 4, var − 9, {val − 7, val − 9}}`
Parts (A) and (B) of Figure 4.370 respectively show the initial and final graph. Since we use the set generator CC we show the two connected components of the final graph. Since these two connected components both contain 2 and 3 variables which take their value in \(\{7, 9\} \) the `sliding_card_skip0` constraint holds.

![Graph model](image)

Graph model

Note that the arc constraint will produce the different sequences of consecutives variables that do not contain any 0. The CC set generator produces all the connected components of the final graph.

Automaton

Figure 4.371 depicts the automaton associated to the `sliding_card_skip0` constraint. To each variable \(\text{VAR}_i \) of the collection \(\text{VARIABLES} \) corresponds a signature variable \(\text{S}_i \). The following signature constraint links \(\text{VAR}_i \) and \(\text{S}_i \):

\[
\begin{align*}
(\text{VAR}_i = 0) \iff \text{S}_i = 0 \land \\
(\text{VAR}_i \neq 0 \land \text{VAR}_i \notin \text{VALUES}) \iff \text{S}_i = 1 \land \\
(\text{VAR}_i \neq 0 \land \text{VAR}_i \in \text{VALUES}) \iff \text{S}_i = 2.
\end{align*}
\]

Usage

This constraint is useful in timetabling problems where the variables are interpreted as the type of job that a person does on consecutive days. Value 0 represents a rest day and one imposes a cardinality constraint on periods that are located between rest periods.
Figure 4.371: Automaton of the \textit{sliding card skip0} constraint

Figure 4.372: Hypergraph of the reformulation corresponding to the automaton of the \textit{sliding card skip0} constraint
Remark

One cannot initially state a `global_cardinality` constraint since the rest days are not yet allocated. One can also not use an `among_seq` constraint since it does not hold for the sequences of consecutive variables that contains at least one rest day.

See also

`among`, `among_low_up`, `global_cardinality`

Key words

`timetabling constraint`, `sliding sequence constraint`, `sequence`, `automaton`

`automaton with counters`, `alpha-acyclic constraint network(2)`
4.186 sliding_distribution

Origin

Constraint

sliding_distribution(SEQ, VARIABLES, VALUES)

Argument(s)

 SEQ : int
 VARIABLES : collection(var − dvar)
 VALUES : collection(val − int, omin − int, omax − int)

Restriction(s)

 SEQ > 0
 SEQ ≤ |VARIABLES|
 required(VARIABLES, var)
 |VALUES| > 0
 required(VALUES, [val, omin, omax])
 distinct(VALUES, val)
 VALUES.omin ≥ 0
 VALUES.omax ≤ SEQ
 VALUES.omin ≤ VALUES.omax

Purpose

For each sequence of SEQ consecutive variables of the VARIABLES collection, each value VALUES[i].val (1 ≤ i ≤ |VALUES|) should be taken by at least VALUES[i].omin and at most VALUES[i].omax variables.

Arc input(s)

VARIABLES

Arc generator

PATH collection

Arc arity

SEQ

Arc constraint(s)

global_cardinality_low_up(collection, VALUES)

Graph property(ies)

NARC = |VARIABLES| − SEQ + 1

Example

sliding_distribution

\[
\begin{align*}
\{ & \{ & \text{var} = 0, \\
& \text{var} = 5, \\
& \text{var} = 6, \\
& \text{var} = 6, \\
& \text{var} = 5, \\
& \text{var} = 0, \\
& \text{var} = 0 \} \\
\{ & \{ & \text{val} = 0, & \text{omin} = 1, & \text{omax} = 2, \} \\
& \{ & \text{val} = 1, & \text{omin} = 0, & \text{omax} = 4, \} \\
& \{ & \text{val} = 4, & \text{omin} = 0, & \text{omax} = 4, \} \\
& \{ & \text{val} = 5, & \text{omin} = 1, & \text{omax} = 2, \} \\
& \{ & \text{val} = 6, & \text{omin} = 0, & \text{omax} = 2 \} \}
\end{align*}
\]

The sliding_distribution constraint holds since:
• On the first sequence of 4 consecutive variables 0566 values 0, 1, 4, 5 and 6 are respectively used 1, 0, 0, 1 and 2 times.

• On the second sequence of 4 consecutive variables 5665 values 0, 1, 4, 5 and 6 are respectively used 0, 0, 0, 2 and 2 times.

• On the third sequence of 4 consecutive variables 6650 values 0, 1, 4, 5 and 6 are respectively used 1, 0, 0, 1 and 2 times.

• On the third sequence of 4 consecutive variables 6500 values 0, 1, 4, 5 and 6 are respectively used 2, 0, 0, 1 and 1 times.

See also global_cardinality_low_up pattern

Key words decomposition, sliding sequence constraint, sequence, hypergraph
4.187 sliding_sum

Origin: CHIP

Constraint: \texttt{sliding_sum(LOW, UP, SEQ, VARIABLES)}

Argument(s):
- \texttt{LOW}: int
- \texttt{UP}: int
- \texttt{SEQ}: int
- \texttt{VARIABLES}: collection(var – dvar)

Restriction(s):
- \texttt{UP} \geq \texttt{LOW}
- \texttt{SEQ} \geq 0
- \texttt{SEQ} \leq |\texttt{VARIABLES}|
- \texttt{required(VARIABLES, var)}

Purpose:

| Constraints all sequences of SEQ consecutive variables of the collection VARIABLES so that the sum of the variables belongs to interval [LOW, UP]. |

Arc input(s): VARIABLES

Arc generator: \textit{PATH} \mapsto \textit{collection}

Arc arity: SEQ

Arc constraint(s):
- \texttt{sum_ctr(collection, \geq, LOW)}
- \texttt{sum_ctr(collection, \leq, UP)}

Graph property(ies):
\texttt{NARC} = |\texttt{VARIABLES}| - SEQ + 1

Example:
\texttt{sliding_sum} (3, 7, 4)

The previous example considers all sliding sequences of 4 consecutive variables and constraints the sum to be between 3 and 7. The constraint holds since the sum associated to the different sequences are respectively 7, 6, 5 and 7.

Graph model:

We use \texttt{sum_ctr} as an arc constraint. \texttt{sum_ctr} takes a collection of domain variables as its first argument.

Signature:

Since we use the \textit{PATH} arc generator with an arity of SEQ on the items of the \texttt{VARIABLES} collection, the expression \(|\texttt{VARIABLES}| - \text{SEQ} + 1 \) corresponds to the maximum number of arcs of the final graph. Therefore we can rewrite the graph property \texttt{NARC} = |\texttt{VARIABLES}| - SEQ + 1 to \texttt{NARC} \geq |\texttt{VARIABLES}| - SEQ + 1 and simplify \texttt{NARC} to \texttt{NARC}.
Algorithm

Key words: decomposition, sliding sequence constraint, sequence, hypergraph, sum.
4.188 sliding_time_window

Origin

N. Beldiceanu

Constraint

sliding_time_window(WINDOW_SIZE, LIMIT, TASKS)

Argument(s)

WINDOW_SIZE : int
LIMIT : int
TASKS : collection(id \rightarrow int, origin \rightarrow dvar, duration \rightarrow dvar)

Restriction(s)

WINDOW_SIZE > 0
LIMIT \geq 0
required(TASKS, [id, origin, duration])
distinct(TASKS, id)
TASKS.duration \geq 0

Purpose

For any time window of size WINDOW_SIZE, the intersection of all the tasks of the collection TASKS with this time window is less than or equal to a given limit LIMIT.

Arc input(s)

TASKS

Arc generator

CLIQUE \rightarrow collection(tasks1, tasks2)

Arc arity

2

Arc constraint(s)

* tasks1.origin \leq tasks2.origin
* tasks2.origin - tasks1.origin < WINDOW_SIZE

Sets

SUCC \rightarrow [source, tasks]

Constraint(s) on sets

sliding_time_window_from_start(WINDOW_SIZE, LIMIT, tasks, source, origin)

Example

sliding_time_window (9, 6,
\begin{align*}
\text{id} - 1 & \text{ origin} - 10 & \text{duration} - 3, \\
\text{id} - 2 & \text{ origin} - 5 & \text{duration} - 1, \\
\text{id} - 3 & \text{ origin} - 6 & \text{duration} - 2, \\
\text{id} - 4 & \text{ origin} - 14 & \text{duration} - 2, \\
\text{id} - 5 & \text{ origin} - 2 & \text{duration} - 2
\end{align*}

Parts (A) and (B) of Figure 4.373 respectively show the initial and final graph. In the final graph, the successors of a given task t correspond to the set of tasks that do not start before task t and intersect the time window that starts at the origin of task t.

The lower part of Figure 4.374 indicates the different tasks on the time axis. Each task is drawn as a rectangle with its corresponding identifier in the middle. Finally the upper part of Figure 4.374 shows the different time windows and the respective contribution of the tasks in these time windows. A line with two arrows depicts each time window. The two arrows indicate the start and the end of the time window. At the right of each time window we give its occupation. Since this occupation is always less than or equal to the limit 6, the sliding_time_window constraint holds.
Figure 4.373: Initial and final graph of the sliding time window constraint

Figure 4.374: Time windows of the sliding time window constraint
Graph model
We generate an arc from a task \(t_1 \) to a task \(t_2 \) if task \(t_2 \) does not start before task \(t_1 \) and if task \(t_2 \) intersects the time window that starts at the origin of task \(t_1 \). Each set generated by SUCC corresponds to all tasks that intersect in time the time window that starts at the origin of a given task.

Usage
The `sliding_time_window` constraint is useful for timetabling problems in order to put an upper limit on the total work over sliding time windows.

See also
`shift`, `sliding_time_window_from_start`, `sliding_time_window_sum`

Key words
`sliding_sequence_constraint`, `temporal_constraint`
4.189 sliding_time_window_from_start

Origin
Used for defining \texttt{sliding_time_window}

Constraint
\texttt{sliding_time_window_from_start(WINDOW_SIZE, LIMIT, TASKS, START)}

Argument(s)
\begin{align*}
\text{WINDOW_SIZE} & : \text{int} \\
\text{LIMIT} & : \text{int} \\
\text{TASKS} & : \text{collection(id = int, origin = dvar, duration = dvar)} \\
\text{START} & : \text{dvar}
\end{align*}

Restriction(s)
\begin{align*}
\text{WINDOW_SIZE} & > 0 \\
\text{LIMIT} & \geq 0 \\
\text{required(TASKS, [id, origin, duration])} \\
\text{distinct(TASKS, id)} \\
\text{TASKS}\text{.duration} & \geq 0
\end{align*}

Purpose
The sum of the intersections of all the tasks of the \texttt{TASKS} collection with interval $[\text{START, START} + \text{WINDOW_SIZE} - 1]$ is less than or equal to \texttt{LIMIT}.

Derived Collection(s)
\texttt{col(S \rightarrow collection(var = dvar), [item(var = \text{START})])}

Arc input(s)
\texttt{S TASKS}

Arc generator
\texttt{PRODUCT \mapsto collection(s, tasks)}

Arc arity
2

Arc constraint(s)
\texttt{TRUE}

Graph property(ies)
\begin{align*}
\text{SUM_WEIGHT_ARC} & \left(\max \left(0, \min(s\text{.var + WINDOW_SIZE, tasks}\text{.origin + tasks}\text{.duration}) \right) \right) \\
\text{sliding_time_window} & \left(9, 6, \left\{ \begin{array}{l}
\text{id} - 1 & \text{origin} - 10 \\
\text{id} - 2 & \text{origin} - 5 \\
\text{id} - 3 & \text{origin} - 6 \\
\end{array} \right\}, .5 \right)
\end{align*}

Example
Parts (A) and (B) of Figure 4.375 respectively show the initial and final graph. To each arc of the final graph we associate the intersection of the corresponding sink task with interval $[\text{START, START} + \text{WINDOW_SIZE} - 1]$. The constraint \texttt{sliding_time_window_from_start} holds since the sum of the previous intersections does not exceed \texttt{LIMIT}.

Graph model
Since we use the \texttt{TRUE} arc constraint the final and the initial graph are identical. The unique source of the final graph corresponds to the interval $[\text{START, START} + \text{WINDOW_SIZE} - 1]$. Each sink of the final graph represents a given task of the \texttt{TASKS} collection. We evaluate each arc by the intersection of the task associated to one of the extremities of the arc with the time window $[\text{START, START} + \text{WINDOW_SIZE} - 1]$. Finally, the graph property \texttt{SUM_WEIGHT_ARC} sums up all the valuations of the arcs and check that it does not exceed a given limit.
Used in: sliding_time_window

Key words: sliding sequence constraint, temporal constraint, derived collection
Figure 4.375: Initial and final graph of the sliding_time_window_from_start constraint
4.190 **sliding_time_window_sum**

Origin
Derived from `sliding_time_window`

Constraint
`sliding_time_window_sum(WINDOW_SIZE, LIMIT, TASKS)`

Argument(s)
- `WINDOW_SIZE : int`
- `LIMIT : int`
- `TASKS : collection(id = int, origin = dvar, end = dvar, npoint = dvar)`

Restriction(s)
- `WINDOW_SIZE > 0`
- `LIMIT ≥ 0`
- `required(TASKS, [id, origin, end, npoint])`
- `distinct(TASKS, id)`
- `TASKS.npoint ≥ 0`

Purpose
For any time window of size `WINDOW_SIZE`, the sum of the points of the tasks of the collection `TASKS` that overlap that time window do not exceed a given limit `LIMIT`.

Arc input(s)
- `TASKS`

Arc generator
- `SELF ← collection(tasks)`

Arc arity
- 1

Arc constraint(s)
- `tasks.origin ≤ tasks.end`

Graph property(ies)
- `NARC = |TASKS|`

Arc input(s)
- `TASKS`

Arc generator
- `CLIQUE ← collection(tasks1, tasks2)`

Arc arity
- 2

Arc constraint(s)
- `tasks1.end ≤ tasks2.end`
- `tasks2.origin - tasks1.end < WINDOW_SIZE - 1`

Sets
- `SUCC → [source, variables ← col(VARIABLES = collection(var = dvar), [item(var = TASKS.npoint)])]`

Constraint(s) on sets
- `sum_ctr(variables, ≤ LIMIT)`
Example

\[
sliding_time_window_sum\left(\begin{array}{llll}
\text{id} - 1 & \text{origin} - 10 & \text{end} - 13 & \text{npoint} - 2, \\
\text{id} - 2 & \text{origin} - 5 & \text{end} - 6 & \text{npoint} - 3, \\
9, 16, & \text{id} - 3 & \text{origin} - 6 & \text{end} - 8 & \text{npoint} - 4, \\
\text{id} - 4 & \text{origin} - 14 & \text{end} - 16 & \text{npoint} - 5, \\
\text{id} - 5 & \text{origin} - 2 & \text{end} - 4 & \text{npoint} - 6
\end{array}\right)
\]

Parts (A) and (B) of Figure 4.376 respectively show the initial and final graph. In the final graph, the successors of a given task \(t \) correspond to the set of tasks that both do not end before the end of task \(t \), and intersect the time window that starts at the \(\text{end} - 1 \) of task \(t \).

The lower part of Figure 4.377 indicates the different tasks on the time axis. Each task is drawn as a rectangle with its corresponding identifier in the middle. Finally the upper part of Figure 4.377 shows the different time windows and the respective contribution of the tasks in these time windows. A line with two arrows depicts each time window. The two arrows indicate the start and the end of the time window. At the right of each time window we give its occupation. Since this occupation is always less than or equal to the limit 16, the \(sliding_time_window_sum \) constraint holds.

![Graph model](image)

Graph model

We generate an arc from a task \(t_1 \) to a task \(t_2 \) if task \(t_2 \) does not end before the end of task \(t_1 \) and if task \(t_2 \) intersects the time window that starts at the last instant of task \(t_1 \). Each set generated by \(SUCC \) corresponds to all tasks that intersect in time the time window that starts at instant \(\text{end} - 1 \), where \(\text{end} \) is the end of a given task.

Signature

Consider the first graph constraint. Since we use the \(SELF \) arc generator on the \(TASKS \) collection the maximum number of arcs of the final graph is equal to \(|TASKS| \). Therefore we can rewrite \(NARC = |TASKS| \) to \(NARC \geq |TASKS| \) and simplify \(NARC \) to \(NARC \).

Usage

This constraint may be used for timetabling problems in order to put an upper limit on the cumulated number of points in a shift.

See also

\(sliding_time_window \)
Key words: sliding sequence constraint, temporal constraint, time window, sum.

Figure 4.377: Time windows of the sliding time window sum constraint.
4.191 smooth

Origin
Derived from change

Constraint
smooth(NCHANGE, TOLERANCE, VARIABLES)

Argument(s)
NCHANGE : dvar
TOLERANCE : int
VARIABLES : collection(var – dvar)

Restriction(s)
NCHANGE ≥ 0
NCHANGE < |VARIABLES|
TOLERANCE ≥ 0
required(VARIABLES, var)

Purpose
NCHANGE is the number of times that |X – Y| > TOLERANCE holds; X and Y correspond to consecutive variables of the collection VARIABLES.

Arc input(s)
VARIABLES

Arc generator
PATH ← collection(variables1, variables2)

Arc arity
2

Arc constraint(s)
abs(variables1.var – variables2.var) > TOLERANCE

Graph property(ies)
NARC = NCHANGE

Example
smooth
\[
\begin{pmatrix}
\text{var - 1,} \\
\text{var - 3,} \\
\{ \\
\text{var - 4,} \\
\text{var - 5,} \\
\text{var - 2}
\end{pmatrix}
\]

In the previous example we have one change between values 5 and 2 since the difference in absolute value is greater than the tolerance (i.e. |5 - 2| > 2). Parts (A) and (B) of Figure 4.378 respectively show the initial and final graph. Since we use the NARC graph property, the unique arc of the final graph is stressed in bold.

Automaton
Figure 4.379 depicts the automaton associated to the smooth constraint. To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a 0-1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si: (|VARi – VARi+1|) > TOLERANCE ↔ Si = 1.

Usage
This constraint is useful for the following problems:

- Assume that VARIABLES corresponds to the number of people that work on consecutive weeks. One may not normally increase or decrease too drastically the number of people from one week to the next week. With the smooth constraint you can state a limit on the number of drastic changes.
Figure 4.378: Initial and final graph of the smooth constraint

Figure 4.379: Automaton of the smooth constraint

Figure 4.380: Hypergraph of the formulation corresponding to the automaton of the smooth constraint
Assume you have to produce a set of orders, each order having a specific attribute. You want to generate the orders in such a way that there is not a too big difference between the values of the attributes of two consecutives orders. If you can’t achieve this on two given specific orders, this would imply a set-up or a cost. Again, with the smooth constraint, you can control this kind of drastic changes.

See also change

Key words timetabling constraint, number of changes, automaton, automaton with counters, sliding cyclic, constraint network
4.192 soft_alldifferentCtr

Origin

Constraint soft_alldifferentCtr\((C, \text{VARIABLES}) \)

Synonym(s) soft_alldiffCtr, soft_alldistinctCtr.

Argument(s)
\[
\begin{align*}
C & : \text{dvar} \\
\text{VARIABLES} & : \text{collection(var - dvar)}
\end{align*}
\]

Restriction(s)
\[
\begin{align*}
C & \geq 0 \\
C & \leq (|\text{VARIABLES}| * |\text{VARIABLES}| - |\text{VARIABLES}|)/2 \\
\text{required}(\text{VARIABLES}.\text{var})
\end{align*}
\]

Purpose Consider the disequality constraints involving two distinct variables of \text{the collection VARIABLES}. Among the previous set of constraints, \(C \) is the number of disequality constraints which do not hold.

Arc input(s) \text{VARIABLES}

Arc generator \text{CLIQUE}(<) \rightarrow \text{collection(variables1, variables2)}

Arc arity 2

Arc constraint(s) \text{variables1}.\text{var} = \text{variables2}.\text{var}

Graph property(ies) \text{NARC} = C

Example
\[
\begin{pmatrix}
\text{soft_alldifferentCtr} & 4, \\
\{ & \{ & \var - 5, \\
& & \var - 1, \\
& & \var - 9, \\
& & \var - 1, \\
& & \var - 5, \\
& & \var - 5, \\
& \}
\end{pmatrix}
\]

Parts (A) and (B) of Figure 4.381 respectively show the initial and final graph. Since we use the \text{NARC} graph property, the arcs of the final graph are stressed in bold. Since four equality constraints remain in the final graph the \text{cost} variable \(C \) is equal to 4.

Graph model We generate an initial graph with binary equalities constraints between each vertex and its successors. We use the arc generator \text{CLIQUE}(<) in order to avoid counting twice the same equality constraint. The graph property states that \(C \) is equal to the number of equalities that hold in the final graph.

Usage A soft\text{alldifferent} constraint.
Since it focuses on the soft aspect of the \texttt{alldifferent} constraint, the original paper \cite{10} which introduces this constraint describes how to evaluate the minimum value of C and how to prune according to the maximum value of C. The corresponding filtering algorithm does not achieve arc-consistency. W.-J. van Hoeve \cite{26} presents a new filtering algorithm which achieves arc-consistency. This algorithm is based on a reformulation into a minimum-cost flow problem.

\textbf{See also} \quad \texttt{alldifferent} \texttt{soft.alldifferent_var}

\textbf{Key words} \quad \texttt{soft constraint} \quad \texttt{value constraint} \quad \texttt{relaxation} \quad \texttt{decomposition-based violation measure} \quad \texttt{alldifferent} \quad \texttt{disequality} \quad \texttt{flow}
Figure 4.381: Initial and final graph of the soft_alldifferent_ctr constraint
4.193 soft_alldifferent_var

Origin
[10]

Constraint
soft_alldifferent_var(C, VARIABLES)

Synonym(s)
soft_alldiff_var, soft_alldistinct_var.

Argument(s)
C : dvar
VARIABLES : collection(var − dvar)

Restriction(s)
C ≥ 0
C < |VARIABLES|
required(VARIABLES, var)

Purpose
C is the minimum number of variables of the collection VARIABLES for which the value needs to be changed in order that all variables of VARIABLES take a distinct value.

Arc input(s)
VARIABLES

Arc generator
CLIQUE → collection(variables1, variables2)

Arc arity
2

Arc constraint(s)
variables1.var = variables2.var

Graph property(ies)
NSCC = |VARIABLES| − C

Example
soft_alldifferent_var
\[
3, \begin{cases}
\text{var} - 5, \\
\text{var} - 9, \\
\text{var} - 1, \\
\text{var} - 5,
\end{cases}
\]

Parts (A) and (B) of Figure 4.382 respectively show the initial and final graph. Since we use the NSCC graph property we show the different strongly connected components of the final graph. Each strongly connected component of the final graph includes all variables which take the same value. Since we have 6 variables and 3 strongly connected components the cost variable C is equal to 6 − 3.

Graph model
We generate a clique with binary equalities constraints between each pair of vertices (this include an arc between a vertex and itself) and we state that C is equal to the difference between the total number of variables and the number of strongly connected components.

Usage
A soft alldifferent constraint.

Remark
Since it focus on the soft aspect of the alldifferent constraint, the original paper [10] which introduce this constraint describes how to evaluate the minimum value of C and how to prune according to the maximum value of C.
Algorithm

See also

alldifferent, soft alldifferent, soft alldifferent ctr, weighted partial alldiff

Key words

soft constraint, value constraint, relaxation, variable-based violation measure, all different, disequality, strongly connected component, equivalence
Figure 4.382: Initial and final graph of the *soft_alldifferent_var* constraint
4.194 soft_same_interval_var

Origin Derived from [same_interval](#)

Constraint

soft_same_interval_var(C, VARIABLES1, VARIABLES2, SIZE_INTERVAL)

Synonym(s)

soft_same_interval

Argument(s)

C : dvar
VARIABLES1 : collection(var – dvar)
VARIABLES2 : collection(var – dvar)
SIZE_INTERVAL : int

Restriction(s)

C ≥ 0
C ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1.var)
required(VARIABLES2.var)
SIZE_INTERVAL > 0

Purpose

Let N_i (respectively M_i) denote the number of variables of the collection VARIABLES1 (respectively VARIABLES2) that take a value in the interval $[SIZE_INTERVAL \cdot i, SIZE_INTERVAL \cdot i + SIZE_INTERVAL - 1$. C is the minimum number of values to change in the VARIABLES1 and VARIABLES2 collections so that for all integer i we have $N_i = M_i$.

Arc input(s)

VARIABLES1 VARIABLES2

Arc generator

PRODUCT → collection(variables1, variables2)

Arc arity

2

Arc constraint(s)

variables1.var/SIZE_INTERVAL = variables2.var/SIZE_INTERVAL

Graph property(ies)

NSINK_NSOURCE = |VARIABLES1| - C

Example

soft_same_interval_var

\[
\begin{pmatrix}
\text{var - 9,} \\
\text{var - 9,} \\
\text{var - 9,} \\
\text{var - 9,} \\
\text{var - 1,} \\
\end{pmatrix},
\begin{pmatrix}
\text{var - 9,} \\
\text{var - 1,} \\
\text{var - 1,} \\
\text{var - 1,} \\
\text{var - 8,} \\
\end{pmatrix}
\]

Parts (A) and (B) of Figure 4.383 respectively show the initial and final graph.
Since we use the **NSINK_NSOURCE** graph property, the source and sink vertices of the final graph are stressed with a double circle. The **soft_same_interval_var** constraint holds since the cost 4 corresponds to the difference between the number of variables of **VARIABLES1** and the sum over the different connected components of the minimum number of sources and sinks.

![Diagram of NSINK_NSOURCE graph property](image)

Figure 4.383: Initial and final graph of the **soft_same_interval_var** constraint

Usage
A soft **same_interval** constraint.

Algorithm
See algorithm of the **soft_same_var** constraint.

See also
same_interval

Key words
soft constraint **constraint between two collections of variables** **relaxation** **variable-based violation measure** **interval**
4.195 soft_same_modulo_var

Origin Derived from \textit{same_modulo}.

Constraint \texttt{soft_same_modulo_var(C, VARIABLES1, VARIABLES2, M)}

Synonym(s) \texttt{soft_same_modulo}.

Argument(s)
\begin{itemize}
\item \texttt{C} : dvar
\item \texttt{VARIABLES1} : collection(var – dvar)
\item \texttt{VARIABLES2} : collection(var – dvar)
\item \texttt{M} : int
\end{itemize}

Restriction(s)
\begin{itemize}
\item \texttt{C} \geq 0
\item \texttt{C} \leq |\texttt{VARIABLES1}|
\item \texttt{VARIABLES1} = |\texttt{VARIABLES2}|
\item \texttt{required(\texttt{VARIABLES1}, var)}
\item \texttt{required(\texttt{VARIABLES2}, var)}
\item \texttt{M} > 0
\end{itemize}

Purpose
For each integer \texttt{R} in \texttt{[0, M - 1]}, let \texttt{N1}_R (respectively \texttt{N2}_R) denote the number of variables of \texttt{VARIABLES1} (respectively \texttt{VARIABLES2}) which have \texttt{R} as a rest when divided by \texttt{M}. \texttt{C} is the minimum number of values to change in the \texttt{VARIABLES1} and \texttt{VARIABLES2} collections so that for all \texttt{R} in \texttt{[0, M - 1]} we have \texttt{N1}_R = \texttt{N2}_R.

Arc input(s) \texttt{VARIABLES1 VARIABLES2}

Arc generator \texttt{PRODUCT \mapsto \textit{collection(variables1, variables2)}}

Arc arity 2

Arc constraint(s) \texttt{variables1.var \mod M = variables2.var \mod M}

Graph property(ies) \textit{NSINK_NSOURCE} = |\texttt{VARIABLES1}| - \texttt{C}

Example \texttt{soft_same_modulo_var}\begin{itemize}
\item \texttt{\{ \begin{array}{l}
\texttt{var - 9,} \\
\texttt{var - 1}
\end{array} \}}
\end{itemize}

Parts (A) and (B) of Figure 4.384 respectively show the initial and final graph.
Since we use the `NSINK_NSOURCE` graph property, the source and sink vertices of the final graph are stressed with a double circle. The `soft_same_modulo_var` constraint holds since the cost 4 corresponds to the difference between the number of variables of `VARIABLES1` and the sum over the different connected components of the minimum number of sources and sinks.

Figure 4.384: Initial and final graph of the `soft_same_modulo_var` constraint

Usage
A soft `same_modulo` constraint.

Algorithm
See algorithm of the `soft_same_var` constraint.

See also
`same_modulo`

Key words
`soft_constraint` `constraint between two collections of variables` `relaxation` `Variable-based violation measure` `modulo`
4.196 soft_same_partition_var

Origin Derived from \textbf{same_partition}

Constraint \texttt{soft_same_partition_var}(C, VARIABLES1, VARIABLES2, PARTITIONS)

Synonym(s) \texttt{soft_same_partition}.

Type(s) \texttt{VALUES : collection(val - int)}

Argument(s)
\begin{verbatim}
C : dvar
VARIABLES1 : collection(var - dvar)
VARIABLES2 : collection(var - dvar)
PARTITIONS : collection(p - VALUES)
\end{verbatim}

Restriction(s)
\begin{verbatim}
C \geq 0
C \leq |\text{VARIABLES1}|
|\text{VARIABLES1}| = |\text{VARIABLES2}|
\text{required(\text{VARIABLES1}.\text{var})}
\text{required(\text{VARIABLES2}.\text{var})}
\text{required(\text{PARTITIONS}.\text{p})}
|\text{PARTITIONS}| \geq 2
\text{required(\text{VALUES}.\text{\text{val})}
\text{distinct(\text{VALUES}.\text{val})}
\end{verbatim}

Purpose For each integer \(i\) in \([1, |\text{PARTITIONS}|]\), let \(N_{1i}\) (respectively \(N_{2i}\)) denote the number of variables of \text{VARIABLES1} (respectively \text{VARIABLES2}) which take their value in the \(i^{th}\) partition of the collection \text{PARTITIONS}. \(C\) is the minimum number of values to change in the \text{VARIABLES1} and \text{VARIABLES2} collections so that for all \(i\) in \([1, |\text{PARTITIONS}|]\) we have \(N_{1i} = N_{2i}\).

Arc input(s) \(\text{VARIABLES1} \text{ VARIABLES2}\)

Arc generator \(\text{PRODUCT} \mapsto \text{collection(\text{variables1, variables2})}\)

Arc arity 2

Arc constraint(s) \texttt{in_same_partition(variables1.var, variables2.var, PARTITIONS)}

Graph property(ies) \texttt{NSINK_NSOURCE} = |\text{VARIABLES1} - C|
Example

\[
\text{soft_same_partition_var} = \begin{array}{l}
\{ \text{var} - 9, \\
\text{var} - 1 \\
\} \\
\{ \text{var} - 9, \\
\text{var} - 1, \\
\text{var} - 1, \\
\text{var} - 1, \\
\text{var} - 1, \\
\text{var} - 8, \\
\} \\
\{ \text{p} - \{\text{val} - 1, \text{val} - 2\}, \\
\text{p} - \{\text{val} - 9\}, \\
\text{p} - \{\text{val} - 7, \text{val} - 8\} \\
\}
\end{array}
\]

Parts (A) and (B) of Figure 4.385 respectively show the initial and final graph. Since we use the \text{NSINK_NSOURCE} graph property, the source and sink vertices of the final graph are stressed with a double circle. The \text{soft_same_partition_var} constraint holds since the cost 4 corresponds to the difference between the number of variables of \text{VARIABLES_1} and the sum over the different connected components of the minimum number of sources and sinks.

Figure 4.385: Initial and final graph of the \text{soft_same_partition_var} constraint

Usage
A soft \text{same_partition} constraint.

Algorithm
See algorithm of the \text{soft_same_var} constraint.

See also
\text{same_partition}

Key words
\text{soft constraint}, \text{constraint between two collections of variables}, \text{relaxation}, \text{variable-based violation measure}, \text{partition}
4.197 soft_same_var

Origin

Constraint

\[\text{soft_same_var}(C, \text{VARIABLES1}, \text{VARIABLES2}) \]

Synonym(s)

soft_same

Argument(s)

- \(C \) : dvar
- \(\text{VARIABLES1} \) : collection(var – dvar)
- \(\text{VARIABLES2} \) : collection(var – dvar)

Restriction(s)

- \(C \geq 0 \)
- \(C \leq |\text{VARIABLES1}| \)
- \(|\text{VARIABLES1}| = |\text{VARIABLES2}| \)
- \(\text{required}(|\text{VARIABLES1}.\text{var}|) \)
- \(\text{required}(|\text{VARIABLES2}.\text{var}|) \)

Purpose

\(C \) is the minimum number of values to change in the \(\text{VARIABLES1} \) and \(\text{VARIABLES2} \) collections so that the variables of the \(\text{VARIABLES2} \) collection correspond to the variables of the \(\text{VARIABLES1} \) collection according to a permutation.

Arc input(s)

\(\text{VARIABLES1} \), \(\text{VARIABLES2} \)

Arc generator

\(\text{PRODUCT} \leftrightarrow \text{collection}(\text{variables1}, \text{variables2}) \)

Arc arity

2

Arc constraint(s)

\(\text{variables1}.\text{var} = \text{variables2}.\text{var} \)

Graph property(ies)

\[\text{NSINK_NSOURCE} = |\text{VARIABLES1}| - C \]

Example

\[
\text{soft_same_var}
\begin{cases}
\text{var} - 9, \\
\text{var} - 9, \\
\text{var} - 9, \\
\text{var} - 9, \\
\text{var} - 1, \\
\text{var} - 1, \\
\text{var} - 1, \\
\text{var} - 8,
\end{cases}
\]

Parts (A) and (B) of Figure 4.386 respectively show the initial and final graph. Since we use the \(\text{NSINK_NSOURCE} \) graph property, the source and sink vertices of the final graph are stressed with a double circle. The \(\text{soft_same_var} \) constraint holds since the cost 4 corresponds to the difference between the number of variables of \(\text{VARIABLES1} \) and the sum over the different connected components of the minimum number of sources and sinks.
Usage

A soft constraint.

Algorithm

[104] page 80.

See also

Key words

soft constraint constraint between two collections of variables relaxation
variable-based violation measure
Figure 4.386: Initial and final graph of the \textit{soft_same_var} constraint
4.198 **soft_used_by_interval_var**

Origin
Derived from `used_by_interval`.

Constraint
```
soft_used_by_interval_var(C, VARIABLES1, VARIABLES2, SIZE_INTERVAL)
```

Synonym(s)
```
soft_used_by_interval.
```

Argument(s)
- `C` : dvar
- `VARIABLES1` : collection(var=dvar)
- `VARIABLES2` : collection(var=dvar)
- `SIZE_INTERVAL` : int

Restriction(s)
- `C ≥ 0`
- `C ≤ |VARIABLES2|`
- `|VARIABLES1| ≥ |VARIABLES2|`
- `required(VARIABLES1.var)`
- `required(VARIABLES2.var)`
- `SIZE_INTERVAL > 0`

Purpose
Let N_i (respectively M_i) denote the number of variables of the collection `VARIABLES1` (respectively `VARIABLES2`) that take a value in the interval $[\text{SIZE_INTERVAL} \cdot i, \text{SIZE_INTERVAL} \cdot i + \text{SIZE_INTERVAL} - 1]$. C is the minimum number of values to change in the `VARIABLES1` and `VARIABLES2` collections so that for all integer i we have $M_i > 0 \Rightarrow N_i > 0$.

Arc input(s)
`VARIABLES1` `VARIABLES2`

Arc generator
`PRODUCT` \rightarrow collection(`variables1`, `variables2`)

Arc arity
2

Arc constraint(s)
```
variables1.var/SIZE_INTERVAL = variables2.var/SIZE_INTERVAL
```

Graph property(ies)
`NSINK_NSOURCE = |VARIABLES2| - C`

Example
```
soft_used_by_interval_var

\[
\begin{aligned}
2, & \left\{ \begin{array}{c}
\text{var - 9,} \\
\text{var - 1,}
\end{array} \right. \\
2, & \left\{ \begin{array}{c}
\text{var - 8,} \\
\text{var - 8}
\end{array} \right. \\
\end{aligned}
\]
```

Parts (A) and (B) of Figure 4.387 respectively show the initial and final graph. Since we use the `NSINK_NSOURCE` graph property, the source and sink vertices of the final graph are stressed with a double circle. The `soft_used_by_interval_var` constraint holds since the cost 2 corresponds to the difference between the number of variables of `VARIABLES2` and the sum over the different connected components of the minimum number of sources and sinks.
Usage
A soft *used_by_interval* constraint.

See also
used_by_interval

Key words
soft constraint, *constraint between two collections of variables*, *relaxation*, *variable-based violation measure*, *interval*
Figure 4.387: Initial and final graph of the soft_used_by_interval_var constraint
4.199 \(\text{soft_used_by_modulo_var} \)

Origin
Derived from \(\text{used_by_modulo} \)

Constraint
\(\text{soft_used_by_modulo_var}(C, \text{VARIABLES1}, \text{VARIABLES2}, M) \)

Synonym(s)
\(\text{soft_used_by_modulo} \)

Argument(s)
\(C : \text{dvar} \)
\(\text{VARIABLES1} : \text{collection(var - dvar)} \)
\(\text{VARIABLES2} : \text{collection(var - dvar)} \)
\(M : \text{int} \)

Restriction(s)
\(C \geq 0 \)
\(C \leq |\text{VARIABLES2}| \)
\(|\text{VARIABLES1}| \geq |\text{VARIABLES2}| \)
\(\text{required} (\text{VARIABLES1} _. \text{var}) \)
\(\text{required} (\text{VARIABLES2} _. \text{var}) \)
\(M > 0 \)

Purpose
For each integer \(R \) in \([0, M - 1]\), let \(N1_R \) (respectively \(N2_R \)) denote the number of variables of \(\text{VARIABLES1} \) (respectively \(\text{VARIABLES2} \)) which have \(R \) as a rest when divided by \(M \). \(C \) is the minimum number of values to change in the \(\text{VARIABLES1} \) and \(\text{VARIABLES2} \) collections so that for all \(R \) in \([0, M - 1]\) we have \(N2_R > 0 \Rightarrow N1_R > 0 \).

Arc input(s)
\(\text{VARIABLES1} \text{ VARIABLES2} \)

Arc generator
\(\text{PRODUCT} \rightarrow \text{collection(variables1, variables2)} \)

Arc arity
2

Arc constraint(s)
\(\text{variables1} _. \text{var} \mod M = \text{variables2} _. \text{var} \mod M \)

Graph property(ies)
\(\text{NSINK_NSOURCE} = |\text{VARIABLES2}| - C \)

Example
\(\text{soft_used_by_modulo_var} \)

\[
\begin{align*}
&\{\text{var - 9, var - 1, var - 1, var - 8, var - 8, var - 9, var - 9, var - 9, var - 1}\}, \\
&\{\text{var - 9, var - 1, var - 1, var - 8, var - 8, var - 9, var - 9, var - 9, var - 1}\}, 3
\end{align*}
\]

Parts (A) and (B) of Figure 4.388 respectively show the initial and final graph. Since we use the \(\text{NSINK_NSOURCE} \) graph property, the source and sink vertices of the final graph are stressed with a double circle. The \(\text{soft_used_by_modulo_var} \) constraint holds since the cost 2 corresponds to the difference between the number of variables of \(\text{VARIABLES2} \) and the sum over the different connected components of the minimum number of sources and sinks.
Usage
A soft constraint.

Key words
soft constraint, constraint between two collections of variables, relaxation, variable-based violation measure, modulo.
Figure 4.388: Initial and final graph of the soft used by modulo var constraint
4.200 soft_used_by_partition_var

Origin Derived from used_by_partition

Constraint soft_used_by_partition_var(C, VARIABLES1, VARIABLES2, PARTITIONS)

Synonym(s) soft_used_by_partition.

Type(s) VALUES : collection(val – int)

Argument(s)
C : dvar
VARIABLES1 : collection(var – dvar)
VARIABLES2 : collection(var – dvar)
PARTITIONS : collection(p – VALUES)

Restriction(s)
C ≥ 0
C ≤ |VARIABLES2|
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2
required(VALUES, val)
distinct(VALUES, val)

Purpose
For each integer i in [1, |PARTITIONS|], let \(N_1 \) (respectively \(N_2 \)) denote the number of variables of VARIABLES1 (respectively VARIABLES2) which take their value in the \(i^{th} \) partition of the collection PARTITIONS. \(C \) is the minimum number of values to change in the VARIABLES1 and VARIABLES2 collections so that for all i in [1, |PARTITIONS|] we have \(N_1 = N_2 \).

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT \(\mapsto \) collection(variables1, variables2)

Arc arity 2

Arc constraint(s) \(\text{in_same_partition}(\text{variables1}.var, \text{variables2}.var, \text{PARTITIONS}) \)

Graph property(ies) \(\text{NSINK_NSOURCE} = |\text{VARIABLES2}| - C \)
Example

\[
\{ \begin{array}{l}
 \text{var} - 9, \\
 \text{var} - 1, \\
 2, \\
 \text{var} - 1, \\
 \text{var} - 8, \\
 \text{var} - 8
\end{array} \}
\]

Parts (A) and (B) of Figure 4.389 respectively show the initial and final graph. Since we use the \text{NSINK}_{\text{NSOURCE}} graph property, the source and sink vertices of the final graph are stressed with a double circle. The \text{soft}_{\text{used by partition var}} constraint holds since the cost 2 corresponds to the difference between the number of variables of \text{VARIABLES2} and the sum over the different connected components of the minimum number of sources and sinks.

Figure 4.389: Initial and final graph of the \text{soft}_{\text{used by partition var}} constraint

Usage
A soft \text{used by partition} constraint.

See also
\text{used by partition}

Key words
\text{soft constraint}, constraint between two collections of variables, relaxation, variable-based violation measure, partition
4.201 soft_used_by_var

Origin
Derived from used_by

Constraint
soft_used_by_var(C, VARIABLES1, VARIABLES2)

Synonym(s)
soft_used_by

Argument(s)
C : dvar
VARIABLES1 : collection(var – dvar)
VARIABLES2 : collection(var – dvar)

Restriction(s)
C ≥ 0
C ≤ |VARIABLES2|
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
C is the minimum number of values to change in the VARIABLES1 and VARIABLES2 collections so that all the values of the variables of collection VARIABLES2 are used by the variables of collection VARIABLES1.

Arc input(s)
VARIABLES1 VARIABLES2

Arc generator
PRODUCT ↦ collection(variables1, variables2)

Arc arity
2

Arc constraint(s)
variables1.var = variables2.var

Graph property(ies)
NSINK_NSOURCE = |VARIABLES2| – C

Example
soft_used_by_var

Parts (A) and (B) of Figure 1.390 respectively show the initial and final graph. Since we use the NSINK_NSOURCE graph property, the source and sink vertices of the final graph are stressed with a double circle. The soft_used_by_var constraint holds since the cost 2 corresponds to the difference between the number of variables of VARIABLES2 and the sum over the different connected components of the minimum number of sources and sinks.
Usage

A soft *used by* constraint.

Key words

soft constraint, constraint between two collections of variables, relaxation, variable-based violation measure
Figure 4.390: Initial and final graph of the soft used by var constraint
4.202 sort

Origin [139]

Constraint sort(VARIABLES1, VARIABLES2)

Argument(s) VARIABLES1 : collection(var – dvar)
VARIABLES2 : collection(var – dvar)

Restriction(s) |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose The variables of the collection VARIABLES2 correspond to the variables of VARIABLES1 according to a permutation. The variables of VARIABLES2 are also sorted in increasing order.

Arc input(s) VARIABLES1 VARIABLES2

Arc generator $PRODUCT \mapsto \text{collection}(\text{variables1, variables2})$

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components: NSOURCE = NSINK
• NSOURCE = |VARIABLES1|
• NSINK = |VARIABLES2|

Arc input(s) VARIABLES2

Arc generator $PATH \mapsto \text{collection}(\text{variables1, variables2})$

Arc arity 2

Arc constraint(s) variables1.var \leq variables2.var

Graph property(ies) NARC = |VARIABLES2| – 1

Example sort

\[
\begin{pmatrix}
\text{var} - 1, \\
\text{var} - 9, \\
\text{var} - 1, \\
\text{var} - 5, \\
\text{var} - 2, \\
\text{var} - 1 \\
\text{var} - 1, \\
\text{var} - 1, \\
\text{var} - 2, \\
\text{var} - 5, \\
\text{var} - 9
\end{pmatrix}
\]
Parts (A) and (B) of Figure 4.391 respectively show the initial and final graph associated to the first graph constraint. Since it uses the NSOURCE and NSINK graph properties, the source and sink vertices of this final graph are stressed with a double circle. Since there is a constraint on each connected component of the final graph we also show the different connected components. The \texttt{sort} constraint holds since:

- Each connected component of the final graph of the first graph constraint has the same number of sources and of sinks.
- The number of sources of the final graph of the first graph constraint is equal to $|\text{VARIABLES}_1|$.
- The number of sinks of the final graph of the first graph constraint is equal to $|\text{VARIABLES}_2|$.
- Finally the second graph constraint holds also since its corresponding final graph contains exactly $|\text{VARIABLES}_1 - 1|$ arcs: All the inequalities constraints between consecutive variables of VARIABLES_2 holds.

![Diagram](image)

Figure 4.391: Initial and final graph of the \texttt{sort} constraint

Signature

Consider the first graph constraint. Since the initial graph contains only sources and sinks, and since isolated vertices are eliminated from the final graph, we make the following observations:

- Sources of the initial graph cannot become sinks of the final graph.
- Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the \texttt{PRODUCT} arc generator on the collections VARIABLES_1 and VARIABLES_2, we have that the maximum number of sources and sinks of the final graph is respectively equal to $|\text{VARIABLES}_1|$ and $|\text{VARIABLES}_2|$. Therefore we can rewrite $\text{NSOURCE} = |\text{VARIABLES}_1|$ to $\text{NSOURCE} \geq |\text{VARIABLES}_1|$ and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite
\[NSINK = |VARIABLES2| \text{ to } NSINK \geq |VARIABLES2| \text{ and simplify } NSINK \text{ to } NSINK. \]

Consider now the second graph constraint. Since we use the \textit{PATH} arc generator with an arity of 2 on the \textit{VARIABLES2} collection, the maximum number of arcs of the final graph is equal to \(|\text{VARIABLES2}| - 1\). Therefore we can rewrite the graph property \(\text{NARC} = |\text{VARIABLES2}| - 1 \text{ to } \text{NARC} \geq |\text{VARIABLES2}| - 1 \) and simplify \(\text{NARC} \) to \(\text{NARC} \).

Remark
A variant of this constraint was introduced in [147]. In this variant an additional list of domain variables represents the permutation which allows to go from \textit{VARIABLES1} to \textit{VARIABLES2}.

Algorithm
[61][23].

See also
\textcolor{red}{\texttt{sort permutation}}

Key words
\textcolor{red}{\texttt{constraint between two collections of variables sort permutation}}
4.203 sort_permutation

Origin [147]

Constraint sort_permutation(FROM, PERMUTATION, TO)

Usual name sort

Argument(s) FROM : collection(var − dvar)
PERMUTATION : collection(var − dvar)
TO : collection(var − dvar)

Restriction(s) |PERMUTATION| = |FROM|
|PERMUTATION| = |TO|
PERMUTATION.var ≥ 1
PERMUTATION.var ≤ |PERMUTATION|
alldifferent(PERMUTATION)
required(FROM, var)
required(PERMUTATION, var)
required(TO, var)

Purpose The variables of collection FROM correspond to the variables of collection TO according to the permutation PERMUTATION. The variables of collection TO are also sorted in increasing order.

Derived Collection(s) col(FROM_PERMUTATION − collection(var − dvar, ind − dvar).
|item(var − FROM.var.ind − PERMUTATION.var)|

Arc input(s) FROM_PERMUTATION TO

Arc generator PRODUCT ↦ collection(from_permutation.to)

Arc arity 2

Arc constraint(s) * from_permutation.var = to.var
* from_permutation.ind = to.key

Graph property(ies) NARC = |PERMUTATION|

Arc input(s) TO

Arc generator PATH ↦ collection(to1, to2)

Arc arity 2

Arc constraint(s) to1.var ≤ to2.var

Graph property(ies) NARC = |TO| − 1
Parts (A) and (B) of Figure 4.392 respectively show the initial and final graph associated to the first graph constraint. In both graphs the source vertices correspond to the items of the derived collection \textsc{from}\textsc{permutation}, while the sink vertices correspond to the items of the \textsc{to} collection. Since the first graph constraint uses the \textsc{narc} graph property, the arcs of its final graph are stressed in bold. The \textsc{sort}\textsc{permutation} constraint holds since:

- The first graph constraint holds since its final graph contains exactly \textsc{permutation} arcs.
- Finally the second graph constraint holds also since its corresponding final graph contains exactly \(|\textsc{permutation} - 1|\) arcs: All the inequalities constraints between consecutive variables of \textsc{to} holds.

Figure 4.392: Initial and final graph of the \textsc{sort}\textsc{permutation} constraint
Consider the first graph constraint where we use the \textit{PRODUCT} arc generator. Since all the key attributes of the \textit{T0} collection are distinct, and because of the second condition from \textit{permutation.ind} = \textit{to.key} of the arc constraint, each vertex of the final graph has at most one successor. Therefore the maximum number of arcs of the final graph is equal to \(|\text{PERMUTATION}|\). So we can rewrite the graph property \(\text{NARC} = |\text{PERMUTATION}|\) to \(\text{NARC} \geq |\text{PERMUTATION}|\) and simplify \(\text{NARC}\) to \(\text{NARC}\).

Consider now the second graph constraint. Since we use the \textit{PATH} arc generator with an arity of 2 on the \textit{T0} collection, the maximum number of arcs of the corresponding final graph is equal to \(|\text{T0}| - 1\). Therefore we can rewrite \(\text{NARC} = |\text{T0}| - 1\) to \(\text{NARC} \geq |\text{T0}| - 1\) and simplify \(\text{NARC}\) to \(\text{NARC}\).

\textbf{Algorithm} \[147].

\textbf{See also} \{correspondence, sort\}

\textbf{Key words} \{constraint between three collections of variables, sort, permutation, derived collection\}
4.204 stage_element

Origin
CHOCO, derived from element

Constraint
```
stage_element(ITEM, TABLE)
```

Usual name
```
stage_elt
```

Argument(s)
```
ITEM : collection(index = dvar, value = dvar)
TABLE : collection(low = int, up = int, value = int)
```

Restriction(s)
```
required(ITEM, [index, value])
|ITEM| = 1
required(TABLE, [low, up, value])
```

Purpose
Let low_i, up_i, and value_i respectively denote the values of the low, up and value attributes of the i^{th} item of the TABLE collection. First we have that: $\text{low}_i \leq \text{up}_i$ and $\text{up}_i + 1 = \text{low}_{i+1}$. Second, the stage_element constraint enforces the following equivalence: $\text{low}_i \leq \text{ITEM}.\text{index} \land \text{ITEM}.\text{index} \leq \text{up}_i \Leftrightarrow \text{ITEM}.\text{value} = \text{value}_i$.

Arc input(s)
```
TABLE
```

Arc generator
```
PATH \rightarrow collection(table1, table2)
```

Arc arity
2

Arc constraint(s)
```
• table1.low \leq table1.up
• table1.up + 1 = table2.low
• table2.low \leq table2.up
```

Graph property(ies)
```
\text{NARC} = \text{ITEM} - 1
```

Arc input(s)
```
ITEM TABLE
```

Arc generator
```
PRODUCT \rightarrow collection(item, table)
```

Arc arity
2

Arc constraint(s)
```
• item.index \geq table.low
• item.index \leq table.up
• item.value = table.value
```

Graph property(ies)
```
\text{NARC} = 1
```
Example

\[
\begin{align*}
\text{stage, element} & \quad \left\{ \begin{array}{l}
\text{index - 5 value - 6}, \\
\text{low - 3 up - 7 value - 6}, \\
\text{low - 8 up - 8 value - 9}, \\
\text{low - 9 up - 14 value - 2}, \\
\text{low - 15 up - 19 value - 9}
\end{array} \right.
\end{align*}
\]

Parts (A) and (B) of Figure 4.393 respectively show the initial and final graph associated to the second graph constraint. Since we use the **NARC** graph property, the unique arc of the final graph is stressed in bold.

Graph model

The first graph constraint models the restrictions on the **low** and **up** attributes of the **TABLE** collection, while the second graph constraint is similar to the one used for defining the **element** constraint.

Automaton

Figure 4.394 depicts the automaton associated to the **stage, element** constraint. Let **INDEX** and **VALUE** respectively be the index and the value attributes of the unique item of the **ITEM** collection. Let **LOW**, **UP**, and **VALUE** respectively be the low, the up and the value attributes of the \(i^{th}\) item of the **TABLE** collection. To each quintuple \((\text{INDEX, VALUE, LOW}_{i}, \text{UP}_{i}, \text{VALUE}_{i})\) corresponds a 0-1 signature variable \(S_{i}\) as well as the following signature constraint:

\[((\text{LOW}_{i} \leq \text{INDEX}) \land (\text{INDEX} \leq \text{UP}_{i}) \land (\text{VALUE} = \text{VALUE}_{i})) \leftrightarrow S_{i}. \]

See also **element, elem**

Key words

- **data constraint**
- **binary constraint**
- **table**
- **functional dependency**
- **automaton**
- **automaton without counters**
- **centered cyclic(2) constraint network(1)**
Figure 4.393: Initial and final graph of the stage element constraint

Figure 4.394: Automaton of the stage element constraint

Figure 4.395: Hypergraph of the reformulation corresponding to the automaton of the stage element constraint
4.205 stretch_circuit

Origin [148]

Constraint

\[\text{stretch}_\text{circuit}(\text{VARIABLES}, \text{VALUES}) \]

Usual name stretch

Argument(s)

\[
\begin{align*}
\text{VARIABLES} & : \text{collection}(\text{var} - \text{dvar}) \\
\text{VALUES} & : \text{collection}(\text{val} - \text{int}, \text{lmin} - \text{int}, \text{lmax} - \text{int})
\end{align*}
\]

Restriction(s)

\[
\begin{align*}
|\text{VARIABLES}| & > 0 \\
\text{required}(\text{VARIABLES}, \text{var}) \\
|\text{VALUES}| & > 0 \\
\text{required}(\text{VALUES}, [\text{val}, \text{lmin}, \text{lmax}]) \\
\text{distinct}(\text{VALUES}, \text{val}) \\
\text{VALUES}.\text{lmin} & \leq \text{VALUES}.\text{lmax}
\end{align*}
\]

Let \(n \) be the number of variables of the collection \(\text{VARIABLES} \). Let \(X_i, \ldots, X_j \) (\(0 \leq i < n, 0 \leq j < n \)) be consecutive variables of the collection of variables \(\text{VARIABLES} \) such that the following conditions apply:

- All variables \(X_i, \ldots, X_j \) take a same value from the set of values of the \text{val} attribute,
- \(X_{(i-1) \mod n} \) is different from \(X_i \),
- \(X_{(j+1) \mod n} \) is different from \(X_j \).

We call such a set of variables a stretch. The span of the stretch is equal to \(1 + (j - i) \mod n \), while the value of the stretch is \(X_i \). An item \((\text{val} - v, \text{lmin} - s, \text{lmax} - t)\) gives the minimum value \(s \) as well as the maximum value \(t \) for the span of a stretch of value \(v \).

Purpose

For all items of \(\text{VALUES} \):

Arc input(s) \text{VARIABLES}

Arc generator

\[
\begin{align*}
\text{CIRCUIT} & \mapsto \text{collection}(\text{variables1}, \text{variables2}) \\
\text{LOOP} & \mapsto \text{collection}(\text{variables1}, \text{variables2})
\end{align*}
\]

Arc arity 2

Arc constraint(s)

\[
\begin{align*}
\text{variables1.\text{var}} & = \text{VALUES.\text{val}} \\
\text{variables2.\text{var}} & = \text{VALUES.\text{val}}
\end{align*}
\]

Graph property(ies)

\[
\begin{align*}
\text{not_in}(\text{MIN_NCC}, 1, \text{VALUES.\text{lmin}} - 1) \\
\text{MAX_NCC} & \leq \text{VALUES.\text{lmax}}
\end{align*}
\]
Example

```
Example stretch_circuit

\begin{align*}
\text{var} 6,
\text{var} 6,
\text{var} 3,
\text{var} 1,
\text{var} 1,
\text{var} 1,
\text{var} 6,
\text{var} 6
\end{align*}
\begin{align*}
\text{val} 1\ & \text{min} 2\ & \text{max} 4,
\text{val} 2\ & \text{min} 2\ & \text{max} 3,
\text{val} 3\ & \text{min} 1\ & \text{max} 6,
\text{val} 6\ & \text{min} 2\ & \text{max} 4
\end{align*}
```

Part (A) of Figure 4.396 shows the initial graphs associated to values 1, 2, 3 and 6. Part (B) of Figure 4.396 shows the final graphs associated to values 1, 3 and 6. Since value 2 is not assigned to any variable of the VARIABLES collection the final graph associated to value 2 is empty. The stretch_circuit constraint holds since:

- For value 1 we have one connected component for which the number of vertices is greater than or equal to 2 and less than or equal to 4,
- For value 2 we don’t have any connected component,
- For value 3 we have one connected component for which the number of vertices is greater than or equal to 1 and less than or equal to 6,
- For value 6 we have one connected component for which the number of vertices is greater than or equal to 2 and less than or equal to 4.

![Diagrams](A)(B)

Figure 4.396: Initial and final graph of the stretch_circuit constraint

Usage

The paper [148] which originally introduced the stretch constraint quotes rostering problems as typical examples of use of this constraint.
Remark

We split the origin stretch constraint into the stretch_circuit and the stretch_path constraints which respectively use the PATH LOOP and CIRCUIT LOOP arc generator. We also reorganize the parameters: the VALUES collection describes the attributes of each value that can be assigned to the variables of the stretch_circuit constraint. Finally we skipped the pattern constraint which tells what values can follow a given value.

Algorithm

A first filtering algorithm was described in the original paper of G. Pesant [48]. An algorithm which also generates explanations is given in [7]. The first filtering algorithm achieving arc-consistency is depicted in [49]. This algorithm is based on dynamic programming and handles the fact that some values can be followed by only a given subset of values.

See also

stretch_path, sliding_distribution, group, pattern

Key words

timetabling constraint, sliding sequence constraint, cyclic
4.206 stretch_path

Origin

Constraint
stretch_path(VARIABLES, VALUES)

Usual name
stretch

Argument(s)
VARIABLES : collection(var − dvar)
VALUES : collection(val − int, lmin − int, lmax − int)

Restriction(s)
|VARIABLES| > 0
required(VARIABLES, var)
|VALUES| > 0
required([VALUES, [val, lmin, lmax]])
distinct([VALUES, val])
VALUES.lmin <= VALUES.lmax

Let n be the number of variables of the collection VARIABLES. Let X_i, \ldots, X_j ($1 \leq i \leq j \leq n$) be consecutive variables of the collection of variables VARIABLES such that the following conditions apply:

- All variables X_i, \ldots, X_j take a same value from the set of values of the val attribute,
- $i = 1$ or X_{i-1} is different from X_i,
- $j = n$ or X_{j+1} is different from X_j.

We call such a set of variables a stretch. The span of the stretch is equal to $j - i + 1$, while the value of the stretch is X_i. An item $(val - v, lmin - s, lmax - t)$ gives the minimum value s as well as the maximum value t for the span of a stretch of value v.

For all items of VALUES:

Arc input(s) VARIABLES

Arc generator
PATH \mapsto collection(variables1, variables2)
LOOP \mapsto collection(variables1, variables2)

Arc arity 2

Arc constraint(s)
- variables1.var = VALUES.val
- variables2.var = VALUES.val

Graph property(ies)
- not_in(MIN_NCC, 1, VALUES.lmin - 1)
- MAX_NCC <= VALUES.lmax
Part (A) of Figure 4.397 shows the initial graphs associated to values 1, 2, 3 and 6. Part (B) of Figure 4.397 shows the final graphs associated to values 1, 3 and 6. Since value 2 is not assigned to any variable of the VARIABLES collection the final graph associated to value 2 is empty. The stretch_path constraint holds since:

- For value 1 we have one connected component for which the number of vertices 3 is greater than or equal to 2 and less than or equal to 4.
- For value 2 we don't have any connected component.
- For value 3 we have one connected component for which the number of vertices 1 is greater than or equal to 1 and less than or equal to 6.
- For value 6 we have two connected components which both contain two vertices: This is greater than or equal to 2 and less than or equal to 2.

Graph model

During the presentation of this constraint at CP’2001 the following point was mentioned:

It could be useful to allow domain variables for the minimum and the maximum values.
of a stretch. This could be achieved in the following way: The \(l_{\text{min}} \) (respectively \(l_{\text{max}} \)) attribute would now be a domain variable which gives the size of the shortest (respectively longest) stretch. Finally within the graph property(ies) field we would replace \(\geq \) (and \(\leq \)) by \(= \).

Usage

The paper [148] which originally introduced the \textit{stretch} constraint quotes rostering problems as typical examples of use of this constraint.

Remark

We split the original \textit{stretch} constraint into the \textit{stretch path} and the \textit{stretch circuit} constraints which respectively use the \textit{PATH LOOP} and \textit{CIRCUIT LOOP} arc generator. We also reorganize the parameters: the \textsc{VALUES} collection describes the attributes of each value that can be assigned to the variables of the \textit{stretch path} constraint. Finally we skipped the pattern constraint which tells what values can follow a given value.

Algorithm

A first filtering algorithm was described in the original paper of G. Pesant [148]. A second filtering algorithm, based on dynamic programming, achieving arc-consistency is depicted in [149]. It also handles the fact that some values can be followed by only a given subset of values.

See also

\textit{stretch circuit}, \textit{sliding distribution}, \textit{group}, \textit{pattern}

Key words

\textit{timetabling constraint}, \textit{sliding sequence constraint}
4.207 **strict_lex2**

Origin [P23]

Constraint
\[\text{strict_lex2(MATRIX)} \]

Type(s)
VECTOR : \(\text{collection(var} - \text{dvar)} \)

Argument(s)
MATRIX : \(\text{collection(vec} - \text{VECTOR)} \)

Restriction(s)
required(VECTOR, \text{var})
required(MATRIX, \text{vec})
same_size(MATRIX, \text{vec})

Purpose
Given a matrix of domain variables, enforces that both adjacent rows, and adjacent columns are lexicographically ordered (adjacent rows and adjacent columns cannot be equal).

Example
\[\text{strict_lex2} \left(\begin{array}{l}
\text{vec} - \{ \text{var} - 2, \text{var} - 2, \text{var} - 3 \}, \\
\text{vec} - \{ \text{var} - 2, \text{var} - 3, \text{var} - 1 \}
\end{array} \right) \]

Usage
A symmetry-breaking constraint.

See also
[lex2] [allperm] [lex_lesseq] [lex_chain_lesseq]

Key words
predefined constraint order constraint matrix matrix model symmetry lexicographic order
4.208 strictly_decreasing

Origin
Derived from strictly_increasing

Constraint
strictly_decreasing(VARIABLES)

Argument(s)
VARIABLES : collection(var – dvar)

Restriction(s)
| VARIABLES | > 0
| required(VARIABLES, var)

Purpose
The variables of the collection VARIABLES are strictly decreasing.

Arc input(s)
VARIABLES

Arc generator
PATH ← collection(variables1, variables2)

Arc arity
2

Arc constraint(s)
variables1.var > variables2.var

Graph property(ies)
NARC = |VARIABLES| – 1

Example
strictly_decreasing \(\left\{ \begin{array}{l}
\text{var – 8,} \\
\text{var – 4,} \\
\text{var – 3,} \\
\text{var – 1}
\end{array} \right. \)

Parts (A) and (B) of Figure 4.398 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Automaton
Figure 4.399 depicts the automaton associated to the strictly_decreasing constraint. To each pair of consecutive variables (VAR_i, VAR_{i+1}) of the collection VARIABLES corresponds a 0-1 signature variable S_i. The following signature constraint links VAR_i, VAR_{i+1} and S_i: VAR_i ≤ VAR_{i+1} ⇔ S_i.

See also
decreasing, increasing, strictly_increasing

Key words
decomposition, order constraint, automaton, automaton without counters, sliding cyclic(1), constraint network(1)
Figure 4.398: Initial and final graph of the \textit{strictly decreasing} constraint

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure4.398}
\caption{Initial and final graph of the \textit{strictly decreasing} constraint}
\end{figure}

Figure 4.399: Automaton of the \textit{strictly decreasing} constraint

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure4.399}
\caption{Automaton of the \textit{strictly decreasing} constraint}
\end{figure}

Figure 4.400: Hypergraph of the reformulation corresponding to the automaton of the \textit{strictly decreasing} constraint

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure4.400}
\caption{Hypergraph of the reformulation corresponding to the automaton of the \textit{strictly decreasing} constraint}
\end{figure}
4.209 strictly_increasing

Origin
KOALOG

Constraint
strictly_increasing(VARIABLES)

Argument(s)
VARIABLES : collection(var − dvar)

Restriction(s)
|VARIABLES| > 0
required(VARIABLES, var)

Purpose
The variables of the collection VARIABLES are strictly increasing.

Arc input(s)
VARIABLES

Arc generator
PATH ← collection(variables1, variables2)

Arc arity
2

Arc constraint(s)
variables1.var < variables2.var

Graph property(ies)
NARC = |VARIABLES| − 1

Example
strictly_increasing

Parts (A) and (B) of Figure 4.401 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Automaton
Figure 4.402 depicts the automaton associated to the strictly_increasing constraint. To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a 0-1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si: VARi \geq VARi+1 \iff Si.

See also
increasing, decreasing, strictly_decreasing

Key words
decomposition, order constraint, automaton, automaton without counters, sliding cyclic, constraint network
Figure 4.401: Initial and final graph of the strictly increasing constraint

Figure 4.402: Automaton of the strictly increasing constraint

Figure 4.403: Hypergraph of the reformulation corresponding to the automaton of the strictly increasing constraint
4.210 strongly_connected

Origin [74]

Constraint strongly_connected(NODES)

Argument(s) NODES : collection(index - int, succ - svar)

Restriction(s)
required(NODES, [index, succ])
NODES.index >= 1
NODES.index <= |NODES|
distinct(NODES, index)

Purpose Consider a digraph G described by the NODES collection. Select a subset of arcs of G so that we have one single strongly connected component involving all vertices of G.

Arc input(s) NODES

Arc generator $CLIQUE \mapsto$ collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) in_set(nodes2.index, nodes1.succ)

Graph property(ies) $MIN_{NSCC} = |NODES|$

Example

\[
\begin{aligned}
\text{strongly_connected} & : \\
\{ & \text{index - 1 succ - \{2\},} \\
& \text{index - 2 succ - \{3\},} \\
& \text{index - 3 succ - \{2, 5\},} \\
& \text{index - 4 succ - \{1\},} \\
& \text{index - 5 succ - \{4\}} \}
\end{aligned}
\]

Part (A) of Figure 4.404 shows the initial graph from which we start. It is derived from the set associated to each vertex. Each set describes the potential values of the succ attribute of a given vertex. Part (B) of Figure 4.404 gives the final graph associated to the example. The strongly_connected constraint holds since the final graph contains one single strongly connected component mentioning every vertex of the initial graph.

Signature Since the maximum number of vertices of the final graph is equal to $|NODES|$ we can rewrite the graph property $MIN_{NSCC} = |NODES|$ to $MIN_{NSCC} \geq |NODES|$ and simplify MIN_{NSCC} to MIN_{NSCC}.

See also circuit, link, set to booleans

Key words graph constraint, linear programming, strongly connected component, constraint involving set variables
Figure 4.404: Initial and final graph of the strongly connected set constraint
4.211 sum

Origin [150].

Constraint
\[\text{sum}(\text{INDEX, SETS, CONSTANTS, S}) \]

Argument(s)
\begin{align*}
\text{INDEX} & : \text{dvar} \\
\text{SETS} & : \text{collection(\text{ind} - \text{int}, \text{set} - \text{sint})} \\
\text{CONSTANTS} & : \text{collection(\text{cst} - \text{int})} \\
\text{S} & : \text{dvar}
\end{align*}

Restriction(s)
\begin{align*}
|\text{SETS}| & \geq 1 \\
\text{required(SETS, [\text{ind, set}])} \\
\text{distinct(SETS, ind)} \\
|\text{CONSTANTS}| & \geq 1 \\
\text{required(CONSTANTS, cst})
\end{align*}

Purpose
\[\text{S is equal to the sum of the constants corresponding to the INDEX}^{th} \text{ set of the SETS collection.} \]

Arc input(s)
SETS CONSTANTS

Arc generator
\[\text{PRODUCT} \mapsto \text{collection(sets, constants)} \]

Arc arity
2

Arc constraint(s)
\begin{itemize}
\item \text{INDEX = sets.ind}
\item \text{in_set(constants.key, sets.set)}
\end{itemize}

Graph property(ies)
\[\text{SUM(CONSTANTS, cst)} = \text{S} \]

Example
\[\text{sum} \left\{ \begin{array}{l}
\text{ind} = 8, \ \text{set} = \{2, 3\}, \\
\text{ind} = 1, \ \text{set} = \{3\}, \\
\text{ind} = 3, \ \text{set} = \{1, 4, 5\}, \\
\text{ind} = 6, \ \text{set} = \{2, 4\} \\
\end{array} \right\}, \text{cst} = \{4, 9, 10\}, \text{cst} = \{1\} \]

Parts (A) and (B) of Figure 4.405 respectively show the initial and final graph. Since we use the \text{SUM} graph property we show the vertices from which we compute \text{S} in a box.

Graph model
According to the value assigned to \text{INDEX} the arc constraint selects for the final graph:
\begin{itemize}
\item The \text{INDEX}^{th} item of the \text{SETS} collection.
\item The items of the \text{CONSTANTS} collection for which the key correspond to the indices of the \text{INDEX}^{th} set of the \text{SETS} collection.
\end{itemize}
Finally, since we use the \texttt{SUM} graph property on the \texttt{cat} attribute of the \texttt{CONSTANTS} collection, the last argument S of the sum constraint is equal to the sum of the constants associated to the vertices of the final graph.

Usage
In his paper introducing the sum constraint, Tallys H. Yunes mentions the \textit{Sequence Dependent Cumulative Cost Problem} as the subproblem that originally motivate this constraint.

Algorithm
The paper [150] gives the convex hull relaxation of the \texttt{sum} constraint.

See also
\texttt{element sum ctr sum set}

Key words
\texttt{data constraint linear programming convex hull relaxation sum}
Figure 4.405: Initial and final graph of the sum constraint
4.212 sum_ctr

<table>
<thead>
<tr>
<th>Origin</th>
<th>Arithmetic constraint.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint</td>
<td>sum_ctr(VARIABLES, CTR, VAR)</td>
</tr>
<tr>
<td>Synonym(s)</td>
<td>constant_sum.</td>
</tr>
<tr>
<td>Argument(s)</td>
<td>VARIABLES : collection(var – dvar)</td>
</tr>
<tr>
<td></td>
<td>CTR : atom</td>
</tr>
<tr>
<td></td>
<td>VAR : dvar</td>
</tr>
<tr>
<td>Restriction(s)</td>
<td>required(VARIABLES, var)</td>
</tr>
<tr>
<td></td>
<td>CTR ∈ [=, ≠, <, ≥, >, ≤]</td>
</tr>
<tr>
<td>Purpose</td>
<td>Constraint the sum of a set of domain variables. More precisely let S denotes the sum of the variables of the VARIABLES collection. Enforce the following constraint to hold: S CTR VAR.</td>
</tr>
<tr>
<td>Arc input(s)</td>
<td>VARIABLES</td>
</tr>
<tr>
<td>Arc generator</td>
<td>SELF → collection(variables)</td>
</tr>
<tr>
<td>Arc arity</td>
<td>1</td>
</tr>
<tr>
<td>Arc constraint(s)</td>
<td>TRUE</td>
</tr>
<tr>
<td>Graph property(ies)</td>
<td>SUM(VARIABLES, var) CTR VAR</td>
</tr>
<tr>
<td>Example</td>
<td>sum_ctr({var - 1, var - 1, var - 4}, =, 6)</td>
</tr>
</tbody>
</table>

Parts (A) and (B) of Figure 4.406 respectively show the initial and final graph. Since we use the TRUE arc constraint both graphs are identical.

![Figure 4.406: Initial and final graph of the sum_ctr constraint](image)

Graph model

Since we want to keep all the vertices of the initial graph we use the SELF arc generator together with the TRUE arc constraint. This predefined arc constraint allways holds.

Remark

When CTR corresponds to = this constraint is referenced under the name constant_sum in KOALOG.
Used in

bin_packing cumulative cumulative_two_d
cumulative_with_level_of_priority cumulatives indexed_sum
interval_and_sum relaxed_sliding_sum sliding_sum
sliding_time_window_sum

See also

sum sum_set product_ctr range_ctr

Key words

arithmetic_constraint sum
4.213 sum_of_weights_of_distinct_values

<table>
<thead>
<tr>
<th>Origin</th>
<th>106</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint:</td>
<td>sum_of_weights_of_distinct_values(VARIABLES, VALUES, COST)</td>
</tr>
<tr>
<td>Synonym(s):</td>
<td>swdv.</td>
</tr>
<tr>
<td>Argument(s):</td>
<td>VARIABLES : collection(var – dvar)</td>
</tr>
<tr>
<td></td>
<td>VALUES : collection(val – int, weight – int)</td>
</tr>
<tr>
<td></td>
<td>COST : dvar</td>
</tr>
<tr>
<td>Restriction(s):</td>
<td>required(VARIABLES, var)</td>
</tr>
<tr>
<td></td>
<td>required(VALUES, [val, weight])</td>
</tr>
<tr>
<td></td>
<td>VALUES.weight ≥ 0</td>
</tr>
<tr>
<td></td>
<td>distinct(VALUES, val)</td>
</tr>
<tr>
<td></td>
<td>COST ≥ 0</td>
</tr>
</tbody>
</table>

| Purpose: | All variables of the VARIABLES collection take a value in the VALUES collection. In addition, COST is the sum of the weight attributes associated to the distinct values taken by the variables of VARIABLES. |

Arc input(s):	VARIABLES VALUES		
Arc generator:	PRODUCT → collection(variables, values)		
Arc arity:	2		
Arc constraint(s):	variables.var = values.val		
Graph property(ies):	• NSOURCE =	VARIABLES	
	• SUM(VALUES.weight) = COST		

\[
\begin{pmatrix}
\{ \text{var} = 1, \\
\text{var} = 6, \\
\text{var} = 1 \\
\text{val} = 1 \text{ weight} = 5, \\
\text{val} = 2 \text{ weight} = 3, \\
\text{val} = 6 \text{ weight} = 7
\end{pmatrix}, 12
\]

| Example: | sum_of_weights_of_distinct_values |

Parts (A) and (B) of Figure 4.407 respectively show the initial and final graph. Since we use the NSOURCE graph property, the source vertices of the final graph are shown in a double circle. Since we also use the SUM graph property we show the vertices from which we compute the total cost in a box.

| Signature: | Since we use the PRODUCT arc generator, the number of sources of the final graph cannot exceed the number of sources of the initial graph. Since the initial graph contains |VARIABLES| sources, this number is an upper bound of the number of sources of the final graph. Therefore we can rewrite NSOURCE = |VARIABLES| to NSOURCE ≥ |VARIABLES| and simplify NSOURCE to NSOURCE. |
See also minimum_weight_alldifferent, global_cardinality_with_costs, nvalue, weighted_partial_alldiff.

Key words cost filtering constraint, assignment, relaxation, domination, weighted assignment, facilities location problem.
Figure 4.407: Initial and final graph of the sum of weights of distinct values constraint.
4.214 sum_set

Origin
H. Cambazard

Constraint
sum_set(SV, VALUES, CTR, VAR)

Argument(s)
SV : svar
VALUES : collection(val – int, coef – int)
CTR : atom
VAR : dvar

Restriction(s)
required(VALUES, [val, coef])
distinct(VALUES, val)
VALUES.coef ≥ 0
CTR ∈ [=, ≠, <, ≥, >, ≤]

Purpose
Let SUM denotes the sum of the coef attributes of the VALUES collection for which the corresponding values val occur in the set SV. Enforce the following constraint to hold: SUM CTR VAR.

Arc input(s)
VALUES

Arc generator
SELF ➞ collection(values)

Arc arity
1

Arc constraint(s)
in_set(values.val, SV)

Graph property(ies)
SUM(VALUES, coef) CTR VAR

Example
sum_set({2, 3, 6},
{val – 2 coef – 7},
{val – 9 coef – 1},
{val – 5 coef – 7},
{val – 6 coef – 2},
val, coef),
SUM(CTR VAR

Parts (A) and (B) of Figure 4.408 respectively show the initial and final graph.

(A) (B)
SUM=7+2=9

Figure 4.408: Initial and final graph of the sum_set constraint

See also
sum_sum

Key words
arithmetic constraint, binary constraint, sum, constraint involving set variables.
4.215 symmetric_alldifferent

Origin

[20]

Constraint

\(\text{symmetric_alldifferent}(\text{NODES})\)

Synonym(s)

\(\text{symmetric_alldiff}, \text{symmetric_alldistinct}, \text{symm_alldifferent}, \text{symm_alldiff}, \text{symm_alldistinct}, \text{one_factor}\)

Argument(s)

\(\text{NODES} : \text{collection(index - int.succ - dvar)}\)

Restriction(s)

\(\text{required(}\text{NODES, [index, succ]}\)\)
\(\text{NODES.index} \geq 1\)
\(\text{NODES.index} \leq |\text{NODES}|\)
\(\text{distinct(}\text{NODES, index}\)\)
\(\text{NODES.succ} \geq 1\)
\(\text{NODES.succ} \leq |\text{NODES}|\)

Purpose

All variables associated to the \texttt{succ} attribute of the \texttt{NODES} collection should be pairwise distinct. In addition enforce the following condition: If variable \texttt{NODES[i].succ} takes value \(j\) then variable \texttt{NODES[j].succ} takes value \(i\). This can be interpreted as a graph-covering problem where one has to cover a digraph \(G\) with circuits of length two in such a way that each vertex of \(G\) belongs to one single circuit.

Arc input(s)

\(\text{NODES}\)

Arc generator

\(\text{CLIQUE(≠)} \rightarrow \text{collection(nodes1, nodes2)}\)

Arc arity

2

Arc constraint(s)

\(\bullet \text{nodes1.succ} = \text{nodes2.index}\)
\(\bullet \text{nodes2.succ} = \text{nodes1.index}\)

Graph property(ies)

\(\text{NARC} = |\text{NODES}|\)

Example

symmetric_alldifferent (\[
\begin{pmatrix}
\text{index - 1} & \text{succ - 3}, \\
\text{index - 2} & \text{succ - 4}, \\
\text{index - 3} & \text{succ - 1}, \\
\text{index - 4} & \text{succ - 2}
\end{pmatrix}
\])

Parts (A) and (B) of Figure 4.409 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold.

Graph model

In order to express the binary constraint that links two vertices one has to make explicit the identifier of the vertices.

Signature

Since all the \texttt{index} attributes of the \texttt{NODES} collection are distinct, and because of the first condition \texttt{nodes1.succ = nodes2.index} of the arc constraint, each vertex of the final graph has at most one successor. Therefore the maximum number of arcs of the final graph is equal to the maximum number of vertices \(|\text{NODES}|\) of the final graph. So we can rewrite \(\text{NARC} = |\text{NODES}|\) to \(\text{NARC} \geq |\text{NODES}|\) and simplify \(\text{NARC} = \text{NARC}\) to \(\text{NARC}\).
Usage

As it was reported in [20] page 420, this constraint is useful to express matches between persons. The symmetric\textit{alldifferent} constraint also appears implicitly in the \textit{cycle cover problem} and corresponds to the four conditions given in section 1 \textit{Modeling the Cycle Cover Problem} of [151].

Remark

This constraint is referenced under the name \textit{one factor} in [152] as well as in [153]. From a modelling point of view this constraint can be express with the \textit{cycle} constraint [37] where one imposes the additional condition that each cycle has only two nodes.

Algorithm

[20].

See also \textit{cycle} \textit{alldifferent}.

Key words \textit{graph constraint} \textit{cycle} \textit{timetabling constraint} \textit{sport timetabling} \textit{permutation} \textit{all different} \textit{disequality} \textit{graph partitioning constraint} \textit{matching}
Figure 4.409: Initial and final graph of the symmetric alldifferent constraint
4.216 symmetric_cardinality

Origin
Derived from [global_cardinality](#) by W. Kocjan.

Constraint

\[
\text{symmetric_cardinality}(\text{VARS}, \text{VALS})
\]

Argument(s)

- \(\text{VARS} : \) collection(idvar - int, var - svar, l - int, u - int)
- \(\text{VALS} : \) collection(idval - int, val - svar, l - int, u - int)

Restriction(s)

- \(\text{required}(\text{VARS}, [\text{idvar}, \text{var}, 1, \text{u}])\)
- \(|\text{VARS}| \geq 1\)
- \(\text{VARS}.\text{idvar} \geq 1\)
- \(\text{VARS}.\text{idvar} \leq |\text{VARS}|\)
- \(\text{distinct}(\text{VARS}, \text{idvar})\)
- \(\text{VARS}.\text{l} \geq 0\)
- \(\text{VARS}.\text{l} \leq \text{VARS}.\text{u}\)
- \(\text{VARS}.\text{u} \leq |\text{VARS}|\)
- \(\text{required}(\text{VALS}, [\text{idval}, \text{val}, 1, \text{u}])\)
- \(|\text{VALS}| \geq 1\)
- \(\text{VALS}.\text{idval} \geq 1\)
- \(\text{VALS}.\text{idval} \leq |\text{VALS}|\)
- \(\text{distinct}(\text{VALS}, \text{idval})\)
- \(\text{VALS}.\text{l} \geq 0\)
- \(\text{VALS}.\text{l} \leq \text{VALS}.\text{u}\)
- \(\text{VALS}.\text{u} \leq |\text{VARS}|\)

Purpose

Put in relation two sets: For each element of one set gives the corresponding elements of the other set to which it is associated. In addition, it constrains the number of elements associated to each element to be in a given interval.

Arc input(s)

VARS VALS

Arc generator

\[\text{PRODUCT} \mapsto \text{collection}(\text{vars}, \text{vals})\]

Arc arity

2

Arc constraint(s)

- \(\text{in_set}(\text{vars}.\text{idvar}, \text{vars}.\text{val}) \Leftrightarrow \text{in_set}(\text{vals}.\text{idval}, \text{vals}.\text{var})\)
- \(\text{vars}.\text{l} \leq \text{card_set}(\text{vars}.\text{var})\)
- \(\text{vars}.\text{u} \geq \text{card_set}(\text{vars}.\text{var})\)
- \(\text{vals}.\text{l} \leq \text{card_set}(\text{vals}.\text{val})\)
- \(\text{vals}.\text{u} \geq \text{card_set}(\text{vals}.\text{val})\)

Graph property(ies)

\(\text{NARC} = |\text{VARS}| \times |\text{VALS}|\)
Example

\[
\begin{align*}
\text{idvar} & \quad \text{var} & \quad \text{u} \\
1 & \quad \{3\} & \quad 1 & \quad 0 \\
2 & \quad \{1\} & \quad 1 & \quad 1 \\
3 & \quad \{1, 2\} & \quad 1 & \quad 1 \\
4 & \quad \{1, 3\} & \quad 1 & \quad 2 \\
\text{idval} & \quad \text{val} & \quad \text{u} \\
1 & \quad \{2, 3, 4\} & \quad 1 & \quad 3 \\
2 & \quad \{3\} & \quad 1 & \quad 1 \\
3 & \quad \{4\} & \quad 1 & \quad 1 \\
4 & \quad \emptyset & \quad 1 & \quad 0 \\
\end{align*}
\]

Parts (A) and (B) of Figure 4.410 respectively show the initial and final graph. Since we use the NARC graph property, all the arcs of the final graph are stressed in bold.

Graph model

The graph model used for the symmetric_cardinality is similar to the one used in the domain_constraint or in the link_set_to_boolean constraints: We use an equivalence in the arc constraint and ask all arc constraints to hold.

Signature

Since we use the PRODUCT arc generator on the collections VARS and VALS, the number of arcs of the initial graph is equal to |VARS| \times |VALS|. Therefore the maximum number of arcs of the final graph is also equal to |VARS| \times |VALS| and we can rewrite NARC = |VARS| \times |VALS| to NARC ≥ |VARS| \times |VALS|. So we can simplify NARC to NARC.

Usage

The most simple example of applying symmetric_gcc is a variant of personnel assignment problem, where one person can be assigned to perform between \(n \) and \(m \) \((n ≤ m)\) jobs, and every job requires between \(p \) and \(q \) \((p ≤ q)\) persons. In addition every job requires different kind of skills. The previous problem can be modelled as follows:

- For each person we create an item of the VARS collection,
- For each job we create an item of the VALS collection,
- There is an arc between a person and the particular job if this person is qualified to perform it.
Remark

The symmetric gcc constraint generalizes the global_cardinality constraint by allowing a variable to take more than one value.

Algorithm

A flow-based arc-consistency algorithm for the symmetric_cardinality constraint is described in [154].

See also

symmetric_gcc global_cardinality link_set_to_booleans

Key words

decomposition timetabling constraint assignment relation flow constraint involving set variables
4.217 symmetric_gcc

Origin
Derived from global_cardinality by W. Kocjan.

Constraint
symmetric_gcc(VARS, VALS)

Synonym(s)
sgcc.

Argument(s)
VARS : collection(idvar - int, var - svar, nocc - dvar)
VALS : collection(idval - int, val - svar, nocc - dvar)

Restriction(s)
required(VARS, [idvar, var, nocc])
|VARS| ≥ 1
VARS.idvar ≥ 1
VARS.idvar ≤ |VARS|
distinct(VARS.idvar)
VARS.nocc ≥ 0
VARS.nocc ≤ |VALS|
required(VALS, [idval, val, nocc])
|VALS| ≥ 1
VALS.idval ≥ 1
VALS.idval ≤ |VALS|
distinct(VALS.idval)
VALS.nocc ≥ 0
VALS.nocc ≤ |VARS|

Purpose
Put in relation two sets: For each element of one set gives the corresponding elements of the other set to which it is associated. In addition, enforce a cardinality constraint on the number of occurrences of each value.

Arc input(s)
VARS VALS

Arc generator
PRODUCT → collection(vars, vals)

Arc arity
2

Arc constraint(s)
• in_set(vars.idvar, vals.val) ⇔ in_set(vals.idval, vars.var)
• vars.nocc = card_set(vars.var)
• vals.nocc = card_set(vals.val)

Graph property(ies)
NARC = |VARS| * |VALS|

Example
symmetric_gcc

\[
\begin{pmatrix}
\text{idvar} - 1 & \text{var} - \{3\} & \text{nocc} - 1, \\
\text{idvar} - 2 & \text{var} - \{1\} & \text{nocc} - 1, \\
\text{idvar} - 3 & \text{var} - \{1, 2\} & \text{nocc} - 2, \\
\text{idvar} - 4 & \text{var} - \{1, 3\} & \text{nocc} - 2 \\
\text{idval} - 1 & \text{val} - \{2, 3, 4\} & \text{nocc} - 3, \\
\text{idval} - 2 & \text{val} - \{3\} & \text{nocc} - 1, \\
\text{idval} - 3 & \text{val} - \{1, 4\} & \text{nocc} - 2, \\
\text{idval} - 4 & \text{val} - 0 & \text{nocc} - 0
\end{pmatrix}
\]
Parts (A) and (B) of Figure 4.411 respectively show the initial and final graph. Since we use the \textbf{NARC} graph property, all the arcs of the final graph are stressed in bold.

\begin{figure}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{VARS} & 1 & 2 & 3 & 4 \\
\hline
\textbf{VALS} & 1 & 2 & 3 & 4 \\
\hline
\end{tabular}
\end{figure}

\begin{figure}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{NARC}=16 & 1:1,\{3\},1 & 2:2,\{1\},1 & 3:3,\{1,4\},2 & 4:4,\{1,3\},2 \\
\hline
\textbf{A} & 1:1,\{2,3,4\},3 & 1:1,\{2,3,4\},3 & 1:1,\{2,3,4\},3 & 1:1,\{2,3,4\},3 \\
\textbf{B} & 2:2,\{3\},1 & 3:3,\{2\},1 & 4:4,\{} & 2:2,\{3\},1 \\
\end{tabular}
\end{figure}

Figure 4.411: Initial and final graph of the \textit{symmetric gcc} constraint

\textbf{Graph model} The graph model used for the \textit{symmetric gcc} is similar to the one used in the \texttt{domain constraint} or in the \texttt{link set to booleans} constraints: We use an equivalence in the arc constraint and ask all arc constraints to hold.

\textbf{Signature} Since we use the \textit{PRODUCT} arc generator on the collections \texttt{VARS} and \texttt{VALS}, the number of arcs of the initial graph is equal to |\texttt{VARS}| \times |\texttt{VALS}|. Therefore the maximum number of arcs of the final graph is also equal to |\texttt{VARS}| \times |\texttt{VALS}| and we can rewrite \texttt{NARC} = |\texttt{VARS}| \times |\texttt{VALS}| to \texttt{NARC} \geq |\texttt{VARS}| \times |\texttt{VALS}|. So we can simplify \texttt{NARC} to \texttt{NARC}.

\textbf{Usage} The most simple example of applying \textit{symmetric gcc} is a variant of personnel assignment problem, where one person can be assigned to perform between \(n\) and \(m\) (\(n \leq m\)) jobs, and every job requires between \(p\) and \(q\) (\(p \leq q\)) persons. In addition every job requires different kind of skills. The previous problem can be modelled as follows:

- For each person we create an item of the \texttt{VARS} collection,
- For each job we create an item of the \texttt{VALS} collection,
- There is an arc between a person and the particular job if this person is qualified to perform it.

\textbf{Remark} The \textit{symmetric gcc} constraint generalizes the \texttt{global cardinality} constraint by allowing a variable to take more than one value. It corresponds to a variant of the \texttt{symmetric cardinality} constraint described in [153] where the occurrence variables of the \texttt{VARS} and \texttt{VALS} collections are replaced by fixed intervals.

\textbf{See also} \texttt{symmetric cardinality}, \texttt{global cardinality}, \texttt{link set to booleans}

\textbf{Key words} decomposition, timetabling constraint, assignment, relation, flow constraint involving set variables.
4.218 temporal_path

Origin

ILOG

Constraint
temporal_path(NPATH, NODES)

Argument(s)
NPATH : dvar
NODES : collection(index – int, succ – dvar, start – dvar, end – dvar)

Restriction(s)
NPATH ≥ 1
NPATH ≤ |NODES|
required(NODES, [index, succ, start, end])
|NODES| > 0
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Let G be the digraph described by the NODES collection. Partition G with a set of disjoint paths such that each vertex of the graph belongs to a single path. In addition, for all pairs of consecutive vertices of a path we have a precedence constraint that enforces the end associated to the first vertex to be less than or equal to the start related to the second vertex.

Arc input(s)

NODES

Arc generator

CLIQUE → collection(nodes1, nodes2)

Arc arity

2

Arc constraint(s)

• nodes1.succ = nodes2.index
• nodes1.succ = nodes1.index ∨ nodes1.end ≤ nodes2.start
• nodes1.start ≤ nodes1.end
• nodes2.start ≤ nodes2.end

Graph property(ies)

• MAX_ID = 1
• NCC = NPATH
• NVERTEX = |NODES|

Example

temporal_path 2,

\[
\begin{pmatrix}
\text{index} - 1 & \text{succ} - 2 & \text{start} - 0 & \text{end} - 1, \\
\text{index} - 2 & \text{succ} - 6 & \text{start} - 3 & \text{end} - 5, \\
\text{index} - 3 & \text{succ} - 4 & \text{start} - 0 & \text{end} - 3, \\
\text{index} - 4 & \text{succ} - 5 & \text{start} - 4 & \text{end} - 6, \\
\text{index} - 5 & \text{succ} - 7 & \text{start} - 7 & \text{end} - 8, \\
\text{index} - 6 & \text{succ} - 6 & \text{start} - 7 & \text{end} - 9, \\
\text{index} - 7 & \text{succ} - 7 & \text{start} - 9 & \text{end} - 10
\end{pmatrix}
\]

Parts (A) and (B) of Figure 4.12 respectively show the initial and final graph. Since we use the MAX_ID, the NCC and the NVERTEX graph properties we display the following information on the final graph:
We show with a double circle a vertex which has the maximum number of predecessors.

We show the two connected components corresponding to the two paths.

We put in bold the vertices.

Figure 4.412: Initial and final graph of the temporal path constraint

Graph model

The arc constraint is a conjunction of four conditions that respectively correspond to:

- A constraint that links the successor variable of a first vertex to the index attribute of a second vertex,
- A precedence constraint that applies on one vertex and its distinct successor,
- One precedence constraint between the start and the end of the vertex that corresponds to the departure of an arc,
- One precedence constraint between the start and the end of the vertex that corresponds to the arrival of an arc.

We use the following three graph properties in order to enforce the partitioning of the graph in distinct paths:

- The first property \(\text{MAX.ID} = 1 \) enforces that each vertex has only one single predecessor (except the last vertex of a path which has also itself as a predecessor),
- The second property \(\text{NCC} = \text{NPATH} \) ensures that we have the required number of paths,
- The third property \(\text{NVERTEX} = |\text{NODES}| \) enforces that for each vertex, the start is not located after the end.
Since we use the graph property $N\text{VERTEX} = |\text{NODES}|$ together with the restriction $|\text{NODES}| > 0$ the final graph is not empty. Therefore the smallest possible value of MAX_ID is equal to 1. So we can rewrite $\text{MAX_ID} = 1$ to $\text{MAX_ID} \leq 1$ and simplify MAX_ID to MAX_ID.

Since the maximum number of vertices of the final graph is equal to $|\text{NODES}|$ we can rewrite the graph property $N\text{VERTEX} = |\text{NODES}|$ to $N\text{VERTEX} \geq |\text{NODES}|$ and simplify $N\text{VERTEX}$ to $N\text{VERTEX}$.

Remark

This constraint is related to the path constraint of Ilog Solver. It can also be directly expressed with the cycle constraint of CHIP by using the diff nodes and the origin parameters. A generic model based on linear programming that handles paths, trees and cycles is presented in [94].

See also

path_from_to

Key words

graph constraint graph partitioning constraint path connected component
4.219 tour

Origin [74]

Constraint tour(NODES)

Synonym(s) atour, cycle.

Argument(s) NODES : collection(index – int, succ – svar)

Restriction(s) |NODES| ≥ 3
required(NODES,[index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES,index)

Purpose Enforce to cover an undirected graph G described by the NODES collection with a Hamiltonian cycle.

Arc input(s) NODES

Arc generator CLIQUE(≠) ← collection(nodes1,nodes2)

Arc arity 2

Arc constraint(s) in_set(nodes2.index,nodes1.succ) ⇔ in_set(nodes1.index,nodes2.succ)

Graph property(ies) NARC = |NODES| + |NODES| - |NODES|

Arc input(s) NODES

Arc generator CLIQUE(≠) ← collection(nodes1,nodes2)

Arc arity 2

Arc constraint(s) in_set(nodes2.index,nodes1.succ)

Graph property(ies) • MIN_NSCC = |NODES|
• MIN_ID = 2
• MAX_ID = 2
• MIN_OD = 2
• MAX_OD = 2

Example tour

\[
\begin{align*}
\text{index } - 1 & \quad \text{succ } = \{2, 4\}, \\
\text{index } - 2 & \quad \text{succ } = \{1, 3\}, \\
\text{index } - 3 & \quad \text{succ } = \{2, 4\}, \\
\text{index } - 4 & \quad \text{succ } = \{1, 3\}
\end{align*}
\]

Part (A) of Figure 8.414 shows the initial graph from which we start. It is derived from the set associated to each vertex. Each set describes the potential values of the succ attribute of a given vertex. Part (B) of Figure 8.414 gives the final graph associated to the example. The tour constraint holds since the final graph corresponds to a Hamiltonian cycle.
Graph model

The first graph property enforces the subsequent condition: If we have an arc from the \(i^{th} \) vertex to the \(j^{th} \) vertex then we have also an arc from the \(j^{th} \) vertex to the \(i^{th} \) vertex. The second graph property enforces the following constraints:

- We have one strongly connected component containing \(|\text{NODES}|\) vertices,
- Each vertex has exactly two predecessors and two successors.

Signature

Since the maximum number of vertices of the final graph is equal to \(|\text{NODES}|\), we can rewrite the graph property \(\text{MIN_NSCC} = |\text{NODES}| \) to \(\text{MIN_NSCC} \geq |\text{NODES}| \) and simplify \(\text{MIN_NSCC} \) to \(\text{MIN_NSCC} \).

See also

circuit, cycle, link_set_to_booleans

Key words

graph constraint, undirected graph, Hamiltonian, linear programming, constraint involving set variables
Figure 4.413: Initial and final graph of the tour set constraint
4.220 **track**

Origin

Constraint

\(\text{track}(\text{NTRAIL}, \text{TASKS}) \)

Argument(s)

- \(\text{NTRAIL} : \text{int} \)
- \(\text{TASKS} : \text{collection}\left(\text{trail} - \text{int}, \text{origin} - \text{dvar}, \text{end} - \text{dvar}\right) \)

Restriction(s)

- \(\text{NTRAIL} > 0 \)
- \(\text{required(\text{TASKS}, \text{[trail, origin, end]})} \)
- \(\text{TASKS.trail} > 0 \)
- \(\text{TASKS.trail} \leq \text{NTRAIL} \)

Purpose

The track constraint enforces that, at each point in time overlapped by at least one task, the number of distinct values of the trail attribute of the set of tasks that overlap that point, is equal to \(\text{NTRAIL} \).

Derived Collection(s)

\[
\text{col}\left(\begin{array}{c}
\text{TIME.POINTS} - \text{collection}(\text{origin} - \text{dvar}, \text{end} - \text{dvar}, \text{point} - \text{dvar}), \\
\text{item}(\text{origin} - \text{TASKS.origin.end} - \text{TASKS.end.point} - \text{TASKS.origin}) \\
\text{item}(\text{origin} - \text{TASKS.origin.end} - \text{TASKS.end.point} - \text{TASKS.end} - 1)
\end{array}\right)
\]

Arc input(s)

- \(\text{TASKS} \)

Arc generator

- \(\text{SELF} \rightarrow \text{collection}(\text{tasks}) \)

Arc arity

1

Arc constraint(s)

- \(\text{tasks.origin} \leq \text{tasks.end} \)

Graph property(ies)

\(\text{NARC} = |\text{TASKS}| \)

Arc input(s)

- \(\text{TIME.POINTS} \) \(\text{TASKS} \)

Arc generator

- \(\text{PRODUCT} \rightarrow \text{collection}(\text{time.points, tasks}) \)

Arc arity

2

Arc constraint(s)

- \(\text{time.points.end} > \text{time.points.origin} \)
- \(\text{tasks.origin} \leq \text{time.points.point} \)
- \(\text{time.points.point} < \text{tasks.end} \)

Sets

\[
\text{SUCC} \rightarrow \\
\text{source,} \\
\text{variables} - \text{col}(\text{VARIABLES} - \text{collection}(\text{var} - \text{dvar}), [\text{item}(\text{var} - \text{TASKS.trail})])
\]

Constraint(s) on sets

\(\text{nvalue(\text{NTRAIL}, \text{variables})} \)
Example track

\[
\begin{pmatrix}
\text{trail} - 1 & \text{origin} - 1 & \text{end} - 2, \\
\text{trail} - 2 & \text{origin} - 1 & \text{end} - 2, \\
\text{trail} - 1 & \text{origin} - 2 & \text{end} - 4, \\
\text{trail} - 2 & \text{origin} - 2 & \text{end} - 3, \\
\text{trail} - 2 & \text{origin} - 3 & \text{end} - 4 \\
\end{pmatrix}
\]

The previous constraint holds since:

- The first and second tasks both overlap instant 1 and have a respective trail of 1 and 2, which makes two distinct values for the trail attribute at instant 1,
- The third and fourth tasks both overlap instant 2 and have a respective trail of 1 and 2, which makes two distinct values for the trail attribute at instant 2,
- The third and fifth tasks both overlap instant 3 and have a respective trail of 1 and 2, which makes two distinct values for the trail attribute at instant 3.

Parts (A) and (B) of Figure 4.414 respectively show the initial and final graph of the second graph constraint.

![Figure 4.414: Initial and final graph of the track constraint](image)

Signature

Consider the first graph constraint. Since we use the SELF arc generator on the TASKS collection, the maximum number of arcs of the final graph is equal to |TASKS|. Therefore we can rewrite \(NARC = |\text{TASKS}| \) to \(NARC \geq |\text{TASKS}| \) and simplify \(NARC \) to \(NARC \).

See also

nvalue

Key words

time-tabling constraint, resource constraint, temporal constraint, derived collection
4.221 tree

Origin
N. Beldiceanu

Constraint
\text{tree(NTREES, NODES)}

Argument(s)
\begin{align*}
\text{NTREES} & : \text{dvar} \\
\text{NODES} & : \text{collection(index – int, succ – dvar)}
\end{align*}

Restriction(s)
\begin{align*}
\text{NTREES} & \geq 0 \\
\text{required}[\text{NODES}, \text{index, succ}] & \\
\text{NODES.index} & \geq 1 \\
\text{NODES.index} & \leq |\text{NODES}| \\
\text{distinct}[\text{NODES, index}] & \\
\text{NODES.succ} & \geq 1 \\
\text{NODES.succ} & \leq |\text{NODES}|
\end{align*}

Purpose
Cover a digraph G by a set of trees in such a way that each vertex of G belongs to one distinct tree. The edges of the trees are directed from their leaves to their respective roots.

Arc input(s)
\text{NODES}

Arc generator
\text{CLIQUE} \mapsto \text{collection(nodes1, nodes2)}

Arc arity
2

Arc constraint(s)
\text{nodes1.succ} = \text{nodes2.index}

Graph property(ies)
\begin{itemize}
\item \text{MAX_NSCC} \leq 1
\item \text{NCC} = \text{NTREES}
\end{itemize}

Example
\begin{align*}
\text{tree} & \ 2, \\
& \begin{pmatrix}
\text{index} & \text{succ} \\
1 & 1 \\
2 & 5 \\
3 & 5 \\
4 & 7 \\
5 & 1 \\
6 & 1 \\
7 & 7 \\
8 & 5
\end{pmatrix}
\end{align*}

Parts (A) and (B) of Figure 4.221 respectively show the initial and final graph. Since we use the NCC graph property, we display the two connected components of the final graph. Each of them corresponds to a tree. The tree constraint holds since all strongly connected components of the final graph have no more than one vertex and since \text{NTREES} = \text{NCC} = 2.

Graph model
We use the graph property \text{MAX_NSCC} \leq 1 in order to specify the fact that the size of the largest strongly connected component should not exceed one. In fact each root of a tree is a strongly connected component with one single vertex. The second graph property \text{NCC} = \text{NTREES} enforces the number of trees to be equal to the number of connected components.
Algorithm

An arc-consistency filtering algorithm for the tree constraint is described in [156]. This algorithm is based on a necessary and sufficient condition that we now depict.

To any tree constraint we associate the digraph $G = (V, E)$, where:

- To each item $\text{NODES}[i]$ of the NODES collection corresponds a vertex v_i of G.
- For every pair of items $(\text{NODES}[i], \text{NODES}[j])$ of the NODES collection, where i and j are not necessarily distinct, there is an arc from v_i to v_j in E if j is a potential value of $\text{NODES}[i].\text{succ}$.

A strongly connected component C of G is called a sink component if all the successors of all vertices of C belong to C. Let MINTREES and MAXTREES respectively denote the number of sink components of G and the number of vertices of G with a loop.

The tree constraint has a solution if and only if:

- Each sink component of G contains at least one vertex with a loop.
- The domain of NTREES has at least one value within interval $[\text{MINTREES}, \text{MAXTREES}]$.

See also: \textbf{binary tree, cycle, map, tree resource, graph crossing}

Key words: \textbf{graph constraint, graph partitioning constraint, connected component, tree, one-succ}
Figure 4.415: Initial and final graph of the tree constraint
4.222 tree_range

Origin Derived from tree
Constraint tree_range(NTREES, R, NODES)
Argument(s) NTREES : dvar
 R : dvar
 NODES: collection(index – int, succ – dvar)
Restriction(s) NTREES ≥ 0
 R ≥ 0
 R < |NODES|
 required(NODES,[index, succ])
 NODES.index ≥ 1
 NODES.index ≤ |NODES|
 distinct(NODES, index)
 NODES.succ ≥ 1
 NODES.succ ≤ |NODES|
Purpose Cover the digraph \(G \) described by the \(\text{NODES} \) collection with \(\text{NTREES} \) trees in such a way that each vertex of \(G \) belongs to one distinct tree. \(R \) is the difference between the longest and the shortest paths of the final graph.

Arc input(s) NODES
Arc generator CLIQUE \(\rightarrow \) collection(nodes1, nodes2)
Arc arity 2
Arc constraint(s) nodes1.succ = nodes2.index
Graph property(ies) • MAX_NSCC ≤ 1
 • NCC = NTREES
 • RANGE_DRG = R

Example tree_range (2, 1, \{ index – 1 succ – 1, index – 2 succ – 5, index – 3 succ – 5, index – 4 succ – 7, index – 5 succ – 1, index – 6 succ – 1, index – 7 succ – 7, index – 8 succ – 5 \})

Parts (A) and (B) of Figure 4.416 respectively show the initial and final graph. Since we use the RANGE_DRG graph property, we respectively display the longest and shortest paths of the final graph with a bold and a dash line.
See also

Key words
Figure 4.416: Initial and final graph of the tree_range constraint
4.223 tree_resource

Origin
Derived from \texttt{tree}

Constraint
\texttt{tree_resource(RESOURCE, TASK)}

Argument(s)
\begin{align*}
\text{RESOURCE} : & \text{ collection(id} - \text{ int.nb_task} - \text{ dvar)} \\
\text{TASK} : & \text{ collection(id} - \text{ int.father} - \text{ resource} - \text{ dvar)}
\end{align*}

Restriction(s)
\begin{align*}
\text{required(RESOURCE, [id, nb_task])} \\
\text{RESOURCE.id} & \geq 1 \\
\text{RESOURCE.id} & \leq |\text{RESOURCE}| \\
\text{distinct(RESOURCE.id)} \\
\text{RESOURCE.nb_task} & \geq 0 \\
\text{RESOURCE.nb_task} & \leq |\text{TASK}| \\
\text{required(TASK, [id, father, resource])} \\
\text{TASK.id} & > |\text{RESOURCE}| \\
\text{TASK.id} & \leq |\text{RESOURCE}| + |\text{TASK}| \\
\text{distinct(TASK.id)} \\
\text{TASK.father} & \geq 1 \\
\text{TASK.father} & \leq |\text{RESOURCE}| + |\text{TASK}| \\
\text{TASK.resource} & \geq 1 \\
\text{TASK.resource} & \leq |\text{RESOURCE}|
\end{align*}

Purpose
Cover a digraph G in such a way that each vertex belongs to one distinct tree. Each tree is made up from one \textit{resource} vertex and several \textit{task} vertices. The resource vertices correspond to the roots of the different trees. For each resource a domain variable \texttt{nb_task} indicates how many task-vertices belong to the corresponding tree. For each task a domain variable \texttt{resource} gives the identifier of the resource which can handle that task.

Derived Collection(s)
\[
\text{col} \left(\begin{array}{c}
\text{RESOURCE_TASK} - \text{ collection(index} - \text{ int.succ} - \text{ dvar, name} - \text{ dvar)}, \\
\text{item(index} - \text{ RESOURCE.id, succ} - \text{ RESOURCE.id, name} - \text{ RESOURCE.id)}, \\
\text{item(index} - \text{ TASK.id, succ} - \text{ TASK.father, name} - \text{ TASK.resource})
\end{array} \right)
\]

Arc input(s)
\texttt{RESOURCE_TASK}

Arc generator
\texttt{CLIQUE} \mapsto \text{ collection(resource_task1, resource_task2)}

Arc arity
2

Arc constraint(s)
\begin{itemize}
\item \texttt{resource_task1.succ} = \texttt{resource_task2.index}
\item \texttt{resource_task1.name} = \texttt{resource_task2.name}
\end{itemize}

Graph property(ies)
\begin{itemize}
\item \texttt{MAX_NSCC} ≤ 1
\item \texttt{NCC} = |\text{RESOURCE}|
\item \texttt{NVERTEX} = |\text{RESOURCE}| + |\text{TASK}|
\end{itemize}

For all items of \texttt{RESOURCE}:
Arc input(s) RESOURCE.Task

Arc generator CLIQUE \mapsto \text{collection}(\text{resource}_\text{task1}, \text{resource}_\text{task2})

Arc arity 2

Arc constraint(s)
- \text{resource}_\text{task1}.\text{succ} = \text{resource}_\text{task2}.\text{index}
- \text{resource}_\text{task1}.\text{name} = \text{resource}_\text{task2}.\text{name}
- \text{resource}_\text{task1}.\text{name} = \text{RESOURCE}.\text{id}

Graph property(ies) \text{NVERTEX} = \text{RESOURCE}.\text{nb}_\text{task} + 1

Example

\[
\begin{array}{l}
\text{tree}_\text{resource} = \\
\left(\\
\{ \text{id} = 1 \text{ nb}_\text{task} = 4, \\
\text{id} = 2 \text{ nb}_\text{task} = 0, \\
\text{id} = 3 \text{ nb}_\text{task} = 1 \} \\
\{ \text{id} = 4 \text{ father} = 8 \text{ resource} = 1, \\
\text{id} = 5 \text{ father} = 3 \text{ resource} = 3, \\
\text{id} = 6 \text{ father} = 8 \text{ resource} = 1, \\
\text{id} = 7 \text{ father} = 1 \text{ resource} = 1, \\
\text{id} = 8 \text{ father} = 1 \text{ resource} = 1 \} \\
\end{array}
\]

For the second graph constraint, part (A) of Figure 4.417 shows the initial graphs associated to resources 1, 2 and 3. For the second graph constraint, part (B) of Figure 4.417 shows the final graphs associated to resources 1, 2 and 3. Since we use the \text{NVERTEX} graph property, the vertices of the final graphs are stressed in bold. To each resource corresponds a tree of respectively 4, 0 and 1 task-vertices.

Signature

Since the initial graph of the first graph constraint contains $|\text{RESOURCE}| + |\text{TASK}|$ vertices, the corresponding final graph cannot have more than $|\text{RESOURCE}| + |\text{TASK}|$ vertices. Therefore we can rewrite the graph property $\text{NVERTEX} = |\text{RESOURCE}| + |\text{TASK}|$ to $\text{NVERTEX} \geq |\text{RESOURCE}| + |\text{TASK}|$ and simplify NVERTEX to NVERTEX.

See also: tree

Key words: graph constraint, tree, resource constraint, graph partitioning constraint, connected component, derived collection.
Figure 4.417: Initial and final graph of the tree resource constraint
4.224 two_layer_edge_crossing

Origin
Inspired by [157].

Constraint
two_layer_edge_crossing(NCROSS, VERTICES_LAYER1, VERTICES_LAYER2, EDGES)

Argument(s)
NCROSS : dvar
VERTICES_LAYER1 : collection(id - int, pos - dvar)
VERTICES_LAYER2 : collection(id - int, pos - dvar)
EDGES : collection(id - int, vertex1 - int, vertex2 - int)

Restriction(s)
NCROSS ≥ 0
required(VERTICES_LAYER1, [id, pos])
VERTICES_LAYER1.id ≥ 1
VERTICES_LAYER1.id ≤ |VERTICES_LAYER1|
distinct(VERTICES_LAYER1, id)
required(VERTICES_LAYER2, [id, pos])
VERTICES_LAYER2.id ≥ 1
VERTICES_LAYER2.id ≤ |VERTICES_LAYER2|
distinct(VERTICES_LAYER2, id)
required(EDGES, [id, vertex1, vertex2])
EDGES.id ≥ 1
EDGES.id ≤ |EDGES|
distinct(EDGES, id)
EDGES.vertex1 ≥ 1
EDGES.vertex1 ≤ |VERTICES_LAYER1|
EDGES.vertex2 ≥ 1
EDGES.vertex2 ≤ |VERTICES_LAYER2| |EDGES|

Purpose
NCROSS is the number of line-segments intersections.

Derived Collection(s)
col (EDGES_EXTREMITIES - collection(layer1 - dvar, layer2 - dvar),
item (layer1 - EDGES.vertex1(VERTICES_LAYER1, pos, id),
layer2 - EDGES.vertex2(VERTICES_LAYER2, pos, id)))

Arc input(s)
EDGES_EXTREMITIES

Arc generator
CLIQUE(<) → collection(edges_extremities1, edges_extremities2)

Arc arity
2

Arc constraint(s)
\[\bigwedge \left(\begin{array}{l}
\text{edges_extremities1.layer1 < edges_extremities2.layer1}, \\
\text{edges_extremities1.layer1 > edges_extremities2.layer1} \\
\text{edges_extremities1.layer2 < edges_extremities2.layer2}
\end{array} \right), \]

Graph property(ies)
NARC = NCROSS
Parts (A) and (B) of Figure 4.418 respectively show the initial and final graph. Since we use the NARC graph property, the arcs of the final graph are stressed in bold. Figure 4.419 gives a picture of the previous example, where one can observe the two line-segments intersections. Each line-segment of Figure 4.419 is labelled with its identifier and corresponds to one vertex of the initial and final graph depicted in Figure 4.418.

Figure 4.418: Initial and final graph of the two_layer_edge_crossing constraint

Figure 4.419: Intersection between line-segments joining two layers

Graph model
As usual for the two-layer edge crossing problem [157], [158], positions of the vertices on each layer are represented as a permutation of the vertices. We generate a derived collection which, for each edges, contains the position of its extremities on both layers. In the arc generator we use the restriction < in order to generate one single arc for each pair of segments. This is required, since otherwise we would count more than once a line-segments intersection.
Remark

The two-layer edge crossing minimization problem was proved to be NP-hard in [159].

See also
crossing graph_crossing

Key words
gEometrical constraint line-segments intersection derived collection
4.225 two_orth_are_in_contact

Origin Used for defining \texttt{orths_are_connected}.

Constraint \texttt{two_orth_are_in_contact(ORTHOTOPE1,ORTHOTOPE2)}

Type(s) \textsl{ORTHOTOPE} : \texttt{collection(ori - dvar,siz - dvar,end - dvar)}

Argument(s) \texttt{ORTHOTOPE1 : ORTHOTOPE} \texttt{ORTHOTOPE2 : ORTHOTOPE}

Restriction(s) \begin{align*}
|\texttt{ORTHOTOPE}| &> 0 \\
\texttt{require_at_least(2,ORTHOTOPE,[ori,siz,end])} \\
\texttt{ORTHOTOPE.siz} &> 0 \\
|\texttt{ORTHOTOPE1}| & = |\texttt{ORTHOTOPE2}| \\
\texttt{orth_link_ori_siz_end(ORTHOTOPE1)} \\
\texttt{orth_link_ori_siz_end(ORTHOTOPE2)}
\end{align*}

Purpose Enforce the following conditions on two orthotopes O_1 and O_2:

- For all dimensions i, except one dimension, the projections of O_1 and O_2 on i have a non-empty intersection.
- For all dimensions i, the distance between the projections of O_1 and O_2 on i is equal to 0.

Arc input(s) \texttt{ORTHOTOPE1 ORTHOTOPE2}

Arc generator \texttt{PRODUCT(=) \rightarrow collection(orthotope1,orthotope2)}

Arc arity 2

Arc constraint(s) \begin{align*}
\texttt{orthotope1.end} & > \texttt{orthotope2.ori} \\
\texttt{orthotope2.end} & > \texttt{orthotope1.ori}
\end{align*}

Graph property(ies) \texttt{NARC = |ORTHOTOPE1| - 1}

Arc input(s) \texttt{ORTHOTOPE1 ORTHOTOPE2}

Arc generator \texttt{PRODUCT(=) \rightarrow collection(orthotope1,orthotope2)}

Arc arity 2

Arc constraint(s) \begin{align*}
\text{max} \left(0, \text{max(orthotope1.ori,orthotope2.ori)} - \text{min(orthotope1.end,orthotope2.end)} \right) & = 0
\end{align*}

Graph property(ies) \texttt{NARC = |ORTHOTOPE1|}
Example
two_orth_are_in_contact \(
\left\{
\begin{array}{l}
\text{ori} = 1, \text{siz} = 3, \text{end} = 4, \\
\text{ori} = 5, \text{siz} = 2, \text{end} = 7, \\
\text{ori} = 3, \text{siz} = 2, \text{end} = 5, \\
\text{ori} = 2, \text{siz} = 3, \text{end} = 5
\end{array}
\right\}
\)

Parts (A) and (B) of Figure 4.420 respectively show the initial and final graph associated to the first graph constraint. Since we use the NARC graph property, the unique arc of the final graph is stressed in bold. It corresponds to the fact that the projection in dimension 1 of the two rectangles of the example overlap. Figure 4.421 shows the two rectangles of the previous example.

![Figure 4.420: Initial and final graph of the two_orth_are_in_contact constraint](image)

![Figure 4.421: Two connected rectangles](image)

Signature
Consider the second graph constraint. Since we use the arc generator \(PRODUCT(=) \) on the collections ORTHOTOPE1 and ORTHOTOPE2, and because of the restriction \(|ORTHOTOPE1| = |ORTHOTOPE2| \), the maximum number of arcs of the corresponding final graph is equal to \(|ORTHOTOPE1| \). Therefore we can rewrite the graph property \(NARC = |ORTHOTOPE1| \) to \(NARC \geq |ORTHOTOPE1| \) and simplify \(NARC = \text{NARC} \).

Automaton
Figure 4.422 depicts the automaton associated to the two_orth_are_in_contact constraint. Let ORI1i, SIZ1i, and ENDi, respectively be the ori, the siz and the end attributes of the \(i^{th} \) item of the ORTHOTOPE1 collection. Let ORI2i, SIZ2i, and ENDi, respectively be the ori, the siz and the end attributes of the \(i^{th} \) item of the ORTHOTOPE2 collection. To each sextuple \((\text{ORI}1_i, \text{SIZ}1_i, \text{EN}1_i, \text{ORI}2_i, \text{SIZ}2_i, \text{EN}2_i)\) corresponds a signature variable \(S_i \), which takes its value in \(\{0, 1, 2\} \), as well as the following signature constraint:

\[(\text{SIZ}1_i > 0) \land (\text{SIZ}2_i > 0) \land (\text{EN}1_i > \text{ORI}2_i) \land (\text{EN}2_i > \text{ORI}1_i) \Rightarrow S_i = 0\]
\((\text{SIZ}_1 > 0) \land (\text{SIZ}_2 > 0) \land (\text{END}_1 = \text{ORI}_2 \lor \text{END}_2 = \text{ORI}_1)) \Leftrightarrow S_i = 1.\)

Figure 4.422: Automaton of the \texttt{two_orth_are_in_contact} constraint

Figure 4.423: Hypergraph of the reformulation corresponding to the automaton of the \texttt{two_orth_are_in_contact} constraint

\begin{itemize}
 \item Used in \texttt{orths_are_connected}
 \item Key words: geometrical constraint, touch, contact, non-overlapping, orthotope, Berge-acyclic constraint network, automaton, automaton without counters
\end{itemize}
4.226 two_orth_column

Origin Used for defining \textit{diffn} column.

Constraint \texttt{two_orth_column(ORTHOTOPE1, ORTHOTOPE2, N)}

Type(s) \texttt{ORTHOTOPE : collection(ori - dvar, siz - dvar, end - dvar)}

Argument(s) \texttt{ORTHOTOPE1 : ORTHOTOPE}
\texttt{ORTHOTOPE2 : ORTHOTOPE}
\texttt{N : int}

Restriction(s) \texttt{|ORTHOTOPE| > 0}
\texttt{require_at_least(2, ORTHOTOPE, [ori, siz, end])}
\texttt{ORTHOTOPE.siz \geq 0}
\texttt{|ORTHOTOPE1| = |ORTHOTOPE2|}
\texttt{orth_link_ori_siz_end(ORTHOTOPE1)}
\texttt{orth_link_ori_siz_end(ORTHOTOPE2)}
\texttt{N > 0}
\texttt{N \leq |ORTHOTOPE1|}

Purpose [1]

Arc input(s) \texttt{ORTHOTOPE1 ORTHOTOPE2}

Arc generator \texttt{PRODUCT(=) \rightarrow collection(orthotope1, orthotope2)}

Arc arity 2

\[
\begin{align*}
\land \\
\left(\begin{array}{l}
\text{orthotope1.key = N,} \\
\text{orthotope1 ori < orthotope2.end,} \\
\text{orthotope2 ori < orthotope1.end,} \\
\text{orthotope1 siz > 0,} \\
\text{orthotope2 siz > 0} \\
\end{array} \right) & \Rightarrow \\
\land \\
\left(\begin{array}{l}
\text{min(orthotope1.end, orthotope2.end) - max(orthotope1 ori, orthotope2 ori) =} \\
\text{orthotope1 siz} \\
\text{orthotope1 siz = orthotope2 siz} \\
\end{array} \right)
\end{align*}
\]

Arc constraint(s) \texttt{NARC = 1}

Graph property(ies) \texttt{NARC = 1}

Example \texttt{two_orth_column} \begin{pmatrix} ori - 1 & siz - 3 & end - 4, \\ ori - 1 & siz - 1 & end - 2, \\ ori - 4 & siz - 2 & end - 6, \\ ori - 1 & siz - 3 & end - 4 \end{pmatrix}.

Used in \textit{diffn} column

See also \textit{diffn}

Key words geometrical constraint, positioning constraint, orthotope, guillotine cut.
Figure 4.424: Initial and final graph of the two-orth-column constraint
two_orth_do_not_overlap

Origin
Used for defining differ

Constraint
two_orth_do_not_overlap(ORTHO TOPE1, ORTHOTOPE2)

Type(s)
ORTHO TOPE : collection(ori - dvar, siz - dvar, end - dvar)

Argument(s)
ORTHO TOPE1 : ORTHOTOPE
ORTHO TOPE2 : ORTHOTOPE

Restriction(s)
|ORTHO TOPE| > 0
require_at_least(2, ORTHOTOPE, [ori, siz, end])
ORTHO TOPE.siz ≥ 0
|ORTHO TOPE1| = |ORTHO TOPE2|
orth_link_ori_siz_end(ORTHO TOPE1)
orth_link_ori_siz_end(ORTHO TOPE2)

Purpose
For two orthotopes O₁ and O₂ enforce that there exist at least one dimension i such that the projections on i of O₁ and O₂ do not overlap.

Arc input(s)
ORTHO TOPE1 ORTHOTOPE2

Arc generator
SYMMETRIC_PRODUCT(=) → collection(orthotope1, orthotope2)

Arc arity
2

Arc constraint(s)
orthotope1.end ≤ orthotope2.ori ∨ orthotope1.siz = 0

Graph property(ies)
NARC ≥ 1

Example
two_orth_do_not_overlap
\[
\begin{cases}
\text{ori - 2, siz - 2, end - 4, } \\
\text{ori - 1, siz - 3, end - 4, } \\
\text{ori - 4, siz - 4, end - 8, } \\
\text{ori - 3, siz - 3, end - 6, }
\end{cases}
\]

Parts (A) and (B) of Figure 4.227 respectively show the initial and final graph. Since we use the NARC graph property, the unique arc of the final graph is stressed in bold. It corresponds to the fact that the projection in dimension 1 of the first orthotope is located before the projection in dimension 1 of the second orthotope. Therefore the two orthotopes do not overlap.

Graph model
We build an initial graph where each arc corresponds to the fact that, either the projection of an orthotope on a given dimension is empty, either it is located before the projection in the same dimension of the other orthotope. Finally we ask that at least one arc constraint remains in the final graph.
Figure 4.426 depicts the automaton associated to the `two_orth_do_not_overlap` constraint. Let ORI1, SIZ1, and END1, respectively be the ori, the siz and the end attributes of the i^{th} item of the ORTHOTOPE1 collection. Let ORI2, SIZ2, and END2, respectively be the ori, the siz and the end attributes of the i^{th} item of the ORTHOTOPE2 collection. To each sextuple $(ORI1, SIZ1, END1, ORI2, SIZ2, END2)$ corresponds a 0-1 signature variable S_i as well as the following signature constraint: $((SIZ1_i > 0) \land (SIZ2_i > 0) \land (END1_i > ORI2_i) \land (END2_i > ORI1_i)) \iff S_i$.

Used in:

Key words: geometrical constraint, non-overlapping, orthotope, Berge-acyclic constraint network, automaton, automaton without counters.

Figure 4.425: Initial and final graph of the `two_orth_do_not_overlap` constraint.
Figure 4.426: Automaton of the \texttt{two_orth_do_not_overlap} constraint

Figure 4.427: Hypergraph of the reformulation corresponding to the automaton of the \texttt{two_orth_do_not_overlap} constraint
4.228 two_orth_include

Origin
Used for defining `diffn_include`

Constraint
`two_orth_include(ORTHOTOPE1, ORTHOTOPE2, N)`

Type(s)
`ORTHOTOPE` : collection(ori – dvar, siz – dvar, end – dvar)

Argument(s)
`ORTHOTOPE1` : ORTHOTOPE
`ORTHOTOPE2` : ORTHOTOPE
`N` : int

Restriction(s)
`|ORTHOTOPE| > 0`
`require_at_least(2, ORTHOTOPE, [ori, siz, end])`
`ORTHOTOPE.siz > 0`
`|ORTHOTOPE1| = |ORTHOTOPE2|`
`orth_link_ori_siz_end(ORTHOTOPE1)`
`orth_link_ori_siz_end(ORTHOTOPE2)`
`N > 0`
`N ≤ |ORTHOTOPE1|

Purpose

Arc input(s) `ORTHOTOPE1 ORTHOTOPE2`

Arc generator
`PRODUCT(=) ↔ collection(orthotope1, orthotope2)`

Arc arity
2

`orthotope1.key = N,
orthotope1.ori < orthotope2.end,
ORTHOTOPE2.ori < orthotope1.end,
ORTHOTOPE1.siz > 0,
ORTHOTOPE2.siz > 0` \(\land\)

Arc constraint(s)
\[\min(orthotope1.end, orthotope2.end) - \max(orthotope1.ori, orthotope2.ori) = \]
\[\min(orthotope1.end, orthotope2.end) - \max(orthotope1.ori, orthotope2.ori) = \]
\[\max(orthotope1.ori, orthotope2.ori) = \]

Graph property(ies) `NARC = 1`

Example
`two_orth_include \left\{ \begin{array}{l}
ori - 1 \text{ siz - 3 end - 4}, \\
ori - 1 \text{ siz - 1 end - 2}, \\
ori - 1 \text{ siz - 2 end - 3}, \\
ori - 2 \text{ siz - 3 end - 5}
\end{array} \right\}, 1`

Used in `diffn_include`
See also

Key words geometrical constraint, positioning constraint, orthotope

Figure 4.428: Initial and final graph of the `two_orth_include` constraint
4.229 used_by

Origin
N. Beldiceanu

Constraint
used_by(VARIABLES1, VARIABLES2)

Argument(s)
VARIABLES1 : collection(var – dvar)
VARIABLES2 : collection(var – dvar)

Restriction(s)
\[|VARIABLES1| \geq |VARIABLES2|\]
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
All the values of the variables of collection VARIABLES2 are used by the variables of collection VARIABLES1.

Arc input(s)
VARIABLES1 VARIABLES2

Arc generator
PRODUCT \xrightarrow{\text{PRODUCT}} \text{collection}(\text{variables1}, \text{variables2})

Arc arity
2

Arc constraint(s)
variables1.var = variables2.var

Graph property(ies)
- for all connected components: NSOURCE \geq NSINK
- \text{NSINK} = |VARIABLES2|

Example
\[
\begin{pmatrix}
\text{var} - 1,
\text{var} - 9,
\text{var} - 1,
\text{var} - 5,
\text{var} - 2,
\text{var} - 1
\end{pmatrix}
\]

\{\text{var} - 1, \text{var} - 1, \text{var} - 2, \text{var} - 5\}

Parts (A) and (B) of Figure 4.229 respectively show the initial and final graph. Since we use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since there is a constraint on each connected component of the final graph we also show the different connected components. Each of them corresponds to an equivalence class according to the arc constraint. Note that the vertex corresponding to the variable assigned to value 9 was removed from the final graph since there is no arc for which the associated equality constraint holds. The used_by constraint holds since:

- For each connected component of the final graph the number of sources is greater than or equal to the number of sinks.
- The number of sinks of the final graph is equal to |VARIABLES2|.
Since the initial graph contains only sources and sinks, and since sources of the initial graph cannot become sinks of the final graph, we have that the maximum number of sinks of the final graph is equal to $|\text{VARIABLES2}|$. Therefore we can rewrite $\text{NSINK} = |\text{VARIABLES2}|$ to $\text{NSINK} \geq |\text{VARIABLES2}|$ and simplify NSINK to NSINK.

Figure 4.430 depicts the automaton associated to the used by constraint. To each item of the collection VARIABLES1 corresponds a signature variable S_i, which is equal to 0. To each item of the collection VARIABLES2 corresponds a signature variable $S_i + |\text{VARIABLES1}|$, which is equal to 1.

As described in [141] we can pad VARIABLES2 with dummy variables such that its cardinality will be equal to that cardinality of VARIABLES1. The domain of a dummy variable contains all of the values. Then, we have a same constraint between the two sets. Direct arc-consistency and bound-consistency algorithms are also proposed in [141] and in [142].

Key words
- Constraint between two collections of variables
- Inclusion
- Flow
- Bound-consistency
- Automaton
- Automaton with array of counters
Figure 4.429: Initial and final graph of the used by constraint

Figure 4.430: Automaton of the used by constraint
4.230 used_by_interval

Origin
Derived from used_by

Constraint
used_by_interval(VARIABLES1, VARIABLES2, SIZE_INTERVAL)

Argument(s)
VARIABLES1 : collection(var − dvar)
VARIABLES2 : collection(var − dvar)
SIZE_INTERVAL : int

Restriction(s)
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE_INTERVAL > 0

Purpose
Let N_i (respectively M_i) denote the number of variables of the collection VARIABLES1 (respectively VARIABLES2) that take a value in the interval $[\text{SIZE_INTERVAL} \cdot i, \text{SIZE_INTERVAL} \cdot i + \text{SIZE_INTERVAL} - 1]$. For all integer i we have $M_i > 0 \Rightarrow N_i > 0$.

Arc input(s)
VARIABLES1 VARIABLES2

Arc generator
$PRODUCT \mapsto \text{collection}(\text{variables1, variables2})$

Arc arity
2

Arc constraint(s)
variables1.var/SIZE_INTERVAL = variables2.var/SIZE_INTERVAL

Graph property(ies)
∗ for all connected components: NSOURCE ≥ NSINK
∗ NSINK = |VARIABLES2|

Example
used_by_interval

\[
\begin{align*}
\{ \text{var} &- 1, \\
\text{var} &- 9, \\
\text{var} &- 1, \\
\text{var} &- 8, \\
\text{var} &- 6, \\
\text{var} &- 2, \\
\text{var} &- 1, \\
\text{var} &- 0, \\
\text{var} &- 7, \\
\text{var} &- 7 \}.
\end{align*}
\]

In the previous example, the third parameter SIZE_INTERVAL defines the following family of intervals $[3 \cdot k, 3 \cdot k + 2]$, where k is an integer. Parts (A) and (B) of Figure 4.431 respectively show the initial and final graph. Since we use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since there is a constraint on each connected component of the final graph we also show the different connected components. Each of them corresponds to an equivalence class according to the arc constraint. Note that the vertex corresponding to the variable that takes value 9 was removed from the final graph since there is no arc for which the associated equivalence constraint holds. The used_by_interval constraint holds since:
For each connected component of the final graph the number of sources is greater than or equal to the number of sinks.

The number of sinks of the final graph is equal to $|\text{VARIABLES2}|$.

Figure 4.431: Initial and final graph of the used_by interval constraint

Signature

Since the initial graph contains only sources and sinks, and since sources of the initial graph cannot become sinks of the final graph, we have that the maximum number of sinks of the final graph is equal to $|\text{VARIABLES2}|$. Therefore we can rewrite $\text{NSINK} = |\text{VARIABLES2}|$ to $\text{NSINK} \geq |\text{VARIABLES2}|$ and simplify NSINK to NSINK.

See also

used_by

Key words

constraint between two collections of variables, inclusion, interval
4.231 used_by_modulo

<table>
<thead>
<tr>
<th>Origin</th>
<th>Derived from used_by_modulo(VARIABLES1, VARIABLES2, M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint</td>
<td>used_by_modulo(VARIABLES1, VARIABLES2, M)</td>
</tr>
<tr>
<td>Argument(s)</td>
<td>VARIABLES1 : collection(var - dvar)</td>
</tr>
<tr>
<td></td>
<td>VARIABLES2 : collection(var - dvar)</td>
</tr>
<tr>
<td></td>
<td>M : int</td>
</tr>
<tr>
<td>Restriction(s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>required(VARIABLES1, var)</td>
</tr>
<tr>
<td></td>
<td>required(VARIABLES2, var)</td>
</tr>
<tr>
<td></td>
<td>M > 0</td>
</tr>
<tr>
<td>Purpose</td>
<td>For each integer R in [0, M - 1], let N1_R (respectively N2_R) denote the number of variables of VARIABLES1 (respectively VARIABLES2) which have R as a rest when divided by M. For all R in [0, M - 1] we have N2_R > 0 ⇒ N1_R > 0.</td>
</tr>
<tr>
<td>Arc input(s)</td>
<td>VARIABLES1 VARIABLES2</td>
</tr>
<tr>
<td>Arc generator</td>
<td>PRODUCT ↦ collection(variables1, variables2)</td>
</tr>
<tr>
<td>Arc arity</td>
<td>2</td>
</tr>
<tr>
<td>Arc constraint(s)</td>
<td>variables1.var mod M = variables2.var mod M</td>
</tr>
<tr>
<td>Graph property(ies)</td>
<td>• for all connected components: NSOURCE ≥ NSINK</td>
</tr>
<tr>
<td></td>
<td>• NSINK =</td>
</tr>
</tbody>
</table>

Example: used_by_modulo

\[
\begin{pmatrix}
\text{var - 1,} \\
\text{var - 9,} \\
\text{var - 4,} \\
\text{var - 5,} \\
\text{var - 2,} \\
\text{var - 1,} \\
\text{var - 7,} \\
\text{var - 1,} \\
\text{var - 2,} \\
\text{var - 5}
\end{pmatrix}, 3
\]

Parts (A) and (B) of Figure 4.432 respectively show the initial and final graph. Since we use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since there is a constraint on each connected component of the final graph we also show the different connected components. Each of them corresponds to an equivalence class according to the arc constraint. Note that the vertex corresponding to the variable that takes value 9 was removed from the final graph since there is no arc for which the associated equivalence constraint holds. The used_by_modulo constraint holds since:
For each connected component of the final graph the number of sources is greater than or equal to the number of sinks.

- The number of sinks of the final graph is equal to \(|VARIABLES_2|\).

![Diagram](A)

![Diagram](B)

Figure 4.432: Initial and final graph of the `used_by` modulo constraint

Signature

Since the initial graph contains only sources and sinks, and since sources of the initial graph cannot become sinks of the final graph, we have that the maximum number of sinks of the final graph is equal to \(|VARIABLES_2|\). Therefore we can rewrite \(NSINK = |VARIABLES_2|\) to \(NSINK \geq |VARIABLES_2|\) and simplify \(NSINK\) to \(NSINK\).

See also

`used_by`

Key words

`constraint between two collections of variables`, `inclusion`, `modulo`
4.232 used_by_partition

Origin Derived from used_by

Constraint used_by_partition(VARIABLES1, VARIABLES2, PARTITIONS)

Type(s) VALUES : collection(val − int)

Argument(s) VARIABLES1 : collection(var − dvar)
VARIABLES2 : collection(var − dvar)
PARTITIONS : collection(p − VALUES)

Restriction(s) required(VALUES, val)
distinct(VALUES, val)
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1.val)
required(VARIABLES2.val)
required(PARTITIONS.p)
|PARTITIONS| ≥ 2

Purpose For each integer i in [1, |PARTITIONS|], let N_{i_1} (respectively N_{i_2}) denote the number of variables of VARIABLES1 (respectively VARIABLES2) which take their value in the i^{th} partition of the collection PARTITIONS. For all i in [1, |PARTITIONS|] we have $N_{2_i} > 0 \Rightarrow N_{1_i} > 0$

Arc input(s) VARIABLES1 VARIABLES2

Arc generator $PRODUCT \rightarrow \text{collection}(\text{variables1}, \text{variables2})$

Arc arity 2

Arc constraint(s) in_same_partition(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) • for all connected components: NSOURCE ≥ NSINK
• NSINK = |VARIABLES2|

Example used_by_partition

```
| var - 1. |
| var - 9. |
| var - 1. |
| var - 6. |
| var - 2. |
| var - 3 |
| p = {val - 1, val - 3}, |
| p - {val - 4}, |
| p = {val - 2, val - 6} |
```
Parts (A) and (B) of Figure 4.433 respectively show the initial and final graph. Since we use the NSOURCE and NSINK graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since there is a constraint on each connected component of the final graph we also show the different connected components. Each of them corresponds to an equivalence class according to the arc constraint. Note that the vertex corresponding to the variable that takes value 9 was removed from the final graph since there is no arc for which the associated equivalence constraint holds. The used by partition constraint holds since:

- For each connected component of the final graph the number of sources is greater than or equal to the number of sinks.
- The number of sinks of the final graph is equal to $|\text{VARIABLES}_2|$.

![Diagram](image)

Figure 4.433: Initial and final graph of the used by partition constraint

Signature

Since the initial graph contains only sources and sinks, and since sources of the initial graph cannot become sinks of the final graph, we have that the maximum number of sinks of the final graph is equal to $|\text{VARIABLES}_2|$. Therefore we can rewrite $\text{NSINK} = |\text{VARIABLES}_2|$ to $\text{NSINK} \geq |\text{VARIABLES}_2|$ and simplify NSINK to NSINK.

See also

[used by in same partition]

Key words

[constraint between two collections of variables, inclusion, partition]
4.233 valley

Origin
Derived from *inflexion*

Constraint
valley(N, VARIABLES)

Argument(s)
- **N**: dvar
- **VARIABLES**: collection(var – dvar)

Restriction(s)
- \(N \geq 0\)
- \(2 * N \leq \max(|VARIABLES| - 1, 0)\)
- required(VARIABLES, var)

Purpose
A variable \(V_k (1 < k < m)\) of the sequence of variables \(VARIABLES = V_1, \ldots, V_m\) is a valley if and only if there exist an \(i (1 < i < k)\) such that \(V_{i-1} > V_i\) and \(V_i = V_{i+1} = \ldots = V_k\) and \(V_k < V_{k+1}\). \(N\) is the total number of valleys of the sequence of variables \(VARIABLES\).

Example
\[
\begin{cases}
 \text{valley } & 1, \\
 \{ \text{var } 1, \text{ var } 1, \text{ var } 4, \text{ var } 8, \text{ var } 8, \text{ var } 2, \text{ var } 7, \text{ var } 1 \}
\end{cases}
\]

The previous constraint holds since the sequence 1 1 4 8 8 2 7 1 contains one valley which corresponds to the variable which is assigned to value 2.

Automaton
Figure 4.435 depicts the automaton associated to the valley constraint. To each pair of consecutive variables \((\text{VAR}_i, \text{VAR}_{i+1})\) of the collection \(VARIABLES\) corresponds a signature variable \(S_i\). The following signature constraint links \(\text{VAR}_i, \text{VAR}_{i+1}\) and \(S_i\): \((\text{VAR}_i < \text{VAR}_{i+1} \Leftrightarrow S_i = 0) \land (\text{VAR}_i = \text{VAR}_{i+1} \Leftrightarrow S_i = 1) \land (\text{VAR}_i > \text{VAR}_{i+1} \Leftrightarrow S_i = 2)\).
Figure 4.435: Automaton of the valley constraint

Figure 4.436: Hypergraph of the reformulation corresponding to the automaton of the valley constraint
Usage
Useful for constraining the number of valleys of a sequence of domain variables.

Remark
Since the arity of the arc constraint is not fixed, the valley constraint cannot be currently described. However, this would not hold anymore if we were introducing a slot that specifies how to merge adjacent vertices of the final graph.

See also
no_valley, inflexion, peak

Key words
sequence, automaton, automaton with counters, sliding cyclic constraint network
4.234 \texttt{vec_eq_tuple}

\begin{tabular}{|l|l|}
\hline
\textbf{Origin} & Used for defining the relation \texttt{id_relation} \\
\hline
\textbf{Constraint} & \texttt{vec_eq_tuple(VARIABLES, TUPLE)} \\
\hline
\textbf{Argument(s)} & \texttt{VARIABLES} : collection(var - dvar) \\
& \texttt{TUPLE} : collection(val - int) \\
\hline
\textbf{Restriction(s)} & \texttt{required(VARIABLES, var)} \\
& \texttt{required(TUPLE, val)} \\
& \texttt{|VARIABLES| = |TUPLE|} \\
\hline
\textbf{Purpose} & Enforce a vector of domain variables to be equal to a tuple of values. \\
\hline
\end{tabular}

\begin{tabular}{|l|}
\hline
\textbf{Arc input(s)} & \texttt{VARIABLES, TUPLE} \\
\hline
\textbf{Arc generator} & \texttt{PRODUCT(=) \rightarrow collection(variables, tuple)} \\
\hline
\textbf{Arc arity} & 2 \\
\hline
\textbf{Arc constraint(s)} & \texttt{variables.var = tuple.val} \\
\hline
\textbf{Graph property(ies)} & \texttt{NARC = \mid VARIABLES\mid} \\
\hline
\textbf{Example} & \texttt{vec_eq_tuple(\{var - 5, var - 3, var - 3\}, \{val - 5, val - 3, val - 3\})} \\
& Parts (A) and (B) of Figure 4.437 respectively show the initial and final graph. \\
& Since we use the \texttt{NARC} graph property, the arcs of the final graph are stressed in bold. \\
\hline
\end{tabular}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure}
\caption{Initial and final graph of the \texttt{vec_eq_tuple} constraint}
\end{figure}

\begin{tabular}{|l|}
\hline
\textbf{Signature} & Since we use the arc generator \texttt{PRODUCT(=)} on the collections \texttt{VARIABLES} and \texttt{TUPLE}, and because of the restriction \texttt{|VARIABLES| = |TUPLE|}, the maximum number of arcs of the final graph is equal to \texttt{|VARIABLES|}. Therefore we can rewrite the graph property \texttt{NARC = \mid VARIABLES\mid} to \texttt{NARC \geq \mid VARIABLES\mid} and simplify \texttt{NARC} to \texttt{NARC}. \\
\hline
\end{tabular}
Used in: in relation
Key words: value constraint, tuple
4.235 weighted_partial_alldiff

Origin [160 page 71]

Constraint weighted_partial_alldiff(VARIABLES, UNDEFINED, VALUES, COST)

Synonym(s) weighted_partial_alldifferent, weighted_partial_alldistinct, wpa.

Argument(s)
- VARIABLES : collection(var – dvar)
- UNDEFINED : int
- VALUES : collection(val – int, weight – int)
- COST : dvar

Restriction(s)
- required(VARIABLES, var)
- required(VALUES, [val, weight])
- in_attr(VARIABLES, var, VALUES, val)
- distinct(VALUES, val)

Purpose

All variables of the VARIABLES collection which are not assigned to value UNDEFINED must have pairwise distinct values from the val attribute of the VALUES collection. In addition, COST is the sum of the weight attributes associated to the values assigned to the variables of VARIABLES. Within the VALUES collection, value UNDEFINED must be explicitly defined with a weight of 0.

Arc input(s) VARIABLES VALUES

Arc generator \(PRODUCT \mapsto \text{collection}(\text{variables, values}) \)

Arc arity 2

Arc constraint(s)
- \(\text{variables.var} \neq \text{UNDEFINED} \)
- \(\text{variables.var} = \text{values.val} \)

Graph property(ies)
- \(\text{MAX_ID} \leq 1 \)
- \(\text{SUM}(\text{VALUES}, \text{weight}) = \text{COST} \)

Example weighted_partial_alldiff

\[
\begin{pmatrix}
\text{var} - 4, \\
\text{var} - 0, \\
\text{var} - 1, \\
\text{var} - 2, \\
\text{var} - 0, \\
\text{var} - 0 \\
\end{pmatrix},
\begin{pmatrix}
\text{val} - 0 \text{ weight} - 0, \\
\text{val} - 1 \text{ weight} - 2, \\
\text{val} - 2 \text{ weight} - 1, \\
\text{val} - 4 \text{ weight} - 7, \\
\text{val} - 5 \text{ weight} - 8, \\
\text{val} - 6 \text{ weight} - 2 \\
\end{pmatrix}, 8
\]
Parts (A) and (B) of Figure 4.438 respectively show the initial and final graph. Since we also use the SUM graph property we show the vertices of the final graph from which we compute the total cost in a box. The weighted_partial_alldiff constraint holds since no value, except for value UNDEFINED = 0, is used more than once and COST = 8 is equal to the sum of the weights 2, -1 and 7 of the values 1, 2 and 4 assigned to the variables of VARIABLES.

Figure 4.438: Initial and final graph of the weighted_partial_alldiff constraint

Graph model
The restriction in_attr(VARIABLES, var, VALUES, val) imposes all variables of the VARIABLES collection to take a value from the val attribute of the VALUES collection. We use the PRODUCT to generate an arc from every variables of the VARIABLES collection to every value of the VALUES collection. Because of the arc constraint, the final graph contains only those arcs arriving at a value different from UNDEFINED. The graph property MAX_ID \leq 1 enforces that no vertex of the final graph has more than one predecessor. As a consequence, all variables of the VARIABLES collection which are not assigned to value UNDEFINED must have pairwise distinct values.

Usage
In his PhD thesis [160 pages 71–72], Sven Thiel describes the following three potential scenarios of the weighted_partial_alldiff constraint:

- Given a set of tasks (i.e. the items of the VARIABLES collection), assign to each task a resource (i.e. an item of the VALUES collection). Except for the resource associated to value UNDEFINED, every resource can be used at most once. The cost of a resource is independent from the task to which the resource is assigned. The cost of value UNDEFINED is equal to 0. The total cost COST of an assignment corresponds to the sum of the costs of the resources effectively assigned to the tasks. Finally we impose an upper bound on the total cost.

- Given a set of persons (i.e. the items of the VARIABLES collection), select for each person an offer (i.e. an item of the VALUES collection). Except for the offer associated to value UNDEFINED, every offer should be selected at most once. The profit associated to an offer is independant from the person which select that offer. The profit of value UNDEFINED is equal to 0. The total benefit COST is equal to the sum
of the profits of the offers effectively selected. In addition we impose a lower bound on the total benefit.

- The last scenario deals with an application to an over-constraint problem involving the alldifferent constraint. Allowing some variables to take an "undefined" value is done by setting all weights of all the values different from UNDEFINED to 1. As a consequence all variables assigned to a value different from UNDEFINED will have to take distinct values. The COST variable allows to control the number of such variables.

Algorithm

A filtering algorithm is given in [160, pages 73–104]. After showing that, deciding whether the weighted partial alldiff has a solution is NP-complete, [160, pages 105–106] gives the following results of his filtering algorithm with respect to consistency under the three scenarios previously described:

- For scenario 1, if there is no restriction of the lower bound of the COST variable, the filtering algorithm achieves arc-consistency for all variables of the VARIABLES collection (but not for the COST variable itself).

- For scenario 2, if there is no restriction of the upper bound of the COST variable, the filtering algorithm achieves arc-consistency for all variables of the VARIABLES collection (but not for the COST variable itself).

- Finally, for scenario 3, the filtering algorithm achieves arc-consistency for all variables of the VARIABLES collection as well as for the COST variable.

See also

alldifferent, alldifferent_except_0, minimum_weight_alldifferent, global_cardinality_with_costs, soft_alldifferent_var, sum_of_weights_of_distinct_values

Key words

cost filtering constraint, soft constraint, all different, assignment, relaxation, joker value, weighted assignment
Appendix A

Legend for the description

This section provides the list of restrictions, of arc generators, of graph generators and of set generators sorted in alphabetic order with the page where they are defined.
APPENDIX A. LEGEND FOR THE DESCRIPTION

Restrictions:
- Term1 ComparisonTerm2 p.9
- distinct p.4
- in_attr p.4
- in_list p.4
- increasing_seq p.7
- required p.8
- require_at_least p.8
- same_size p.8

Arc generators:
- CHAIN p.27
- CIRCUIT p.27
- CLIQUE p.27
- CLIQUE(C) p.28
- GRID p.28
- LOOP p.28
- PATH p.28
- PATH1 p.28
- PATHN p.29
- PRODUCT p.29
- PRODUCT(C) p.29
- SELF p.29
- SYMMETRIC_PRODUCT p.29
- SYMMETRIC_PRODUCT(C) p.29
- VOID p.29

Graph characteristics:
- DISTANCE p.32
- MAX_DRG p.34
- MAX_ID p.34
- MAX_NCC p.35
- MAX_NSCC p.35
- MAX_OD p.35
- MIN_DRG p.35
- MIN_ID p.35
- MIN_NCC p.35
- MIN_NSCC p.35
- MIN_OD p.35
- NARC p.36
- NARC_NO_LOOP p.36
- NCC p.37
- NSCC p.38
- NSINK p.37
- NSINK_NSOURCE p.37
- NSOURCE p.38
- NTREE p.38
- NVERTEX p.38
- RANGE_DRG p.38
- RANGE_NCC p.39
- RANGE_NSCC p.39
- ORDER p.39
- PATH_FROM_TO p.39
- PRODUCT p.40
- RANGE p.40
- SUM p.41
- SUM_WEIGHT ARC p.42

Set generators:
- ALL_VERTICES p.17
- CC p.17
- PATH_LENGTH p.18
- PRED p.18
- SUCC p.18
Appendix B

Electronic constraint catalog

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1</td>
<td>all_differ_from_at_least_k_pos</td>
<td>957</td>
</tr>
<tr>
<td>B.2</td>
<td>all_min_dist</td>
<td>958</td>
</tr>
<tr>
<td>B.3</td>
<td>alldifferent</td>
<td>959</td>
</tr>
<tr>
<td>B.4</td>
<td>alldifferent_between_sets</td>
<td>960</td>
</tr>
<tr>
<td>B.5</td>
<td>alldifferent_except_0</td>
<td>961</td>
</tr>
<tr>
<td>B.6</td>
<td>alldifferent_interval</td>
<td>962</td>
</tr>
<tr>
<td>B.7</td>
<td>alldifferent_modulo</td>
<td>963</td>
</tr>
<tr>
<td>B.8</td>
<td>alldifferent_on_intersection</td>
<td>964</td>
</tr>
<tr>
<td>B.9</td>
<td>alldifferent_partition</td>
<td>965</td>
</tr>
<tr>
<td>B.10</td>
<td>alldifferent_same_value</td>
<td>967</td>
</tr>
<tr>
<td>B.11</td>
<td>allperm</td>
<td>968</td>
</tr>
<tr>
<td>B.12</td>
<td>among</td>
<td>969</td>
</tr>
<tr>
<td>B.13</td>
<td>among_diff</td>
<td>971</td>
</tr>
<tr>
<td>B.14</td>
<td>among_interval</td>
<td>973</td>
</tr>
<tr>
<td>B.15</td>
<td>among_low_up</td>
<td>975</td>
</tr>
<tr>
<td>B.16</td>
<td>among_modulo</td>
<td>977</td>
</tr>
<tr>
<td>B.17</td>
<td>among_seq</td>
<td>979</td>
</tr>
<tr>
<td>B.18</td>
<td>arith</td>
<td>981</td>
</tr>
<tr>
<td>B.19</td>
<td>arith_or</td>
<td>983</td>
</tr>
<tr>
<td>B.20</td>
<td>arith_sliding</td>
<td>985</td>
</tr>
<tr>
<td>B.21</td>
<td>assign_and_count</td>
<td>989</td>
</tr>
<tr>
<td>B.22</td>
<td>assign_and_nvalues</td>
<td>991</td>
</tr>
<tr>
<td>B.23</td>
<td>atleast</td>
<td>993</td>
</tr>
<tr>
<td>B.24</td>
<td>atmost</td>
<td>995</td>
</tr>
<tr>
<td>B.25</td>
<td>balance</td>
<td>996</td>
</tr>
<tr>
<td>B.26</td>
<td>balance_interval</td>
<td>997</td>
</tr>
<tr>
<td>B.27</td>
<td>balance_modulo</td>
<td>998</td>
</tr>
<tr>
<td>B.28 balance partition</td>
<td>999</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>B.29 bin Packing</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>B.30 binary tree</td>
<td>1001</td>
<td></td>
</tr>
<tr>
<td>B.31 cardinality at least</td>
<td>1002</td>
<td></td>
</tr>
<tr>
<td>B.32 cardinality at most</td>
<td>1003</td>
<td></td>
</tr>
<tr>
<td>B.33 cardinality at most partition</td>
<td>1004</td>
<td></td>
</tr>
<tr>
<td>B.34 change</td>
<td>1005</td>
<td></td>
</tr>
<tr>
<td>B.35 change continuity</td>
<td>1007</td>
<td></td>
</tr>
<tr>
<td>B.36 change paid</td>
<td>1012</td>
<td></td>
</tr>
<tr>
<td>B.37 change partition</td>
<td>1018</td>
<td></td>
</tr>
<tr>
<td>B.38 circuit</td>
<td>1020</td>
<td></td>
</tr>
<tr>
<td>B.39 circuit cluster</td>
<td>1021</td>
<td></td>
</tr>
<tr>
<td>B.40 circular change</td>
<td>1023</td>
<td></td>
</tr>
<tr>
<td>B.41 clique</td>
<td>1025</td>
<td></td>
</tr>
<tr>
<td>B.42 colored matrix</td>
<td>1026</td>
<td></td>
</tr>
<tr>
<td>B.43 coloured cumulative</td>
<td>1028</td>
<td></td>
</tr>
<tr>
<td>B.44 coloured cumulative</td>
<td>1030</td>
<td></td>
</tr>
<tr>
<td>B.45 common</td>
<td>1032</td>
<td></td>
</tr>
<tr>
<td>B.46 common interval</td>
<td>1033</td>
<td></td>
</tr>
<tr>
<td>B.47 common modulo</td>
<td>1034</td>
<td></td>
</tr>
<tr>
<td>B.48 common partition</td>
<td>1035</td>
<td></td>
</tr>
<tr>
<td>B.49 connect point</td>
<td>1037</td>
<td></td>
</tr>
<tr>
<td>B.50 correspondence</td>
<td>1040</td>
<td></td>
</tr>
<tr>
<td>B.51 count</td>
<td>1042</td>
<td></td>
</tr>
<tr>
<td>B.52 counts</td>
<td>1044</td>
<td></td>
</tr>
<tr>
<td>B.53 crossing</td>
<td>1046</td>
<td></td>
</tr>
<tr>
<td>B.54 cumulative</td>
<td>1048</td>
<td></td>
</tr>
<tr>
<td>B.55 cumulative product</td>
<td>1050</td>
<td></td>
</tr>
<tr>
<td>B.56 cumulative two d</td>
<td>1052</td>
<td></td>
</tr>
<tr>
<td>B.57 cumulative with level of priority</td>
<td>1055</td>
<td></td>
</tr>
<tr>
<td>B.58 cumulatives</td>
<td>1057</td>
<td></td>
</tr>
<tr>
<td>B.59 cutset</td>
<td>1059</td>
<td></td>
</tr>
<tr>
<td>B.60 cycle</td>
<td>1060</td>
<td></td>
</tr>
<tr>
<td>B.61 cycle card on path</td>
<td>1061</td>
<td></td>
</tr>
<tr>
<td>B.62 cycle or accessibility</td>
<td>1063</td>
<td></td>
</tr>
<tr>
<td>B.63 cycle resource</td>
<td>1065</td>
<td></td>
</tr>
<tr>
<td>B.64 cyclic change</td>
<td>1067</td>
<td></td>
</tr>
<tr>
<td>B.65 cyclic change joker</td>
<td>1069</td>
<td></td>
</tr>
<tr>
<td>B.66 decreasing</td>
<td>1072</td>
<td></td>
</tr>
<tr>
<td>B.67 deepest valley</td>
<td>1073</td>
<td></td>
</tr>
<tr>
<td>B.68 derangement</td>
<td>1075</td>
<td></td>
</tr>
<tr>
<td>B.69 differ from at least k pos</td>
<td>1076</td>
<td></td>
</tr>
<tr>
<td>B.70 diff</td>
<td>1078</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.114_k_cut ... 1155
B.115_lex2 .. 1156
B.116_lex_alldifferent .. 1157
B.117_lex_between ... 1158
B.118_lex_chain_less ... 1161
B.119_lex_chain_lesser ... 1162
B.120_lex_different ... 1163
B.121_lex_greater ... 1165
B.122_lex_greatereq .. 1167
B.123_lex_less ... 1169
B.124_lex_lesser ... 1171
B.125_link_set_to_booleans .. 1173
B.126_longest_change ... 1174
B.127_map .. 1176
B.128_max_index ... 1177
B.129_max_d .. 1179
B.130_max_nvalud ... 1180
B.131_max_size_set_of_consecutive_var .. 1181
B.132_maximum ... 1182
B.133_maximum_modulo ... 1184
B.134_min_index .. 1185
B.135_min_n ... 1187
B.136_min_nvalue ... 1188
B.137_min_size_set_of_consecutive_var .. 1189
B.138_minimum .. 1190
B.139_minimum_except_0 .. 1192
B.140_minimum_greater_than ... 1194
B.141_minimum_modulo ... 1196
B.142_minimum_weight_alldifferent ... 1197
B.143_nclass ... 1199
B.144_nequivalence ... 1200
B.145_next_element .. 1201
B.146_next_greater_element ... 1204
B.147_interval ... 1205
B.148_no_peak .. 1206
B.149_no_valley ... 1208
B.150_not_all_equal .. 1210
B.151_not_in ... 1212
B.152_pair .. 1214
B.153_set_of_consecutive_values .. 1215
B.154_nvalue ... 1216
B.155_nvalue_on_intersection .. 1217
B.156_values ... 1218
<table>
<thead>
<tr>
<th>Constraint</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.200 soft_used_by_partition_var</td>
<td>1279</td>
</tr>
<tr>
<td>B.201 soft_used_by_var</td>
<td>1281</td>
</tr>
<tr>
<td>B.202 sort</td>
<td>1282</td>
</tr>
<tr>
<td>B.203 sort_permutation</td>
<td>1283</td>
</tr>
<tr>
<td>B.204 stage_element</td>
<td>1285</td>
</tr>
<tr>
<td>B.205 stretch_circuit</td>
<td>1287</td>
</tr>
<tr>
<td>B.206 stretch_path</td>
<td>1289</td>
</tr>
<tr>
<td>B.207 strict_lex2</td>
<td>1291</td>
</tr>
<tr>
<td>B.208 strictly_decreasing</td>
<td>1292</td>
</tr>
<tr>
<td>B.209 strictly_increasing</td>
<td>1294</td>
</tr>
<tr>
<td>B.210 strongly_connected</td>
<td>1296</td>
</tr>
<tr>
<td>B.211 sum</td>
<td>1297</td>
</tr>
<tr>
<td>B.212 sum_ctr</td>
<td>1298</td>
</tr>
<tr>
<td>B.213 sum_of_weights_of_distinct_values</td>
<td>1299</td>
</tr>
<tr>
<td>B.214 sum_eq</td>
<td>1300</td>
</tr>
<tr>
<td>B.215 symmetric_alldifferent</td>
<td>1301</td>
</tr>
<tr>
<td>B.216 symmetric_cardinality</td>
<td>1302</td>
</tr>
<tr>
<td>B.217 symmetric_gcc</td>
<td>1304</td>
</tr>
<tr>
<td>B.218 temporal_path</td>
<td>1306</td>
</tr>
<tr>
<td>B.219 tour</td>
<td>1308</td>
</tr>
<tr>
<td>B.220 track</td>
<td>1310</td>
</tr>
<tr>
<td>B.221 tree</td>
<td>1312</td>
</tr>
<tr>
<td>B.222 tree_range</td>
<td>1313</td>
</tr>
<tr>
<td>B.223 tree_resource</td>
<td>1314</td>
</tr>
<tr>
<td>B.224 two_layer_edge_crossing</td>
<td>1316</td>
</tr>
<tr>
<td>B.225 two_orth_are_in_contact</td>
<td>1318</td>
</tr>
<tr>
<td>B.226 two_orth_column</td>
<td>1320</td>
</tr>
<tr>
<td>B.227 two_orth_do_not_overlap</td>
<td>1322</td>
</tr>
<tr>
<td>B.228 two_orth_include</td>
<td>1324</td>
</tr>
<tr>
<td>B.229 used_by</td>
<td>1326</td>
</tr>
<tr>
<td>B.230 used_by_interval</td>
<td>1327</td>
</tr>
<tr>
<td>B.231 used_by_modulo</td>
<td>1328</td>
</tr>
<tr>
<td>B.232 used_by_partition</td>
<td>1329</td>
</tr>
<tr>
<td>B.233 wall</td>
<td>1330</td>
</tr>
<tr>
<td>B.234 vec_eq_tuple</td>
<td>1332</td>
</tr>
<tr>
<td>B.235 weighted_partial_alldiff</td>
<td>1333</td>
</tr>
</tbody>
</table>
B.1 all_differ_from_at_least_k_pos

ctr_date(
 all_differ_from_at_least_k_pos,
 ['20030820','20040530']).

ctr_origin(
 all_differ_from_at_least_k_pos,
 'Inspired by \cite{Frutos97}.',
 []).

ctr_types(
 all_differ_from_at_least_k_pos,
 ['VECTOR'-collection(var-dvar)]).

ctr_arguments(
 all_differ_from_at_least_k_pos,
 ['K'-int,'VECTORS'-collection(vec-'VECTOR')]).

ctr_restrictions(
 all_differ_from_at_least_k_pos,
 [required('VECTOR',var),
 'K'>=0,
 required('VECTORS',vec),
 same_size('VECTORS',vec)]).

ctr_graph(
 all_differ_from_at_least_k_pos,
 ['VECTORS'],
 2,
 ['CLIQUE'=(\=)>>collection(vectors1,vectors2)],
 [differ_from_at_least_k_pos(
 'K',
 vectors1^vec,
 vectors2^vec)],
 ['NARC'=size('VECTORS')*size('VECTORS')-size('VECTORS')].

ctr_example(
 all_differ_from_at_least_k_pos,
 all_differ_from_at_least_k_pos(2,
 [[vec-[[var-2],[var-5],[var-2],[var-0]]],
 [vec-[[var-3],[var-6],[var-2],[var-1]]],
 [vec-[[var-3],[var-6],[var-1],[var-0]]]))).
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.2 all_min_dist

ctr_date(all_min_dist, [’20050508’]).

ctr_origin(all_min_dist, ’\cite{Regin97}, []).

ctr_synonyms(all_min_dist, [minimum_distance]).

ctr_arguments(
 all_min_dist,
 [’MINDIST’-int, ’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
 all_min_dist,
 [’MINDIST’>0, required(’VARIABLES’, var), ’VARIABLES’ ~ var>=0]).

ctr_graph(
 all_min_dist,
 [’VARIABLES’],
 2,
 [’CLIQUE’(<) >> collection(variables1, variables2)],
 [abs(variables1 ~ var - variables2 ~ var) == ’MINDIST’],
 [’NARC’ = size(’VARIABLES’) * (size(’VARIABLES’) - 1) / 2]).

ctr_example(
 all_min_dist,
 all_min_dist(2, [[var-5], [var-1], [var-9], [var-3]]).
B.3 alldifferent

ctr_date(alldifferent,[’20000128’,’20030820’,’20040530’]).

ctr_origin(alldifferent,’\cite{Lauriere78’},[]).

ctr_synonyms(alldifferent,[alldiff,alldistinct]).

ctr_arguments(alldifferent,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(alldifferent,[required(’VARIABLES’,var)]).

ctr_graph(alldifferent, [‘VARIABLES’], 2, [’CLIQUE’>>collection(variables1,variables2)], [variables1^var=variables2^var], [’MAX_NSCL’=<1]).

ctr_example(alldifferent, alldifferent([[var-5],[var-1],[var-9],[var-3]])).
B.4 \textit{alldifferent_between_sets}

\texttt{ctr_date(alldifferent_between_sets,\['20030820\']).}

\texttt{ctr_origin(alldifferent_between_sets,'ILOG',[]).}

\texttt{ctr_synonyms(}
 \texttt{ alldifferent_between_sets,}
 \texttt{ \{all_null_intersect,}
 \texttt{ alldiff_between_sets,}
 \texttt{ alldistinct_between_sets\}).}

\texttt{ctr_arguments(}
 \texttt{ alldifferent_between_sets,}
 \texttt{ \{'VARIABLES'\'-collection(var-svar)\}).}

\texttt{ctr_restrictions(}
 \texttt{ alldifferent_between_sets,}
 \texttt{ \{required('VARIABLES',var)\}).}

\texttt{ctr_graph(}
 \texttt{ alldifferent_between_sets,}
 \texttt{ \{'VARIABLES',}
 \texttt{ \{\['CLIQUE'\'>collection(variables1,variables2)),}
 \texttt{ eq_set(variables1\`var,variables2\`var),}
 \texttt{ \{'MAX_NSCC'='=1\}).}

\texttt{ctr_example(}
 \texttt{ alldifferent_between_sets,}
 \texttt{ alldifferent_between_sets(}
 \texttt{ [[var\-(3,5)],\[var\-()],\[var\-({3})],[var\-({3,5,7})]]).}
B.5 alldifferent_except_0

ctr_date(
 alldifferent_except_0,
 ['20000128','20030820','20040530']).

ctr_origin(
 alldifferent_except_0,
 'Derived from %c.',
 [alldifferent]).

ctr_synonyms(
 alldifferent_except_0,
 [alldiff_except_0,alldistinct_except_0]).

ctr_arguments(
 alldifferent_except_0,
 ['VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
 alldifferent_except_0,
 [required('VARIABLES',var)]).

ctr_graph(
 alldifferent_except_0,
 ['VARIABLES'],
 2,
 ['CLIQUE'>>collection(variables1,variables2)],
 [variables1^var=\=0,variables1^var=variables2^var],
 ['MAX_NSJC'=<1]).

ctr_example(
 alldifferent_except_0,
 alldifferent_except_0(
 [[var-5],[var-0],[var-1],[var-9],[var-0],[var-3]])).
B.6 alldifferent_interval

ctr_date(alldifferent_interval, ['20030820']).

ctr_origin(
 alldifferent_interval,
 'Derived from %c.',
 [alldifferent]).

ctr_synonyms(
 alldifferent_interval,
 [alldiff_interval, alldistinct_interval]).

ctr_arguments(
 alldifferent_interval,
 ['VARIABLES' - collection(var-dvar), 'SIZE_INTERVAL' - int]).

ctr_restrictions(
 alldifferent_interval,
 [required('VARIABLES', var), 'SIZE_INTERVAL'>0]).

ctr_graph(
 alldifferent_interval,
 ['VARIABLES'],
 2,
 ['CLIQUE'>>collection(variables1, variables2)],
 [= variables1`var`/SIZE_INTERVAL',
 variables2`var`/SIZE_INTERVAL'],
 ['MAX_NS CC'=<1]).

ctr_example(
 alldifferent_interval,
 alldifferent_interval([[var-2], [var-3], [var-10]], 3)).
B.7 alldifferent_modulo

```prolog
ctr_date(alldifferent_modulo, ['20030820']).

ctr_origin(
  alldifferent_modulo,
  'Derived from %c.',
  [alldifferent]).

ctr_synonyms(
  alldifferent_modulo,
  [alldiff_modulo, alldistinct_modulo]).

ctr_arguments(
  alldifferent_modulo,
  ['VARIABLES'-collection(var-dvar), 'M'-int]).

ctr_restrictions(
  alldifferent_modulo,
  [required('VARIABLES', var), 'M'\=0, 'M'\=size('VARIABLES')]).

ctr_graph(
  alldifferent_modulo,
  ['VARIABLES'],
  2,
  ['CLIQUE'\>collection(variables1, variables2)],
  [variables1\`var mod 'M'=variables2\`var mod 'M'],
  ['MAX_NSCC'\=1]).

ctr_example(
  alldifferent_modulo,
  alldifferent_modulo([var-25], [var-1], [var-14], [var-3], 5)).
```
B.8 \texttt{alldifferent_on_intersection}

\begin{verbatim}
ctr_date(alldifferent_on_intersection, ['20040530']).

ctr_origin(
 alldifferent_on_intersection,
 'Derived from \%c and \%c.',
 [common, alldifferent]).

ctr_synonyms(
 alldifferent_on_intersection,
 [alldiff_on_intersection, alldistinct_on_intersection]).

ctr_arguments(
 alldifferent_on_intersection,
 ['VARIABLES1'-collection(var-dvar),
 'VARIABLES2'-collection(var-dvar)]).

ctr_restrictions(
 alldifferent_on_intersection,
 [required('VARIABLES1', var), required('VARIABLES2', var)]).

ctr_graph(
 alldifferent_on_intersection,
 ['VARIABLES1', 'VARIABLES2'],
 2,
 ['PRODUCT'>>collection(variables1,variables2)],
 [variables1'var=variables2'var],
 ['MAX_NCC'=<2]).

ctr_example(
 alldifferent_on_intersection,
 alldifferent_on_intersection(
 [[var-5],[var-9],[var-1],[var-5]],
 [[var-2],[var-1],[var-6],[var-9],[var-6],[var-2]]).
\end{verbatim}
B.9 alldifferent_partition

ctr_date(alldifferent_partition,"[20030820]").

ctr_origin(
 alldifferent_partition,
 'Derived from %c.',
 [alldifferent]).

ctr_synonyms(
 alldifferent_partition,
 [alldiff_partition,alldistinct_partition]).

ctr_types(
 alldifferent_partition,
 ['VALUES'-collection(val-int)]).

ctr_arguments(
 alldifferent_partition,
 ['VARIABLES'-collection(var-dvar),
 'PARTITIONS'-collection(p-'VALUES')].

ctr_restrictions(
 alldifferent_partition,
 [required('VALUES',val),
 distinct('VALUES',val),
 size('VARIABLES')=<size('PARTITIONS'),
 required('VARIABLES',var),
 size('PARTITIONS')>=2,
 required('PARTITIONS',p)]).

ctr_graph(
 alldifferent_partition,
 ['VARIABLES'],
 2,
 ['CLIQUE'>>collection(variables1,variables2)],
 [in_same_partition(
 variables1`var,
 variables2`var,
 'PARTITIONS'),
 ['MAX_NS CC'=<1]].

ctr_example(
 alldifferent_partition,
 alldifferent_partition(
 [[var-6],[var-3],[var-4]],

[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]]).
B.10 alldifferent_same_value

ctr_date(alldifferent_same_value,['20000128','20030820']).

ctr_origin(
 alldifferent_same_value,
 'Derived from %c.',
 [alldifferent]).

ctr_synonyms(
 alldifferent_same_value,
 [alldiff_same_value,alldistinct_same_value]).

ctr_arguments(
 alldifferent_same_value,
 ['NSAME'-dvar,
 'VARIABLES1'-collection(var-dvar),
 'VARIABLES2'-collection(var-dvar)]).

ctr_restrictions(
 alldifferent_same_value,
 ['NSAME'>=0,
 'NSAME'=<size('VARIABLES1'),
 size('VARIABLES1')=size('VARIABLES2'),
 required('VARIABLES1',var),
 required('VARIABLES2',var)]).

ctr_graph(
 alldifferent_same_value,
 ['VARIABLES1','VARIABLES2'],
 2,
 [>>("PRODUCT"('CLIQUE','LOOP',=),
 collection(variables1,variables2))],
 [variables1\var=variables2\var],
 ['MAX_NSCC'=<1,'NARC_NO_LOOP'='NSAME']).

ctr_example(
 alldifferent_same_value,
 alldifferent_same_value(2,
 [[var-7],[var-3],[var-1],[var-5]],
 [[var-1],[var-3],[var-1],[var-7]]).
B.11 allperm

ctr_predefined(allperm).

ctr_date(allperm,['20031008']).

ctr_origin(allperm,\cite{FrischJeffersonMiguel03},[]).

ctr_types(allperm,['VECTOR'-collection(var-dvar)]).

ctr_arguments(allperm,['MATRIX'-collection(vec-'VECTOR')]).

ctr_restrictions(
 allperm,
 [required('VECTOR',var),
 required('MATRIX',vec),
 same_size('MATRIX',vec)]).

ctr_example(
 allperm,
 allperm([vec-[[var-1],[var-2],[var-3]]],
 [vec-[[var-3],[var-1],[var-2]]])).
B.12 among

ctr_automaton(among,among).

ctr_date(among, ['20000128', '20030820', '20040807']).

ctr_origin(among, '\cite{BeldiceanuContejean94}', []).

ctr_arguments(
 among,
 ['NVAR'-dvar, 'VARIABLES'-collection(var-dvar), 'VALUES'-collection(val-int)]).

ctr_restrictions(
 among,
 ['NVAR'>=0, 'NVAR'=<size('VARIABLES'),
 required('VARIABLES', var),
 required('VALUES', val),
 distinct('VALUES', val)]).

ctr_graph(
 among,
 ['VARIABLES'], 1,
 ['SELF'>>collection(variables)],
 [in(variables`var,'VALUES')],
 ['NARC'='NVAR']).

ctr_example(
 among,
 among(3, [[var-4],[var-5],[var-5],[var-4],[val-1]], [[val-1],[val-5],[val-8]]).

among(A,B,C) :-
 col_to_list(C,D),
 list_to_fdset(D,E),
 among_signature(B,F,E),
 automaton(F, G, F, 0..1,
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[source(s), sink(t)],
[arc(s, 0, s), arc(s, 1, s, [H+1]), arc(s, $, t)],
[H],
[0],
[A]).

among_signature([], [], A).

among_signature([[var-A]|B], [C|D], E) :-
in_set(A, E) #=> C, among_signature(B, D, E).
B.13 among_diff_0

ctr_automaton(among_diff_0, among_diff_0).

ctr_date(among_diff_0, ['20040807']).

ctr_origin(
 among_diff_0,
 'Used in the automaton of %c.',
 [nvalue]).

ctr_arguments(
 among_diff_0,
 ['NVAR'=dvar, 'VARIABLES'=collection(var-dvar)]).

ctr_restrictions(
 among_diff_0,
 ['NVAR'>=0,
 'NVAR'=<size('VARIABLES'),
 required('VARIABLES', var))].

ctr_graph(
 among_diff_0,
 ['VARIABLES'],
 1,
 ['SELF'>>collection(variables)],
 [variables'var<=0],
 ['NARC'='NVAR']).

ctr_example(
 among_diff_0,
 among_diff_0(3, [[var-0], [var-5], [var-5], [var-0], [var-1]]).

among_diff_0(A, B) :-
 among_diff_0_signature(B, C),
 automaton(C, D, C, 0..1,
 [source(s), sink(t)],
 [arc(s, 0, s), arc(s, 1, s, [E+1]), arc(s, $, t)],
 [E],
 [0],
 [A]).
among_diff_0_signature([],[]).

among_diff_0_signature([[var-A]|B],[C|D]) :-
 A\=0<=>C,
 among_diff_0_signature(B,D).
B.14 among_interval

ctr_automaton(among_interval, among_interval).

ctr_date(among_interval, ['20030820', '20040530']).

ctr_origin(among_interval, 'Derived from %c.', [among]).

ctr_arguments(
 among_interval,
 ['NVAR'-dvar,
 'VARIABLES'-collection(var-dvar),
 'LOW'-int,
 'UP'-int]).

ctr_restrictions(
 among_interval,
 ['NVAR'>=0,
 'NVAR'=<size('VARIABLES'),
 required('VARIABLES', var),
 'LOW'=<'UP']).

ctr_graph(
 among_interval,
 ['VARIABLES'],
 1,
 ['SELF']>>collection(variables),
 ['LOW'=<variables^var,variables^var=<'UP'],
 ['NARC'='NVAR']).

ctr_example(
 among_interval,
 among_interval(
 3,
 [[var-4], [var-5], [var-8], [var-4], [var-1],
 3,
 5])).

among_interval(A,B,C,D) :-
 among_interval_signature(B,E,C,D),
 automaton(
 E,
 F,
 E,
 0..1,
 [source(s),sink(t)]),
 ...
among_interval_signature([],[],A,B).

among_interval_signature([[var-A]|B],[C|D],E,F) :-
 E=<A\(\backslash\)A<=F<=C,
 among_interval_signature(B,D,E,F).
B.15 among_low_up

ctr_automaton(among_low_up, among_low_up).

ctr_date(among_low_up, ['20030820', '20040530']).

ctr_origin(among_low_up, '\cite{BeldiceanuContejean94}', []).

ctr_arguments(
 among_low_up,
 ['LOW'-int,
 'UP'-int,
 'VARIABLES'-collection(var-dvar),
 'VALUES'-collection(val-int)]).

ctr_restrictions(
 among_low_up,
 ['LOW']>=0,
 ['LOW']=<size('VARIABLES'),
 'UP']=>'LOW',
 required('VARIABLES', var),
 required('VALUES', val),
 distinct('VALUES', val)).

ctr_graph(
 among_low_up,
 ['VARIABLES','VALUES'],
 2,
 ['PRODUCT'>>collection(variables,values)],
 [variables^var=values^val],
 ['NARC'=>'LOW','NARC]='='UP']).

ctr_example(
 among_low_up,
 among_low_up{
 1,
 2,
 [[var-9],[var-2],[var-4],[var-5]],
 [[val-0],[val-2],[val-4],[val-6],[val-8]]}).

among_low_up(A,B,C,D) :-
col_to_list(D,E),
list_to_fdset(E,F),
among_low_up_signature(C,G,F),
in(H,A..B),
automaton(
G, I, G, 0..1, [source(s), sink(t)], [arc(s, 0, s), arc(s, 1, s, [J+1]), arc(s, $, t)], [J], [0], [H]).

among_low_up_signature([], [], A).

among_low_up_signature([[var-A] | B], [C | D], E) :-
 in_set(A, E) #<=> C,
 among_low_up_signature(B, D, E).
B.16 among_modulo

ctr_automaton(among_modulo,among_modulo).

ctr_date(among_modulo,['20030820','20040530']).

ctr_origin(among_modulo,'Derived from %c.',[among]).

ctr_arguments(
 among_modulo,
 ['NVAR'-dvar,
 'VARIABLES'-collection(var-dvar),
 'REMAINDER'-int,
 'QUOTIENT'-int]).

ctr_restrictions(
 among_modulo,
 ['NVAR'>=0,
 'NVAR'=<size('VARIABLES'),
 required('VARIABLES',var),
 'REMAINDER'>=0,
 'REMAINDER'< 'QUOTIENT',
 'QUOTIENT'>0]).

ctr_graph(
 among_modulo,
 ['VARIABLES'],
 1,
 ['SELF'>>collection(variables)],
 [variables^var mod 'QUOTIENT'='REMAINDER',
 ['NARC'='NVAR']]).

ctr_example(
 among_modulo,
 among_modulo(3,
 [[var-4],[var-5],[var-8],[var-4],[var-1]],
 0,
 2)).

among_modulo(A,B,C,D) :-
among_modulo_signature(B,E,C,D),
automaton(
 E,
 F,
 E,
978

APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[G+1]),arc(s,$,t)],
[G],
[0],
[A]).

among_modulo_signature([],[],A,B).

among_modulo_signature([[var-A]|B],[C|D],E,F) :-
 A mod F#=E#<=>C,
 among_modulo_signature(B,D,E,F).
B.17 among_seq

ctr_date(among_seq, ['20000128', '20030820']).

ctr_origin(among_seq, '\cite{BeldiceanuContejean94}', []).

ctr_arguments(
 among_seq,
 ['LOW'-int,
 'UP'-int,
 'SEQ'-int,
 'VARIABLES'-collection(var-dvar),
 'VALUES'-collection(val-int)]).

ctr_restrictions(
 among_seq,
 ['LOW'>=0,
 'LOW'=<size('VARIABLES'),
 'UP'>='LOW',
 'SEQ'>0,
 'SEQ'='LOW',
 'SEQ'=<size('VARIABLES'),
 required('VARIABLES',var),
 required('VALUES',val),
 distinct('VALUES',val)]).

ctr_graph(
 among_seq,
 ['VARIABLES'],
 'SEQ',
 ['PATH'>>collection],
 [among_low_up('LOW','UP',collection,'VALUES')],
 ['NARC'=size('VARIABLES')-'SEQ'+1]).

ctr_example(
 among_seq,
 among_seq(
 1,
 2,
 4,
 [[var-9],
 [var-2],
 [var-4],
 [var-5],
 [var-5],
 [var-7],
 [var-7],]
[var-2]),
[[val-0],[val-2],[val-4],[val-6],[val-8])].
B.18 arith

ctr_automaton(arith, arith).

ctr_date(arith, ['20040814']).

ctr_origin(
 arith,
 'Used in the definition of several automata',
 []).

ctr_arguments(
 arith,
 ['VARIABLES'collection(var-dvar),
 'RELOP'atom,
 'VALUE'int]).

ctr_restrictions(
 arith,
 [required('VARIABLES', var),
 in_list('RELOP', [=, \=, <, \>=, >, \=<])].

ctr_graph(
 arith,
 ['VARIABLES'],
 1,
 ['SELF' collection(variables)],
 ['RELOP' variables \ var, 'VALUE'],
 ['NARC' size('VARIABLES')].

ctr_example(
 arith,
 arith([[var-4], [var-5], [var-7], [var-4], [var-5]], <, 9)).

arith(A, B, C) :-
 arith_signature(A, D, B, C),
 automaton(
 D,
 E,
 D,
 0..1,
 [source(s), sink(t)],
 [arc(s, 1, s), arc(s, $, t)],
 [],
 [],
 []).
App 1: Electonic Constraint Catalog

arith_signature([],[],A,B).

arith_signature([[var-A]|B],[C|D],=,E) :-
 A#E#<=>C,
 arith_signature(B,D,=,E).

arith_signature([[var-A]|B],[C|D],\=,E) :-
 A\=E\=C,
 arith_signature(B,D,\=,E).

arith_signature([[var-A]|B],[C|D],<,E) :-
 A#<E#<=>C,
 arith_signature(B,D,<,E).

arith_signature([[var-A]|B],[C|D],\>=,E) :-
 A#\>=E#<=>C,
 arith_signature(B,D,\>=,E).

arith_signature([[var-A]|B],[C|D],>,E) :-
 A#>E#<=>C,
 arith_signature(B,D,>,E).

arith_signature([[var-A]|B],[C|D],=<,E) :-
 A#=<E#<=>C,
 arith_signature(B,D,=<,E).
B.19 arith_or

ctr_automaton(arith_or,arith_or).

ctr_date(arith_or,[’20040814’]).

ctr_origin(
 arith_or,
 ’Used in the definition of several automata’,
 []).

ctr_arguments(
 arith_or,
 [’VARIABLES1’-collection(var-dvar),
 ’VARIABLES2’-collection(var-dvar),
 ’RELOP’-atom,
 ’VALUE’-int]).

ctr_restrictions(
 arith_or,
 [required(’VARIABLES1’,var),
 required(’VARIABLES2’,var),
 size(’VARIABLES1’) = size(’VARIABLES2’),
 in_list(’RELOP’,[=,\=,<,\>=,\>,\=<])).

ctr_graph(
 arith_or,
 [’VARIABLES1’,’VARIABLES2’],
 2,
 [’PRODUCT’(\=)>>collection(variables1,variables2)],
 [#\(’RELOP’(variables1\^var,’VALUE’),
 ’RELOP’(variables2\^var,’VALUE’))],
 [’NARC’=size(’VARIABLES1’)]).

ctr_example(
 arith_or,
 arith_or(
 [[var-0],[var-1],[var-0],[var-0],[var-1]],
 [[var-0],[var-0],[var-0],[var-0],[var-0]],
 =,
 0)).

arith_or(A,B,C,D) :-
 arith_or_signature(A,B,E,C,D),
 automaton(
 E,
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

F,
E,
0..1,
[source(s), sink(t)],
[arc(s,1,s), arc(s,$,t)],
[],
[],
[]).

arith_or_signature([],[],[],A,B).

arith_or_signature([[var-A]|B],[[var-C]|D],[E|F],=,G) :-
 A#=G#\C#=G#<=>E,
 arith_or_signature(B,D,F,=,G).

arith_or_signature([[var-A]|B],[[var-C]|D],[E|F],\=,G) :-
 A\=G#\C\=G#<=>E,
 arith_or_signature(B,D,F,\=,G).

arith_or_signature([[var-A]|B],[[var-C]|D],[E|F],<,G) :-
 A#<G#\C#<G#<=>E,
 arith_or_signature(B,D,F,<,G).

arith_or_signature([[var-A]|B],[[var-C]|D],[E|F],\>=,G) :-
 A#\>=G#\C#\>=G#<=>E,
 arith_or_signature(B,D,F,\>=,G).

arith_or_signature([[var-A]|B],[[var-C]|D],[E|F],>,G) :-
 A#>G#\C#>G#<=>E,
 arith_or_signature(B,D,F,>,G).

arith_or_signature([[var-A]|B],[[var-C]|D],[E|F],=<,G) :-
 A#=<G#\C#=<G#<=>E,
 arith_or_signature(B,D,F,=<,G).
B.20 arith_sliding

```prolog
ctr_automaton(arith_sliding, arith_sliding).

ctr_date(arith_sliding, ['20040814']).

ctr_origin(
  arith_sliding,
  'Used in the definition of some automaton',
  []).

ctr_arguments(
  arith_sliding,
  ['VARIABLES'-collection(var-dvar),
   'RELOP'-atom,
   'VALUE'-int]).

ctr_restrictions(
  arith_sliding,
  [required('VARIABLES', var),
   in_list('RELOP', [=, =\=, <, >\=, >, =<])]).

ctr_graph(
  arith_sliding,
  ['VARIABLES'],
  '*',
  ['PATH_1'>>collection],
  [arith(collection, 'RELOP', 'VALUE')],
  ['NARC'=size('VARIABLES')]).

ctr_example(
  arith_sliding,
  arith_sliding(
    [[var-0],
     [var-0],
     [var-1],
     [var-2],
     [var-0],
     [var-0],
     [var-3]],
    <,
    4)).

arith_sliding(A, =, B) :-
  length(A, C),
  length(D, C),
```
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

domain(D,0,0),
arith_sliding_signature(A,E,D),
automaton(
 E,
 F,
 D,
 0..0,
 [source(s),node(i),sink(t)],
 [arc(s,0,i,[G+F]),
 arc(s,$,t,[G]),
 arc(i,0,i,(G#=B->[G+F])),
 arc(i,$,t,(G#=B->[G]))],
 [G],
 [0],
 [H]).

arith_sliding(A,\leq,B) :-
 length(A,C),
 length(D,C),
 domain(D,0,0),
 arith_sliding_signature(A,E,D),
 automaton(
 E,
 F,
 D,
 0..0,
 [source(s),node(i),sink(t)],
 [arc(s,0,i,[G+F]),
 arc(s,$,t,[G]),
 arc(i,0,i,(G\leq B->[G+F])),
 arc(i,$,t,(G\leq B->[G]))],
 [G],
 [0],
 [H]).

arith_sliding(A,<,B) :-
 length(A,C),
 length(D,C),
 domain(D,0,0),
 arith_sliding_signature(A,E,D),
 automaton(
 E,
 F,
 D,
 0..0,
 [source(s),node(i),sink(t)],
arith_sliding(A, >=, B) :-
 length(A, C),
 length(D, C),
 domain(D, 0, 0),
 arith_sliding_signature(A, E, D),
 automaton(E, F, D, 0..0, [source(s), node(i), sink(t)],
 [arc(s, 0, i, [G+F]),
 arc(s, $, t, [G]),
 arc(i, 0, i, (G#>=B->[G+F])),
 arc(i, $, t, (G#>=B->[G]))],
 [G], [0], [H]).

arith_sliding(A, >, B) :-
 length(A, C),
 length(D, C),
 domain(D, 0, 0),
 arith_sliding_signature(A, E, D),
 automaton(E, F, D, 0..0, [source(s), node(i), sink(t)],
 [arc(s, 0, i, [G+F]),
 arc(s, $, t, [G]),
 arc(i, 0, i, (G#>B->[G+F])),
 arc(i, $, t, (G#>B->[G]))],
 [G], [0], [H]).
arith_sliding(A,=<,B) :-
 length(A,C),
 length(D,C),
 domain(D,0,0),
 arith_sliding_signature(A,E,D),
 automaton(
 E,
 F,
 D,
 0..0,
 [source(s), node(i), sink(t)],
 [arc(s,0,i,[G+F]),
 arc(s,$,t,[G]),
 arc(i,0,i,(G#=<B->[G+F])),
 arc(i,$,t,(G#=<B->[G]))],
 [G],
 [0],
 [H]).

arith_sliding_signature([],[],[]).

arith_sliding_signature([var-A]|B,[A|C],[0|D]) :-
 arith_sliding_signature(B,C,D).
B.21 assign_and_counts

ctr_date(assign_and_counts,['20000128','20030820']).

ctr_origin(assign_and_counts,'N. Beldiceanu',[]).

ctr_arguments(
 assign_and_counts,
 ['COLOURS'-collection(val-int),
 'ITEMS'-collection(bin-dvar,colour-dvar),
 'RELOP'-atom,
 'LIMIT'-dvar]).

ctr_restrictions(
 assign_and_counts,
 [required('COLOURS',val),
 distinct('COLOURS',val),
 required('ITEMS',[bin,colour]),
 in_list('RELOP',[=,\=,<,\>=,>,\=<]))).

ctr_derived_collections(
 assign_and_counts,
 [col('VALUES'-collection(val-int),
 [item(val-'COLOURS'\ˆval)])]).

ctr_graph(
 assign_and_counts,
 ['ITEMS','ITEMS'],
 2,
 ['PRODUCT'>>collection(items1,items2)],
 [items1\ˆbin=items2\ˆbin],
 [],
 ['SUCC',
 [source,
 -(variables,
 col('VARIABLES'-collection(var-dvar),
 [item(var-'ITEMS'\ˆcolour)]))],
 [counts('VALUES',variables,'RELOP','LIMIT')]).

ctr_example(
 assign_and_counts,
 assign_and_counts(
 [[val-4]],
 [[bin-1,colour-4],
 [bin-3,colour-4],
 [bin-1,colour-4],
 [bin-3,colour-4]})
[bin-1, colour-5]},
=\langle,
2}).
B.22 assign_and_nvalues

ctr_date(
 assign_and_nvalues,
 ['20000128','20030820','20040530','20050321']).

ctr_origin(
 assign_and_nvalues,
 'Derived from %c and %c.',
 [assign_and_counts,nvalues]).

ctr_arguments(
 assign_and_nvalues,
 ['ITEMS'-collection(bin-dvar,value-dvar),
 'RELOP'-atom,
 'LIMIT'-dvar]).

ctr_restrictions(
 assign_and_nvalues,
 [required('ITEMS',[bin,value]),
 in_list('RELOP',[=,\=,<,\>,\>=,\=<])].

ctr_graph(
 assign_and_nvalues,
 ['ITEMS','ITEMS'],
 2,
 ['PRODUCT'>>collection(items1,items2)],
 [items1`bin=items2`bin],
 [],
 [>>('SUCC',
 [source,
 -(variables,
 col('VARIABLES'-collection(var-dvar),
 [item(var='ITEMS`value)])]),
 [nvalues(variables,'RELOP','LIMIT')]].

ctr_example(
 assign_and_nvalues,
 assign_and_nvalues(
 [[bin-2,value-3],
 [bin-1,value-5],
 [bin-2,value-3],
 [bin-2,value-3],
 [bin-2,value-4]],
 <=,
 2)).
B.23 atleast

ctr_automaton(atleast, atleast).

ctr_date(atleast, [’20030820’, ’20040807’]).

ctr_origin(atleast, ’CHIP’, []).

ctr_arguments(
 atleast,
 [’N’-int, ’VARIABLES’-collection(var-dvar), ’VALUE’-int]).

ctr_restrictions(
 atleast,
 [’N’>=0, ’N’=<size(’VARIABLES’), required(’VARIABLES’, var)]).

ctr_graph(
 atleast,
 [’VARIABLES’],
 1,
 [’SELF’>>collection(variables)],
 [variables^var=’VALUE’],
 [’NARC’>=’N’]).

ctr_example(
 atleast,
 atleast(2, [[var-4], [var-2], [var-4], [var-5]], 4)).

atleast(A, B, C) :-
 atleast_signature(B, D, C),
 length(B, E),
 in(F, A..E),
 automaton(
 D,
 G,
 D,
 0..1,
 [source(s), sink(t)],
 [arc(s, 0, s), arc(s, 1, s, [H+1]), arc(s, $, t)],
 [H],
 [0],
 [F]).

atleast_signature([], [], A).

atleast_signature([var-A]|B, [C|D], E) :-
A# = E# <=> C,
atleast_signature (B, D, E).
B.24 atmostat

ctr_automaton(atmostat, atmostat).

ctr_date(atmostat, ['20030820', '20040807']).

ctr_origin(atmostat, 'CHIP', []).

ctr_arguments(atmostat,
 ['N'-int,'VARIABLES'-collection(var-dvar),'VALUE'-int]).

ctr_restrictions(atmostat, ['N'>=0, required('VARIABLES', var))).

ctr_graph(atmostat,
 ['VARIABLES'],
 [variables^var='VALUE'],
 ['NARC'='<'N']).

ctr_example(atmostat,
 atmostat(1, [[var-4], [var-2], [var-4], [var-5]], 2)).

atmostat(A, B, C) :-
 atmostat_signature(B, D, C),
 in(E, 0..A),
 automaton(D, F, D, 0..1, [source(s), sink(t)],
 [arc(s, 0, s), arc(s, 1, s, [G+1]), arc(s, $, t)],
 [G],
 [0],
 [E]).

atmostat_signature([], [], A).

atmostat_signature([[var-A]|B], [C|D], E) :-
 A#=E#<=C,
 atmostat_signature(B, D, E).
B.25 balance

ctr_date(balance, ['20000128', '20030820']).

ctr_origin(balance, 'N. Beldiceanu', []).

ctr_arguments(
 balance,
 ['BALANCE'-dvar, 'VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
 balance,
 ['BALANCE']>=0,
 'BALANCE'=<size('VARIABLES'),
 required('VARIABLES', var)) .

ctr_graph(
 balance,
 ['VARIABLES'],
 2,
 ['CLIQUE']>>collection(variables1, variables2),
 [variables1^var=variables2^var],
 ['RANGE_NSCC'='BALANCE']).

ctr_example(
 balance,
 balance(2, [[var-3], [var-1], [var-7], [var-1], [var-1]]).
B.26 balance_interval

ctr_date(balance_interval, [’20030820’]).

ctr_origin(balance_interval, ’Derived from %c.’, [balance]).

ctr_arguments(
 balance_interval,
 [’BALANCE’-dvar,
 ’VARIABLES’-collection(var-dvar),
 ’SIZE_INTERVAL’-int]).

ctr_restrictions(
 balance_interval,
 [’BALANCE’>=0,
 ’BALANCE’=<size(’VARIABLES’),
 required(’VARIABLES’, var),
 ’SIZE_INTERVAL’>0]).

ctr_graph(
 balance_interval,
 [’VARIABLES’],
 2,
 [’CLIQUE’>>collection(variables1,variables2)],
 [= (variables1^var/’SIZE_INTERVAL’,
 variables2^var/’SIZE_INTERVAL’)],
 [’RANGE_NSCC’=’BALANCE’]).

ctr_example(
 balance_interval,
 balance_interval(3,
 [[var-6],[var-4],[var-3],[var-3],[var-4]],
 3)).
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.27 balance_modulo

ctr_date(balance_modulo,[‘20030820’]).

ctr_origin(balance_modulo,’Derived from %c.’,[balance]).

ctr_arguments(
 balance_modulo,
 [‘BALANCE’-dvar,’VARIABLES’-collection(var-dvar),’M’-int]).

ctr_restrictions(
 balance_modulo,
 [‘BALANCE’>=0,
 ’BALANCE’=<size(‘VARIABLES’),
 required(‘VARIABLES’,var),
 ’M’>0]).

ctr_graph(
 balance_modulo,
 [‘VARIABLES’],
 2,
 [’CLIQUE’>>collection(variables1,variables2)],
 [variables1^var mod ‘M’=variables2^var mod ’M’],
 [’RANGE_NSCC’=‘BALANCE’]).

ctr_example(
 balance_modulo,
 balance_modulo(
 2,
 [[var-6],[var-1],[var-7],[var-1],[var-5]],
 3)).
B.28 balance_partition

ctr_date(balance_partition,['20030820']).

ctr_origin(balance_partition,'Derived from %c.',[balance]).

ctr_types(balance_partition,['VALUES'-collection(val-int)]).

ctr_arguments(
 balance_partition,
 ['BALANCE'-dvar,
 'VARIABLES'-collection(var-dvar),
 'PARTITIONS'-collection(p-'VALUES')]).

ctr_restrictions(
 balance_partition,
 [required('VALUES',val),
 distinct('VALUES',val),
 'BALANCE'<=0,
 'BALANCE'=<size('VARIABLES'),
 required('VARIABLES',var),
 required('PARTITIONS',p),
 size('PARTITIONS')>=2]).

ctr_graph(
 balance_partition,
 ['VARIABLES'],
 2,
 ['CLIQUE']>>collection(variables1,variables2)],
 [in_same_partition(
 variables1\'var,
 variables2\'var,
 'PARTITIONS')],
 ['RANGE_NSCC'='BALANCE']).

ctr_example(
 balance_partition,
 balance_partition(1,
 [[var-6],[var-2],[var-6],[var-4],[var-4]],
 [[[p-[[val-1],[val-3]]],
 [p-[[val-4]]],
 [p-[[val-2],[val-6]]]]))).
B.29 \texttt{bin_packing}

\begin{verbatim}
ctr_date(bin_packing, ['20000128', '20030820', '20040530']).

ctr_origin(bin_packing, 'Derived from %c.', [cumulative]).

ctr_arguments(
 bin_packing,
 ['CAPACITY'-int, 'ITEMS'-collection(bin-dvar, weight-int)]).

ctr_restrictions(
 bin_packing,
 ['CAPACITY'>=0,
 required('ITEMS', [bin, weight]),
 'ITEMS'\^weight>=0,
 'ITEMS'\^weight=<'CAPACITY']).

ctr_graph(
 bin_packing,
 ['ITEMS','ITEMS'],
 2,
 ['PRODUCT'>>collection(items1, items2)],
 [items1\^bin=items2\^bin],
 [],
 [>>('SUCC',
 [source, -(variables,
 col('VARIABLES'-collection(var-dvar),
 [item(var-'ITEMS'\^weight)])]]),
 [sum_ctr(variables, =<,'CAPACITY')]].

ctr_example(
 bin_packing,
 bin_packing(5,
 [[bin-3, weight-4], [bin-1, weight-3], [bin-3, weight-1]]).
\end{verbatim}
B.30 binary_tree

ctr_date(binary_tree,[‘20000128’,’20030820’]).

ctr_origin(binary_tree,’Derived from %c.’,[tree]).

ctr_arguments(
 binary_tree,
 [‘NTREES’-dvar,’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
 binary_tree,
 [‘NTREES’>=0,
 required(‘NODES’,[index,succ]),
 ‘NODES’^index>=1,
 ‘NODES’^index=<size(‘NODES’),
 distinct(‘NODES’,index),
 ‘NODES’^succ=1,
 ‘NODES’^succ=<size(‘NODES’)]).

ctr_graph(
 binary_tree,
 [‘NODES’],
 2,
 [‘CLIQUE’>>collection(nodes1,nodes2)],
 [nodes1^succ=nodes2^index],
 [‘MAX_NSCC’=<1,’NCC’=’NTREES’,’MAX_ID’=<2]).

c ctr_example(
 binary_tree,
 binary_tree(2,
 [[index-1,succ-1],
 [index-2,succ-3],
 [index-3,succ-5],
 [index-4,succ-7],
 [index-5,succ-1],
 [index-6,succ-1],
 [index-7,succ-7],
 [index-8,succ-5]])).
B.31 cardinality_atleast

ctr_date(cardinality_atleast,[‘20030820’,‘20040530’]).

ctr_origin(
 cardinality_atleast,
 ‘Derived from %c.’,
 [global_cardinality]).

ctr_arguments(
 cardinality_atleast,
 [‘ATLEAST’-dvar,
 ‘VARIABLES’-collection(var-dvar),
 ‘VALUES’-collection(val-int)]).

ctr_restrictions(
 cardinality_atleast,
 [‘ATLEAST’>=0,
 ‘ATLEAST’=<size(‘VARIABLES’),
 required(‘VARIABLES’,var),
 required(‘VALUES’,val),
 distinct(‘VALUES’,val)]).

ctr_graph(
 cardinality_atleast,
 [‘VARIABLES’,‘VALUES’],
 2,
 [‘PRODUCT’>>collection(variables,values)],
 [variables~var~\=values~val],
 [‘MAX_ID’=size(‘VARIABLES’)-‘ATLEAST’]).

ctr_example(
 cardinality_atleast,
 cardinality_atleast(1,
 [[var-3],[var-3],[var-8]],
 [[val-3],[val-8]]).
B.32 cardinality_atmost

ctr_date(cardinality_atmost, ['20030820', '20040530']).

ctr_origin(
 cardinality_atmost,
 'Derived from %c.',
 [global_cardinality]).

ctr_arguments(
 cardinality_atmost,
 ['ATMOST'-dvar,
 'VARIABLES'-collection(var-dvar),
 'VALUES'-collection(val-int)]).

ctr_restrictions(
 cardinality_atmost,
 ['ATMOST']>=0,
 ['ATMOST']=<size('VARIABLES'),
 required('VARIABLES', var),
 required('VALUES', val),
 distinct('VALUES', val)).

ctr_graph(
 cardinality_atmost,
 ['VARIABLES','VALUES'],
 2,
 ['PRODUCT'>>collection(variables,values)],
 [variables~var=values~val],
 ['MAX_ID'='ATMOST']).

ctr_example(
 cardinality_atmost,
 cardinality_atmost(2,
 [[var-2],[var-1],[var-7],[var-1],[var-2]],
 [[val-5],[val-7],[val-2],[val-9]])).
B.33 cardinality_atmost_partition

ctr_date(cardinality_atmost_partition, ['20030820']).

ctr_origin(
 cardinality_atmost_partition,
 'Derived from %c.',
 [global_cardinality]).

ctr_types(
 cardinality_atmost_partition,
 ['VALUES'-collection(val-int)]).

ctr_arguments(
 cardinality_atmost_partition,
 ['ATMOST'-dvar,
 'VARIABLES'-collection(var-dvar),
 'PARTITIONS'-collection(p-'VALUES')]).

ctr_restrictions(
 cardinality_atmost_partition,
 [required('VALUES',val),
 distinct('VALUES',val),
 'ATMOST'>=0,
 'ATMOST'=<size('VARIABLES'),
 required('VARIABLES',var),
 required('PARTITIONS',p),
 size('PARTITIONS')>=2]).

ctr_graph(
 cardinality_atmost_partition,
 ['VARIABLES','PARTITIONS'],
 2,
 ['PRODUCT'>>collection(variables,partitions)],
 [in(variables `var,partitions `p)],
 ['MAX_ID'='ATMOST']).

ctr_example(
 cardinality_atmost_partition,
 cardinality_atmost_partition(2,
 [[var-2],[var-3],[var-7],[var-1],[var-6],[var-0]],
 [[p-[[val-1],[val-3]]],
 [p-[[val-4]]],
 [p-[[val-2],[val-6]]])).
B.34 change

ctr_automaton(change,change).

ctr_date(change,[''20000128','20030820','20040530']).

ctr_origin(change,'CHIP',[]).

ctr_synonyms(change,[nbchanges,similarity]).

ctr_arguments(
 change,
 ['NCHANGE'-dvar,
 'VARIABLES'-collection(var-dvar),
 'CTR'-atom]).

ctr_restrictions(
 change,
 ['NCHANGE'>=0,
 'NCHANGE'<size('VARIABLES'),
 required('VARIABLES',var),
 in_list('CTR',[=,\=,<,>,>=,<=])).

ctr_graph(
 change,
 ['VARIABLES'],
 2,
 ['PATH'=>collection(variables1,variables2)],
 ['CTR'(variables1\var,variables2\var)],
 ['NARC'='NCHANGE']).

ctr_example(
 change,
 [change(3,[[var-4],[var-4],[var-3],[var-4],[var-1]],\=),
 change(1,[[var-1],[var-2],[var-4],[var-3],[var-7]],>)]).

change(A,B,C) :-
 change_signature(B,D,C),
 automaton(
 D,
 E,
 D,
 0..1,
 [source(s),sink(t)],
 [arc(s,0,s),arc(s,1,s,[F+1]),arc(s,$,t)],
 [F],
 ...
change_signature([],[],A).

change_signature([A],[],B) :- !.

change_signature([[var-A],[var-B]|C],[],[D|E],=) :- !,
 A#=B#<=>D,
 change_signature([[var-B]|C],E,=).

change_signature([[var-A],[var-B]|C],[],[D|E],\=) :- !,
 A\=B\=<=>D,
 change_signature([[var-B]|C],E,\=).

change_signature([[var-A],[var-B]|C],[],[D|E],<) :- !,
 A#<B#<=>D,
 change_signature([[var-B]|C],E,<).

change_signature([[var-A],[var-B]|C],[],[D|E],\>=) :- !,
 A#>=B#<=>D,
 change_signature([[var-B]|C],E,\>=).

change_signature([[var-A],[var-B]|C],[],[D|E],>) :- !,
 A#>B#<=>D,
 change_signature([[var-B]|C],E,>).

change_signature([[var-A],[var-B]|C],[],[D|E],\=<) :- !,
 A#=<B#<=>D,
 change_signature([[var-B]|C],E,\=<).
B.35 change_continuity

ctr_automaton(change_continuity,change_continuity).

ctr_date(change_continuity,['20000128','20030820','20040530']).

ctr_origin(change_continuity,'N.˘Beldiceanu',[]).

ctr_arguments(
 change_continuity,
 ['NB_PERIOD_CHANGE’-dvar,
 'NB_PERIOD_CONTINUITY’-dvar,
 'MIN_SIZE_CHANGE’-dvar,
 'MAX_SIZE_CHANGE’-dvar,
 'MIN_SIZE_CONTINUITY’-dvar,
 'MAX_SIZE_CONTINUITY’-dvar,
 'NB_CHANGE’-dvar,
 'NB_CONTINUITY’-dvar,
 'VARIABLES’-collection(var-dvar),
 'CTR’-atom]).

ctr_restrictions(
 change_continuity,
 ['NB_PERIOD_CHANGE’>=0,
 'NB_PERIOD_CONTINUITY’>=0,
 'MIN_SIZE_CHANGE’>=0,
 'MAX_SIZE_CHANGE’=’MIN_SIZE_CHANGE’,
 'MIN_SIZE_CONTINUITY’>=0,
 'MAX_SIZE_CONTINUITY’=’MIN_SIZE_CONTINUITY’,
 'NB_CHANGE’>=0,
 'NB_CONTINUITY’>=0,
 required('VARIABLES’,var),
 in_list('CTR’,[=,=\-,<,>=,>,=<])).

ctr_graph(
 change_continuity,
 ['VARIABLES’],
 2,
 ['PATH’>>collection(variables1,variables2)],
 ['CTR’(variables1`var,variables2`var)],
 ['NCC’=‘NB_PERIOD_CHANGE’,
 'MIN_NCC’=‘MIN_SIZE_CHANGE’,
 'MAX_NCC’=‘MAX_SIZE_CHANGE’,
 'NARC’=‘NB_CHANGE’]).

ctr_graph(}
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

change_continuity,
['VARIABLES'],
2,
['PATH'>>collection(variables1,variables2)],
[#'CTR'(variables1^var,variables2^var)],
['NCC'='NB_PERIOD_CONTINUITY',
'MIN_NCC'='MIN_SIZE_CONTINUITY',
'MAX_NCC'='MAX_SIZE_CONTINUITY',
'NARC'='NB_CONTINUITY']).

ctr_example(
 change_continuity,
 change_continuity(
 3,
 2,
 2,
 4,
 2,
 4,
 6,
 4,
 [[var-1],
 [var-3],
 [var-1],
 [var-8],
 [var-8],
 [var-4],
 [var-7],
 [var-7],
 [var-7],
 [var-7],
 [var-2]],
 =\=)).

change_continuity(A,B,C,D,E,F,G,H,I,J) :-
 length(I,K),
 change_continuity_signature(I,L,1,J),
 change_continuity_signature(I,M,0,J),
 change_continuity_nb_period(A,L),
 change_continuity_nb_period(B,M),
 change_continuity_min_size(C,L),
 change_continuity_min_size(E,M),
 change_continuity_max_size(D,L),
 change_continuity_max_size(F,M),
 change_continuity_nb(G,L),
 change_continuity_nb(H,M).
change_continuity_nb_period(A,B) :-
 automaton(
 B, C, B, 0..1,
 [source(s),node(i),sink(t)],
 [arc(s,0,s),
 arc(s,1,i,[D+1]),
 arc(s,$,t),
 arc(i,1,i),
 arc(i,0,s),
 arc(i,$,t)],
 [D], [0], [A]).

change_continuity_min_size(A,B) :-
 automaton(
 B, C, B, 0..1,
 [source(s),node(i),node(j),node(k),sink(t)],
 [arc(s,0,s),
 arc(s,1,i,[D,2]),
 arc(s,$,t,[D,E]),
 arc(i,0,j,[E,E]),
 arc(i,1,i,[D,E+1]),
 arc(i,$,t,[E,E]),
 arc(j,0,j),
 arc(j,1,k,[D,2]),
 arc(j,$,t,[D,E]),
 arc(k,0,j,[min(D,E),E]),
 arc(k,1,k,[D,E+1]),
 arc(k,$,t,[min(D,E),E])],
 [D,E], [0,1], [A,F]).

change_continuity_max_size(A,B) :-
 automaton(
 B, C, B,
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

0..1,
[source(s), node(i), sink(t)],
[arc(s,0,s,[D,E]),
 arc(s,1,i,[D,E+1]),
 arc(s,$,t,[D,E])],
[arc(i,0,i,[max(D,E),1]),
 arc(i,1,i,[D,E+1]),
 arc(i,$,t,[max(D,E),E])],
[D,E],
[0,1],
[A,F]).

change_continuity_nb(A,B) :-
 automaton(
 B,
 C,
 B,
 0..1,
 [source(s), sink(t)],
 [arc(s,0,s), arc(s,1,s,[D+1]), arc(s,$,t)],
 [D],
 [0],
 [A]).

change_continuity_signature([],[],A,B).

change_continuity_signature([A],[],B,C) :- !.

change_continuity_signature([[var-A],[var-B]|C],[D|E],1,=) :- !,
 A#=B#<=>D,
 change_continuity_signature([[var-B]|C],E,1,=).

change_continuity_signature([[var-A],[var-B]|C],[D|E],1,\=) :- !,
 A\=B\=<>D,
 change_continuity_signature([[var-B]|C],E,1,\=).

change_continuity_signature([[var-A],[var-B]|C],[D|E],1,<) :- !,
 A#<B#<=>D,
 change_continuity_signature([[var-B]|C],E,1,<).

change_continuity_signature([[var-A],[var-B]|C],[D|E],1,>) :- !,
 A#>B#<=>D,
 change_continuity_signature([[var-B]|C],E,1,>).
\begin{verbatim}
A#>=B#<=>D,
change_continuity_signature([[var-B]|C],E,1,>=).

change_continuity_signature([[var-A],[var-B]|C],[D|E],1,>) :- !,
 A#>B#<=>D,
 change_continuity_signature([[var-B]|C],E,1,>).

change_continuity_signature([[var-A],[var-B]|C],[D|E],1,=<) :- !,
 A#=<B#<=>D,
 change_continuity_signature([[var-B]|C],E,1,=<).

change_continuity_signature([[var-A],[var-B]|C],[D|E],0,=) :- !,
 A#\=B#<=>D,
 change_continuity_signature([[var-B]|C],E,0,=).

change_continuity_signature([[var-A],[var-B]|C],[D|E],0,\=) :- !,
 A#=B#<=>D,
 change_continuity_signature([[var-B]|C],E,0,\=).

change_continuity_signature([[var-A],[var-B]|C],[D|E],0,<) :- !,
 A#>=B#<=>D,
 change_continuity_signature([[var-B]|C],E,0,<).

change_continuity_signature([[var-A],[var-B]|C],[D|E],0,>=) :- !,
 A#<B#<=>D,
 change_continuity_signature([[var-B]|C],E,0,>=).

change_continuity_signature([[var-A],[var-B]|C],[D|E],0,>) :- !,
 A#=<B#<=>D,
 change_continuity_signature([[var-B]|C],E,0,>).

change_continuity_signature([[var-A],[var-B]|C],[D|E],0,=<) :- !,
 A#>B#<=>D,
 change_continuity_signature([[var-B]|C],E,0,=<).
\end{verbatim}
B.36 change_pair

\begin{verbatim}
ctr_automaton(change_pair,change_pair).

ctr_date(change_pair,['20030820','20040530']).

ctr_origin(change_pair,'Derived from %c.',[change]).

ctr_arguments(change_pair, ['NCHANGE'-dvar, 'PAIRS'-collection(x-dvar,y-dvar), 'CTRX'-atom, 'CTRY'-atom]).

ctr_restrictions(change_pair, ['NCHANGE']\geq 0, 'NCHANGE'<size('PAIRS'), required('PAIRS',[x,y]), in_list('CTRX',[=,\leq,<,\geq,\rangle,\langle]), in_list('CTRY',[=,\leq,<,\geq,\rangle,\langle])).

ctr_graph(change_pair, ['PAIRS'], 2, ['PATH']\gg collection(pairs1,pairs2)], ['CTRX'(pairs1\^x,pairs2\^x)#/\/'CTRY'(pairs1\^y,pairs2\^y)], ['NARC'='NCHANGE']).

ctr_example(change_pair, change_pair(3, [[x-3,y-5], [x-3,y-7], [x-3,y-7], [x-3,y-8], [x-3,y-4], [x-3,y-7], [x-1,y-3], [x-1,y-6], [x-1,y-6], [x-3,y-7]], \leq,)
\end{verbatim}
change_pair(A,B,C,D) :-
 change_pair_signature(B,E,C,D),
 automaton(
 E,
 F,
 E,
 0..1,
 [source(s),sink(t)],
 [arc(s,0,s),arc(s,1,s,[G+1]),arc(s,$,t)],
 [G],
 [0],
 [A]).

change_pair_signature([],[],A,B).

change_pair_signature([A],[],B,C) :- !.

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,=) :- !,
 A#=C#/B#=D#<=>F,
 change_pair_signature([[x-C,y-D]|E],G,=,=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,\=) :- !,
 A#=C#\B#\=D#<=>F,
 change_pair_signature([[x-C,y-D]|E],G,=,\=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,<) :- !,
 A#=C#\B#<D#<=>F,
 change_pair_signature([[x-C,y-D]|E],G,=,<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,<=) :- !,
 A#=C#\B#>=D#<=>F,
 change_pair_signature([[x-C,y-D]|E],G,=,>=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,>) :- !,
 A#=C#\B#>D#<=>F,
 change_pair_signature([[x-C,y-D]|E],G,=,>).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E],[F|G],=,=<) :-
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

!,$A="/B"=<D"<=F,
change_pair_signature([x-C,y-D]|E),G,=,=<).

change_pair_signature([x-A,y-B],[x-C,y-D]|E],[F|G],\=,=) :-
!,A="/C"\=/B"=/D"<=F,
change_pair_signature([x-C,y-D]|E),G,\=,=).

change_pair_signature([x-A,y-B],[x-C,y-D]|E],[F|G],\=,=) :-
!,A="/C"\=/B"=/D"<=F,
change_pair_signature([x-C,y-D]|E),G,\=,=).

change_pair_signature([x-A,y-B],[x-C,y-D]|E],[F|G],\=,\=) :-
!,A="/B"=/D"<=F,
change_pair_signature([x-C,y-D]|E),G,\=,\=).

change_pair_signature([x-A,y-B],[x-C,y-D]|E],[F|G],\=,\=) :-
!,A="/C"\=/B"=/D"<=F,
change_pair_signature([x-C,y-D]|E),G,\=,\=).

change_pair_signature([x-A,y-B],[x-C,y-D]|E],[F|G],\=,\=) :-
!,A="/B">=D"<=F,
change_pair_signature([x-C,y-D]|E),G,\=,\=).

change_pair_signature([x-A,y-B],[x-C,y-D]|E],[F|G],\=,\>) :-
!,A="/C"\=/B">=D"<=F,
change_pair_signature([x-C,y-D]|E),G,\=,\>).

change_pair_signature([x-A,y-B],[x-C,y-D]|E],[F|G],\=,\>) :-
!,A="/C"\=/B">=D"<=F,
change_pair_signature([x-C,y-D]|E),G,\=,\>).

change_pair_signature([x-A,y-B],[x-C,y-D]|E],[F|G],\=,\<=) :-
!,A="/B"=<D"<=F,
change_pair_signature([x-C,y-D]|E),G,\=,\<=).

change_pair_signature([x-A,y-B],[x-C,y-D]|E],[F|G],\<=,\=) :-
!,A="/C"\=<D"<=F,
change_pair_signature([x-C,y-D]|E),G,\<=,\=).

change_pair_signature([x-A,y-B],[x-C,y-D]|E],[F|G],\<=,\<=) :-
!,A="/C"\=<D"<=F,
change_pair_signature([x-C,y-D]|E),G,\<=,\<=).

change_pair_signature([x-A,y-B],[x-C,y-D]|E],[F|G],\<,\>=) :-
!,A="/C"\<D"<=F,
change_pair_signature([x-C,y-D]|E),G,\<,\>=).

change_pair_signature([x-A,y-B],[x-C,y-D]|E],[F|G],\<,\>) :-
!,A="/C"\<D"<=F,
change_pair_signature([x-C,y-D]|E),G,\<,\>).
\[
\begin{align*}
A#&=C\# / B#<D#<=>F, \\
&\text{change_pair_signature}([[x-C,y-D]|E], G, <, <). \\
\text{change_pair_signature}([[x-A,y-B],[x-C,y-D]|E], [F|G], <, =>) &:- \\
&!, \\
&A#<=C# \| B#>=D#<=>F, \\
&\text{change_pair_signature}([[x-C,y-D]|E], G, <, >=). \\
\text{change_pair_signature}([[x-A,y-B],[x-C,y-D]|E], [F|G], <, >) &:- \\
&!, \\
&A#<=C# \| B#>D#<=>F, \\
&\text{change_pair_signature}([[x-C,y-D]|E], G, <, >). \\
\text{change_pair_signature}([[x-A,y-B],[x-C,y-D]|E], [F|G], <=, <=) &:- \\
&!, \\
&A#<=C# \| B#<D#<=>F, \\
&\text{change_pair_signature}([[x-C,y-D]|E], G, <, <=). \\
\text{change_pair_signature}([[x-A,y-B],[x-C,y-D]|E], [F|G], <=, =\}) &:- \\
&!, \\
&A#>=C# \| B#<D#<=>F, \\
&\text{change_pair_signature}([[x-C,y-D]|E], G, >=, \}). \\
\text{change_pair_signature}([[x-A,y-B],[x-C,y-D]|E], [F|G], <=, <) &:- \\
&!, \\
&A#>=C# \| B#<D#<=>F, \\
&\text{change_pair_signature}([[x-C,y-D]|E], G, >=, <). \\
\text{change_pair_signature}([[x-A,y-B],[x-C,y-D]|E], [F|G], >=, >=) &:- \\
&!, \\
&A#>=C# \| B#>=D#<=>F, \\
&\text{change_pair_signature}([[x-C,y-D]|E], G, >=, >=). \\
\text{change_pair_signature}([[x-A,y-B],[x-C,y-D]|E], [F|G], >=, >) &:- \\
&!, \\
&A#>=C# \| B#>D#<=>F, \\
&\text{change_pair_signature}([[x-C,y-D]|E], G, >=, >). \\
\text{change_pair_signature}([[x-A,y-B],[x-C,y-D]|E], [F|G], >=, <=) &:- \\
&!, \\
&A#>=C# \| B#<=D#<=>F, \\
\end{align*}
\]
change_pair_signature([[x-A,y-B],[x-C,y-D]|E], [F|G], >, =) :-
 !,
 A# > C# \ B# = D# <= F,
 change_pair_signature([[x-C,y-D]|E], G, >, =).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E], [F|G], >, =\=) :-
 !,
 A# > C# \ B# = D# \= F,
 change_pair_signature([[x-C,y-D]|E], G, >, =\=).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E], [F|G], >, <) :-
 !,
 A# > C# \ B# < D# < F,
 change_pair_signature([[x-C,y-D]|E], G, >, <).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E], [F|G], >, =\<) :-
 !,
 A# = C# \ B# = D# < F,
 change_pair_signature([[x-C,y-D]|E], G, >, =\<).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E], [F|G], =\<, =) :-
 !,
 A# = C# \ B# = D# \= F,
 change_pair_signature([[x-C,y-D]|E], G, =\<, =).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E], [F|G], =\<, =\) :-
 !,
 A# = C# \ B# = D# <= F,
 change_pair_signature([[x-C,y-D]|E], G, =\<, =\).

change_pair_signature([[x-A,y-B],[x-C,y-D]|E], [F|G], =\<, =\>) :-
 !,
 A# = C# \ B# < D# <= F,
 change_pair_signature([[x-C,y-D]|E], G, =\<, =\>).
change_pair_signature([\([x-A,y-B], [x-C,y-D]\)|E], [F|G], =<, >=) :-
!,
A#=<C#\B#>=D#<=F,
change_pair_signature([\([x-C,y-D]\)|E], G, =<, >=).

change_pair_signature([\([x-A,y-B], [x-C,y-D]\)|E], [F|G], =<, >) :-
!,
A#=<C#\B#>D#<=F,
change_pair_signature([\([x-C,y-D]\)|E], G, =<, >).

change_pair_signature([\([x-A,y-B], [x-C,y-D]\)|E], [F|G], =<, =<) :-
!,
A#=<C#\B#<=D#<=F,
change_pair_signature([\([x-C,y-D]\)|E], G, =<, =<).
B.37 change_partition

\[
\text{ctr_date}(\text{change_partition}, [\text{’20000128’}, \text{’20030820’}, \text{’20040530’}]).
\]

\[
\text{ctr_origin}(\text{change_partition}, \text{’Derived from %c.’}, [\text{change}]).
\]

\[
\text{ctr_types}(\text{change_partition}, [\text{’VALUES’}\text{-collection(\text{val-int})}]).
\]

ctr_arguments(
 \text{change_partition},
 [\text{’NCHANGE’}\text{-dvar},
 \text{’VARIABLES’}\text{-collection(\text{var-dvar})},
 \text{’PARTITIONS’}\text{-collection(p-’VALUES’)}]).
\]

ctr_restrictions(
 \text{change_partition},
 [\text{required(’VALUES’,\text{val})},
 \text{distinct(’VALUES’,\text{val})},
 \text{’NCHANGE’}\geq 0,
 \text{’NCHANGE’}\lt \text{size(’VARIABLES’)},
 \text{required(’VARIABLES’,\text{var})},
 \text{required(’PARTITIONS’,p)},
 \text{size(’PARTITIONS’)}\geq 2]).
\]

ctr_graph(
 \text{change_partition},
 [\text{’VARIABLES’}],
 2,
 [\text{’PATH’}\text{>>collection(variables1,variables2)}],
 [\text{in_same_partition(}
 \text{variables1}\text{’\text{\text{var}},
 \text{variables2}\text{’\text{\text{var},
 \text{’PARTITIONS’})}},
 [\text{’NARC’}’\text{’\text{’NCHANGE’})}].
\]

ctr_example(
 \text{change_partition},
 \text{change_partition(}
 2,
 [[\text{var-6}],
 [\text{var-6}],
 [\text{var-2}],
 [\text{var-1}],
 [\text{var-3}],
 [\text{var-3}],
 [\text{var-1}],
 [\text{var-1}],
 [\text{var-1}],
 [\text{var-1}].
\]
[var-6],
[var-2],
[var-2],
[var-2],
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]).
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.38 circuit

ctr_date(circuit,['20030820','20040530']).

ctr_origin(circuit,\cite{Lauriere78},[]).

ctr_synonyms(circuit,[atour,cycle]).

ctr_arguments(circuit,
 ['NODES'-collection(index-int,succ-dvar)]).

ctr_restrictions(circuit,
 [required('NODES',[index,succ]),
 'NODES'^index>=1,
 'NODES'^index=<size('NODES'),
 distinct('NODES',index),
 'NODES'^succ>=1,
 'NODES'^succ=<size('NODES')]).

ctr_graph(circuit,
 ['NODES'],
 2,
 ['CLIQUE'>>collection(nodes1,nodes2)],
 [nodes1^succ=nodes2^index],
 ['MIN_NSNC'=size('NODES'),'MAX_ID'=1]).

ctr_example(circuit,
 circuit(
 [[index-1,succ-2],
 [index-2,succ-3],
 [index-3,succ-4],
 [index-4,succ-1]])).
B.39 circuit_cluster

ctr_date(circuit_cluster, ['20000128', '20030820']).

ctr_origin(circuit_cluster,
 'Inspired by \cite{LaporteAsefVaziriSriskandarajah96}.
').

ctr_arguments(circuit_cluster,
 ['NCIRCUIT'-dvar,
 'NODES'-collection(index-int,cluster-int,succ-dvar)]).

ctr_restrictions(circuit_cluster,
 ['NCIRCUIT']>=1,
 ['NCIRCUIT']=<size('NODES'),
 required('NODES', [index,cluster,succ]),
 'NODES'~index>=1,
 'NODES'~index=<size('NODES'),
 distinct('NODES',index),
 'NODES'~succ>=1,
 'NODES'~succ=<size('NODES')].

ctr_graph(circuit_cluster,
 ['NODES'],
 2,
 ['CLIQUE']>>collection(nodes1,nodes2),
 [nodes1~succ=\nodes1~index,nodes1~succ=nodes2~index],
 ['NTREE'=0,'NSCC'='NCIRCUIT'],
 [>>('ALL_VERTICES',
 [-\(\text{variables}
 \text{col('VARIABLES'-collection\(\var\text{-dvar}\),
 [item\(\var\text{'NODES'\text{'cluster}})])
 \text{alldifferent(\text{variables}),
 nvalues(\text{variables},=,size('NODES',cluster))}]])]

ctr_example(circuit_cluster,
 [circuit_cluster(1,
 [[index-1,cluster-1,succ-1],
 [index-2,cluster-1,succ-4],
 [index-3,cluster-2,succ-3],
 [index-4,cluster-2,succ-3],
 [index-5,cluster-2,succ-4],
 [index-6,cluster-3,succ-1],
 [index-7,cluster-3,succ-5],
 [index-8,cluster-3,succ-6],
 [index-9,cluster-3,succ-7],
 [index-10,cluster-4,succ-2],
 [index-11,cluster-4,succ-8],
 [index-12,cluster-4,succ-9],
 [index-13,cluster-5,succ-3],
 [index-14,cluster-5,succ-10],
 [index-15,cluster-5,succ-11],
 [index-16,cluster-5,succ-12],
 [index-17,cluster-6,succ-4],
 [index-18,cluster-6,succ-13],
 [index-19,cluster-6,succ-14],
 [index-20,cluster-6,succ-15],
 [index-21,cluster-7,succ-5],
 [index-22,cluster-7,succ-16],
 [index-23,cluster-7,succ-17],
 [index-24,cluster-7,succ-18],
 [index-25,cluster-8,succ-6],
 [index-26,cluster-8,succ-19],
 [index-27,cluster-8,succ-20],
 [index-28,cluster-8,succ-21],
 [index-29,cluster-9,succ-7],
 [index-30,cluster-9,succ-22],
 [index-31,cluster-9,succ-23],
 [index-32,cluster-9,succ-24],
 [index-33,cluster-10,succ-8],
 [index-34,cluster-10,succ-25],
 [index-35,cluster-10,succ-26],
 [index-36,cluster-10,succ-27],
 [index-37,cluster-11,succ-9],
 [index-38,cluster-11,succ-28],
 [index-39,cluster-11,succ-29],
 [index-40,cluster-11,succ-30],
 [index-41,cluster-12,succ-10],
 [index-42,cluster-12,succ-31],
 [index-43,cluster-12,succ-32],
 [index-44,cluster-12,succ-33],
 [index-45,cluster-13,succ-11],
 [index-46,cluster-13,succ-34],
 [index-47,cluster-13,succ-35],
 [index-48,cluster-13,succ-36],
 [index-49,cluster-14,succ-12],
 [index-50,cluster-14,succ-37],
 [index-51,cluster-14,succ-38],
 [index-52,cluster-14,succ-39],
 [index-53,cluster-15,succ-13],
 [index-54,cluster-15,succ-40],
 [index-55,cluster-15,succ-41],
 [index-56,cluster-15,succ-42]),
 [NCIRCUIT]=3]).
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[index-4,cluster-2,succ-5],
[index-5,cluster-3,succ-8],
[index-6,cluster-3,succ-6],
[index-7,cluster-3,succ-7],
[index-8,cluster-4,succ-2],
[index-9,cluster-4,succ-9])

),
circuit_cluster(
 2,
 [[index-1,cluster-1,succ-1],
 [index-2,cluster-1,succ-4],
 [index-3,cluster-2,succ-3],
 [index-4,cluster-2,succ-2],
 [index-5,cluster-3,succ-5],
 [index-6,cluster-3,succ-9],
 [index-7,cluster-3,succ-7],
 [index-8,cluster-4,succ-8],
 [index-9,cluster-4,succ-6]]).
B.40 circular_change

ctr_automaton(circular_change,circular_change).

ctr_date(circular_change,['20030820','20040530']).

ctr_origin(circular_change,'Derived from %c.',[change]).

ctr_arguments(
 circular_change,
 ['NCHANGE'-dvar,
 'VARIABLES'-collection(var-dvar),
 'CTR'-atom]).

ctr_restrictions(
 circular_change,
 ['NCHANGE'>=0,
 'NCHANGE'=<size('VARIABLES'),
 required('VARIABLES',var),
 in_list('CTR',[=,\=,<,>,>=,<=])).

ctr_graph(
 circular_change,
 ['VARIABLES'],
 2,
 ['CIRCUIT'>>collection(variables1,variables2)],
 ['CTR'(variables1`var,variables2`var),
 ['NARC'='NCHANGE']]).

ctr_example(
 circular_change,
 circular_change(4,
 [[var-4],[var-4],[var-3],[var-4],[var-1],
 =\=])).

circular_change(A,B,C) :-
 B=[D|E],
 append(B,[D],F),
 circular_change_signature(F,G,C),
 automaton(
 G,
 H,
 G,
 0..1,
 [source(s),sink(t)],
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[arc(s,0,s),arc(s,1,s,[I+1]),arc(s,\$,t)],
 [I],
 [0],
 [A]).

circular_change_signature([],[],A).
circular_change_signature([A],[],B) :- !.
circular_change_signature([[var-A],[var-B]|C],[D|E],=) :- !,
 A#=B#<=>D,
 circular_change_signature([[var-B]|C],E,=).
circular_change_signature([[var-A],[var-B]|C],[D|E],\=} :- !,
 A\=B\<=>D,
 circular_change_signature([[var-B]|C],E,\=}).
circular_change_signature([[var-A],[var-B]|C],[D|E],<) :- !,
 A#<B#<=>D,
 circular_change_signature([[var-B]|C],E,<).
circular_change_signature([[var-A],[var-B]|C],[D|E],>) :- !,
 A#>B#<=>D,
 circular_change_signature([[var-B]|C],E,>).
circular_change_signature([[var-A],[var-B]|C],[D|E],\>) :- !,
 A#>B#<=>D,
 circular_change_signature([[var-B]|C],E,\>).
circular_change_signature([[var-A],[var-B]|C],[D|E],\<=) :- !,
 A#<B#<=>D,
 circular_change_signature([[var-B]|C],E,\<=).
B.41 clique

ctr_date(clique,['20030820','20040530']).

ctr_origin(clique,\\cite{Fahle02},[]).

ctr_arguments(clique,
 ['SIZE_CLIQUE'-dvar,
 'NODES'-collection(index-int,succ-svar)]).

ctr_restrictions(clique,
 ['SIZE_CLIQUE'>=0,
 'SIZE_CLIQUE'=<size('NODES'),
 required('NODES',[index,succ]),
 'NODES'\index>=1,
 'NODES'\index=<size('NODES'),
 distinct('NODES',index)]).

ctr_graph(clique,
 ['NODES'],
 2,
 ['CLIQUE'(\=\=)>collection(nodes1,nodes2)],
 [in_set(nodes2\index,nodes1\succ)],
 ['NARC'='SIZE_CLIQUE'^2-'SIZE_CLIQUE'-\'SIZE_CLIQUE',
 'NVERTEX'='SIZE_CLIQUE']).

ctr_example(clique,
 clique(3,
 [[index-1,succ-{}],
 [index-2,succ-{3,5}],
 [index-3,succ-{2,5}],
 [index-4,succ-{}],
 [index-5,succ-{2,3}]]).
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.42 colored_matrix

ctr_predefined(colored_matrix).

ctr_date(colored_matrix, ['20031017', '20040530']).

ctr_origin(colored_matrix, 'KOALOG', []).

ctr_synonyms(colored_matrix, [cardinality_matrix, card_matrix]).

ctr_arguments(
 colored_matrix,
 ['C'-int, 'L'-int, 'K'-int,
 'MATRIX'-collection(column-int, line-int, var-dvar),
 'CPROJ'-collection(column-int, val-int, noccurrence-dvar),
 'LPROJ'-collection(line-int, val-int, noccurrence-dvar))).

ctr_restrictions(
 colored_matrix,
 ['C'>=0, 'L'>=0, 'K'>=0,
 required('MATRIX', [column, line, var]),
 increasing_seq('MATRIX', [column, line]),
 size('MATRIX') = 'C'*'L'+'C'+'L'+1,
 'MATRIX' column>=0,
 'MATRIX' column=<C',
 'MATRIX' line>=0,
 'MATRIX' line=<L',
 'MATRIX' var>=0,
 'MATRIX' var=<K',
 required('CPROJ', [column, val, noccurrence]),
 increasing_seq('CPROJ', [column, val]),
 size('CPROJ') = 'C'*'K'+'C'+'K'+1,
 'CPROJ' column>=0,
 'CPROJ' column=<C',
 'CPROJ' val>=0,
 'CPROJ' val=<K',
 required('LPROJ', [line, val, noccurrence]),
 increasing_seq('LPROJ', [line, val]),
 size('LPROJ') = 'L'*'K'+'L'+'K'+1,
 'LPROJ' line>=0,
 'LPROJ' line=<L',
 'LPROJ' val>=0,
'LPROJ'\textasciitilde val='K']
).

ctr_example(
 colored_matrix,
 colored_matrix(
 1,
 2,
 4,
 [[column-0,line-0,var-3],
 [column-0,line-1,var-1],
 [column-0,line-2,var-3],
 [column-1,line-0,var-4],
 [column-1,line-1,var-4],
 [column-1,line-2,var-3]],
 [[column-0,val-0,nocc-0],
 [column-0,val-1,nocc-1],
 [column-0,val-2,nocc-0],
 [column-0,val-3,nocc-2],
 [column-0,val-4,nocc-0],
 [column-1,val-0,nocc-0],
 [column-1,val-1,nocc-0],
 [column-1,val-2,nocc-0],
 [column-1,val-3,nocc-1],
 [column-1,val-4,nocc-2]],
 [[line-0,val-0,nocc-0],
 [line-0,val-1,nocc-0],
 [line-0,val-2,nocc-0],
 [line-0,val-3,nocc-1],
 [line-0,val-4,nocc-1],
 [line-1,val-0,nocc-0],
 [line-1,val-1,nocc-1],
 [line-1,val-2,nocc-0],
 [line-1,val-3,nocc-0],
 [line-1,val-4,nocc-1],
 [line-2,val-0,nocc-0],
 [line-2,val-1,nocc-0],
 [line-2,val-2,nocc-0],
 [line-2,val-3,nocc-2],
 [line-2,val-4,nocc-0]))).
B.43 coloured_cumulative

ctr_date(coloured_cumulative, [’20000128’, ’20030820’]).

ctr_origin(
 coloured_cumulative,
 ’Derived from %c and %c.’,
 [cumulative, nvalues]).

ctr_arguments(
 coloured_cumulative,
 [-’TASKS’,
 collection(
 origin-dvar,
 duration-dvar,
 end-dvar,
 colour-dvar),
 ’LIMIT’-int]).

ctr_restrictions(
 coloured_cumulative,
 [require_at_least(2,’TASKS’, [origin, duration, end]),
 required(’TASKS’, colour),
 ’TASKS’^duration>=0,
 ’LIMIT’>=0]).

ctr_graph(
 coloured_cumulative,
 [’TASKS’],
 1,
 [’SELF’>>collection(tasks)],
 [tasks^origin+tasks^duration=tasks^end],
 [’NARC’=size(’TASKS’)]).

ctr_graph(
 coloured_cumulative,
 [’TASKS’, ’TASKS’],
 2,
 [’PRODUCT’>>collection(tasks1, tasks2)],
 [tasks1^duration>0,
 tasks2^origin=<tasks1^origin,
 tasks1^origin<tasks2^end],
 [],
 [>>’SUCC’,
 [source,
 -(variables,
col('VARIABLES'-collection(var-dvar),
 [item(var-'TASKS'`colour'))]]],
 [nvalues(variables,=<,'LIMIT')])].

ctr_example(
 coloured_cumulative,
 coloured_cumulative(
 [[origin-1,duration-2,end-3,colour-1],
 [origin-2,duration-9,end-11,colour-2],
 [origin-3,duration-10,end-13,colour-3],
 [origin-6,duration-6,end-12,colour-2],
 [origin-7,duration-2,end-9,colour-3]],
 2)).
B.44 coloured_cumulatives

ctr_date(coloured_cumulatives,\['20000128','20030820\]).

ctr_origin(
 coloured_cumulatives,
 'Derived from %c and %c.',
 [cumulatives,nvalues]).

ctr_arguments(
 coloured_cumulatives,
 [-('TASKS',
 collection(
 machine-dvar,
 origin-dvar,
 duration-dvar,
 end-dvar,
 colour-dvar)),
 'MACHINES'-collection(id-int,capacity-int)]).

ctr_restrictions(
 coloured_cumulatives,
 [required('TASKS',[machine,colour]),
 require_at_least(2,'TASKS',[origin,duration,end]),
 'TASKS'\duration>=0,
 required('MACHINES',[id,capacity]),
 distinct('MACHINES',id),
 'MACHINES'\capacity>=0]).

ctr_graph(
 coloured_cumulatives,
 ['TASKS'],
 1,
 ['SELF'>>collection(tasks)],
 [tasks\origin+tasks\duration=tasks\end],
 ['NARC'=size('TASKS')]).

ctr_graph(
 coloured_cumulatives,
 ['TASKS','TASKS'],
 2,
 foreach('MACHINES',['PRODUCT'>>collection(tasks1,tasks2)]),
 [tasks1\machine='MACHINES'\id,
 tasks1\machine=tasks2\machine,
 tasks1\duration>0,
 tasks2\origin=<tasks1\origin,
tasks1\^origin<tasks2\^end],
[],
[>>('SUCC',
 [source,
 -(variables,
 col('VARIABLES'-collection(var-dvar),
 [item(var-'TASKS'\^colour)])
)],
 [nvalues(variables,=<,'MACHINES'\^capacity)])
).

ctr_example(
 coloured_cumulatives,
 coloured_cumulatives(
 [[machine-1,origin-6,duration-6,end-12,colour-1],
 [machine-1,origin-2,duration-9,end-11,colour-2],
 [machine-2,origin-7,duration-3,end-10,colour-2],
 [machine-1,origin-1,duration-2,end-3,colour-1],
 [machine-2,origin-4,duration-5,end-9,colour-2],
 [machine-1,origin-3,duration-10,end-13,colour-1]],
 [[id-1,capacity-2],[id-2,capacity-1]]).
B.45 common

ctr_date(common,['20000128','20030820']).

ctr_origin(common,'N.˜Beldiceanu',[]).

ctr_arguments(
 common,
 ['NCOMMON1'-dvar,
 'NCOMMON2'-dvar,
 'VARIABLES1'-collection(var-dvar),
 'VARIABLES2'-collection(var-dvar)]).

ctr_restrictions(
 common,
 ['NCOMMON1'>=0,
 'NCOMMON1'=<size('VARIABLES1'),
 'NCOMMON2'>=0,
 'NCOMMON2'=<size('VARIABLES2'),
 required('VARIABLES1',var),
 required('VARIABLES2',var))].

ctr_graph(
 common,
 ['VARIABLES1','VARIABLES2'],
 2,
 ['PRODUCT'>>collection(variables1,variables2)],
 [variables1'var=variables2'var],
 ['NSOURCE'='NCOMMON1','NSINK'='NCOMMON2']).

ctr_example(
 common,
 common(
 3,
 4,
 [[var-1],[var-9],[var-1],[var-5]],
 [[var-2],[var-1],[var-9],[var-9],[var-6],[var-9]]).
B.46 common_interval

ctr_date(common_interval,[’20030820’]).

ctr_origin(common_interval,’Derived from %c.’,[common]).

ctr_arguments(
 common_interval,
 [’NCOMMON1’-dvar,
 ’NCOMMON2’-dvar,
 ’VARIABLES1’-collection(var-dvar),
 ’VARIABLES2’-collection(var-dvar),
 ’SIZE_INTERVAL’-int]).

ctr_restrictions(
 common_interval,
 [’NCOMMON1’>=0,
 ’NCOMMON1’<size(’VARIABLES1’),
 ’NCOMMON2’>=0,
 ’NCOMMON2’<size(’VARIABLES2’),
 required(’VARIABLES1’,var),
 required(’VARIABLES2’,var),
 ’SIZE_INTERVAL’>0]).

ctr_graph(
 common_interval,
 [’VARIABLES1’,’VARIABLES2’],
 2,
 [’PRODUCT’>>collection(variables1,variables2)],
 [=((variables1^’var’/’SIZE_INTERVAL’,
 variables2^’var’/’SIZE_INTERVAL’))],
 [’NSOURCE’=’NCOMMON1’,’NSINK’=’NCOMMON2’]).

ctr_example(
 common_interval,
 common_interval(3,
 2,
 [[var-8],[var-6],[var-6],[var-0]],
 [[var-7],[var-3],[var-3],[var-3],[var-3],[var-7]],
 3)).
B.47 **common_modulo**

```prolog
ctr_date(common_modulo,['20030820']).

ctr_origin(common_modulo,'Derived from %c.',[common]).

ctr_arguments(
    common_modulo,
    ['NCOMMON1'-dvar,
     'NCOMMON2'-dvar,
     'VARIABLES1'-collection(var-dvar),
     'VARIABLES2'-collection(var-dvar),
     'M'-int]).

ctr_restrictions(
    common_modulo,
    ['NCOMMON1'>=0,
     'NCOMMON1'=<size('VARIABLES1'),
     'NCOMMON2'>=0,
     'NCOMMON2'=<size('VARIABLES2'),
     required('VARIABLES1',var),
     required('VARIABLES2',var),
     'M'>0]).

ctr_graph(
    common_modulo,
    ['VARIABLES1','VARIABLES2'],
    2,
    ['PRODUCT'>>collection(variables1,variables2)],
    [variables1^var mod 'M'=variables2^var mod 'M',
     'NSOURCE'='NCOMMON1','NSINK'='NCOMMON2']).

ctr_example(
    common_modulo,
    common_modulo(3,
    4,
    [[var-0],[var-4],[var-0],[var-8]],
    [[var-7],[var-5],[var-4],[var-9],[var-2],[var-4]],
    5)).
```
B.48 common_partition

ctr_date(common_partition,['20030820']).

ctr_origin(common_partition,'Derived from %c.',[common]).

ctr_types(common_partition,['VALUES'-collection(val-int)]).

ctr_arguments(
 common_partition,
 ['NCOMMON1'-dvar,
 'NCOMMON2'-dvar,
 'VARIABLES1'-collection(var-dvar),
 'VARIABLES2'-collection(var-dvar),
 'PARTITIONS'-collection(p-'VALUES'))).

ctr_restrictions(
 common_partition,
 [required('VALUES',val),
 distinct('VALUES',val),
 'NCOMMON1'>=0,
 'NCOMMON1'=<size('VARIABLES1'),
 'NCOMMON2'>=0,
 'NCOMMON2'=<size('VARIABLES2'),
 required('VARIABLES1',var),
 required('VARIABLES2',var),
 required('PARTITIONS',p),
 size('PARTITIONS')>=2]).

ctr_graph(
 common_partition,
 ['VARIABLES1','VARIABLES2'],
 2,
 ['PRODUCT'>>collection(variables1,variables2)],
 [in_same_partition(
 variables1^var,
 variables2^var,
 'PARTITIONS')],
 ['NSOURCE'='NCOMMON1','NSINK'='NCOMMON2']).

ctr_example(
 common_partition,
 common_partition(
 3,
 4,
 [[var-2],[var-3],[var-6],[var-0]],
 ...)
[[var-0], [var-6], [var-3], [var-3], [var-7], [var-1]],
[[p-[[val-1], [val-3]]],
[p-[[val-4]]],
[p-[[val-2], [val-6]]]).
B.49 connect_points

ctr_date(connect_points,[‘20000128’,‘20030820’,‘20040530’]).

ctr_origin(connect_points,’N.˘Beldiceanu’,[]).

ctr_arguments(
 connect_points,
 [‘SIZE1’-int,
 ‘SIZE2’-int,
 ‘SIZE3’-int,
 ‘NGROUP’-dvar,
 ‘POINTS’-collection(p-dvar)]).

ctr_restrictions(
 connect_points,
 [‘SIZE1’>0,
 ‘SIZE2’>0,
 ‘SIZE3’>0,
 ‘NGROUP’>=0,
 ‘NGROUP’=<size(‘POINTS’),
 ‘SIZE1’*‘SIZE2’*‘SIZE3’=size(‘POINTS’),
 required(‘POINTS’,p)]).

ctr_graph(
 connect_points,
 [‘POINTS’],
 2,
 [>>(‘GRID’([‘SIZE1’,’SIZE2’,’SIZE3’]),
 collection(points1,points2))],
 [points1^p=X0,points1^p=points2^p],
 [‘NSC’=’NGROUP’]).

ctr_example(
 connect_points,
 connect_points(8,
 4,
 2,
 2,
 [[p-0],
 [p-0],
 [p-1],
 [p-1],
 [p-0],
 [p-2],
 [p-0],
 [p-0],
 [p-2]])
[p-2],
[p-2],
[p-0],
[p-0],
[p-0],
[p-0],
[p-2],
[p-0],
[p-0],
[p-0],
[p-2],
[p-0],
[p-0]]}.
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.50 correspondence

correspondence(ctr_date(correspondence, ['20030820'])).

ctr_origin(correspondence,
 'Derived from %c by removing the sorting condition.',
 [sort_permutation]).

ctr_arguments(correspondence,
 ['FROM'-collection(fvar-dvar),
 'PERMUTATION'-collection(var-dvar),
 'TO'-collection(tvar-dvar)]).

ctr_restrictions(correspondence,
 [size('PERMUTATION')=size('FROM'),
 size('PERMUTATION')=size('TO'),
 'PERMUTATION'\var>=1,
 'PERMUTATION'\var=<size('PERMUTATION'),
 alldifferent('PERMUTATION'),
 required('FROM',fvar),
 required('PERMUTATION',var),
 required('TO',tvar)]).

ctr_derived_collections(correspondence,
 [col('FROM_PERMUTATION'-collection(fvar-dvar,var-dvar),
 [item(fvar-'FROM'\fvar,var-'PERMUTATION'\var)])]).

ctr_graph(correspondence,
 ['FROM_PERMUTATION','TO'],
 2,
 ['PRODUCT']>>collection(from_permutation,to)],
 [from_permutation\fvar=to\tvar,
 from_permutation\var=to\key],
 ['NARC'=size('PERMUTATION')]).

ctr_example(correspondence,
 correspondence(correspondence(%
 [[fvar-1],
 [fvar-9],
 [fvar-1],
 [fvar-9],
 [fvar-1],
 [fvar-9]))).
[fvar-5],
[fvar-2],
[fvar-1],
[[var-6],[var-1],[var-3],[var-5],[var-4],[var-2]],
[[tvar-9],
[tvar-1],
[tvar-1],
[tvar-2],
[tvar-5],
[tvar-1]])}.
B.51 count

ctr_automaton(count, count_).

ctr_date(count, ['20000128', '20030820', '20040530']).

ctr_origin(count, '\cite{Sicstus95}', []).

ctr_arguments(
 count,
 ['VALUE'-int, 'VARIABLES'-collection(var-dvar), 'RELOP'-atom, 'NVAR'-dvar]).

ctr_restrictions(
 count,
 [required('VARIABLES', var),
 in_list('RELOP', [=, =\=, <, >=, >, <=])]).

ctr_graph(
 count,
 ['VARIABLES'],
 1,
 ['SELF'>>collection(variables)],
 [variables\-var='VALUE'],
 ['RELOP ('NARC', 'NVAR')]').

ctr_example(
 count,
 count(5, [[var-4], [var-5], [var-5], [var-4], [var-5]], >=, 2)).

count_(A, B, C, D) :-
 length(B, E),
 in(F, 0..E),
 count_signature(B, G, A),
 automaton(
 G,
 H,
 G,
 0..1,
 [source(s), sink(t)],
 [arc(s, 0, s), arc(s, 1, s, [I+1]), arc(s, $, t)],
 [I],
 [0],
 [F]),
count_relop(C,F,D).

count_signature([],[],A).

count_signature([[var-A]|B],[C|D],E) :-
 A#=E#<=C,
 count_signature(B,D,E).

count_relop(=,A,B) :-
 A#=B.

count_relop(\=,A,B) :-
 A\=B.

count_relop(<,A,B) :-
 A#<B.

count_relop(>=,A,B) :-
 A#>=B.

count_relop(>,A,B) :-
 A#>B.

count_relop(=<,A,B) :-
 A#=<B.
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.52 counts

ctr_automaton(counts,counts).

ctr_date(counts,['20030820','20040530']).

ctr_origin(counts,'Derived from %c.',[count]).

ctr_arguments(counts,
 ['VALUES'-collection(val-int),
 'VARIABLES'-collection(var-dvar),
 'RELOP'-atom,
 'LIMIT'-dvar]).

ctr_restrictions(counts,
 [required('VALUES',val),
 distinct('VALUES',val),
 required('VARIABLES',var),
 in_list('RELOP',[=,\=,\<,\\>=,\>,\\<=])].

ctr_graph(counts,
 ['VARIABLES','VALUES'],
 2,
 ['PRODUCT'>>collection(variables,values)],
 [variables~var=values~val],
 ['RELOP'('NARC','LIMIT')]).

ctr_example(counts,count,
 counts(
 [[val-1],[val-3],[val-4],[val-9]],
 [[var-4],[var-5],[var-5],[var-4],[var-1],[var-5]],
 =,
 3)).

counts(A,B,C,D) :-
 length(B,E),
 in(F,0..E),
 col_to_list(A,G),
 list_to_fdset(G,H),
 counts_signature(B,I,H),
 automaton(I,
\[\text{counts_signature}([\],[],A). \]

\[\text{counts_signature}([\text{var-A}|B],[C|D],E) :- \]
\[\text{in_set}(A,E)\#<=>C, \]
\[\text{counts_signature}(B,D,E). \]
B.53 crossing

ctr_date(crossing,[‘20000128’,’20030820’]).

ctr_origin(
crossing,
‘Inspired by \cite{CormenLeisersonRivest90}.’,
[]).

ctr_arguments(
crossing,
[‘NCROSS’-dvar,
’SEGMENTS’-collection(ox-dvar,oy-dvar,ex-dvar,ey-dvar)]).

ctr_restrictions(
crossing,
[‘NCROSS’>=0,
=<(‘NCROSS’,
/(-size(‘SEGMENTS’)*size(‘SEGMENTS’),
size(‘SEGMENTS’)),
2)),
required(‘SEGMENTS’,[ox,oy,ex,ey])).

ctr_graph(
crossing,
[‘SEGMENTS’],
2,
[‘CLIQUE’(<)>>collection(s1,s2)],
[max(s1ˆox,s1ˆex)>=min(s2ˆox,s2ˆex),
max(s2ˆox,s2ˆex)>=min(s1ˆox,s1ˆex),
max(s1ˆoy,s1ˆey)>=min(s2ˆoy,s2ˆey),
max(s2ˆoy,s2ˆey)>=min(s1ˆoy,s1ˆey),
#\/{$#}=/=((-<(s2ˆox-s1ˆex)*(s1ˆey-s1ˆoy),
(s1ˆex-s1ˆox)*(s2ˆoy-s1ˆey)),
0),
=((-<(s2ˆex-s1ˆex)*(s2ˆoy-s1ˆoy),
(s2ˆox-s1ˆox)*(s2ˆey-s1ˆey)),
0)),
=\=(sign(
-<(s2ˆox-s1ˆex)*(s1ˆey-s1ˆoy),
(s1ˆex-s1ˆox)*(s2ˆoy-s1ˆey)),
sign(
-<(s2ˆex-s1ˆex)*(s2ˆoy-s1ˆoy),
(s2ˆox-s1ˆox)*(s2ˆey-s1ˆey))))],
[‘NARC’=’NCROSS’]).
ctr_example(
crossing,
crossing(3,
[[ox-1,oy-4,ex-9,ey-2],
[ox-1,oy-1,ex-3,ey-5],
[ox-3,oy-2,ex-7,ey-4],
[ox-9,oy-1,ex-9,ey-4]]).
B.54 cumulative

ctr_date(cumulative,[‘20000128’,’20030820’,’20040530’]).

ctr_origin(cumulative,’\cite{AggounBeldiceanu93}’,[],[]).

ctr_arguments(
 cumulative,
 [‘TASKS’,
 collection(
 origin-dvar,
 duration-dvar,
 end-dvar,
 height-dvar),
 ‘LIMIT’-int]).

ctr_restrictions(
 cumulative,
 [require_at_least(2,’TASKS’,[origin,duration,end]),
 required(‘TASKS’,height),
 ‘TASKS’^duration>=0,
 ‘TASKS’^height>=0,
 ‘LIMIT’>=0]).

ctr_graph(
 cumulative,
 [‘TASKS’],
 1,
 [‘SELF’>>collection(tasks)],
 [tasks^origin+tasks^duration=tasks^end],
 [‘NARC’=size(‘TASKS’)]).

ctr_graph(
 cumulative,
 [‘TASKS’,‘TASKS’],
 2,
 [‘PRODUCT’>>collection(tasks1,tasks2)],
 [tasks1^duration>0,
 tasks2^origin<tasks1^origin,
 tasks1^origin<tasks2^end],
 [],
 [>>(‘SUCC’,
 [source,
 -(variables,
 col(‘VARIABLES’-collection(var-dvar),
 [item(var=‘TASKS’^height)]))]])],
[sum_ctr(variables,=<,'LIMIT')]).

ctr_example(
 cumulative,
 cumulative(
 [[origin-1,duration-3,end-4,height-1],
 [origin-2,duration-9,end-11,height-2],
 [origin-3,duration-10,end-13,height-1],
 [origin-6,duration-6,end-12,height-1],
 [origin-7,duration-2,end-9,height-3]],
 8)).
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.55 cumulative_product

ctr_date(cumulative_product,['20030820']).

ctr_origin(cumulative_product,'Derived from %c.',[cumulative]).

ctr_arguments(cumulative_product,
[-('TASKS',
 collection(
 origin-dvar,
 duration-dvar,
 end-dvar,
 height-dvar)),
 'LIMIT'-int]).

ctr_restrictions(cumulative_product,
[require_at_least(2,'TASKS',[origin,duration,end]),
 required('TASKS',height),
 'TASKS'~duration>=0,
 'TASKS'~height>=1,
 'LIMIT'~=0]).

ctr_graph(cumulative_product,
['TASKS'],
1,
['SELF'>>collection(tasks)],
[task~origin+task~duration=task~end],
['NARC'=size('TASKS')]).

ctr_graph(cumulative_product,
['TASKS','TASKS'],
2,
['PRODUCT'>>collection(tasks1,tasks2)],
[tasks1~duration>0,
 tasks2~origin=<tasks1~origin,
 tasks1~origin<tasks2~end],
[],
>>('SUCC',
[source,
 -(variables,
 col('VARIABLES'-collection(var-dvar),
 [item(var='ITEMS'~height)]))])),
product_ctr(variables,=<,'LIMIT')).

cumulative_product(
 [[origin-1,duration-3,end-4,height-1],
 [origin-2,duration-9,end-11,height-2],
 [origin-3,duration-10,end-13,height-1],
 [origin-6,duration-6,end-12,height-1],
 [origin-7,duration-2,end-9,height-3]],
 6)).
B.56 cumulative_two_d

ctr_date(cumulative_two_d, ['20000128', '20030820']).

ctr_origin(
 cumulative_two_d,
 'Inspired by %c and %c.',
 [cumulative, diffn]).

ctr_arguments(
 cumulative_two_d,
 [-(`RECTANGLES`,
 collection(
 start1-dvar,
 sizel-dvar,
 last1-dvar,
 start2-dvar,
 size2-dvar,
 last2-dvar,
 height-dvar),
 `LIMIT`-int)).

ctr_restrictions(
 cumulative_two_d,
 [require_at_least(2, `RECTANGLES`, [start1, sizel, last1]),
 require_at_least(2, `RECTANGLES`, [start2, size2, last2]),
 required(`RECTANGLES`, height),
 `RECTANGLES`^sizel>=0,
 `RECTANGLES`^size2>=0,
 `RECTANGLES`^height>=0,
 `LIMIT'>=0]).

ctr_derived_collections(
 cumulative_two_d,
 [col(-`CORNERS`,
 collection(sizel-dvar, size2-dvar, x-dvar, y-dvar)),
 [item(
 sizel-`RECTANGLES`^sizel,
 size2-`RECTANGLES`^size2,
 x-`RECTANGLES`^start1,
 y-`RECTANGLES`^start2),
 item(
 sizel-`RECTANGLES`^sizel,
 size2-`RECTANGLES`^size2,
 x-`RECTANGLES`^start1,
 y-`RECTANGLES`^last2),
 ...)]}
item(
 size1-‘RECTANGLES’ˆsize1,
 size2-‘RECTANGLES’ˆsize2,
 x-‘RECTANGLES’ˆlast1,
 y-‘RECTANGLES’ˆstart2),
item(
 size1-‘RECTANGLES’ˆsize1,
 size2-‘RECTANGLES’ˆsize2,
 x-‘RECTANGLES’ˆlast1,
 y-‘RECTANGLES’ˆlast2)).

ctr_graph(
 cumulative_two_d,
 ['RECTANGLES'],
 1,
 ['SELF'>>collection(rectangles)],
 [rectanglesˆstart1+rectanglesˆsize1-1=rectanglesˆlast1,
 rectanglesˆstart2+rectanglesˆsize2-1=rectanglesˆlast2],
 ['NARC'=size('RECTANGLES')]).

ctr_graph(
 cumulative_two_d,
 ['CORNERS','RECTANGLES'],
 2,
 ['PRODUCT'>>collection(corners,rectangles)],
 [cornersˆsize1>0,
 cornersˆsize2>0,
 rectanglesˆstart1=<cornersˆx,
 cornersˆx=<rectanglesˆlast1,
 rectanglesˆstart2=<cornersˆy,
 cornersˆy=<rectanglesˆlast2],
 []],
 [>>(‘SUCC’,
 [source,
 -(variables,
 col('VARIABLES'-collection(var-dvar),
 [item(var-’RECTANGLES’ˆheight)]))]),
 [sum_ctr(variables,=<,'LIMIT')]).

ctr_example(
 cumulative_two_d,
 cumulative_two_d(
 [[start1-1,
 size1-4,
 last1-4,
 start2-3,
size2-3,
last2-5,
height-4],
[start1-3,
sizel-2,
last1-4,
start2-1,
size2-2,
last2-2,
height-2],
[start1-1,
size1-2,
last1-2,
start2-1,
size2-2,
last2-2,
height-2],
[start1-4,
sizel-1,
last1-4,
start2-1,
size2-1,
last2-1,
height-1],
4}).
B.57 cumulative_with_level_of_priority

ctr_date(cumulative_with_level_of_priority,['20040530']).

ctr_origin(cumulative_with_level_of_priority, H.˜Simonis, []).

ctr_arguments(
 cumulative_with_level_of_priority,
 [-('TASKS',
 collection(
 priority-int, origin-dvar, duration-dvar, end-dvar, height-dvar),
 'PRIORITIES'-collection(id-int, capacity-int))).

ctr_restrictions(
 cumulative_with_level_of_priority,
 [required('TASKS', [priority, height]),
 require_at_least(2, 'TASKS', [origin, duration, end]),
 'TASKS'°priority>=1,
 'TASKS'°priority=<size('PRIORITIES'),
 'TASKS'°duration>=0,
 'TASKS'°height>=0,
 required('PRIORITIES', [id, capacity]),
 'PRIORITIES'°id>=1,
 'PRIORITIES'°id=<size('PRIORITIES'),
 increasing_seq('PRIORITIES', id),
 increasing_seq('PRIORITIES', capacity))].

ctr Derived collections (cumulative_with_level_of_priority,
 [-('TIME_POINTS',
 collection(idp-int, duration-dvar, point-dvar)),
 [item(
 idp-'TASKS'°priority, duration-'TASKS'°duration, point-'TASKS'°origin),
 item(
 idp-'TASKS'°priority, duration-'TASKS'°duration, point-'TASKS'°end))]).

ctr Graph (cumulative_with_level_of_priority,
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

['TASKS'],
1,
['SELF']>>collection(tasks),
[tasks^origin+tasks^duration=tasks^end],
['NARC'=size('TASKS')].

ctr_graph(
cumulative_with_level_of_priority,
['TIME_POINTS','TASKS'],
2,
foreach(
 'PRIORITIES',
 ['PRODUCT']>>collection(time_points,tasks)),
[time_points^id='PRIORITIES'^id,
 time_points^idp>=tasks^priority,
 time_points^duration>0,
 tasks^origin=<time_points^point,
 time_points^point<tasks^end],
[]),
>>('SUCC',
 [source,
 -(variables,
 col('VARIABLES'-collection(var-dvar),
 [item(var-'TASKS'^height)])),
 [sumCtr(variables,=<,'PRIORITIES'^capacity)])).

ctr_example(
cumulative_with_level_of_priority,
cumulative_with_level_of_priority(
[[priority-1,origin-1,duration-2,end-3,height-1],
[priority-1,origin-2,duration-3,end-5,height-1],
[priority-1,origin-5,duration-2,end-7,height-2],
[priority-2,origin-3,duration-2,end-5,height-2],
[priority-2,origin-6,duration-3,end-9,height-1]],
[[id-1,capacity-2],[id-2,capacity-3]]).
B.58 cumulatives

ctr_date(cumulatives,[''20000128'' , '20030820' , '20040530'].

ctr_origin(cumulatives, ''\cite{BeldiceanuCarlsson02a}'', []).

ctr_arguments(
 cumulatives,
 [-('TASKS',
 collection(
 machine-dvar,
 origin-dvar,
 duration-dvar,
 end-dvar,
 height-dvar),
 'MACHINES'-collection(id-int, capacity-int),
 'CTR'-atom)).

ctr_restrictions(
 cumulatives,
 [required('TASKS' , [machine, height]),
 require_at_least(2, 'TASKS' , [origin, duration, end]),
 in_attr('TASKS', machine, 'MACHINES', id),
 'TASKS' ^ duration>=0,
 required('MACHINES', [id, capacity]),
 distinct('MACHINES', id),
 in_list('CTR', [=<,>=]]).

ctr_derived_collections(
 cumulatives,
 [col(-('TIME_POINTS',
 collection(idm-int, duration-dvar, point-dvar)),
 [item(
 idm-'TASKS' ^ machine,
 duration-'TASKS' ^ duration,
 point-'TASKS' ^ origin),
 item(
 idm-'TASKS' ^ machine,
 duration-'TASKS' ^ duration,
 point-'TASKS' ^ end)])].

ctr_graph(
 cumulatives,
 ['TASKS'],
 1,
 ['SELF' >>= collection(tasks),
 ...]}.
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

\[\text{tasks}^\text{origin} + \text{tasks}^\text{duration} = \text{tasks}^\text{end},\]
\[\text{\('NARC'=\text{size('TASKS')}\)}.\]

\text{ctr} _\text{graph}(
 \text{cumulatives},
 \text{\('TIME_POINTS','TASKS'\)},
 2,
 \text{foreach}(
 \text{\('MACHINES'\)},
 \text{\('PRODUCT'>\text{collection(time_points,tasks)})},
 \text{\('TIME_POINTS^\text{idm}='MACHINES^\text{id},}
 \text{\('TIME_POINTS^\text{idm}='TASKS^\text{machine},}
 \text{\('TIME_POINTS^\text{duration}>0,}
 \text{\('TIME_POINTS^\text{origin}='time_points^\text{point},}
 \text{\('TIME_POINTS^\text{point}<'tasks^\text{end},}
 \text{\()},
 \text{\('SUCC',}
 \text{\('source,}
 \text{\('-\text{variables},}
 \text{\('col('\text{VARIBALES'-collection(var-dvar),}
 \text{\('item(var-'\text{TASKS^\text{height}})))}}]}
 \text{\('sum_ctr(variables,'CTR','MACHINES^\text{capacity})].\)
\]

\text{ctr} _\text{example}(
 \text{cumulatives},
 \text{\('machine-1,origin-2,duration-2,end-4,height-\text{-2},}
 \text{\('machine-1,origin-1,duration-4,end-5,height-1],}
 \text{\('machine-1,origin-4,duration-2,end-6,height-\text{-1],}
 \text{\('machine-1,origin-2,duration-3,end-5,height-2],}
 \text{\('machine-1,origin-5,duration-2,end-7,height-2],}
 \text{\('machine-2,origin-3,duration-2,end-5,height-\text{-2],}
 \text{\('machine-2,origin-1,duration-4,end-5,height-\text{-1],}
 \text{\('id-1,capacity-0],[id-2,capacity-0]),}
 \text{\('>=)\).}
B.59 cutset

ctr_date(cutset, ['20030820', '20040530']).

ctr_origin(cutset, '\cite{FagesLal03}', []).

ctr_arguments(cutset, ['SIZE_CUTSET'-dvar, 'NODES'-collection(index-int, succ-sint, bool-dvar)]).

ctr_restrictions(cutset, ['SIZE_CUTSET'>=0, 'SIZE_CUTSET'=<size('NODES'), required('NODES', [index, succ, bool]), 'NODES'\index>=1, 'NODES'\index=<size('NODES'), distinct('NODES', index), 'NODES'\bool>=0, 'NODES'\bool=1]).

ctr_graph(cutset, ['NODES'], 2, ['CLIQUE'>>collection(nodes1, nodes2)], in_set(nodes2\index, nodes1\succ), nodes1\bool=1, nodes2\bool=1, ['MAX_NSCC'<=1, 'NVERTEX'=size('NODES')-'SIZE_CUTSET']).

ctr_example(cutset, cutset(1, [[index-1, succ-{2,3,4}, bool-1], [index-2, succ-{3}, bool-1], [index-3, succ-{4}, bool-1], [index-4, succ-{1}, bool-0]])).
B.60 cycle

ctr_date(cycle,['20000128','20030820']).

ctr_origin(cycle,'\cite{BeldiceanuContejean94}',[]).

ctr_arguments(cycle,
['NCYCLE'-dvar,'NODES'-collection(index-int,succ-dvar)]).

ctr_restrictions(cycle,
['NCYCLE'>=1,
 'NCYCLE'=<size('NODES'),
 required('NODES',[index,succ]),
 'NODES'\index>=1,
 'NODES'\index=<size('NODES'),
 distinct('NODES',index),
 'NODES'\succ>=1,
 'NODES'\succ=<size('NODES'))).

ctr_graph(cycle,
['NODES'],
2,
['CLIQUE'>>collection(nodes1,nodes2)],
[nodes1\succ=nodes2\index],
['NTREE'=0,'NCC'=\NCYCLE']).

ctr_example(cycle,
cycle(2,
[[index-1,succ-2],
 [index-2,succ-1],
 [index-3,succ-5],
 [index-4,succ-3],
 [index-5,succ-4]]).

B.61 cycle_card_on_path

ctr_date(cycle_card_on_path, ['20000128', '20030820', '20040530']).

ctr_origin(cycle_card_on_path, 'CHIP', []).

ctr_arguments(
 cycle_card_on_path,
 ['NCYCLE' - dvar, 'NODES' - collection(index-int, succ-dvar, colour-dvar), 'ATLEAST' - int, 'ATMOST' - int, 'PATH_LEN' - int, 'VALUES' - collection(val-int)]).

ctr_restrictions(
 cycle_card_on_path,
 ['NCYCLE' >= 1, 'NCYCLE' <= size('NODES'), required('NODES', [index, succ, colour]), 'NODES' ^ index >= 1, 'NODES' ^ index <= size('NODES'), distinct('NODES', index), 'NODES' ^ succ >= 1, 'NODES' ^ succ <= size('NODES'), 'ATLEAST' >= 0, 'ATLEAST' <= 'PATH_LEN', 'ATMOST' >= 'ATLEAST', 'PATH_LEN' >= 0, required('VALUES', val), distinct('VALUES', val)]).

ctr_graph(
 cycle_card_on_path,
 ['NODES'], 2, ['CLIQUE' >> collection(nodes1, nodes2)], [nodes1 ^ succ = nodes2 ^ index], ['NTREE' = 0, 'NCC' = 'NCYCLE'], [>('PATH_LENGTH' ('PATH_LEN'), [- (variables,
 col('VARIABLES' - collection(var-dvar),
 [item(var = 'NODES' ^ colour)]))]),
 among_low_up('ATLEAST', 'ATMOST', variables, 'VALUES')]).

ctr_example(}
cycle_card_on_path,
cycle_card_on_path(2, [[index-1,succ-7,colour-2], [index-2,succ-4,colour-3], [index-3,succ-8,colour-2], [index-4,succ-9,colour-1], [index-5,succ-1,colour-2], [index-6,succ-2,colour-1], [index-7,succ-5,colour-1], [index-8,succ-6,colour-1], [index-9,succ-3,colour-1]], 1, 2, 3, [[val-1]]).
B.62 cycle_or_accessibility

ctr_date(cycle_or_accessibility,['20000128','20030820']).

ctr_origin(cycle_or_accessibility, 'Inspired by \cite{LabbeLaporteRodriguezMartin98}.').

ctr_arguments(cycle_or_accessibility, ['MAXDIST'-int, 'NCYCLE'-dvar, 'NODES'-collection(index-int,succ-dvar,x-int,y-int)]).

ctr_restrictions(cycle_or_accessibility, ['MAXDIST'>=0, 'NCYCLE'>=1, 'NCYCLE'=<size('NODES'), required('NODES',[index,succ,x,y]), 'NODES'\index'>=1, 'NODES'\index'=<size('NODES'), distinct('NODES',index), 'NODES'\succ'<>=0, 'NODES'\succ'=<size('NODES'), 'NODES'\x'<>=0, 'NODES'\y'<>=0}).

ctr_graph(cycle_or_accessibility, ['NODES'], 2, ['CLIQUE'>>collection(nodes1,nodes2)], [nodes1\succ=nodes2\index], ['NTREE'=0,'NCC'='NCYCLE']).

ctr_graph(cycle_or_accessibility, ['NODES'], 2, ['CLIQUE'>>collection(nodes1,nodes2)], [#\/(nodes1\succ=nodes2\index, nodes1\succ=0\#\/nodes2\succ=\#)=0, =<+(abs(nodes1\x-nodes2\x), abs(nodes1\y-nodes2\y))],
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

'\text{MAXDIST}')
\['\text{NVERTEX}'=\text{size('NODES')}'\]
\[\text{>>('PRED',}
\[-(\text{variables,}
\quad \text{col('\text{VARIABLES}'-\text{collection(var-dvar),}
\quad \text{item(var-'NODES'\text{\textasciicircum}succ))},
\quad \text{destination}'))],
\[\text{nvalues_except_0(\text{variables,}=,1)}\]).

cdr_example(
 \text{cycle_or_accessibility},
 \text{cycle_or_accessibility}(\n 3,
 2,
 [[\text{index-1,succ-6,x-4,y-5}],
 [\text{index-2,succ-0,x-9,y-1}],
 [\text{index-3,succ-0,x-2,y-4}],
 [\text{index-4,succ-1,x-2,y-6}],
 [\text{index-5,succ-5,x-7,y-2}],
 [\text{index-6,succ-4,x-4,y-7}],
 [\text{index-7,succ-0,x-6,y-4}]]).
B.63 cycle_resource

ctr_date(cycle_resource, ['20030820','20040530']).

ctr_origin(cycle_resource, 'CHIP', []).

ctr_arguments(
cycle_resource,
[-('RESOURCE',
collection(id-int, first_task-dvar, nb_task-dvar)),
 'TASK'-collection(id-int, next_task-dvar, resource-dvar)]).

ctr_restrictions(
cycle_resource,
[required('RESOURCE',[id, first_task, nb_task]),
 'RESOURCE'\^id=1,
 'RESOURCE'\^id=<size('RESOURCE'),
distinct('RESOURCE', id),
 'RESOURCE'\^first_task=1,
 'RESOURCE'\^first_task=<size('RESOURCE')+size('TASK'),
 'RESOURCE'\^nb_task>=0,
 'RESOURCE'\^nb_task=<size('TASK'),
 required('TASK',[id, next_task, resource]),
 'TASK'\^id=size('RESOURCE'),
 'TASK'\^id=<size('RESOURCE')+size('TASK'),
distinct('TASK', id),
 'TASK'\^next_task=1,
 'TASK'\^next_task=<size('RESOURCE')+size('TASK'),
 'TASK'\^resource>=1,
 'TASK'\^resource=<size('RESOURCE')]).

ctr_derived_collections(
cycle_resource,
[col(-('RESOURCE_TASK',
collection(index-int, succ-dvar, name-dvar))],
[item(
 index='RESOURCE'\^id,
 succ='RESOURCE'\^first_task,
 name='RESOURCE'\^id),
 item(
 index='TASK'\^id,
 succ='TASK'\^next_task,
 name='TASK'\^resource))].

ctr_graph(
cycle_resource,
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[‘RESOURCE_TASK’],
2,
[‘CLIQUE’>>collection(resource_task1,resource_task2)],
[resource_task1^succ=resource_task2^index,
 resource_task1^name=resource_task2^name],
[‘NTREE’=0,
 ‘NCC’=size(‘RESOURCE’),
 ‘NVERTEX’=size(‘RESOURCE’) + size(‘TASK’)]).

cycle_resource(‘RESOURCE_TASK’, 2,
 foreach(‘RESOURCE’,
 [‘CLIQUE’>>collection(resource_task1,resource_task2)],
 [resource_task1^succ=resource_task2^index,
 resource_task1^name=resource_task2^name,
 resource_task1^name=‘RESOURCE’^id],
 [‘NVERTEX’=‘RESOURCE’^nb_task + 1]).

cycle_resource(‘RESOURCE’,
 cycle_resource(‘RESOURCE_Task’,
 [[id-1,first_task-5,nb_task-3],
 [id-2,first_task-2,nb_task-0],
 [id-3,first_task-8,nb_task-2]],
 [[id-4,next_task-7,resource-1],
 [id-5,next_task-4,resource-1],
 [id-6,next_task-3,resource-3],
 [id-7,next_task-1,resource-1],
 [id-8,next_task-6,resource-3]]).
B.64 cyclic_change

ctr_automaton(cyclic_change,cyclic_change).

ctr_date(cyclic_change,['20000128','20030820','20040530']).

ctr_origin(cyclic_change,'Derived from %c.',[change]).

ctr_arguments(cyclic_change, ['NCHANGE'-dvar, 'CYCLE_LENGTH'-int, 'VARIABLES'-collection(var-dvar), 'CTR'-atom]).

ctr_restrictions(cyclic_change, ['NCHANGE'>=0, 'NCHANGE'<size('VARIABLES'), 'CYCLE_LENGTH'>0, required('VARIABLES',var), in_list('CTR', [=,\=,<,>,=\=])]).

ctr_graph(cyclic_change, ['VARIABLES'], 2, ['PATH'>>collection(variables1,variables2)], ['CTR'((variables1\var+1)mod 'CYCLE_LENGTH', variables2\var)], ['NARC'='NCHANGE']).

ctr_example(cyclic_change, cyclic_change(2, 4, [[\var-3],[\var-0],[\var-2],[\var-3],[\var-1]], =\=)).

cyclic_change(A,B,C,D) :-
 cyclic_change_signature(C,E,D),
 automaton(E, F,
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

E,
0..1,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,s,[G+1]),arc(s,$,t)],
[G],
[0],
[A]).

cyclic_change_signature([],[],A).
cyclic_change_signature([A],[],B) :- !.
cyclic_change_signature([[var-A],[var-B]|C],[],[D|E],=) :- !,
(A+1)mod F#B#<=>D,
cyclic_change_signature([[var-B]|C],E,=).
cyclic_change_signature([[var-A],[var-B]|C],[],[D|E],\=) :- !,
(A+1)mod F\=B\=D,
cyclic_change_signature([[var-B]|C],E,\=).
cyclic_change_signature([[var-A],[var-B]|C],[],[D|E],<) :- !,
(A+1)mod F#B#<=>D,
cyclic_change_signature([[var-B]|C],E,<).
cyclic_change_signature([[var-A],[var-B]|C],[],[D|E],>\=) :- !,
(A+1)mod F#B#>=D,
cyclic_change_signature([[var-B]|C],E,>\=).
cyclic_change_signature([[var-A],[var-B]|C],[],[D|E],>) :- !,
(A+1)mod F#B#>=>D,
cyclic_change_signature([[var-B]|C],E,>).
cyclic_change_signature([[var-A],[var-B]|C],[],[D|E],<=) :- !,
(A+1)mod F#B#<=D,
cyclic_change_signature([[var-B]|C],E,<=).
B.65 cyclic_change_joker

ctr_automaton(cyclic_change_joker,cyclic_change_joker).

ctr_date(
 cyclic_change_joker,
 ['20000128','20030820','20040530']).

ctr_origin(
 cyclic_change_joker,
 'Derived from %c.',
 [cyclic_change]).

ctr_arguments(
 cyclic_change_joker,
 ['NCHANGE'->dvar,
 'CYCLE_LENGTH'->int,
 'VARIABLES'->collection(var-dvar),
 'CTR'->atom]).

ctr_restrictions(
 cyclic_change_joker,
 ['NCHANGE'>=0,
 'NCHANGE'<size('VARIABLES'),
 required('VARIABLES',var),
 'CYCLE_LENGTH'>0,
 in_list('CTR',[=,\=,<,\>=,\>,\=<]))).

ctr_graph(
 cyclic_change_joker,
 ['VARIABLES'],
 2,
 ['PATH'->collection(variables1,variables2)],
 ['CTR'(
 (variables1\var+1)mod 'CYCLE_LENGTH',
 variables2\var),
 variables1\var<'CYCLE_LENGTH',
 variables2\var<'CYCLE_LENGTH'],
 ['NARC'='NCHANGE']).

ctr_example(
 cyclic_change_joker,
 cyclic_change_joker(
 2,
 4,
 [[var-3],
cyclic_change_joker(A,B,C,D) :-
 cyclic_change_joker_signature(C,E,B,D),
 automaton(
 E,
 F,
 E,
 0..1,
 [source(s),sink(t)],
 [arc(s,0,s),arc(s,1,s,[G+1]),arc(s,$,t)],
 [G],
 [0],
 [A]).

cyclic_change_joker_signature([],[],A,B).
cyclic_change_joker_signature([A],[],B,C) :- !.
cyclic_change_joker_signature([[[var-A],[[var-B]|C]],[[D]|E]],F,=) :- !,
 (A+1)mod F#=B#/\A#<F#/\B#<F#<=D,
 cyclic_change_joker_signature([[[var-B]|C]],E,F,=).
cyclic_change_joker_signature([[[var-A],[[var-B]|C]],[[D]|E]],F,\=) :- !,
 (A+1)mod F\=B#/\A#<F#/\B#<F#<=D,
 cyclic_change_joker_signature([[[var-B]|C]],E,F,\=).
cyclic_change_joker_signature([[[var-A],[[var-B]|C]],[[D]|E]],F,<) :- !,
 (A+1)mod F#<B#/\A#<F#/\B#<F#<=D,
 cyclic_change_joker_signature([[[var-B]|C]],E,F,<).
cyclic_change_joker_signature([[[var-A],[[var-B]|C]],[[D]|E]],F,>) :- !,
 (A+1)mod F#>=B#/\A#<F#/\B#<F#<=D,
cyclic_change_joker_signature([[var-B]|C],E,F,>=).

cyclic_change_joker_signature([[var-A],[var-B]|C],[D|E],F,>) :- !,
 (A+1) mod F #> B #\ A #< F #/ B #< F #<=> D,
 cyclic_change_joker_signature([[var-B]|C],E,F,>).

cyclic_change_joker_signature([[var-A],[var-B]|C],[D|E],F,=<) :- !,
 (A+1) mod F #=< B #/ A #< F #/ B #< F #<=> D,
 cyclic_change_joker_signature([[var-B]|C],E,F,=<).
B.66 decreasing

ctr_automaton(decreasing,decreasing).

ctr_date(decreasing,['20040814']).

ctr_origin(decreasing,'Inspired by %c.',[increasing]).

ctr_arguments(decreasing,['VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
 decreasing,
 [size('VARIABLES')>0,required('VARIABLES',var)]).

ctr_graph(
 decreasing,
 ['VARIABLES'],
 2,
 ['PATH'=>collection(variables1:variables2)],
 [variables1`var>=variables2`var],
 ['NARC'=size('VARIABLES')-1]).

ctr_example(
 decreasing,
 decreasing([[var-8],[var-4],[var-1],[var-1]]).

decreasing(A) :-
 decreasing_signature(A,B),
 automaton(
 B,
 C,
 B,
 0..1,
 [source(s),sink(t)],
 [arc(s,0,s),arc(s,\$,t)],
 [],
 [],
 []).

decreasing_signature([[A],[B]]).

decreasing_signature([[var-A],[var-B]|C],[D|E]) :-
 in(D,0..1),
 A#<B#<==>$D,
 decreasing_signature([[var-B]|C],E).
B.67 deepest_valley

ctr_automaton(deepest_valley,deepest_valley).

ctr_date(deepest_valley,[’20040530’]).

ctr_origin(deepest_valley,’Derived from %c.’,[valley]).

ctr_arguments(
 deepest_valley,
 [’DEPTH’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
 deepest_valley,
 [’DEPTH’>=0,’VARIABLES’ˆvar>=0,required(’VARIABLES’,var)]).

ctr_example(
 deepest_valley,
 deepest_valley(2,
 [[var-5],
 [var-3],
 [var-4],
 [var-8],
 [var-8],
 [var-2],
 [var-7],
 [var-1]])).

deepest_valley(A,B) :-
 C=1000000,
 deepest_valley_signature(B,D,E),
 automaton(
 E,
 F-G,
 D,
 0..2,
 [source(s),node(u),sink(t)],
 [arc(s,0,s),
 arc(s,1,s),
 arc(s,2,u),
 arc(s,\$,t),
 arc(u,0,s,[\text{min}(H,F)]),
 arc(u,1,u),
 arc(u,2,u),
 arc(u,\$,t]),
deepest_valley_signature([],[],[]).

deepest_valley_signature([A],[],[]).

deepest_valley_signature([[var-A],[var-B]|C],[D|E],[A-B|F]) :-
 in(D,0..2),
 A#<B#<=>D#=0,
 A#=B#<=>D#=1,
 A#>B#<=>D#=2,
 deepest_valley_signature([[var-B]|C],E,F).
B.68 derangement

ctr_date(derangement, ['20000128', '20030820', '20040530']).

ctr_origin(derangement, 'Derived from %c.', [cycle]).

ctr_arguments(
derangement,
['NODES'-collection(index-int, succ-dvar)]).

ctr_restrictions(
derangement,
[required('NODES', [index, succ]),
 'NODES'index>=1,
 'NODES'index=<size('NODES'),
 distinct('NODES', index),
 'NODES'succ>=1,
 'NODES'succ=<size('NODES'))].

ctr_graph(
derangement,
['NODES'],
2,
['CLIQUE'\texttt{>>}collection(nodes1, nodes2)],
[nodes1succ=nodes2index, nodes1succ\texttt{=}nodes1index],
['NTREE'=0]).

ctr_example(
derangement,
derangement(
[[index-1, succ-2],
 [index-2, succ-1],
 [index-3, succ-5],
 [index-4, succ-3],
 [index-5, succ-4]]))
B.69 differ_from_at_least_k_pos

```prolog
ctr_automaton(  
differ_from_at_least_k_pos,  
differ_from_at_least_k_pos).  

ctr_date(differ_from_at_least_k_pos,['20030820','20040530']).  

ctr_origin(  
differ_from_at_least_k_pos,  
'Inspired by \cite{Frutos97}.',  
[]).  

ctr_types(  
differ_from_at_least_k_pos,  
['VECTOR'-collection(var-dvar)].  

ctr_arguments(  
differ_from_at_least_k_pos,  
['K'-int,'VECTOR1'- VECTOR','VECTOR2'- VECTOR]).  

ctr_restrictions(  
differ_from_at_least_k_pos,  
[required('VECTOR',var),  
'K'=<0,  
'K'==<size('VECTOR1'),  
size('VECTOR1')=size('VECTOR2'))].  

ctr_graph(  
differ_from_at_least_k_pos,  
['VECTOR1','VECTOR2'],  
2,  
['PRODUCT'(=)>>collection(vector1,vector2)],  
[vector1\var=\vector2\var,  
['NARC'=>'K']].  

ctr_example(  
differ_from_at_least_k_pos,  
differ_from_at_least_k_pos(  
2,  
[[var-2],[var-5],[var-2],[var-0]],  
[[var-3],[var-6],[var-2],[var-1]]).  

differ_from_at_least_k_pos(A,B,C) :-  
differ_from_at_least_k_pos_signature(B,C,D),  
E#>=A,
automaton(
    D,
    F,
    D,
    0..1,
    [source(s),sink(t)],
    [arc(s,0,s,[G+1]),arc(s,1,s),arc(s,$,t)],
    [G],
    [0],
    [E]).

differ_from_at_least_k_pos_signature([],[],[]).

differ_from_at_least_k_pos_signature(
    [[var-A]|B],
    [[var-C]|D],
    [E|F]) :-
    A#=C#<=E,
    differ_from_at_least_k_pos_signature(B,D,F).
B.70  diffn

ctr_date(diffn, ['20000128', '20030820', '20040530']).

ctr_origin(diffn, '\cite{BeldiceanuContejean94}', []).

ctr_types(
  diffn,
  ['ORTHOTOPE'-collection(ori-dvar, siz-dvar, end-dvar)]).

ctr_arguments(
  diffn,
  ['ORTHOTOPES'-collection(orth-'ORTHOTOPE')])

ctr_restrictions(
  diffn,
  [size('ORTHOTOPE')>0,
   require_at_least(2,'ORTHOTOPE', [ori,siz,end]),
   'ORTHOTOPE'~siz>=0,
   required('ORTHOTOPES', orth),
   same_size('ORTHOTOPES', orth)]).

ctr_graph(
  diffn,
  ['ORTHOTOPES'],
  1,
  ['SELF'>>collection(orthotopes)],
  [orth_link_ori_siz_end(orthotopes~orth)],
  ['NARC'=size('ORTHOTOPES')]).

ctr_graph(
  diffn,
  ['ORTHOTOPES'],
  2,
  ['CLIQUE' (=\=)>>collection(orthotopes1,orthotopes2)],
  [two_orth_do_not_overlap(  
    orthotopes1~orth,  
    orthotopes2~orth)],
  [=('NARC',  
    -(size('ORTHOTOPES')*size('ORTHOTOPES'),
      size('ORTHOTOPES')))]).

ctr_example(
  diffn,
  diffn(
    [[orth-[[ori-2,siz-2,end-4],[ori-1,siz-3,end-4]]],
     [...])
  )


[orth-[[ori-4,siz-4,end-8],[ori-3,siz-3,end-3]]],
[orth-[[ori-9,siz-2,end-11],[ori-4,siz-3,end-7]]]]).
B.71  diffn_column

ctr_date(diffn_column,['20030820']).

ctr_origin(diffn_column, 'CHIP: option guillotine cut (column) of %c.', [diffn]).

ctr_types(diffn_column, ['ORTHOTOPE'-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(diffn_column, ['ORTHOTOPES'-collection(orth-'ORTHOTOPE'),'N'-int]).

ctr_restrictions(diffn_column, [size('ORTHOTOPE')>0, require_at_least(2,'ORTHOTOPE',[ori,siz,end]), 'ORTHOTOPE'~siz>=0, required('ORTHOTOPES',orth), same_size('ORTHOTOPES',orth), 'N'>0, 'N'=<size('ORTHOTOPE'), diffn('ORTHOTOPES')]).

ctr_graph(diffn_column, ['ORTHOTOPES'], 2, ['CLIQUE'(<>)>>collection(orthotopes1,orthotopes2)], [two_orth_column(orthotopes1`orth,orthotopes2`orth,'N')], ['NARC'=size('ORTHOTOPES')*(size('ORTHOTOPES')-1)/2]).

ctr_example(diffn_column, diffn_column( [orth-[[ori-1,siz-3,end-4],[ori-1,siz-1,end-2]]), [orth-[[ori-4,siz-2,end-6],[ori-1,siz-3,end-4]]], 1)).
B.72  diffn_include

ctr_date(diffn_include,['20030820']).

ctr_origin(
    diffn_include,
    'CHIP: option guillotine cut (include) of %c.',
    [diffn]).

ctr_types(
    diffn_include,
    ['ORTHOTOPE'-collection(ori-dvar,siz-dvar,end-dvar)])

ctr_arguments(
    diffn_include,
    ['ORTHOTOPES'-collection(orth-'ORTHOTOPE'),'N'-int]).

ctr_restrictions(
    diffn_include,
    [size('ORTHOTOPE')>0,
     require_at_least(2,'ORTHOTOPE',[ori,siz,end]),
     'ORTHOTOPE'\'siz>=0,
     required('ORTHOTOPES',orth),
     same_size('ORTHOTOPES',orth),
     'N'>0,
     'N'=<size('ORTHOTOPE'),
     diffn('ORTHOTOPES')]).

ctr_graph(
    diffn_include,
    ['ORTHOTOPE'],
    2,
    ['CLIQUE'<>collection(orthotopes1,orthotopes2)],
    [two_orth_include(orthotopes1^orth,orthotopes2^orth,'N')],
    ['NARC'=size('ORTHOTOPES')*(size('ORTHOTOPES')-1)/2]).

ctr_example(
    diffn_include,
    diffn_include(
        [[orth-[[ori-1,siz-3,end-4],[ori-1,siz-1,end-2]]],
         [orth-[[ori-1,siz-2,end-3],[ori-2,siz-3,end-5]]],
         1]).
B.73 discrepancy

ctr_date(discrepancy, ['20050506']).

ctr_origin(
    discrepancy,
    '\cite{Focacci01} and \cite{vanHoeve05}',
    []).

ctr_arguments(
    discrepancy,
    ['VARIABLES'-collection(var-dvar, bad-sint), 'K'-int]).

ctr_restrictions(
    discrepancy,
    [required('VARIABLES', var),
     required('VARIABLES', bad),
     'K'>=0,
     'K'=<size('VARIABLES'))].

ctr_graph(
    discrepancy,
    ['VARIABLES'],
    1,
    ['SELF']>>collection(variables),
    [in_set(variables\var, variables\bad),
     'NARC'='K']].

ctr_example(
    discrepancy,
    discrepancy(
        [[var-4, bad-{1,4,6}],
         [var-5, bad-{0,1}],
         [var-5, bad-{1,6,9}],
         [var-4, bad-{1,4}],
         [var-1, bad-{}]],
        2)).
B.74  disjoint

ctr_date(disjoint, ['20000315', '20031017', '20040530']).

ctr_origin(disjoint, 'Derived from %c.', [alldifferent]).

ctr_arguments(
  disjoint,
  ['VARIABLES1'-collection(var-dvar),
   'VARIABLES2'-collection(var-dvar)]).

ctr_restrictions(
  disjoint,
  [required('VARIABLES1', var), required('VARIABLES2', var)]).

ctr_graph(
  disjoint,
  ['VARIABLES1', 'VARIABLES2'],
  2,
  ['PRODUCT'>>collection(variables1, variables2)],
  [variables1`var=variables2`var],
  ['NARC'=0]).

ctr_example(
  disjoint,
  disjoint(
    [[var-1], [var-9], [var-1], [var-5]],
    [[var-2], [var-7], [var-7], [var-0], [var-6], [var-8]])).
B.75  disjoint_tasks

ctr_date(disjoint_tasks, [’20030820’]).

ctr_origin(disjoint_tasks, ’Derived from %c.’, [disjoint]).

ctr_arguments(
    disjoint_tasks,
    [’TASKS1’-collection(origin-dvar, duration-dvar, end-dvar),
     ’TASKS2’-collection(origin-dvar, duration-dvar, end-dvar)]).

ctr_restrictions(
    disjoint_tasks,
    [require_at_least(2, ’TASKS1’, [origin, duration, end]),
      ’TASKS1’^duration>=0,
      require_at_least(2, ’TASKS2’, [origin, duration, end]),
      ’TASKS2’^duration>=0]).

ctr_graph(
    disjoint_tasks,
    [’TASKS1’],
    1,
    [’SELF’>>collection(tasks1)],
    [tasks1^origin+tasks1^duration=tasks1^end],
    [’NARC’=size(’TASKS1’)]).

ctr_graph(
    disjoint_tasks,
    [’TASKS2’],
    1,
    [’SELF’>>collection(tasks2)],
    [tasks2^origin+tasks2^duration=tasks2^end],
    [’NARC’=size(’TASKS2’)]).

ctr_graph(
    disjoint_tasks,
    [’TASKS1’, ’TASKS2’],
    2,
    [’PRODUCT’>>collection(tasks1, tasks2)],
    [tasks1^duration>0,
     tasks2^duration>0,
     tasks1^origin<tasks2^end,
     tasks2^origin<tasks1^end],
    [’NARC’=0]).

ctr_example(
disjoint_tasks,
  disjoint_tasks(
    [[origin-6,duration-5,end-11],
    [origin-8,duration-2,end-10]],
    [[origin-2,duration-2,end-4],
    [origin-3,duration-3,end-6],
    [origin-12,duration-1,end-13]])).
B.76 disjunctive

ctr_date(disjunctive, ['20050506']).

ctr_origin(disjunctive, '\cite{Carlier82}', []).

ctr_synonyms(disjunctive, [one_machine]).

ctr_arguments(
  disjunctive,
  ['TASKS'-collection(origin-dvar,duration-dvar)]).

ctr_restrictions(
  disjunctive,
  [required('TASKS',[origin,duration]),'TASKS'ˆduration>=0]).

ctr_graph(
  disjunctive,
  ['TASKS'],
  2,
  ['CLIQUE'(<)>>collection(tasks1,tasks2)],
  ['#\/(#\/(tasks1\duration=0#\/tasks2\duration=0,
           tasks1\origin+tasks1\duration=<tasks2\origin),
           tasks2\origin+tasks2\duration=<tasks1\origin)],
  ['NARC'=size('TASKS')*(size('TASKS')-1)/2]).

ctr_example(
  disjunctive,
  disjunctive(
    [[origin-1,duration-3],
     [origin-2,duration-0],
     [origin-7,duration-2],
     [origin-4,duration-1]]).
B.77 distance_between

ctr_date(distance_between, ['20000128', '20030820']).

ctr_origin(distance_between, 'N.˘Beldiceanu', []).

ctr_arguments(distance_between, ['DIST'-dvar, 'VARIABLES1'-collection(var-dvar), 'VARIABLES2'-collection(var-dvar), 'CTR'-atom]).

ctr_restrictions(distance_between, ['DIST'>=0, 'DIST'=<size('VARIABLES1')*size('VARIABLES2'), required('VARIABLES1', var), required('VARIABLES2', var), size('VARIABLES1')=size('VARIABLES2'), in_list('CTR', [=, =\=, <, >, >=, =<])].

ctr_graph(distance_between, [['VARIABLES1'], ['VARIABLES2']], 2, ['CLIQUE'(=\=)>>collection(variables1, variables2)], ['CTR'(variables1\^var, variables2\^var)], ['DISTANCE'=‘DIST']].

ctr_example(distance_between, distance_between(2, [[var-3], [var-4], [var-6], [var-2], [var-4]], [[var-2], [var-6], [var-9], [var-3], [var-6]], <)).
B.78  distance_change

counter(ctr_automaton, distance_change, distance_change).

counter(ctr_date, distance_change, ['20000128', '20030820', '20040530']).

counter(ctr_origin, distance_change, 'Derived from %c.', [change]).

counter(ctr_arguments, distance_change, ['DIST'-dvar, 'VARIABLES1'-collection(var-dvar), 'VARIABLES2'-collection(var-dvar), 'CTR'-atom]).

counter(ctr_restrictions, distance_change, ['DIST'>=0, 'DIST'<size('VARIABLES1'), required('VARIABLES1', var), required('VARIABLES2', var), size('VARIABLES1')=size('VARIABLES2'), in_list('CTR', [=, <=, <, >=, >, <=])].

counter(ctr_graph, distance_change, ['VARIABLES1', 'VARIABLES2'], 2, ['PATH'>>collection(variables1, variables2)], ['CTR'(variables1^var, variables2^var)], ['DISTANCE'='DIST']).

counter(ctr_example, distance_change, distance_change(1, [[var-3], [var-3], [var-1], [var-2], [var-2]], [[var-4], [var-4], [var-3], [var-3], [var-3]], =
\)).

distance_change(A, B, C, D) :-
distance_change_signature(B, C, E, D),
automaton(
   E,
   F,
   E,
distance_change_signature([],[],[],A).

distance_change_signature([A],[B],[],C) :-

distance_change_signature([[var-A],[var-B]|C], [[var-D],[var-E]|F], [G|H], =) :-

distance_change_signature([[var-A],[var-B]|C], [[var-D],[var-E]|F], [G|H], \=) :-

distance_change_signature([[var-A],[var-B]|C], [[var-D],[var-E]|F], [G|H], <) :-

distance_change_signature([[var-A],[var-B]|C], [[var-D],[var-E]|F], [G|H], >) :-
distance_change_signature([var-A], [var-B]|C), [var-D], [var-E]|F), [G|H], >) :-
!,
A#>B#/\D#<E#/\A#<B#/\D#>=E#<=G,
distance_change_signature([var-B]|C), [var-E]|F), H, >).

distance_change_signature([var-A], [var-B]|C), [var-D], [var-E]|F), [G|H], <=) :-
!,
A#<B#/\D#=E#/\A#=<B#/\D#>=E#<=G,
distance_change_signature([var-B]|C), [var-E]|F), H, <=).
B.79 domain_constraint

ctr_automaton(domain_constraint,domain_constraint).

ctr_date(domain_constraint,[‘20030820’,‘20040530’]).

ctr_origin(domain_constraint,’\cite{Refalo00}’,[]).

ctr_arguments(
  domain_constraint,
  [‘VAR’-dvar,‘VALUES’-collection(var01-dvar,value-int)]).

ctr_restrictions(
  domain_constraint,
  [required(‘VALUES’,[var01,value]),
   ‘VALUES’\var01>=0,
   ‘VALUES’\var01=<1,
   distinct(‘VALUES’,value)]).

ctr_derived_collections(
  domain_constraint,
  [col(‘VALUE’-collection(var01-int,value-dvar),
     [item(var01-1,value-‘VAR’)])]).

ctr_graph(
  domain_constraint,
  [‘VALUE’,‘VALUES’],
  2,
  [‘PRODUCT’>>collection(value,values)],
  [value\value=value\value#<=values\var01=1],
  [‘NARC’=size(‘VALUES’)]).

ctr_example(
  domain_constraint,
  domain_constraint( 5,
    [[var01-0,value-9],
     [var01-1,value-5],
     [var01-0,value-2],
     [var01-0,value-7]])).

domain_constraint(A,B) :-
  domain_constraint_signature(B,C,A),
  automaton(
    C,
    D,
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

\[
\text{domain\_constraint\_signature([],[],A).}
\]

\[
\text{domain\_constraint\_signature([[\text{var01-A, value-B}]|C],[D|E],F) :-}
\]

\[
F# = B# \iff A# \iff D,
\]

\[
\text{domain\_constraint\_signature(C,E,F).}
\]
B.80  elem

ctr_automaton(elem,elem).

ctr_date(elem,['20030820', '20040530']).

ctr_origin(elem, 'Derived from %c.', [element]).

ctr_usual_name(elem, element).

ctr_arguments(
    elem,
    ['ITEM'-collection(index-dvar,value-dvar),
     'TABLE'-collection(index-int,value-dvar)]).

ctr_restrictions(
    elem,
    [required('ITEM',[index,value]),
     'ITEM' `index>=1,
     'ITEM' `index=<size('TABLE'),
     size('ITEM')=1,
     required('TABLE',[index,value]),
     'TABLE' `index>=1,
     'TABLE' `index=<size('TABLE'),
     distinct('TABLE',index)]).

ctr_graph(
    elem,
    ['ITEM','TABLE'],
    2,
    ['PRODUCT'>>collection(item,table)],
    [item`index=table`index,item`value=table`value],
    ['NARC'=1]).

ctr_example(
    elem,
    elem(
        [[index-3,value-2]],
        [[index-1,value-6],
         [index-2,value-9],
         [index-3,value-2],
         [index-4,value-9]]).

elem(A,B) :-
    A=[[index-C,value-D]],
    elem_signature(B,E,C,D),
    ...
automaton(
  E,
  F,
  E,
  0..1,
  [source(s),sink(t)],
  [arc(s,0,s),arc(s,1,t)],
  [],
  [],
  []).

elem_signature([],[],A,B).

elem_signature([[index-A,value-B]|C],[D|E],F,G) :-
  F#A#/G#=B#<=>D,
  elem_signature(C,E,F,G).
B.81 element

ctr_automaton(element, element_).

ctr_date(element, ['20000128', '20030820', '20040530']).

ctr_origin(element, '\cite{VanHentenryckCarillon88}', []).

ctr_arguments(
  element,
  ['INDEX'-dvar, 'TABLE'-collection(value-dvar), 'VALUE'-dvar]).

ctr_restrictions(
  element,
  ['INDEX'>=1,
   'INDEX'=<size('TABLE'),
   required('TABLE', value)]).

ctr_derived_collections(
  element,
  [col('ITEM'-collection(index-dvar, value-dvar),
    [item(index-'INDEX', value-'VALUE')])]).

ctr_graph(
  element,
  ['ITEM', 'TABLE'],
  2,
  ['PRODUCT'>>collection(item, table)],
  [item`index=table`key, item`value=table`value],
  ['NARC'=1]).

ctr_example(
  element,
  element(3, [[value-6], [value-9], [value-2], [value-9]], 2)).

element_(A, B, C) :-
  length(B, D),
  in(A, 1..D),
  element_signature(B, A, C, 1, E),
  automaton(
    E, F, E, 0..1,
    [source(s), sink(t)],
    [arc(s, 0, s), arc(s, 1, t)],
    [ ... ]
element_signature([],A,B,C,[]).

element_signature([[value-A]|B],C,D,E,[F|G]) :-
  C#=E#/\D#=A#<=F,
  H is E+1,
  element_signature(B,C,D,H,G).
B.82 element_greatereq

ctr_automaton(element_greatereq, element_greatereq).

ctr_date(element_greatereq, ['20030820', '20040530']).

ctr_origin(element_greatereq, 
\cite{OttossonThorsteinssonHooker99}, []).

ctr_arguments(element_greatereq, 
'ITEM'-collection(index-dvar, value-dvar), 
'TABLE'-collection(index-int, value-int))

ctr_restrictions(element_greatereq, 
[required('ITEM', [index, value]), 
'ITEM'\index>=1, 
'ITEM'\index=<size('TABLE'), 
size('ITEM')=1, 
required('TABLE', [index, value]), 
'TABLE'\index>=1, 
'TABLE'\index=<size('TABLE'), 
distinct('TABLE', index)].

ctr_graph(element_greatereq, 
'ITEM', 'TABLE', 
2, 
'PRODUCT'>>collection(item, table), 
[item\index=table\index, item\value>=table\value], 
['NARC'=1].

ctr_example(element_greatereq, 
element_greatereq( 
[[index-1, value-8]], 
[[index-1, value-6]], 
[index-2, value-9], 
[index-3, value-2], 
[index-4, value-9]]).

element_greatereq(A, B) :- 
A=[[index-C, value-D]],
element_greatereq_signature(B, E, C, D),
automaton(
    E,
    F,
    E,
    0..1,
    [source(s), sink(t)],
    [arc(s, 0, s), arc(s, 1, t)],
    [],
    [],
    [])).

element_greatereq_signature([], [], A, B).

element_greatereq_signature([[index-A, value-B] | C], [D | E], F, G) :-
    F# = A# / \ G# >= B# <=> D,
    element_greatereq_signature(C, E, F, G).
B.83  **element_lesseq**

ctr_automaton(element_lesseq,element_lesseq).

ctr_date(element_lesseq,['20030820','20040530']).

ctr_origin(
    element_lesseq,
    '\cite{OttossonThorsteinssonHooker99}',
    []).

ctr_arguments(
    element_lesseq,
    ['ITEM'-collection(index-dvar,value-dvar),
     'TABLE'-collection(index-int,value-int)]).

ctr_restrictions(
    element_lesseq,
    [required('ITEM',[index,value]),
     'ITEM'\^index>=1,
     'ITEM'\^index=<size('TABLE'),
     size('ITEM')=1,
     required('TABLE',[index,value]),
     'TABLE'\^index>=1,
     'TABLE'\^index=<size('TABLE'),
     distinct('TABLE',index)]).

ctr_graph(
    element_lesseq,
    ['ITEM','TABLE'],
    2,
    ['PRODUCT'>>collection(item,table)],
    [item\^index=table\^index,item\^value=<table\^value],
    ['NARC'=1]).

ctr_example(
    element_lesseq,
    element_lesseq(
        [[index-3,value-1]],
        [[index-1,value-6]],
        [index-2,value-9],
        [index-3,value-2],
        [index-4,value-9]])).

element_lesseq(A,B) :-
    A=[[index-C,value-D]],
element_lesseq_signature(B, E, C, D),
automaton(
    E,
    F,
    E,
    0..1,
    [source(s), sink(t)],
    [arc(s, 0, s), arc(s, 1, t)],
    [],
    [],
    []).

element_lesseq_signature([], [], A, B).

element_lesseq_signature([[index-A, value-B] | C], [D | E], F, G) :-
    F#A# \ G#B# <= D,
    element_lesseq_signature(C, E, F, G).
B.84  element_matrix

ctr_automaton(element_matrix,element_matrix).

ctr_date(element_matrix,['20031101']).

ctr_origin(element_matrix,'CHIP',[]).

ctr_arguments(
    element_matrix,
    ['MAX_I'-int,
     'MAX_J'-int,
     'INDEX_I'-dvar,
     'INDEX_J'-dvar,
     'MATRIX'-collection(i-int,j-int,v-int),
     'VALUE'-dvar]).

ctr_restrictions(
    element_matrix,
    ['MAX_I'>=1,
     'MAX_J'>=1,
     'INDEX_I'>=1,
     'INDEX_I'='MAX_I',
     'INDEX_J'>=1,
     'INDEX_J'='MAX_J',
     required('MATRIX',[i,j,v]),
     increasing_seq('MATRIX',[i,j]),
     'MATRIX'\i>=1,
     'MATRIX'\i='MAX_I',
     'MATRIX'\j>=1,
     'MATRIX'\j='MAX_J',
     size('MATRIX')='MAX_I'*'MAX_J').

ctr_derived_collections(
    element_matrix,
    [col(-(ITEM',
       collection(index_i-dvar,index_j-dvar,value-dvar)),
       [item( index_i='INDEX_I',
            index_j='INDEX_J',
            value='VALUE')]]).

ctr_graph(
    element_matrix,
    ['ITEM','MATRIX'],
    2,
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[’PRODUCT’>>collection(item,matrix)],
[item^index_i=matrix^i,
 item^index_j=matrix^j,
 item^value=matrix^v],
[’NARC’=1]).

ctr_example(
 element_matrix,
 element_matrix(4,
 3,
 1,
 3,
 [[i-1,j-1,v-4],
  [i-1,j-2,v-1],
  [i-1,j-3,v-7],
  [i-2,j-1,v-1],
  [i-2,j-2,v-0],
  [i-2,j-3,v-8],
  [i-3,j-1,v-3],
  [i-3,j-2,v-2],
  [i-3,j-3,v-1],
  [i-4,j-1,v-0],
  [i-4,j-2,v-0],
  [i-4,j-3,v-6]],
 7)).

element_matrix(A,B,C,D,E,F) :-
in(C,1..A),
in(D,1..B),
 element_matrix_signature(E,C,D,F,G),
 automaton( G,
  H,
  G,
  0..1,
  [source(s),sink(t)],
  [arc(s,0,s),arc(s,1,t)],
  [],
  [],
  []).

element_matrix_signature([],A,B,C,[]).

element_matrix_signature([[i-A,j-B,v-C]|D],E,F,G,[H|I]) :-
 E#=A#/\F#=B#/\G#=C#<=H,
element_matrix_signature(D,E,F,G,I).
B.85 element_sparse

ctr_automaton(element_sparse,element_sparse).

ctr_date(element_sparse,['20030820','20040530']).

ctr_origin(element_sparse,'CHIP',[]).

ctr_usual_name(element_sparse,element).

ctr_arguments(
    element_sparse,
    ['ITEM'-collection(index-dvar,value-dvar),
     'TABLE'-collection(index-int,value-int),
     'DEFAULT'-int]).

ctr_restrictions(
    element_sparse,
    [required('ITEM',[index,value]),
     'ITEM'\index\geq1,
     size('ITEM')=1,
     required('TABLE',[index,value]),
     'TABLE'\index\geq1,
     distinct('TABLE',index)]).

ctr_derived_collections(
    element_sparse,
    [col('DEF'-collection(index-int,value-int),
      [item(index-0,value-'DEFAULT')]),
     col('TABLE_DEF'-collection(index-dvar,value-dvar),
      [item(index-'TABLE'\index,value-'TABLE'\value),
       item(index-'DEF'\index,value-'DEF'\value)])].

ctr_graph(
    element_sparse,
    ['ITEM','TABLE_DEF'],
    2,
    ['PRODUCT'\collection(item,table_def)],
    [item\value=table_def\value,
     item\index=table_def\index#/table_def\index=0],
    ['NARC'\geq1]).

ctr_example(
    element_sparse,
    element_sparse(  
        [[index-2,value-5]])
element_sparse(A, B, C) :-
   A = [[index-D, value-E]],
   element_sparse_signature(B, F, D, E, C),
   automaton(F, G, F, 0..2, [source(s), node(d), sink(t)],
   [arc(s,0,s), arc(s,1,t), arc(s,2,d), arc(d,1,t), arc(d,2,d), arc(d,$,t)],
   [], [], []).
B.86  elements

ctr_date(elements,['20030820']).

cytr_origin(elements,'Derived from %c.',[element]).

cytr_arguments(
  elements,
  ['ITEMS'-collection(index-dvar,value-dvar),
   'TABLE'-collection(index-int,value-dvar)]).

cytr_restrictions(
  elements,
  [required('ITEMS',[index,value]),
   'ITEMS'\index\geq1,
   'ITEMS'\index<\text{size('TABLE')},
   required('TABLE',[index,value]),
   'TABLE'\index\geq1,
   'TABLE'\index<\text{size('TABLE')},
   distinct('TABLE',index)]).

cytr_graph(
  elements,
  ['ITEMS','TABLE'],
  2,
  ['PRODUCT'\text{collection}(items,table)],
  [items\index=table\index,items\value=table\value],
  ['NARC'=\text{size('ITEMS')}]).

cytr_example(
  elements,
  elements(
    [[index-4,value-9],[index-1,value-6]],
    [[index-1,value-6],
     [index-2,value-9],
     [index-3,value-2],
     [index-4,value-9]])).
B.87 elements_alldifferent

ctr_date(elements_alldifferent, [‘20030820’]).

ctr_origin(
    elements_alldifferent,
    ‘Derived from %c and %c.’,
    [elements, alldifferent]).

ctr_synonyms(
    elements_alldifferent,
    [elements_alldiff, elements_alldistinct]).

ctr_arguments(
    elements_alldifferent,
    [‘ITEMS’-collection(index-dvar, value-dvar),
    ‘TABLE’-collection(index-int, value-dvar)]).

ctr_restrictions(
    elements_alldifferent,
    [required(‘ITEMS’, [index, value]),
    ‘ITEMS’^index>=1,
    ‘ITEMS’^index=<size(‘TABLE’),
    size(‘ITEMS’) = size(‘TABLE’),
    required(‘TABLE’, [index, value]),
    ‘TABLE’^index>=1,
    ‘TABLE’^index=<size(‘TABLE’),
    distinct(‘TABLE’, index)]).

ctr_graph(
    elements_alldifferent,
    [‘ITEMS’, ‘TABLE’],
    2,
    [‘PRODUCT’>>collection(items, table)],
    [items^index=table^index, items^value=table^value],
    [‘NVERTEX’ = size(‘ITEMS’)+size(‘TABLE’)]).

ctr_example(
    elements_alldifferent,
    elements_alldifferent(
        [[index-2, value-9],
         [index-1, value-6],
         [index-4, value-9],
         [index-3, value-2]],
        [[index-1, value-6],
         [index-2, value-9],
         [index-3, value-2],
         [index-4, value-9]])).
[\text{index-3, value-2}],
[\text{index-4, value-9}]).
B.88 elements_sparse

ctr_date(elements_sparse,[‘20030820’]).

ctr_origin(elements_sparse,’Derived from %c.’,[element_sparse]).

ctr_arguments(
  elements_sparse,
  [‘ITEMS’—collection(index-dvar,value-dvar),
   ‘TABLE’—collection(index-int,value-int),
   ‘DEFAULT’—int]).

ctr_restrictions(
  elements_sparse,
  [required(‘ITEMS’,[index,value]),
   ‘ITEMS’ˆindex>=1,
   required(‘TABLE’,[index,value]),
   ‘TABLE’ˆindex>=1,
   distinct(‘TABLE’,index)]).

ctr_derived_collections(
  elements_sparse,
  col(‘DEF’—collection(index-int,value-int),
   [item(index-0,value-‘DEFAULT’)]),
   col(‘TABLE_DEF’—collection(index-dvar,value-dvar),
    [item(index-‘TABLE’ˆindex,value-‘TABLE’ˆindex),
     item(index-‘DEF’ˆindex,value-‘DEF’ˆvalue)])).

ctr_graph(
  elements_sparse,
  [‘ITEMS’,’TABLE_DEF’],
  2,
  [’PRODUCT’>>collection(items,table_def)],
  [itemsˆvalue=table_defˆvalue,
   itemsˆindex=table_defˆindex#/table_defˆindex=0],
  [’NSOURCE’=size(‘ITEMS’)]).

ctr_example(
  elements_sparse,
  elements_sparse(
    [[index-8,value-9],
     [index-3,value-5],
     [index-2,value-5]],
    [[index-1,value-6],
     [index-2,value-5],
     [index-4,value-2],
     [index-9,value-9]]).
[index=8,value=9],
5)).
B.89  eq_set

ctr_predefined(eq_set).

ctr_date(eq_set, ['20030820']).

ctr_origin(
    eq_set,
    'Used for defining %c.',
    [alldifferent_between_sets]).

ctr_arguments(eq_set, ['SET1'-svar, 'SET2'-svar]).

ctr_example(eq_set, eq_set([3,5],[3,5])).
B.90 exactly

ctr_automaton(exactly, exactly).

ctr_date(exactly, ['20040807']).

ctr_origin(exactly, 'Derived from %c and %c.', [atleast, atmost]).

ctr_arguments(
exactly,
['N'-int,'VARIABLES'-collection(var-dvar), 'VALUE'-int]).

ctr_restrictions(
exactly,
['N'>=0, 'N'=<size('VARIABLES'), required('VARIABLES', var))].

ctr_graph(
exactly,
['VARIABLES'],
1,
['SELF'>>collection(variables)],
[variables^var='VALUE'],
['NARC'='N']].

ctr_example(
exactly,
exactly(2, [[var-4], [var-2], [var-4], [var-5]], 4)).

exactly(A, B, C) :-
exactly_signature(B, D, C),
automaton(
    D,
    E,
    D,
    0..1,
    [source(s), sink(t)],
    [arc(s, 0, s), arc(s, 1, s, [F+1]), arc(s, $, t)],
    [F],
    [0],
    [A]).

exactly_signature([], [], A).

exactly_signature([[var-A] B], [C|D], E) :-
A#E#<=C,
exactly_signature(B, D, E).
B.91  global_cardinality

ctr_date(global_cardinality,[’20030820’,’20040530’]).

ctr_origin(global_cardinality,’CHARME’,[]).

ctr_synonyms(
  global_cardinality,
  [distribute,distribution,gcc,card_var_gcc,egcc]).

ctr_arguments(
  global_cardinality,
  [’VARIABLES’-collection(var-dvar),
   ’VALUES’-collection(val-int,noccurrence-dvar)]).

ctr_restrictions(
  global_cardinality,
  [required(’VARIABLES’,var),
   required(’VALUES’,[val,noccurrence]),
   distinct(’VALUES’,val),
   ’VALUES’^noccurrence>=0,
   ’VALUES’^noccurrence=<size(’VARIABLES’)])).

ctr_graph(
  global_cardinality,
  [’VARIABLES’],
  1,
  foreach(’VALUES’,[’SELF’>>collection(variables)]),
  [variables^var=’VALUES’^val],
  [’NVERTEX’=’VALUES’^noccurrence]).

ctr_example(
  global_cardinality,
  global_cardinality(
    [[var-3],[var-3],[var-8],[var-6]],
    [[val-3,nocurrence-2],
     [val-5,nocurrence-0],
     [val-6,nocurrence-1]])).
B.92  global_cardinality_low_up

ctr_date(global_cardinality_low_up, ['20031008', '20040530']).

ctr_origin(
    global_cardinality_low_up,
    'Used for defining %c.',
    [sliding_distribution]).

ctr_arguments(
    global_cardinality_low_up,
    ['VARIABLES'=collection(var-dvar),
     'VALUES'=collection[val-int, omin-int, omax-int]]).

ctr_restrictions(
    global_cardinality_low_up,
    [required('VARIABLES', var),
     size('VALUES')>0,
     required('VALUES', [val, omin, omax]),
     distinct('VALUES', val),
     'VALUES'~omin>=0,
     'VALUES'~omax=<size('VARIABLES'),
     'VALUES'~omin=<'VALUES'~omax]).

ctr_graph(
    global_cardinality_low_up,
    ['VARIABLES'],
    1,
    foreach('VALUES', [['SELF)>>collection(variables)]),
    [variables~var='VALUES'~val],
    ['NVERTEX'='VALUES'~omin, 'NVERTEX'='VALUES'~omax]).

ctr_example(
    global_cardinality_low_up,
    global_cardinality_low_up{[
        [var-3], [var-3], [var-8], [var-6]],
        [[val-3, omin-2, omax-3],
         [val-5, omin-0, omax-1],
         [val-6, omin-1, omax-2]]}).
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.93 global_cardinality_with_costs

ctr_date(global_cardinality_with_costs, ['20030820', '20040530']).

ctr_origin(global_cardinality_with_costs, '\cite{Regin99a}', []).

ctr_synonyms(global_cardinality_with_costs, [gcc, cost_gcc]).

ctr_arguments(
    global_cardinality_with_costs,
    ['VARIBABLES'-collection(var-dvar),
    'VALUES'-collection(val-int, noccurrence-dvar),
    'MATRIX'-collection(i-int, j-int, c-int),
    'COST'-dvar]).

ctr_restrictions(
    global_cardinality_with_costs,
    [required('VARIBABLES', var),
     required('VALUES', [val, noccurrence]),
     distinct('VALUES', val),
     'VALUES' * noccurrence >= 0,
     'VALUES' * noccurrence <= size('VARIBABLES'),
     required('MATRIX', [i, j, c]),
     increasing_seq('MATRIX', [i, j]),
     'MATRIX' * i >= 1,
     'MATRIX' * i <= size('VARIBABLES'),
     'MATRIX' * j >= 1,
     'MATRIX' * j <= size('VALUES'),
     size('MATRIX') = size('VARIBABLES') * size('VALUES')].

ctr_graph(
    global_cardinality_with_costs,
    ['VARIBABLES'],
    1,
    foreach('VALUES', ['SELF'>>collection(variables)]),
    [variables-var='VALUES' * val],
    ['NVERTEX'='VALUES' * noccurrence]).

ctr_graph(
    global_cardinality_with_costs,
    ['VARIBABLES', 'VALUES'],
    2,
    ['PRODUCT'>>collection(variables, values)],
    [variables-var='VALUES' * val],
    ['SUM_WEIGHT_ARC' (\$
    \sum\$ ('MATRIX',
    \$\)\$]]).
\begin{verbatim}
1117

+((variables^key-1)*size('VALUES'),
 values^key),
 c)),
 'COST'))).

ctr_example(
    global_cardinality_with_costs,
    global_cardinality_with_costs(
        [[var-3],[var-3],[var-3],[var-6]],
        [[val-3,noccurrence-3],
        [val-5,noccurrence-0],
        [val-6,noccurrence-1]],
        [[i-1,j-1,c-4],
        [i-1,j-2,c-1],
        [i-1,j-3,c-7],
        [i-2,j-1,c-1],
        [i-2,j-2,c-0],
        [i-2,j-3,c-8],
        [i-3,j-1,c-3],
        [i-3,j-2,c-2],
        [i-3,j-3,c-1],
        [i-4,j-1,c-0],
        [i-4,j-2,c-0],
        [i-4,j-3,c-6]],
        14)).
\end{verbatim}
B.94  global_contiguity

ctr_automaton(global_contiguity,global_contiguity).

ctr_date(global_contiguity,[],['20030820','20040530']).

ctr_origin(global_contiguity,\cite{Maher02},[]).

ctr_arguments(
  global_contiguity,
  ['VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
  global_contiguity,
  [required('VARIABLES',var),
   'VARIABLES'\var>=0,
   'VARIABLES'\var=<1]).

ctr_graph(
  global_contiguity,
  ['VARIABLES'],
  2,
  ['PATH']>>collection(variables1,variables2),
  ['LOOP']>>collection(variables1,variables2),
  [variables1\var=variables2\var,variables1\var=1],
  ['NCC'=<1]).

ctr_example(
  global_contiguity,
  global_contiguity([[var-0],[var-1],[var-1],[var-0]])).

global_contiguity(A) :-
  col_to_list(A,B),
  automaton(
    B,
    C,
    B,
    0..1,
    [source(s),node(n),node(z),sink(t)],
    [arc(s,0,s),
     arc(s,1,n),
     arc(s,$,t),
     arc(n,0,z),
     arc(n,1,n),
     arc(n,$,t),
     arc(z,0,z),
     arc(z,0,z),
     arc(z,0,z)].


arc(z, $t$),
[],
[],
[]).
B.95  golomb

ctr_date(golomb,[’20000128’,’20030820’,’20040530’]).

ctr_origin(golomb,’Inspired by \cite{Golomb72}.’,[]).

ctr_arguments(golomb,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
    golomb,
    [required(’VARIABLES’,var),’VARIABLES’ ^var>=0]).

ctr-derived_collections(
    golomb,
    [col(’PAIRS’-collection(x-dvar,y-dvar),
        [> -item(x-’VARIABLES’ ^var,y-’VARIABLES’ ^var)]])).

ctr_graph(
    golomb,
    [’PAIRS’],
    2,
    [’CLIQUE’>>collection(pairs1,pairs2)],
    [pairs1 ^y=pairs1 ^x=pairs2 ^y=pairs2 ^x],
    [’MAX_NS CC’=<1]).

ctr_example(golomb,golomb([[var-0],[var-1],[var-4],[var-6]])).
B.96  graph_crossing

ctr_date(graph_crossing, ['20000128', '20030820', '20040530']).

ctr_origin(graph_crossing, 'N. Beldiceanu', []).

ctr_arguments(
    graph_crossing,
    ['NCROSS'-dvar, 'NODES'-collection(succ-dvar, x-int, y-int)]).

ctr_restrictions(
    graph_crossing,
    ['NCROSS'>=0,
     required('NODES', [succ, x, y]),
     'NODES'\ succ>=1,
     'NODES'\ succ<size('NODES'))).

ctr_graph(
    graph_crossing,
    ['NODES'],
    2,
    ['CLIQUE'(<)\ collection(n1, n2)],
    [>= (max(n1\ x, 'NODES'@(n1\ succ)\ x)),
     min(n2\ x, 'NODES'@(n2\ succ)\ x)),
    >= (max(n2\ x, 'NODES'@(n2\ succ)\ x)),
     min(n1\ x, 'NODES'@(n1\ succ)\ x)),
    >= (max(n1\ y, 'NODES'@(n1\ succ)\ y)),
     min(n2\ y, 'NODES'@(n2\ succ)\ y)),
    >= (max(n2\ y, 'NODES'@(n2\ succ)\ y)),
     min(n1\ y, 'NODES'@(n1\ succ)\ y)),
    =\= (-(* (n2\ x- 'NODES'@(n1\ succ)\ x,
        'NODES'@(n1\ succ)\ y-n1\ y),
     (* ('NODES'@(n1\ succ)\ x-n1\ x,
      n2\ y- 'NODES'@(n1\ succ)\ y)),
    0),
    =\= (-(* ('NODES'@(n1\ succ)\ x- 'NODES'@(n1\ succ)\ y),
        n2\ y-n1\ y),
     (* (n2\ x-n1\ x,
      'NODES'@(n1\ succ)\ y- 'NODES'@(n1\ succ)\ y)),
    0),
    =\= (sign(
        -(* (n2\ x- 'NODES'@(n1\ succ)\ x,
            'NODES'@(n1\ succ)\ y-n1\ y),
         ('NODES'@(n1\ succ)\ x-n1\ x,
          n2\ y- 'NODES'@(n1\ succ)\ y))),
    sign(...
\[-((\text{'NODES'}@(n2^{\text{succ}})^x-\text{'NODES'}@(n1^{\text{succ}})^x,\]
\[n2^y-n1^y),\]
\[*(n2^x-n1^x,\]
\[\text{'NODES'}@(n2^{\text{succ}})^y-\text{'NODES'}@(n1^{\text{succ}})^y)))],\]
\['\text{NARC}=\text{'NCROSS'}\).

ctr_example(
    graph_crossing,
    graph_crossing(2,
    [[succ-1,x-4,y-7],
    [succ-1,x-2,y-5],
    [succ-1,x-7,y-6],
    [succ-2,x-1,y-2],
    [succ-3,x-2,y-2],
    [succ-2,x-5,y-3],
    [succ-3,x-8,y-2],
    [succ-9,x-6,y-2],
    [succ-10,x-10,y-6],
    [succ-8,x-10,y-1]]).\]
B.97 group

ctr_automaton(group,group).

ctr_date(group,\[‘20000128’,‘20030820’,‘20040530’\]).

ctr_origin(group,’CHIP’,\[]\).

ctr_arguments(
  group,
  [‘NGROUP’-dvar,
   ‘MIN_SIZE’-dvar,
   ‘MAX_SIZE’-dvar,
   ‘MIN_DIST’-dvar,
   ‘MAX_DIST’-dvar,
   ‘NVAL’-dvar,
   ‘VARIABLES’-collection(var-dvar),
   ‘VALUES’-collection(val-int)]).

ctr_restrictions(
  group,
  [‘NGROUP’>=0,
   ‘MIN_SIZE’>=0,
   ‘MAX_SIZE’>=‘MIN_SIZE’,
   ‘MIN_DIST’>=0,
   ‘MAX_DIST’>=‘MIN_DIST’,
   ‘NVAL’>=0,
   required(‘VARIABLES’,var),
   required(‘VALUES’,val),
   distinct(‘VALUES’,val)]).

ctr_graph(
  group,
  [‘VARIABLES’],
  2,
  [‘PATH’>>collection(variables1,variables2),
   ‘LOOP’>>collection(variables1,variables2)],
  [in(variables1^var,’VALUES’),in(variables2^var,’VALUES’)],
  [‘NCC’=‘NGROUP’,
   ‘MIN_NCC’=‘MIN_SIZE’,
   ‘MAX_NCC’=‘MAX_SIZE’,
   ‘NVERTEX’=‘NVAL’]).

ctr_graph(
  group,
  [‘VARIABLES’],
  2,
  [‘PATH’>>collection(variables1,variables2),
   ‘LOOP’>>collection(variables1,variables2)],
  [in(variables1^var,’VALUES’),in(variables2^var,’VALUES’)],
  [‘NCC’=‘NGROUP’,
   ‘MIN_NCC’=‘MIN_SIZE’,
   ‘MAX_NCC’=‘MAX_SIZE’,
   ‘NVERTEX’=‘NVAL’]).
2,
['PATH'>>collection(variables1,variables2),
'LOOP'>>collection(variables1,variables2),
(not_in(variables1^var,'VALUES'),
not_in(variables2^var,'VALUES'))],
['MIN_NCC'='MIN_DIST','MAX_NCC'=MAX_DIST]).

ctr_example(
  group,
  group(
    2,
    1,
    2,
    2,
    4,
    3,
    [[var-2],
      [var-8],
      [var-1],
      [var-7],
      [var-4],
      [var-5],
      [var-1],
      [var-1],
      [var-1]],
    [[val-0],[val-2],[val-4],[val-6],[val-8]]).

group(A,B,C,D,E,F,G,H) :-
group_ngroup(A,G,H),
group_min_size(B,G,H),
group_max_size(C,G,H),
group_min_dist(D,G,H),
group_max_dist(E,G,H),
group_nval(F,G,H).

group_ngroup(A,B,C) :-
col_to_list(C,D),
list_to_fdset(D,E),
group_signature_in(B,F,E),
automaton(
  F,
  G,
  F, 0..1,
  [source(s),node(i),sink(t)],
  [arc(s,0,s),
    [arc(1,1,1),
      [arc(2,2,2),
        [arc(3,3,3),
          [arc(4,4,4),
            [arc(5,5,5),
              [arc(6,6,6),
                [arc(7,7,7),
                  [arc(8,8,8)])])]]])
group_min_size(A,B,C) :-
  length(B,D),
  col_to_list(C,E),
  list_to_fdset(E,F),
  group_signature_in(B,G,F),
  automaton(
    G,
    H,
    G,
    0..1,
    [source(s),node(j),node(k),sink(t)],
    [arc(s,0,s),
     arc(s,1,j,[D,I]),
     arc(s,$,t),
     arc(j,1,j,[J,I+1]),
     arc(j,0,k,[min(J,I),I]),
     arc(j,$,t,[min(J,I),I]),
     arc(k,0,k),
     arc(k,1,j,[J,1]),
     arc(k,$,t]),
    [J,I],
    [0,1],
    [A,K]).

group_max_size(A,B,C) :-
  col_to_list(C,D),
  list_to_fdset(D,E),
  group_signature_in(B,F,E),
  automaton(
    F,
    G,
    F,
    0..1,
    [source(s),sink(t)],
    [arc(s,1,s,[H,I+1]),
     arc(s,0,s,[max(H,I),0]),
     arc(s,$,t,[max(H,I),I])],
    [H],
    [0],
    [A]).
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

\[
\begin{align*}
[H, I], \\
[0, 0], \\
[A, J].
\end{align*}
\]

\[\text{group_min_dist}(A, B, C) :-
\]
\[\text{length}(B, D),
\text{col_to_list}(C, E),
\text{list_to_fdset}(E, F),
\text{group_signature_not_in}(B, G, F),
\text{automaton}(G, H, G, 0..1, [\text{source}(s), \text{node}(j), \text{node}(k), \text{sink}(t)],
\text{arc}(s, 0, s),
\text{arc}(s, 1, j, [D, I]),
\text{arc}(s, $, t),
\text{arc}(j, 1, j, [J, I+1]),
\text{arc}(j, 0, k, [\text{min}(J, I), I]),
\text{arc}(j, $, t, [\text{min}(J, I), I]),
\text{arc}(k, 0, k),
\text{arc}(k, 1, j, [J, 1]),
\text{arc}(k, $, t]),
\text{[J, I]},
\text{[0, 1]},
\text{[A, K]}).
\]

\[\text{group_max_dist}(A, B, C) :-
\]
\[\text{col_to_list}(C, D),
\text{list_to_fdset}(D, E),
\text{group_signature_not_in}(B, F, E),
\text{automaton}(F, G, F, 0..1, [\text{source}(s), \text{sink}(t)],
\text{arc}(s, 1, s, [H, I+1]),
\text{arc}(s, 0, s, [\text{max}(H, I), 0]),
\text{arc}(s, $, s, [\text{max}(H, I), I]),
\text{arc}(H, I),
\text{[0, 0]},
\text{[A, J]}).
\]

\[\text{group_nval}(A, B, C) :-
\]
col_to_list(C,D),
list_to_fdset(D,E),
group_signature_in(B,F,E),
automaton(F,G,F,0..1,[source(s),sink(t)],[arc(s,0,s),arc(s,1,s,[H+1]),arc(s,$,t)],H,[0],[A]).
group_signature_in([],[],A).

group_signature_in([var-A]|B],[C|D],E) :-
in_set(A,E)#<=C,
group_signature_in(B,D,E).

group_signature_not_in([],[],A).

group_signature_not_in([var-A]|B],[C|D],E) :-
in_set(A,E)#>= \\C,
group_signature_not_in(B,D,E).
B.98  \texttt{group\_skip\_isolated\_item}

\begin{verbatim}
ctr_automaton(
    group_skip_isolated_item,
    group_skip_isolated_item).

ctr_date(
    group_skip_isolated_item,
    ['20000128','20030820','20040530']).

ctr_origin(group_skip_isolated_item,'Derived from %c.',[group]).

ctr_arguments(
    group_skip_isolated_item,
    ['NGROUP'-dvar,
     'MIN_SIZE'-dvar,
     'MAX_SIZE'-dvar,
     'NVAL'-dvar,
     'VARIABLES'-collection(var-dvar),
     'VALUES'-collection(val-int)]).

ctr_restrictions(
    group_skip_isolated_item,
    ['NGROUP'>=0,
     'MIN_SIZE'>=0,
     'MAX_SIZE'>='MIN_SIZE',
     'NVAL'>=0,
     required('VARIABLES',var),
     required('VALUES',val),
     distinct('VALUES',val)]).

ctr_graph(
    group_skip_isolated_item,
    ['VARIABLES'],
    2,
    ['CHAIN'>>collection(variables1,variables2)],
    [in(variables1\^var,'VALUES'),in(variables2\^var,'VALUES')],
    ['NSCC'='NGROUP',
     'MIN_NSCC'='MIN_SIZE',
     'MAX_NSCC'='MAX_SIZE',
     'NVERTEX'='NVAL']).

ctr_example(
    group_skip_isolated_item,
    group_skip_isolated_item(1,
    }
2,
2,
3,

\([\text{var-2}, \text{var-8}, \text{var-1}, \text{var-7}, \text{var-4}, \text{var-5}, \text{var-1}, \text{var-1}, \text{var-1}], [[\text{val-0}}, [\text{val-2}], [\text{val-4}], [\text{val-6}], [\text{val-8}])].

\text{group\_skip\_isolated\_item}(A, B, C, D, E, F) :-
  \text{group\_skip\_isolated\_item\_ngroup}(A, E, F),
  \text{group\_skip\_isolated\_item\_min\_size}(B, E, F),
  \text{group\_skip\_isolated\_item\_max\_size}(C, E, F),
  \text{group\_skip\_isolated\_item\_nval}(D, E, F).

\text{group\_skip\_isolated\_item\_ngroup}(A, B, C) :-
  \text{col\_to\_list}(C, D),
  \text{list\_to\_fdset}(D, E),
  \text{group\_skip\_isolated\_item\_signature}(B, F, E),
  \text{automaton}(
    F, G, F, 0..1,
    [source(s), node(i), node(j), sink(t)],
    [arc(s,0,s),
     arc(s,1,i),
     arc(s,$,t),
     arc(i,0,s),
     arc(i,1,j,[H+1]),
     arc(i,$,t),
     arc(j,1,j),
     arc(j,0,s),
     arc(j,$,t)],
    [H],
    [0],
    [A]).

\text{group\_skip\_isolated\_item\_min\_size}(A, B, C) :-
  \text{length}(B, D),
  \text{col\_to\_list}(C, E),
list_to_fdset(E,F),
group_skip_isolated_item_signature(B,G,F),
automaton(
    G,
    H,
    G,
    0..l,
    [source(s),
     node(j),
     node(k),
     node(l),
     node(m),
     sink(t)],
    [arc(s,0,s),
     arc(s,1,j),
     arc(s,$,t),
     arc(j,0,s),
     arc(j,1,k,[D,I]),
     arc(j,$,t),
     arc(k,1,k,[J,I+1]),
     arc(k,0,1,[min(J,I),I]),
     arc(k,$,t,[min(J,I),I]),
     arc(l,0,1),
     arc(l,1,m),
     arc(l,$,t),
     arc(m,0,l),
     arc(m,1,k,[J,2]),
     arc(m,$,t)],
    [J,I],
    [0,2],
    [A,K]).

group_skip_isolated_item_max_size(A,B,C) :-
col_to_list(C,D),
list_to_fdset(D,E),
group_skip_isolated_item_signature(B,F,E),
automaton(
    F,
    G,
    F,
    0..l,
    [source(s),node(i),sink(t)],
    [arc(s,0,s),
     arc(s,1,i,[H,1]),
     arc(s,$,t),
     arc(i,0,s,[max(H,I),I]),
     arc(i,1,i,[min(H,I),I]),
     arc(i,$,t),
     arc(j,0,1),
     arc(j,1,m),
     arc(j,$,t),
     arc(m,0,l),
     arc(m,1,k,[J,2]),
     arc(m,$,t)],
    [J,I],
    [0,2],
    [A,K]).
arc(i,1,i,[H,I+1]),
arc(i,$,t,[max(H,I),I])],
[H,I],
[0,0],
[A,J]).

group_skip_isolated_item_nval(A,B,C) :-
col_to_list(C,D),
list_to_fdset(D,E),
group_skip_isolated_item_signature(B,F,E),
automaton(
  F,
  G,
  F,
  0..1,
  [source(s),sink(t)],
  [arc(s,0,s),arc(s,1,s,[H+1]),arc(s,$,t)],
  [H],
  [0],
  [A]).

group_skip_isolated_item_signature([],[],A).

group_skip_isolated_item_signature([[var-A]|B],[C|D],E) :-
in_set(A,E)#<=C,
group_skip_isolated_item_signature(B,D,E).
B.99  heighest_peak

\[
\text{ctr\_automaton}(\text{heighest\_peak},\text{heighest\_peak}).
\]

\[
\text{ctr\_date}(\text{heighest\_peak},[\text{’20040530’}]).
\]

\[
\text{ctr\_origin}(\text{heighest\_peak},’\text{Derived from %c.’,[peak]}).
\]

\[
\text{ctr\_arguments}(\text{heighest\_peak},[\text{’HEIGHT’-dvar,’VARIABLES’-collection(var-dvar)}]).
\]

\[
\text{ctr\_restrictions}(\text{heighest\_peak},[\text{’HEIGHT’}>=0,’\text{VARIABLES’}^\text{var}>=0,\text{required}(’\text{VARIABLES’},\text{var})]).
\]

\[
\text{ctr\_example}(\text{heighest\_peak},\text{heighest\_peak}(8,[[\text{var}-1],[\text{var}-1],[\text{var}-4],[\text{var}-8],[\text{var}-6],[\text{var}-2],[\text{var}-7],[\text{var}-1]])).
\]

\[
\text{heighest\_peak}(A,B) :-
\text{heighest\_peak\_signature}(B,C,D),
\text{automaton}(D,E-F,C,0..2,[\text{source}(s),\text{node}(u),\text{sink}(t)],
[\text{arc}(s,0,s),\text{arc}(s,1,s),\text{arc}(s,2,u),\text{arc}(s,\$,t),\text{arc}(u,0,s,[\text{max}(G,E)]),\text{arc}(u,1,u),\text{arc}(u,2,u),\text{arc}(u,\$,t)],\text{[G]}).
\]
heighest_peak_signature([],[[]]).

heighest_peak_signature([A],[[]]).

heighest_peak_signature([[var-A],[var-B]|C],[D|E],[A-B|F]) :-
in(D,0..2),
A#>B#<=>D#=0,
A#=B#<=>D#=1,
A#<B#<=>D#=2,
heighest_peak_signature([[var-B]|C],E,F).
B.100  in

ctr_automaton(in,in_).

ctr_date(in,[‘20030820’,’20040530’]).

ctr_origin(in,’Domain definition.’,[],).  

ctr_arguments(in,[’VAR’-dvar,’VALUES’-collection(val-int)]).

ctr_restrictions( 
   in, 
   [required(’VALUES’,val),distinct(’VALUES’,val)]) .

ctr_derived_collections( 
   in, 
   [col(’VARIABLES’-collection(var-dvar),[item(var-’VAR’)])].

ctr_graph( 
   in, 
   [’VARIABLES’,’VALUES’],  
   2,  
   [’PRODUCT’>>collection(variables,values)],  
   [variables^var=values^val],  
   [’NARC’=1]).

ctr_example(in,in(3,[[val-1],[val-3]])).

in_(A,B) :-  
   in_signature(B,C,A),  
   automaton(  
      C,  
      D,  
      C,  
      0..1,  
      [source(s),sink(t)],  
      [arc(s,0,s),arc(s,1,t)],  
      [],  
      [],  
      []).  

in_signature([],[],A).

in_signature([[val-A]|B],[C|D],E) :-  
   E#A#<=>C,  
   in_signature(B,D,E).
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.101 in_relation

```prolog
ctr_date(in_relation, ['20030820', '20040530']).

ctr_origin(
 in_relation,
 'Constraint explicitly defined by tuples of values.', []).

ctr_synonyms(in_relation, [extension]).

ctr_types(
 in_relation,
 ['TUPLE_OF_VARS'-collection(var-dvar),
 'TUPLE_OF_VALS'-collection(val-int)]).

ctr_arguments(
 in_relation,
 ['VARIABLES'-'TUPLE_OF_VARS',
 'TUPLES_OF_VALS'-'TUPLE_OF_VALS']).

ctr_restrictions(
 in_relation,
 [required('TUPLE_OF_VARS', var),
 required('TUPLE_OF_VALS', val),
 required('TUPLES_OF_VALS', tuple),
 min_size('TUPLES_OF_VALS', tuple)=size('VARIABLES'),
 max_size('TUPLES_OF_VALS', tuple)=size('VARIABLES')]).

ctr_derived_collections(
 in_relation,
 [col('TUPLES_OF_VARS'-collection(vec-'TUPLE_OF_VARS'),
 [item(vec-'VARIABLES')])]).

ctr_graph(
 in_relation,
 ['TUPLES_OF_VARS', 'TUPLES_OF_VALS'],
 2,
 ['PRODUCT'>>collection(tuples_of_vars, tuples_of_vals)],
 [vec_eq_tuple(tuples_of_vars `vec, tuples_of_vals `tuple)],
 ['NARC'=1]).

ctr_example(
 in_relation,
 in_relation(
 [[var-5], [var-3], [var-3]],
```
[[tuple-[[val-5],[val-2],[val-3]]],
[tuple-[[val-5],[val-2],[val-6]]],
[tuple-[[val-5],[val-3],[val-3]]]].
B.102 in_same_partition

ctr_automaton(in_same_partition,in_same_partition).

ctr_date(in_same_partition,['20030820','20040530']).

ctr_origin(
in_same_partition,
'Used for defining several entries of this catalog.',
[]).

ctr_types(in_same_partition,['VALUES'-collection(val-int)]).

ctr_arguments(
in_same_partition,
['VAR1'-dvar,
 'VAR2'-dvar,
 'PARTITIONS'-collection(p-'VALUES')]).

ctr_restrictions(
in_same_partition,
[required('VALUES',val),
 distinct('VALUES',val),
 required('PARTITIONS',p),
 size('PARTITIONS')>=2]).

ctr_derived_collections(
in_same_partition,
[col('VARIABLES'-collection(var-dvar),
 [item(var-'VAR1'),item(var-'VAR2')])].

ctr_graph(
in_same_partition,
['VARIABLES','PARTITIONS'],
2,
['PRODUCT'>>collection(variables,partitions)],
[in(variables`var,partitions`p)],
['NSOURCE'=2,'NSINK'=1]).

ctr_example(
in_same_partition,
in_same_partition(6,
 2,
  [[p-[[val-1],[val-3]]],
   [p-[[val-4]]],
   [p-[[val-5],[val-6]]]]).
in_same_partition(A, B, C) :-
    in_same_partition_signature(C, D, A, B),
    automaton(
        D,
        E,
        D,
        0..1,
        [source(s), sink(t)],
        [arc(s, 0, s), arc(s, 1, t)],
        [],
        [],
        []).

in_same_partition_signature([], [], A, B).

in_same_partition_signature([[p-A]|B], [C|D], E, F) :-
    col_to_list(A, G),
    list_to_fdset(G, H),
    in_set(E, H) #=> in_set(F, H) <= C,
    in_same_partition_signature(B, D, E, F).
B.103  in_set

ctr_predefined(in_set).

ctr_date(in_set,['20030820']).

ctr_origin(
in_set,
'Used for defining constraints with set variables.', []).

ctr_arguments(in_set,['VAL'-dvar,'SET'-svar]).

ctr_example(in_set,in_set(3,[1,3])).
B.104 increasing

ctr_automaton(increasing,increasing).

ctr_date(increasing,['20040814']).

ctr_origin(increasing,'KOALOG',[]).

ctr_arguments(increasing,['VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
increasing,
[size('VARIABLES')>0,required('VARIABLES',var)]).

ctr_graph(
increasing,
['VARIABLES'],
2,
['PATH'>>collection(variables1,variables2)],
[variables1^var=<variables2^var],
['NARC'=size('VARIABLES')-1]).

ctr_example(
increasing,
increasing([[var-1],[var-1],[var-4],[var-8]])).

increasing(A) :-
  increasing_signature(A,B),
  automaton(
    B,
    C,
    B,
    0..1,
    [source(s),sink(t)],
    [arc(s,0,s),arc(s,\$,t)],
    [],
    [],
    []).

increasing_signature([A],[]).

increasing_signature([[var-A],[var-B]|C],[D|E]) :-
  in(D,0..1),
  A#>=B#<=>D,
  increasing_signature([[var-B]|C],E).
B.105 indexed_sum

\text{ctr\_date}(indexed\_sum, ['20040814']).

\text{ctr\_origin}(indexed\_sum, 'N. Beldiceanu', []).

\text{ctr\_arguments}( 
    indexed\_sum, 
    ['ITEMS'-\text{collection}(\text{index-dvar}, \text{weight-dvar}), 'TABLE'-\text{collection}(\text{index-int}, \text{sum-dvar})].

\text{ctr\_restrictions}( 
    indexed\_sum, 
    [size('ITEMS')>0, 
    size('TABLE')>0, 
    \text{required}('ITEMS', [\text{index}, \text{weight}]), 
    'ITEMS'\_\text{index}>=0, 
    'ITEMS'\_\text{index}<size('TABLE'), 
    \text{required}('TABLE', [\text{index}, \text{sum}]), 
    'TABLE'\_\text{index}>=0, 
    'TABLE'\_\text{index}<size('TABLE'), 
    \text{increasing\_seq}('TABLE', \text{index})].

\text{ctr\_graph}( 
    indexed\_sum, 
    ['ITEMS','TABLE'], 
    2, 
    \text{foreach}('TABLE', ['PRODUCT'>\text{collection}(\text{items,table})], 
    [\text{items}\_\text{index}=\text{table}\_\text{index}], 
    [], 
    [\gg('SUCC', 
    [\text{source}, 
    -(\text{variables}, 
    \text{col}('VARIABLES'-\text{collection}(\text{var-dvar}), 
    [\text{item}((\text{var}'ITEMS'\_\text{weight})]))), 
    \text{sum\_ctr}((\text{variables}, =, 'TABLE'\_\text{sum})]).

\text{ctr\_example}( 
    indexed\_sum, 
    indexed\_sum( 
    [[\text{index}-2, \text{weight}-4], 
    [\text{index}-0, \text{weight}-6], 
    [\text{index}-2, \text{weight}-1]], 
    [[\text{index}-0, \text{sum}-6], [\text{index}-1, \text{sum}-0], [\text{index}-2, \text{sum}-3]])).
B.106 inflexion

ctr_automaton(inflexion,inflexion).

ctr_date(inflexion,[‘20000128’,‘20030820’,‘20040530’]).

ctr_origin(inflexion,’N.˘Beldiceanu’,[]).

ctr_arguments(
  inflexion,
  [‘N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
  inflexion,
  [‘N’>=1,’N’=<size(‘VARIABLES’),required(‘VARIABLES’,var)]).

ctr_example(
  inflexion,
  inflexion(
    3,
    [[var-1],
     [var-1],
     [var-4],
     [var-8],
     [var-8],
     [var-2],
     [var-7],
     [var-1]])).

inflexion(A,B) :-
inflexion_signature(B,C),
  automaton(
    C,
    D,
    C,
    0..2,
    [source(s),node(i),node(j),sink(t)],
    [arc(s,1,s),
     arc(s,2,i),
     arc(s,0,j),
     arc(s,$,t),
     arc(i,1,i),
     arc(i,2,i),
     arc(i,0,j,[E+1]),
     arc(i,$,t),
     arc(j,1,j),
     arc(j,$,t)].
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

\[
\begin{align*}
\text{arc}(j, 0, j), \\
\text{arc}(j, 2, i, [E+1]), \\
\text{arc}(j, $, t]), \\
[E], \\
[0], \\
[A]).
\end{align*}
\]

\[
inflexion_signature([], []).
\]

\[
inflexion_signature([A], []).
\]

\[
inflexion_signature([[\text{var-A}], [\text{var-B}]|C], [D|E]) :-
in(D, 0..2), 
A>B\iff D=0, 
A=B\iff D=1, 
A<B\iff D=2, 
inflexion_signature([[\text{var-B}]|C], E).
\]
\textbf{B.107 \ int\_value\_precede}

\begin{verbatim}
ctr_automaton(int_value_precede, int_value_precede).

ctr_date(int_value_precede, ['20041003']).

ctr_origin(int_value_precede, '\cite{YatChiuLawJimmyLee04}', []).

ctr_arguments(
  int_value_precede,
  ['S'-int,'T'-int,'VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
  int_value_precede,
  ['S'=\='T',required('VARIABLES',var)]).

ctr_example(
  int_value_precede,
  int_value_precede(0,1,[[var-4],[var-0],[var-6],[var-1],[var-0]])).

int_value_precede(A,B,C) :-
  int_value_precede_signature(C,D,A,B),
  automaton(
    D,
    E,
    D,
    1..3,
    [source(s),sink(t)],
    [arc(s,3,s),arc(s,1,t),arc(s,$,t)],
    [],
    [],
    []).

int_value_precede_signature([],[],A,B).

int_value_precede_signature([[var-A]|B],[C|D],E,F) :-
  in(C,1..3),
  A#E#<=>C#=1,
  A#F#<=>C#=2,
  A#\=E#/A#\=F#<=>C#=3,
  int_value_precede_signature(B,D,E,F).
\end{verbatim}
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.108  int_value_precede_chain

ctr_automaton(int_value_precede_chain,int_value_precede_chain).

ctr_date(int_value_precede_chain,['20041003']).

ctr_origin(int_value_precede_chain,
\cite{YatChiuLawJimmyLee04},[]).

ctr_arguments(int_value_precede_chain,
[‘VALUES’-collection(val-int),
‘VARIABLES’-collection(var-dvar)]).

ctr_restrictions(int_value_precede_chain,
[required(‘VALUES’,val),
distinct(‘VALUES’,val),
required(‘VARIABLES’,var)]).

ctr_example(int_value_precede_chain,
int_value_precede_chain(
[[val-4],[val-0],[val-1]],
[[var-4],[var-0],[var-6],[var-1],[var-0]])).

int_value_precede_chain(A,B).
B.109  interval_and_count

ctr_date(interval_and_count, ['20000128', '20030820', '20040530']).

ctr_origin(interval_and_count, '\cite{Cousin93}', []).

ctr_arguments(
    interval_and_count,
    ['ATMOST'-int,
    'COLOURS'-collection(val-int),
    'TASKS'-collection(origin-dvar,colour-dvar),
    'SIZE_INTERVAL'-int]).

ctr_restrictions(
    interval_and_count,
    ['ATMOST']=0,
    required('COLOURS',val),
    distinct('COLOURS',val),
    required('TASKS',[origin,colour]),
    'SIZE_INTERVAL'>0).

ctr_graph(
    interval_and_count,
    ['TASKS','TASKS'],
    2,
    ['PRODUCT'>>collection(tasks1,tasks2)],
    [=tasks1-origin/'SIZE_INTERVAL',
    tasks2-origin/'SIZE_INTERVAL'],
    [],
    ['SUCC',
    [source,
    -(variables,
    col('VARIABLES'-collection(var-dvar),
    [item(var-'TASKS'\colour)]))),
    among_low_up(0,'ATMOST',variables,'COLOURS')]).

ctr_example(
    interval_and_count,
    interval_and_count(2,
    [[val-4]],
    [[origin-1,colour-4],
    [origin-0,colour-9],
    [origin-10,colour-4],
    [origin-4,colour-4]],
    5)).
B.110  interval_and_sum

ctr_date(interval_and_sum, [’20000128’, ’20030820’]).

ctr_origin(interval_and_sum, ’Derived from %c.’, [cumulative]).

ctr_arguments(
    interval_and_sum,
    [’SIZE_INTERVAL’-int,
     ’TASKS’-collection(origin-dvar, height-dvar),
     ’LIMIT’-int]).

ctr_restrictions(
    interval_and_sum,
    [’SIZE_INTERVAL’>0,
     required(’TASKS’, [origin, height]),
     ’TASKS’^height>=0,
     ’LIMIT’>=0]).

ctr_graph(
    interval_and_sum,
    [’TASKS’, ’TASKS’],
    2,
    [’PRODUCT’>>collection(tasks1, tasks2)],
    [= (tasks1^origin/’SIZE_INTERVAL’,
       tasks2^origin/’SIZE_INTERVAL’)],
    [],
    [>( ’SUCC’,
       [source,
        -(variables,
         col(’VARIABLES’-collection(var-dvar),
          [item(var-’TASKS’^height)]))]),
     [sum_ctr(variables, <=,’LIMIT’)]].

ctr_example(
    interval_and_sum,
    interval_and_sum(5,
        [[origin-1, height-2],
         [origin-10, height-2],
         [origin-10, height-3],
         [origin-4, height-1],
         5]).
B.111 inverse

ctr_date(inverse,[‘20000128’,’20030820’,’20040530’]).

ctr_origin(inverse,’CHIP’,[]).

ctr_synonyms(inverse,[assignment]).

ctr_arguments(
    inverse,
    [’NODES’-collection(index-int,succ-dvar,pred-dvar)]).

ctr_restrictions(
    inverse,
    [required(’NODES’,[index,succ,pred]),
     ’NODES’^index>=1,
     ’NODES’^index=<size(’NODES’),
     distinct(’NODES’,index),
     ’NODES’^succ>=1,
     ’NODES’^succ=<size(’NODES’),
     ’NODES’^pred>=1,
     ’NODES’^pred=<size(’NODES’)])).

ctr_graph(
    inverse,
    [’NODES’],
    2,
    [’CLIQUE’>>collection(nodes1,nodes2)],
    [nodes1^succ=nodes2^index,nodes2^pred=nodes1^index],
    [’NARC’=size(’NODES’)]).

ctr_example(
    inverse,
    inverse(
        [[index-1,succ-2,pred-2],
         [index-2,succ-1,pred-1],
         [index-3,succ-5,pred-4],
         [index-4,succ-3,pred-5],
         [index-5,succ-4,pred-3]]).
B.112  inverse_set

ctr_date(inverse_set,[‘20041211’]).

ctr_origin(inverse_set,‘Derived from %c.’,[inverse]).

ctr_arguments(
    inverse_set,
    [‘X’-collection(index-int,set-svar),
    ‘Y’-collection(index-int,set-svar)]).

ctr_restrictions(
    inverse_set,
    [required(‘X’,[index,set]),
    required(‘Y’,[index,set]),
    increasing_seq(‘X’,index),
    increasing_seq(‘Y’,index),
    ‘X’^index>=1,
    ‘X’^index=<size(‘Y’),
    ‘Y’^index>=1,
    ‘Y’^index=<size(‘X’),
    ‘X’^set>=1,
    ‘X’^set=<size(‘Y’),
    ‘Y’^set>=1,
    ‘Y’^set=<size(‘X’)]).

ctr_graph(
    inverse_set,
    [‘X’,‘Y’],
    2,
    [‘PRODUCT’>>collection(x,y)],
    [in_set(y^index,x^set) #<=> in_set(x^index,y^set)],
    [‘NARC’=size(‘X’)*size(‘Y’)]).

ctr_example(
    inverse_set,
    inverse_set(
        [[index-1,set-{2,4}],
        [index-2,set-{4}],
        [index-3,set-{1}],
        [index-4,set-{4}]],
        [[index-1,set-{3}],
        [index-2,set-{1}],
        [index-3,set-{}],
        [index-4,set-{1,2,4}],
        [index-5,set-{}]]).

B.113  \textit{ith\_pos\_different\_from\_0}

\begin{verbatim}
ctr_automaton(
    ith_pos_different_from_0,
    ith_pos_different_from_0).

ctr_date(ith_pos_different_from_0,['20040811']).

ctr_origin(
    ith_pos_different_from_0,
    'Used for defining the automaton of %c.',
    [min_n]).

ctr_arguments(
    ith_pos_different_from_0,
    ['ITH'-int,'POS'-dvar,'VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
    ith_pos_different_from_0,
    ['ITH'>=1,
     'ITH'=<size('VARIABLES'),
     'POS'>='ITH',
     'POS'=<size('VARIABLES'),
     required('VARIABLES',var)]).

ctr_example(
    ith_pos_different_from_0,
    ith_pos_different_from_0(2,
     4,
     [[var-3],[var-0],[var-0],[var-8],[var-6]]).

\textit{ith\_pos\_different\_from\_0}(A,B,C) :-
    \textit{ith\_pos\_different\_from\_0\_signature}(C,D),
    automaton(
        D,
        E,
        D,
        0..1,
        [source(s),sink(t)],
        [arc(s,0,s,(F#<A->[F+1,G+1])),
         arc(s,1,s,(F#<A->[F,G+1])),
         arc(s,$,t)],
         [F,G],
         [0,0],
         [A,B]).
\end{verbatim}
ith_pos_different_from_0_signature([],[]).

ith_pos_different_from_0_signature([[var-A]|B],[C|D]) :-
    A#=0#<=>C,
    ith_pos_different_from_0_signature(B,D).
B.114  k_cut

ctr_date(k_cut,[‘20030820’,‘20041230’]).

ctr_origin(k_cut,’E.’Althaus’,[]).

ctr_arguments(
   k_cut,
   [‘K’-int,’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
   k_cut,
   [‘K’>=1,
    ‘K’=<size(‘NODES’),
    required(‘NODES’,[index,succ]),
    ‘NODES’^index>=1,
    ‘NODES’^index=<size(‘NODES’),
    distinct(‘NODES’,index)]).

ctr_graph(
   k_cut,
   [‘NODES’],
   2,
   [‘CLIQUE’>>collection(nodes1,nodes2)],
   [\/(nodes1^index=nodes2^index,
    in_set(nodes2^index,nodes1^succ))],
   [‘NCC’>=‘K’]).

ctr_example(
   k_cut,
   k_cut(
      3,
      [[index-1,succ-{}],
       [index-2,succ-{3,5}],
       [index-3,succ-{5}],
       [index-4,succ-{}],
       [index-5,succ-{2,3}]])).
B.115  lex2

ctr_predefined(lex2).

ctr_date(lex2,['20031008','20040530']).

ctr_origin(
    lex2,
    '\cite{FlenerFrischHnichKiziltanMiguelPearsonWalsh02}',
    []).

ctr_synonyms(lex2,[double_lex,row_and_column_lex]).

ctr_types(lex2,['VECTOR'-collection(var-dvar)]).

ctr_arguments(lex2,['MATRIX'-collection(vec-'VECTOR')]).

ctr_restrictions(
    lex2,
    [required('VECTOR',var),
     required('MATRIX',vec),
     same_size('MATRIX',vec)]).

ctr_example(
    lex2,
    lex2(
       [[vec-[[var-2],[var-2],[var-3]]],
        [vec-[[var-2],[var-3],[var-1]]]]).
B.116  lex_alldifferent

ctr_date(lex_alldifferent,['20030820','20040530']).

ctr_origin(lex_alldifferent,'J. Pearson',[]).

ctr_synonyms(lex_alldifferent,[lex_alldiff,lex_alldistinct]).

ctr_types(lex_alldifferent,['VECTOR'-collection(var-dvar)]).

ctr_arguments(
    lex_alldifferent,
    ['VECTORS'-collection(vec-'VECTOR')]).

ctr_restrictions(
    lex_alldifferent,
    required('VECTOR',var),
    required('VECTORS',vec),
    same_size('VECTORS',vec)).

ctr_graph(
    lex_alldifferent,
    ['VECTORS'],
    2,
    ['CLIQUE'(<)>>collection(vectors1,vectors2)],
    [lex_different(vectors1^vec,vectors2^vec)],
    ['NARC'=size('VECTORS')*(size('VECTORS')-1)/2]).

ctr_example(
    lex_alldifferent,
    lex_alldifferent(
        [[vec-[[var-5],[var-2],[var-3]]],
         [vec-[[var-5],[var-2],[var-6]]],
         [vec-[[var-5],[var-3],[var-3]]])).
B.117 lex_between

ctr_automaton(lex_between, lex_between).

ctr_date(lex_between,['20030820', '20040530']).

ctr_origin(lex_between, '\cite{BeldiceanuCarlsson02c}', []).

ctr_arguments(
    lex_between,
    ['LOWER_BOUND'-collection(var-int),
    'VECTOR'-collection(var-dvar),
    'UPPER_BOUND'-collection(var-int)].

ctr_restrictions(
    lex_between,
    [required('LOWER_BOUND', var),
    required('VECTOR', var),
    size('LOWER_BOUND')=size('VECTOR'),
    size('UPPER_BOUND')=size('VECTOR'),
    lex_less('LOWER_BOUND', 'VECTOR'),
    lex_less('VECTOR', 'UPPER_BOUND')].

ctr_example(
    lex_between,
    lex_between(
        [[var-5], [var-2], [var-3], [var-9]],
        [[var-5], [var-2], [var-6], [var-2]],
        [[var-5], [var-2], [var-6], [var-3]])).

lex_between(A, B, C) :-
    lex_between_signature(A, B, C, D),
    automaton(
        D, E, D, 0..8,
        [source(s), node(a), node(b), sink(t)],
        [arc(s, 4, s),
        arc(s, 0, t),
        arc(s, $, t),
        arc(s, 3, a),
        arc(s, 1, b),
        arc(a, 3, a),
        arc(a, 4, a),
        arc(a, 5, a),
        arc(a, 6, a),
        arc(a, 7, a),
        arc(b, 3, a),
        arc(b, 4, a),
        arc(b, 5, a),
        arc(b, 6, a),
        arc(b, 7, a),
        arc(t, 3, a),
        arc(t, 4, a),
        arc(t, 5, a),
        arc(t, 6, a),
        arc(t, 7, a)].

lex_less('LOWER_BOUND', 'VECTOR'),
    lex_less('VECTOR', 'UPPER_BOUND')].
arc(a,5,a),
arc(a,0,t),
arc(a,1,t),
arc(a,2,t),
arc(a,$,t),
arc(b,1,b),
arc(b,4,b),
arcb(7,b),
arc(b,0,t),
arc(b,3,t),
arcb(6,t),
arcb($,t)],
[],
[],
[])).

lex_between_signature([],[],[],[]).

lex_between_signature([[[var-A]|B],
[[var-C]|D],
[[var-E]|F],
[GH])] :-
I is A-1,
J is A+1,
K is E-1,
L is E+1,
( A<E ->
case(M-N,
[C-G],
[node(-1,
M,
[(inf..I)-6,
(A..A)-3,
(J..K)-0,
(E..E)-1,
(L..sup)-2)),
node(0,N,[0..0]),
node(1,N,[1..1]),
node(2,N,[2..2]),
node(3,N,[3..3]),
node(6,N,[6..6])])
; A=E ->
case(}
M-N,
[C-G],
[node(-1,M,[(inf..I)-6,(A..A)-4,(J..sup)-2]),
    node(2,N,[2..2]),
    node(4,N,[4..4]),
    node(6,N,[6..6])])

; A>E ->
case(
    M-N,
    [C-G],
    [node(
        -1,
        M,
        [(inf..K)-6,
            (E..E)-7,
            (L..I)-8,
            (A..A)-5,
            (J..sup)-2]),
        node(2,N,[2..2]),
        node(3,N,[3..3]),
        node(4,N,[4..4]),
        node(5,N,[5..5]),
        node(6,N,[6..6]),
        node(7,N,[7..7]),
        node(8,N,[8..8])])
),

lex_between_signature(B,D,F,H).
B.118  lex_chain_less

ctr_date(lex_chain_less, [’20030820’, ’20040530’]).

ctr_origin(lex_chain_less, ’\cite{BeldiceanuCarlsson02c}’, []).

ctr_usual_name(lex_chain_less, lex_chain).

ctr_types(lex_chain_less, [’VECTOR’-collection(var-dvar)]).

ctr_arguments(
    lex_chain_less, 
    [’VECTORS’-collection(vec-’VECTOR’)].

ctr_restrictions(
    lex_chain_less, 
    [required(’VECTOR’, var),
     required(’VECTORS’, vec),
     same_size(’VECTORS’, vec)].

ctr_graph(
    lex_chain_less, 
    [’VECTORS’],
    2,
    [’PATH’>>collection(vectors1, vectors2)],
    [lex_less(vectors1`vec, vectors2`vec)],
    [’NARC’=size(’VECTORS’)−1]).

ctr_example(
    lex_chain_less, 
    lex_chain_less(
        [[vec-[[var-5], [var-2], [var-3], [var-9]]],
        [vec-[[var-5], [var-2], [var-6], [var-2]]],
        [vec-[[var-5], [var-2], [var-6], [var-3]]])).
B.119  lex_chain_lesseq

ctr_date(lex_chain_lesseq,['20030820','20040530']).

ctr_origin(lex_chain_lesseq,\cite{BeldiceanuCarlsson02c},[]).

ctr_usual_name(lex_chain_lesseq,lex_chain).

ctr_types(lex_chain_lesseq,['VECTOR'-collection(var-dvar)]).

ctr_arguments(
    lex_chain_lesseq,
    ['VECTORS'-collection(vec-'VECTOR')]).

ctr_restrictions(
    lex_chain_lesseq,
    [required('VECTOR',var),
     required('VECTORS',vec),
     same_size('VECTORS',vec)]).

ctr_graph(
    lex_chain_lesseq,
    ['VECTORS'],
    2,
    ['PATH'=>collection(vectors1,vectors2)],
    [lex_lesseq(vectors1`vec,vectors2`vec)],
    ['NARC'=size('VECTORS')-1]).

ctr_example(
    lex_chain_lesseq,
    lex_chain_lesseq(
        [[vec-[var-5],[var-2],[var-3],[var-9]]],
        [[vec-[var-5],[var-2],[var-6],[var-2]]],
        [[vec-[var-5],[var-2],[var-6],[var-2]]])).
B.120  lex\_different

ctr\_automaton(lex\_different,lex\_different).

ctr\_date(lex\_different, ['20030820','20040530'])

ctr\_origin(lex\_different,
     'Used for defining \%c.',
     [lex\_alldifferent]).

ctr\_arguments(lex\_different,
    ['VECTOR1'-collection(var-dvar),
    'VECTOR2'-collection(var-dvar)]).

ctr\_restrictions(lex\_different,
    [required('VECTOR1',var),
     required('VECTOR2',var),
     size('VECTOR1')=size('VECTOR2')]).

ctr\_graph(lex\_different,
    ['VECTOR1','VECTOR2'],
    2,
    ['PRODUCT'=]>>collection(vector1,vector2)],
    [vector1\^\var\=\=vector2\^\var],
    ['NARC'>=1]).

ctr\_example(lex\_different,
    lex\_different(
        [[var-5],[var-2],[var-7],[var-1]],
        [[var-5],[var-3],[var-7],[var-1]])).

lex\_different(A,B) :-
    lex\_different\_signature(A,B,C),
    automaton(C,D,C,
    0..1,
    [source(s),sink(t)],
    [arc(s,1,s),arc(s,0,t)],
    [])
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

\[
\text{lex\_different\_signature}([],[],[]).
\]

\[
\text{lex\_different\_signature}(\text{[[var-A]|B],[[var-C]|D],[E|F]]) :-
A#\neq\text{C#} \Leftrightarrow E,
\text{lex\_different\_signature}(\text{B,D,F}).
\]
B.121  lex_greater

ctr_automaton(lex_greater,lex_greater).

ctr_date(lex_greater,['20030820','20040530']).

ctr_origin(lex_greater,'CHIP',[]).

ctr_arguments(
    lex_greater,
    ['VECTOR1'-collection(var-dvar),
     'VECTOR2'-collection(var-dvar)]).

ctr_restrictions(
    lex_greater,
    [required('VECTOR1',var),
     required('VECTOR2',var),
     size('VECTOR1')=size('VECTOR2')].

ctr_derived_collections(
    lex_greater,
    ['DESTINATION'-collection(index-int,x-int,y-int),
     [item(index-0,x-0,y-0)]],
    ['COMPONENTS'-collection(index-int,x-dvar,y-dvar),
     [item(
         index='VECTOR1'ˆkey,
         x='VECTOR1'ˆvar,
         y='VECTOR2'ˆvar)])].

ctr_graph(
    lex_greater,
    ['COMPONENTS','DESTINATION'],
    2,
    ['PRODUCT'('PATH','VOID')>>collection(item1,item2)],
    [#\(item2ˆindex>0\)\item1ˆx=item1ˆy,
     item2ˆindex=0\item1ˆx=item1ˆy]],
    ['PATH_FROM_TO'(index,1,0)=1]).

ctr_example(
    lex_greater,
    lex_greater(
        [[var-5],[var-2],[var-7],[var-1]],
        [[var-5],[var-2],[var-6],[var-2]]).)

lex_greater(A,B) :-
    lex_greater_signature(A,B,C),
automaton(
  C,
  D,
  C,
  1..3,
  [source(s), sink(t)],
  [arc(s, 2, s), arc(s, 3, t)],
  [],
  [],
  []).

lex_greater_signature([],[],[]).

lex_greater_signature([[var-A]|B],[[var-C]|D],[E|F]) :-
  in(E, 1..3),
  A#<C#<=>E#=1,
  A#=C#<=>E#=2,
  A#>C#<=>E#=3,
  lex_greater_signature(B,D,F).
B.122  lex_greatereq

ctr_automaton(lex_greatereq, lex_greatereq).

ctr_date(lex_greatereq, ['20030820', '20040530']).

ctr_origin(lex_greatereq, 'CHIP', []).

ctr_arguments(
    lex_greatereq,
    ['VECTOR1'-collection(var-dvar),
     'VECTOR2'-collection(var-dvar)]).

ctr_restrictions(
    lex_greatereq,
    [required('VECTOR1', var),
     required('VECTOR2', var),
     size('VECTOR1')=size('VECTOR2')]).

ctr_derived_collections(
    lex_greatereq,
    [col('DESTINATION'-collection(index-int,x-int,y-int),
     [item(index-0,x-0,y-0)]),
     col('COMPONENTS'-collection(index-int,x-dvar,y-dvar),
      [item(
         index='VECTOR1'ˆkey,
         x='VECTOR1'ˆvar,
         y='VECTOR2'ˆvar)]))].

ctr_graph(
    lex_greatereq,
    ['COMPONENTS', 'DESTINATION'],
    2,
    ['PRODUCT'('PATH','VOID')>>collection(item1,item2)],
    ['#\/(#/\{item2^index>0#/\{item1^x=item1^y,
     #\/(#/\{item1^index<size('VECTOR1'),
      item2^index=0),
     item1^x=item1^y)),
    #\/(item1^index=size('VECTOR1')#/\item2^index=0,
     item1^x=item1^y))],
    ['PATH_FROM_TO'('index',1,0)=1]).

ctr_example(
    lex_greatereq,
    [lex_greatereq(
      [[var-5],[var-2],[var-8],[var-9]],
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[[var-5],[var-2],[var-6],[var-2]]),
lex_greatereq(
  [[var-5],[var-2],[var-3],[var-9]],
  [[var-5],[var-2],[var-3],[var-9]]).

lex_greatereq(A,B) :-
  lex_greatereq_signature(A,B,C),
  automaton(
    C,
    D,
    C,
    1..3,
    [source(s),sink(t)],
    [arc(s,2,s),arc(s,3,t),arc(s,$,t)],
    [],
    [],
    []).

lex_greatereq_signature([],[],[]).

lex_greatereq_signature([[var-A]|B],[[var-C]|D],[E|F]) :-
  in(E,1..3),
  A#<C#<=>E#=1,
  A#=C#<=>E#=2,
  A#>C#<=>E#=3,
  lex_greatereq_signature(B,D,F).
B.123 lex_less

ctr_automaton(lex_less, lex_less).

ctr_date(lex_less, ['20030820', '20040530']).

ctr_origin(lex_less, 'CHIP', []).

ctr_arguments(
    lex_less,
    ['VECTOR1'-collection(var-dvar),
     'VECTOR2'-collection(var-dvar)]).

ctr_restrictions(
    lex_less,
    [required('VECTOR1', var),
     required('VECTOR2', var),
     size('VECTOR1')=size('VECTOR2')]).

ctr_derived_collections(
    lex_less,
    [col('DESTINATION'-collection(index-int, x-int, y-int),
       [item(index-0, x-0, y-0)]),
     col('COMPONENTS'-collection(index-int, x-dvar, y-dvar),
       [item(
          index='VECTOR1'\^key,
          x='VECTOR1'\^var,
          y='VECTOR2'\^var)]]).

ctr_graph(
    lex_less,
    ['COMPONENTS', 'DESTINATION'],
    2,
    ['PRODUCT'('PATH','VOID')>>collection(item1, item2)],
    ['#\/(item2\^index>0#\item1\^x=item1\^y,
     item2\^index=0#\item1\^x<item1\^y)],
    ['PATH_FROM_TO'(index, 1, 0)=1]).

ctr_example(
    lex_less,
    lex_less(    
        [[var-5], [var-2], [var-3], [var-9]],
        [[var-5], [var-2], [var-6], [var-2]]).

lex_less(A,B) :-
   lex_less_signature(A,B,C),
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

```prolog
automaton(
 C, D, C,
 1..3,
 [source(s),sink(t)],
 [arc(s,2,s),arc(s,1,t)],
 [], [], []).

lex_less_signature([],[],[]).

lex_less_signature([[var-A]|B],[[var-C]|D],[E|F]) :-
 in(E,1..3),
 A#<C#<=>E#=1,
 A#=C#<=>E#=2,
 A#>C#<=>E#=3,
 lex_less_signature(B,D,F).
```
B.124 lex_less_eq

ctr_automaton(lex_less_eq, lex_less_eq).

ctr_date(lex_less_eq, ['20030820', '20040530']).

ctr_origin(lex_less_eq, 'CHIP', []).

ctr_arguments(
    lex_less_eq,
    ['VECTOR1'-collection(var-dvar),
     'VECTOR2'-collection(var-dvar)]).

ctr_restrictions(
    lex_less_eq,
    [required('VECTOR1', var),
     required('VECTOR2', var),
     size('VECTOR1')=size('VECTOR2')]).

ctr_derived_collections(
    lex_less_eq,
    [col('DESTINATION'-collection(index-int,x-int,y-int),
      [item(index-0,x-0,y-0)]),
     col('COMPONENTS'-collection(index-int,x-dvar,y-dvar),
      [item(
        index='VECTOR1'ˆkey,
        x='VECTOR1'ˆvar,
        y='VECTOR2'ˆvar)])]).

ctr_graph(
    lex_less_eq,
    ['COMPONENTS', 'DESTINATION'],
    2,
    ['PRODUCT'('PATH', 'VOID')>>collection(item1,item2)],
    ['#\/(#\/(item2ˆindex>0#/item1ˆx=item1ˆy,
      #\/(#\/(item1ˆindex<size('VECTOR1'),
        item2ˆindex=0),
      item1ˆx<item1ˆy)),
    #/(item1ˆindex=size('VECTOR1')#/item2ˆindex=0,
      item1ˆx=<item1ˆy))],
    ['PATH_FROM_TO'(index,1,0)=1]).

ctr_example(
    lex_less_eq,
    [lex_less_eq(
      [[var-5], [var-2], [var-3], [var-1]],
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

lex_lesseq(A,B) :-
  lex_lesseq_signature(A,B,C),
  automaton(
    C,
    D,
    C,
    1..3,
    [source(s),sink(t)],
    [arc(s,2,s),arc(s,1,t),arc(s,$,t)],
    [],
    [],
    []).
B.125  link_set_to_booleans

ctr_date(link_set_to_booleans,['20030820']).

ctr_origin(  
    link_set_to_booleans,  
    'Inspired by %c.',  
    [domain_constraint]).

ctr_arguments(  
    link_set_to_booleans,  
    ['SVAR'-svar,'BOOLEANS'-collection(bool-dvar,val-int)]).

ctr_restrictions(  
    link_set_to_booleans,  
    [required('BOOLEANS', [bool,val]),  
      'BOOLEANS'`bool>=0,  
      'BOOLEANS'`bool=<1,  
      distinct('BOOLEANS',val)]).

ctr_derived_collections(  
    link_set_to_booleans,  
    [col('SET'-collection(one-int,setvar-svar),  
      [item(one-1,setvar-'SVAR')])]).

ctr_graph(  
    link_set_to_booleans,  
    ['SET','BOOLEANS'],  
    2,  
    ['PRODUCT'>>collection(set,booleans)],  
    [booleans`bool=set`one#<=in_set(booleans`val,set`setvar)],  
    ['NARC'=size('BOOLEANS')]).

ctr_example(  
    link_set_to_booleans,  
    link_set_to_booleans(  
      [1,3,4],  
      [[bool-0,val-0],  
        [bool-1,val-1],  
        [bool-0,val-2],  
        [bool-1,val-3],  
        [bool-1,val-4],  
        [bool-0,val-5]])).
B.126 longest_change

\[
\text{ctr_automaton}(\text{longest_change, longest_change}).
\]

\[
\text{ctr_date}(\text{longest_change,} \{\text{‘20000128’, ‘20030820’, ‘20040530’}\}).
\]

\[
\text{ctr_origin}(\text{longest_change, ‘Derived from %c.’, [change]}).
\]

\[
\text{ctr_arguments}(\text{longest_change,}
\quad \text{[‘SIZE’-dvar,’VARIABLES’-collection(var-dvar),’CTR’-atom]}).
\]

\[
\text{ctr_restrictions}(\text{longest_change,}
\quad \text{[‘SIZE’}>=0,}
\quad \text{‘SIZE’}<\text{size(‘VARIABLES’),}
\quad \text{required(‘VARIABLES’, var),}
\quad \text{in_list(‘CTR’, [=, =\!, <, \geq, >, \leq])]}).
\]

\[
\text{ctr_graph}(\text{longest_change,}
\quad \text{[‘VARIABLES’],}
\quad 2,
\quad \text{[‘PATH’}>\text{collection(variables1,variables2)],}
\quad \text{[‘CTR’}(\text{variables1}-\text{var,variables2}-\text{var}],}
\quad \text{[‘MAX\_NCC’}’=\text{‘SIZE’}])
\]

\[
\text{ctr_example}(\text{longest_change,}
\quad \text{longest_change(A,B,C) :-}
\quad \text{longest_change_signature(B,D,C),}
\quad \text{automaton(}
\quad \text{D,}
\quad )}
\]

longest_change(A,B,C) :-
longest_change_signature(B,D,C),
automaton(D,
E, D, 0..1,
[source(s), sink(t)],
[arc(s,1,s,[F,G+1]),
 arc(s,0,s,[max(F,G),1]),
 arc(s,$,t,[max(F,G),G])],
[F,G], [0,1], [A,H]).

longest_change_signature([],[],A).
longest_change_signature([A],[],B) :- !.
longest_change_signature([[var-A],[var-B]|C],[D|E],=) :- !,
 A#=B#=D,
 longest_change_signature([[var-B]|C],E,=).
longest_change_signature([[var-A],[var-B]|C],[D|E],\=) :- !,
 A\=B\=D,
 longest_change_signature([[var-B]|C],E,\=).
longest_change_signature([[var-A],[var-B]|C],[D|E],<) :- !,
 A#<B#<D,
 longest_change_signature([[var-B]|C],E,<).
longest_change_signature([[var-A],[var-B]|C],[D|E],>=) :- !,
 A#>=B#>=D,
 longest_change_signature([[var-B]|C],E,>=).
longest_change_signature([[var-A],[var-B]|C],[D|E],>) :- !,
 A#>B#>D,
 longest_change_signature([[var-B]|C],E,>).
longest_change_signature([[var-A],[var-B]|C],[D|E],=<) :- !,
 A#=<B#=<D,
 longest_change_signature([[var-B]|C],E,=<).
B.127  map

ctr_date(map, ['20000128', '20030820']).

ctr_origin(map, 'Inspired by \cite{SedgewickFlajolet96}', []).

ctr_arguments(
    map,
    ['NBCYCLE'-dvar,
     'NBTREE'-dvar,
     'NODES'-collection(index-int, succ-dvar)]).

ctr_restrictions(
    map,
    ['NBCYCLE'>=0,
     'NBTREE'>=0,
     required('NODES', [index, succ]),
     'NODES'\index>=1,
     'NODES'\index=<size('NODES'),
     distinct('NODES', index),
     'NODES'\succ>=1,
     'NODES'\succ=<size('NODES')].

ctr_graph(
    map,
    ['NODES'],
    2,
    ['CLIQUE'>>collection(nodes1, nodes2)],
    [nodes1\succ=nodes2\index],
    ['NCC'='NBCYCLE', 'NTREE'='NBTREE']).

ctr_example(
    map,
    map(2,
        3,
        [[index-1, succ-5],
         [index-2, succ-9],
         [index-3, succ-8],
         [index-4, succ-2],
         [index-5, succ-9],
         [index-6, succ-2],
         [index-7, succ-9],
         [index-8, succ-8],
         [index-9, succ-1]])).
B.128  max_index

ctr_automaton(max_index,max_index).

ctr_date(max_index,['20030820','20040530','20041230']).

ctr_origin(max_index,'N. Beldiceanu',[]).

ctr_arguments(
  max_index,
  ['MAX_INDEX'-dvar,
   'VARIABLES'-collection(index-int,var-dvar)]).

ctr_restrictions(
  max_index,
  [size('VARIABLES')>0,
   'MAX_INDEX'>=0,
   'MAX_INDEX'=<size('VARIABLES'),
   required('VARIABLES',[index,var]),
   'VARIABLES'\index>=1,
   'VARIABLES'\index=<size('VARIABLES'),
   distinct('VARIABLES',index)]).

ctr_graph(
  max_index,
  ['VARIABLES'],
  2,
  ['CLIQUE'>>collection(variables1,variables2)],
  [#\((variables1\key=variables2\key,variables1\var>variables2\var)],
  ['ORDER'(0,0,index)='MAX_INDEX']).

ctr_example(
  max_index,
  max_index(
    3,
    [[index-1,var-3],
     [index-2,var-2],
     [index-3,var-7],
     [index-4,var-2],
     [index-5,var-6]])).

max_index(A,B) :-
  length(B,C),
  length(D,C),
  domain(D,0,0),
max_index_signature(B,E,D),
automaton(
    E,
    F,
    D,
    0..0,
    [source(s),sink(t)],
    [arc(s,0,s,(F#=<G->[G,H,I+1];F#>G->[F,I+1,I+1])),
    arc(s,$,t)],
    [G,H,I],
    [-1000000,0,0],
    [J,A,K]).

max_index_signature([],[],[]).

max_index_signature([[index-A,var-B]|C], [B|D], [0|E]) :-
    max_index_signature(C,D,E).
B.129  \texttt{max\_n}

c\_r\_date(max\_n, ['20000128','20030820','20041230']).

c\_r\_o\_r\_i\_g\_i\_n(max\_n, '\cite{Beldiceanu01}', []).

c\_r\_a\_r\_g\_u\_m\_m\_e\_n\_s(max\_n,
[\texttt{MAX}\_d\_v\_a\_r\_r, \texttt{RANK}\_i\_n\_t, \texttt{VARIABLES}\_c\_o\_l\_l\_e\_c\_t\_i\_o\_n(var\_d\_v\_a\_r)])).

c\_r\_r\_s\_t\_r\_r\_i\_c\_t\_i\_o\_n(max\_n,
[size('VARIABLES')>0,  
'RANK'\geq0,  
'RANK'\textless size('VARIABLES'),  
required('VARIABLES', var)])).

c\_r\_g\_r\_a\_p\_h(max\_n,
[\texttt{VARIABLES}],  
2,  
\texttt{CLIQUE}>>\texttt{collection} (\texttt{variables1,variables2})]),  
[#\backslash (\texttt{variables1}^\texttt{\_key}=\texttt{variables2}^\texttt{\_key}, \texttt{variables1}^\texttt{\_var} > \texttt{variables2}^\texttt{\_var})],  
[\texttt{ORDER}('RANK', 'MININT', var)='MAX']).

c\_r\_e\_x\_a\_m\_p\_l\_e\_x(max\_n,
max\_n(6,1,[[\texttt{var-3}],[\texttt{var-1}],[\texttt{var-7}],[\texttt{var-1}],[\texttt{var-6}]]))).
B.130 max_nvalue

ctr_date(max_nvalue,[’20000128’,’20030820’]).

ctr_origin(max_nvalue,’Derived from %c.’,[nvalue]).

ctr_arguments(
    max_nvalue,
    [’MAX’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
    max_nvalue,
    [’MAX’>=1,
     ’MAX’=<size(’VARIABLES’),
     required(’VARIABLES’,var)]).

ctr_graph(
    max_nvalue,
    [’VARIABLES’],
    2,
    [’CLIQUE’ ]>>collection(variables1,variables2),
    [variables1^var=variables2^var],
    [’MAX_NSCC’=’MAX’]).

ctr_example(
    max_nvalue,
    max_nvalue(
        3,
        [[var-9],
         [var-1],
         [var-7],
         [var-1],
         [var-1],
         [var-6],
         [var-7],
         [var-7],
         [var-4],
         [var-9]])).
B.131 max_size_set_of_consecutive_var

ctr_date(
    max_size_set_of_consecutive_var,
    ['20030820','20040530']).

ctr_origin(max_size_set_of_consecutive_var,'N. Beldiceanu',[]).

ctr_arguments(
    max_size_set_of_consecutive_var,
    ['MAX'-dvar,'VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
    max_size_set_of_consecutive_var,
    ['MAX'>=1, 'MAX'=<size('VARIABLES'), required('VARIABLES',var)]).

c ctr_graph(
    max_size_set_of_consecutive_var,
    ['VARIABLES'],
    2,
    ['CLIQUE'>>collection(variables1,variables2)],
    [abs(variables1ˆvar-variables2ˆvar)=<1],
    ['MAX_NS CC'='MAX']).

ctr_example(
    max_size_set_of_consecutive_var,
    max_size_set_of_consecutive_var(6,
        [[var-3],
        [var-1],
        [var-3],
        [var-7],
        [var-4],
        [var-1],
        [var-2],
        [var-8],
        [var-7],
        [var-6]])).
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.132 maximum

ctr_automaton(maximum,maximum).

ctr_date(maximum,[’20000128’,’20030820’,’20040530’,’20041230’]).

ctr_origin(maximum,’CHIP’,[]).

ctr_arguments(
    maximum,
    [’MAX’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
    maximum,
    [size(’VARIABLES’) > 0, required(’VARIABLES’, var)]).

ctr_graph(
    maximum,
    [’VARIABLES’],
    2,
    [’CLIQUE’>>collection(variables1,variables2)],
    [\(\text{variables1}^\text{key} = \text{variables2}^\text{key},\]
    variables1^var > variables2^var],
    [’ORDER’(0,’MININT’, var) = ’MAX’]).

ctr_example(
    maximum,
    maximum(7,[[var-3],[var-2],[var-7],[var-2],[var-6]]).

maximum(A,B) :-
    maximum_signature(B,C,A),
    automaton(
        C,
        D,
        C,
        0..2,
        [source(s), node(e), sink(t)],
        [arc(s,0,s),
        arc(s,1,e),
        arc(e,1,e),
        arc(e,0,e),
        arc(e,$,t)],
        []),
        [],
        []).
maximum_signature([],[],A).

maximum_signature([[var-A]|B],[C|D],E) :-
    in(C,0..2),
    E#>A#<=>C#=0,
    E#=A#<=>C#=1,
    E#<A#<=>C#=2,
    maximum_signature(B,D,E).
B.133 maximum_modulo

ctr_date(maximum_modulo, ['20000128', '20030820', '20041230']).

ctr_origin(maximum_modulo, 'Derived from %c.', [maximum]).

ctr_arguments(
  maximum_modulo,
  ['MAX'-dvar, 'VARIABLES'-collection(var-dvar), 'M'-int]).

ctr_restrictions(
  maximum_modulo,
  [size('VARIABLES')>0, 'M'>0, required('VARIABLES', var)]).

ctr_graph(
  maximum_modulo,
  ['VARIABLES'],
  2,
  ['CLIQUE'->collection(variables1, variables2)],
  [#\/(variables1^key=variables2^key,
  variables1^var mod 'M'>variables2^var mod 'M'))],
  ['ORDER' (0, 'MININT', var)= 'MAX']].

ctr_example(
  maximum_modulo,
  maximum_modulo(5,
  [[var-9], [var-1], [var-7], [var-6], [var-5]],
  3)).
B.134  min_index

ctr_automaton(min_index,min_index).

ctr_date(min_index,[‘20030820’,’20040530’,’20041230’]).

ctr_origin(min_index,’N.˘Beldiceanu’,[]).

ctr_arguments(
    min_index,
    [‘MIN_INDEX’-dvar,
    ’VARIABLES’-collection(index-int,var-dvar)]).

ctr_restrictions(
    min_index,
    [size(‘VARIABLES’)>0,
    ‘MIN_INDEX’>=0,
    ‘MIN_INDEX’=<size(‘VARIABLES’),
    required(‘VARIABLES’,[index,var]),
    ‘VARIABLES’^index>=1,
    ‘VARIABLES’^index=<size(‘VARIABLES’),
    distinct(‘VARIABLES’,index)]).

ctr_graph(
    min_index,
    [‘VARIABLES’],
    2,
    [‘CLIQUE’>>collection(variables1,variables2)],
    [#\((variables1^key=variables2^key,
    variables1^var<variables2^var)],
    [‘ORDER’(0,0,index)=’MIN_INDEX’]).

ctr_example(
    min_index,
    [min_index(2,
        [[index-1,var-3],
        [index-2,var-2],
        [index-3,var-7],
        [index-4,var-2],
        [index-5,var-6]]),
      min_index(4,
        [[index-1,var-3],
        [index-2,var-2],
        [index-3,var-7],
        [index-4,var-2],
        [index-5,var-6]])].
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

min_index(A,B) :-
    length(B,C),
    length(D,C),
    domain(D,0,0),
    min_index_signature(B,E,D),
    automaton(
      E,
      F,
      D,
      0..0,
      [source(s),sink(t)],
      [arc(s,0,s,(F#>=G->[G,H,I+1];F#<G->[F,I+1,I+1])),
       arc(s,$,t)],
      [G,H,I],
      [1000000,0,0],
      [J,A,K]).

min_index_signature([],[],[]).

min_index_signature([[index-A,var-B]|C],[B|D],[0|E]) :-
    min_index_signature(C,D,E).
B.135  min_n

ctr_date(min_n, ['20000128', '20030820', '20040530', '20041230']).

ctr_origin(min_n, '\cite{Beldiceanu01}', []).

ctr_arguments(
    min_n,
    ['MIN'-dvar, 'RANK'-int, 'VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
    min_n,
    [size('VARIABLES')>0, 'RANK'>=0, 'RANK'<size('VARIABLES'),
     required('VARIABLES', var)]).

ctr_graph(
    min_n,
    ['VARIABLES'], 2,
    ['CLIQUE'>>collection(variables1,variables2)],
    ['#\/(variables1^key=variables2^key,
     variables1^var<variables2^var)],
    ['ORDER'('RANK', 'MAXINT', var)=MIN']).

ctr_example(
    min_n,
    min_n(3, 1, [[var-3], [var-1], [var-7], [var-1], [var-6]])).
B.136  min_nvalue

ctr_date(min_nvalue, ['20000128', '20030820']).

ctr_origin(min_nvalue, 'N. Beldiceanu', []).

ctr_arguments(
    min_nvalue,
    ['MIN'-dvar, 'VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
    min_nvalue,
    ['MIN'>=1,
     'MIN'=<size('VARIABLES'),
     required('VARIABLES', var)]).

ctr_graph(
    min_nvalue,
    ['VARIABLES'],
    2,
    ['CLIQUE'>>collection(variables1, variables2)],
    [variables1`var=variables2`var],
    ['MIN_NSCC'='MIN']).

ctr_example(
    min_nvalue,
    min_nvalue(2,
        [[var-9],
         [var-1],
         [var-7],
         [var-1],
         [var-1],
         [var-7],
         [var-7],
         [var-7],
         [var-7],
         [var-9]]))


B.137  min_size_set_of_consecutive_var

ctr_date(
    min_size_set_of_consecutive_var,
    ['20030820','20040530']).

ctr_origin(min_size_set_of_consecutive_var,'N. Beldiceanu',[]).

ctr_arguments(
    min_size_set_of_consecutive_var,
    ['MIN'-dvar,'VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
    min_size_set_of_consecutive_var,
    ['MIN'>=1,
     'MIN'=<size('VARIABLES'),
     required('VARIABLES',var)]).

ctr_graph(
    min_size_set_of_consecutive_var,
    ['VARIABLES'],
    2,
    ['CLIQUE']>>collection(variables1,variables2)],
    [abs(variables1ˆvar-variables2ˆvar)=<1],
    ['MIN_NSCC'='MIN']].

ctr_example(
    min_size_set_of_consecutive_var,
    min_size_set_of_consecutive_var(4,
        [[var-3],
         [var-1],
         [var-3],
         [var-7],
         [var-4],
         [var-1],
         [var-2],
         [var-8],
         [var-7],
         [var-6]]).
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.138 minimum

ctr_automaton(minimum,minimum).

ctr_date(minimum,[’20000128’,’20030820’,’20040530’,’20041230’]).

ctr_origin(minimum,’CHIP’,[]).

ctr_arguments(
    minimum,
    [’MIN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
    minimum,
    [size(’VARIABLES’)\>0,required(’VARIABLES’,var)]).

ctr_graph(
    minimum,
    [’VARIABLES’],
    2,
    [’CLIQUE’>>collection(variables1,variables2)],
    ![\]/(variables1\^key=variables2\^key,
    variables1\^var<variables2\^var],
    [’ORDER’(0,’MAXINT’,var)=’MIN’]).

ctr_example(
    minimum,
    minimum(2,[var-3],[var-2],[var-7],[var-2],[var-6])).

minimum(A,B) :-
    minimum_signature(B,C,A),
    automaton(
        C,
        D,
        C,
        0..2,
        [source(s),node(e),sink(t)],
        [arc(s,0,s),
        arc(s,1,e),
        arc(e,1,e),
        arc(e,0,e),
        arc(e,$,t)],
        [ ],
        [ ],
        [ ]).
minimum_signature([],[],A).

minimum_signature([[var-A]|B],[C|D],E) :-
in(C,0..2),
E#<A#<=>C#=0,
E#=A#<=>C#=1,
E#>A#<=>C#=2,
minimum_signature(B,D,E).
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.139 minimum_except_0

ctr_automaton(minimum_except_0,minimum_except_0).

ctr_date(minimum_except_0, [‘20030820’, ‘20040530’, ‘20041230’]).

ctr_origin(minimum_except_0, ’Derived from %c.’, [minimum]).

ctr_arguments(
    minimum_except_0,
    [‘MIN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
    minimum_except_0,
    [size(‘VARIABLES’) > 0,
     required(‘VARIABLES’, var),
     ‘VARIABLES’ˆvar>=0]).

ctr_graph(
    minimum_except_0,
    [‘VARIABLES’],
    2,
    [‘CLIQUE’>>collection(variables1,variables2)],
    [variables1ˆvar=\=0,
     variables2ˆvar=\=0,
     #\/(variables1ˆkey=variables2ˆkey,
      variables1ˆvar<variables2ˆvar)],
    [‘ORDER’(0,’MAXINT’,var)=’MIN’]).

ctr_example(
    minimum_except_0,
    [minimum_except_0(3,
      [[var-3],[var-7],[var-6],[var-7],[var-4],[var-7]]),
     minimum_except_0(2,
      [[var-3],[var-2],[var-0],[var-7],[var-2],[var-6]]),
     minimum_except_0(1000000,
      [[var-0],[var-0],[var-0],[var-0],[var-0],[var-0]])]).

minimum_except_0(A,B) :-
    minimum_except_0_signature(B,C,A),
    automaton(
        C,
        D,
\[
C, \\
0..4, \\
[s_{\text{source}(s)}, n_{\text{node}(j)}, n_{\text{node}(k)}, s_{\text{sink}(t)}], \\
[a_{s,0,s}, \\
a_{s,3,s}, \\
a_{s,2,j}, \\
a_{s,1,k}, \\
a_{j,0,j}, \\
a_{j,1,j}, \\
a_{j,2,j}, \\
a_{j,3,j}, \\
a_{j,t}, \\
a_{k,1,k}, \\
a_{k,t}], \\
[], \\
[], \\
[]).
\]

\[
\text{minimum\_except\_0\_signature}([],[],A).
\]

\[
\text{minimum\_except\_0\_signature}([\text{var-A}|B],[C|D],E) :- \\
in(C,0..4), \\
F=1000000, \\
A#0#/E#\leq F#\leftrightarrow C#=0, \\
A#0#/E#\leq F#\leftrightarrow C#=1, \\
A#0#/E#=A#\leftrightarrow C#=2, \\
A#0#/E#\leq A#\leftrightarrow C#=3, \\
A#0#/E#>A#\leftrightarrow C#=4, \\
\text{minimum\_except\_0\_signature}(B,D,E).
\]

minimum_except_0_signature([],[],A).
B.140 minimum_greater_than

ctr_automaton(minimum_greater_than,minimum_greater_than).

ctr_date(minimum_greater_than,[’20030820’]).

ctr_origin(minimum_greater_than,’N."Beldiceanu",[]).

ctr_arguments(
  minimum_greater_than,
  [’VAR1’-dvar,’VAR2’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
  minimum_greater_than,
  [size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_derived_collections(
  minimum_greater_than,
  [col(’ITEM’-collection(var-dvar),[item(var=’VAR2’)])]).

ctr_graph(
  minimum_greater_than,
  [’ITEM’,’VARIABLES’],
  2,
  [’PRODUCT’>>collection(item,variables)],
  [item^var<variables^var],
  [’NARC’>0],
  [’SUCC’>>[source,variables]],
  [minimum(’VAR1’,variables)]).

ctr_example(
  minimum_greater_than,
  minimum_greater_than(
    5,
    3,
    [[var-8],[var-5],[var-3],[var-8]]).

minimum_greater_than(A,B,C) :-
  minimum_greater_than_signature(C,D,A,B),
  automaton(
    D,
    E,
    D,
    0..5,
    [source(s),node(e),sink(t)],
    [arc(s,0,s),
arc(s,1,s),
arc(s,2,s),
arc(s,5,s),
arc(s,4,e),
arc(e,0,e),
arc(e,1,e),
arc(e,2,e),
arc(e,4,e),
arc(e,5,e),
arce(e,$,t)\),
[[],
[]],
[]).
B.141 minimum_modulo

ctr_date(minimum_modulo,['20000128','20030820','20041230']).

ctr_origin(minimum_modulo,'Derived from %c.',[minimum]).

ctr_arguments(
    minimum_modulo,
    ['MIN'-dvar,'VARIABLES'-collection(var-dvar),'M'-int]).

ctr_restrictions(
    minimum_modulo,
    [size('VARIABLES')>0,'M'>0,required('VARIABLES',var)]).

ctr_graph(
    minimum_modulo,
    ['VARIABLES'],
    2,
    ['CLIQUE'>>collection(variables1,variables2)],
    [#\(variables1\^key=variables2\^key,
        variables1\^var mod 'M'<variables2\^var mod 'M')],
    ['ORDER'(0,'MAXINT',var)='MIN']).

ctr_example(
    minimum_modulo,
    [minimum_modulo(
        6,
        [[var-9],[var-1],[var-7],[var-6],[var-5]],
        3),
    minimum_modulo(
        9,
        [[var-9],[var-1],[var-7],[var-6],[var-5]],
        3))].
B.142  minimum_weight_alldifferent

ctr_date(minimum_weight_alldifferent,['20030820','20040530']).

ctr_origin(
    minimum_weight_alldifferent,
    '\\cite{FocacciLodiMilano99}',
    []).

ctr_synonyms(
    minimum_weight_alldifferent,
    [minimum_weight_alldiff,
    minimum_weight_alldistinct,
    min_weight_alldiff,
    min_weight_alldifferent,
    min_weight_alldistinct]).

ctr_arguments(
    minimum_weight_alldifferent,
    ['VARIABLES'-collection(var-dvar),
    'MATRIX'-collection(i-int,j-int,c-int),
    'COST'-dvar]).

ctr_restrictions(
    minimum_weight_alldifferent,
    [size('VARIABLES')>0,
    required('VARIABLES',var),
    'VARIABLES'\ var>=1,
    'VARIABLES'\ var=<size('VARIABLES'),
    required('MATRIX',[i,j,c]),
    increasing_seq('MATRIX',[i,j]),
    'MATRIX'\ i>=1,
    'MATRIX'\ i=<size('VARIABLES'),
    'MATRIX'\ j>=1,
    'MATRIX'\ j=<size('VARIABLES'),
    size('MATRIX')=size('VARIABLES')*size('VARIABLES'))].

ctr_graph(
    minimum_weight_alldifferent,
    ['VARIABLES'],
    2,
    ['CLIQUE']>>collection(variables1,variables2)],
    [variables1\ var=variables2\ key],
    ['NTREE'=0,
     =('SUM_WEIGHT_ARC'(\ @('MATRIX',
    `))].
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

\[ \begin{align*}
+((\text{variables1}^\text{key-1}) \cdot \text{size}('\text{VARIABLES'}), \\
\text{variables1}^\text{var}),
\end{align*} \]

\[ \text{ctr_example(} \\
\text{minimum_weight_alldifferent,} \\
\text{minimum_weight_alldifferent}{} \\
\text{[[var-2], [var-3], [var-1], [var-4]],} \\
\text{[[i-1, j-1, c-4],} \\
\text{i-1, j-2, c-1],} \\
\text{i-1, j-3, c-7],} \\
\text{i-1, j-4, c-0],} \\
\text{i-2, j-1, c-1],} \\
\text{i-2, j-2, c-0],} \\
\text{i-2, j-3, c-8],} \\
\text{i-2, j-4, c-2],} \\
\text{i-3, j-1, c-3],} \\
\text{i-3, j-2, c-2],} \\
\text{i-3, j-3, c-1],} \\
\text{i-3, j-4, c-6],} \\
\text{i-4, j-1, c-0],} \\
\text{i-4, j-2, c-0],} \\
\text{i-4, j-3, c-6],} \\
\text{i-4, j-4, c-5]],} \\
17))} \).
\]
B.143 nclass

ctr_date(nclass, ['20000128', '20030820']).

ctr_origin(nclass, 'Derived from %c', [nvalue]).

ctr_types(nclass, ['VALUES'-collection(val-int)]).

ctr_arguments(
    nclass,
    ['NCLASS'-dvar,
    'VARIABLES'-collection(var-dvar),
    'PARTITIONS'-collection(p-'VALUES')]).

ctr_restrictions(
    nclass,
    [required('VALUES',val),
    distinct('VALUES',val),
    'NCLASS'>=0,
    'NCLASS'<min(size('VARIABLES'),size('PARTITIONS')),
    required('VARIABLES',var),
    required('PARTITIONS',p),
    size('PARTITIONS')>=2]).

ctr_graph(
    nclass,
    ['VARIABLES'],
    2,
    ['CLIQUE'>>collection(variables1,variables2)],
    [in_same_partition(
        variables1`var,
        variables2`var,
        'PARTITIONS')],
    ['NSCC'='NCLASS']).

ctr_example(
    nclass,
    nclass(2,
    [var-3],[var-2],[var-7],[var-2],[var-6],
    [[p-[[val-1],[val-3]]],
    [p-[[val-4]]],
    [p-[[val-2],[val-6]]])).
B.144 nequivalence

ctr_date(nequivalence,’20000128’,’20030820’).

ctr_origin(nequivalence,’Derived from %c.’,[nvalue]).

ctr_arguments(nequivalence,
   [’NEQUIV’-dvar,’M’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(nequivalence,
   [’NEQUIV’>=min(1,size(’VARIABLES’)),
    ’NEQUIV’<min(’M’,size(’VARIABLES’)),
    ’M’>0,
    required(’VARIABLES’,var)]).

ctr_graph(nequivalence,
   [’VARIABLES’],
   2,
   [’CLIQUE’>>collection(variables1,variables2)],
   [variables1^var mod ’M’=variables2^var mod ’M’],
   [’NSCC’=’NEQUIV’]).

ctr_example(nequivalence,
   nequivalence(2,
                   3,
                   [[var-3],
                    [var-2],
                    [var-5],
                    [var-6],
                    [var-15],
                    [var-3],
                    [var-3]]))).
B.145  next_element

ctr_automaton(next_element,next_element).
ctr_date(next_element,['20030820','20040530']).
ctr_origin(next_element,'N.˘Beldiceanu',[]).
ctr_arguments(
    next_element,
    ['THRESHOLD'-dvar,
     'INDEX'-dvar,
     'TABLE'-collection(index-int,value-dvar),
     'VAL'-dvar]).
ctr_restrictions(
    next_element,
    ['INDEX'>=1,
     'INDEX'=<size('TABLE'),
     required('TABLE', [index,value]),
     'TABLE'ˆindex>=1,
     'TABLE'ˆindex=<size('TABLE'),
     distinct('TABLE',index)].
ctr_derived_collections(
    next_element,
    [col('ITEM'-collection(index-dvar,value-dvar),
       [item(index='THRESHOLD',value='VAL')])].
ctr_graph(
    next_element,
    ['ITEM','TABLE'],
    2,
    ['PRODUCT'>>collection(item,table)],
    [itemˆindex<tableˆindex,itemˆvalue=tableˆvalue],
    ['NARC'>0],
    [>>('SUCC',
        [source,  
         -(variables,  
          col('VARIABLES'-collection(var-dvar),  
           [item(var='TABLE'ˆindex)])]),
         [minimum('INDEX',variables)]].
ctr_example(
    next_element,
    next_element(
next_element(A,B,C,D) :-
    next_element_signature(C,E,A,B,D),
    automaton(
        E,
        F,
        E,
        0..11,
        [source(s),node(e),sink(t)],
        [arc(s,0,s),
         arc(s,1,s),
         arc(s,2,s),
         arc(s,3,s),
         arc(s,4,s),
         arc(s,5,s),
         arc(s,7,s),
         arc(s,9,s),
         arc(s,10,s),
         arc(s,11,s),
         arc(s,8,e),
         arc(e,0,e),
         arc(e,1,e),
         arc(e,2,e),
         arc(e,3,e),
         arc(e,4,e),
         arc(e,5,e),
         arc(e,7,e),
         arc(e,8,e),
         arc(e,9,e),
         arc(e,10,e),
         arc(e,11,e),
         arc(e,$,t)],
        [],
        [],
        []).
next_element_signature([[index-A, value-B] | C], [D|E], F, G, H) :-
in(D, 0..11),
A#=<F# \ A#<G# \ B#>=H# <=><D#=0,
A#=<F# \ A#<G# \ B#<H# <<><D#=1,
A#=<F# \ A#=G# \ B#>=H# <=><D#=2,
A#=<F# \ A#=G# \ B#<H# <=><D#=3,
A#=<F# \ A#>G# \ B#>=H# <=><D#=4,
A#=<F# \ A#>G# \ B#<H# <=><D#=5,
A#>F# \ A#<G# \ B#>=H# <=><D#=6,
A#>F# \ A#<G# \ B#<H# <=><D#=7,
A#>F# \ A#=G# \ B#>=H# <=><D#=8,
A#>F# \ A#=G# \ B#<H# <=><D#=9,
A#>F# \ A#>G# \ B#>=H# <=><D#=10,
A#>F# \ A#>G# \ B#<H# <=><D#=11,
next_element_signature(C, E, F, G, H).
B.146 **next_greater_element**

```prolog
ctr_date(next_greater_element,['20030820','20040530']).

ctr_origin(next_greater_element,'M. Carlsson',[]).

ctr_arguments(
 next_greater_element,
 ['VAR1'-dvar,'VAR2'-dvar,'VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
 next_greater_element,
 [size('VARIABLES')>0, required('VARIABLES',var)]).

ctr_derived_collections(
 next_greater_element,
 [col('V'-collection(var-dvar),[item(var-'VAR1')])]).

ctr_graph(
 next_greater_element,
 ['VARIABLES'],
 2,
 ['PATH'>>collection(variables1,variables2)],
 [variables1\var<variables2\var],
 ['NARC'=size('VARIABLES')-1]).

ctr_graph(
 next_greater_element,
 ['V','VARIABLES'],
 2,
 ['PRODUCT'>>collection(v,variables)],
 [v\var<variables\var],
 ['NARC']>0),
 ['SUCC'>>[source,variables]],
 [minimum('VAR2',variables)]).

ctr_example(
 next_greater_element,
 next_greater_element(
 7,
 8,
 [[var-3],[var-5],[var-8],[var-9]]).```
B.147 ninterval

ctr_date(ninterval, ['20030820', '20040530']).

ctr_origin(ninterval, 'Derived from %c.', [nvalue]).

ctr_arguments(
 ninterval,
 ['NVAL'-dvar,
 'VARIABLES'-collection(var-dvar),
 'SIZE_INTERVAL'-int]).

ctr_restrictions(
 ninterval,
 ['NVAL'>=min(1, size('VARIABLES')),
 'NVAL'=<size('VARIABLES'),
 required('VARIABLES', var),
 'SIZE_INTERVAL'>0]).

ctr_graph(
 ninterval,
 ['VARIABLES'],
 2,
 ['CLIQUE'=>collection(variables1,variables2)],
 [=variables1^var/'SIZE_INTERVAL',
 variables2^var/'SIZE_INTERVAL'],
 ['NSCC'=>'NVAL']).

ctr_example(
 ninterval,
 ninterval(2, [[var-3], [var-1], [var-9], [var-1], [var-9]], 4)).
B.148 no_peak

ctr_automaton(no_peak, no_peak).

ctr_date(no_peak, ['20031101', '20040530']).

ctr_origin(no_peak, 'Derived from %c.', [peak]).

ctr_arguments(no_peak, ['VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
 no_peak,
 [size('VARIABLES')>0, required('VARIABLES', var)]).

ctr_example(
 no_peak,
 no_peak([[var-1], [var-1], [var-4], [var-8], [var-8]])).

no_peak(A) :-
 no_peak_signature(A, B),
 automaton(
 B,
 C,
 B,
 0..2,
 [source(s), node(i), sink(t)],
 [arc(s,0,s),
 arc(s,1,s),
 arc(s,2,i),
 arc(s,$,t),
 arc(i,1,i),
 arc(i,2,i),
 arc(i,$,t)],
 [],
 [],
 []).

no_peak_signature([], []).

no_peak_signature([A], []).

no_peak_signature([[var-A],[var-B]|C],[D|E]) :-
 in(D, 0..2),
 A#<B#<=>D#=0,
 A#=B#<=>D#=1,
 A#>B#<=>D#=2,
no_peak_signature([[var-B]|C],E).
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.149 no_valley

ctr_automaton(no_valley,no_valley).

ctr_date(no_valley,['20031101','20040530']).

ctr_origin(no_valley,'Derived from %c.',[valley]).

ctr_arguments(no_valley,['VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
 no_valley,
 [size('VARIABLES')>0,required('VARIABLES',var)]).

ctr_example(
 no_valley,
 no_valley(
 [[var-1],[var-1],[var-4],[var-8],[var-8],[var-2]])).

no_valley(A) :-
 no_valley_signature(A,B),
 automaton(
 B,
 C,
 B,
 0..2,
 [source(s),node(i),sink(t)],
 [arc(s,0,s),
 arc(s,1,s),
 arc(s,2,i),
 arc(s,$,t),
 arc(i,1,i),
 arc(i,2,i),
 arc(i,$,t)],
 [],
 [],
 []).

no_valley_signature([],[]).

no_valley_signature([A],[]).

no_valley_signature([[[var-A],[var-B]|C],D|E]) :-
 in(D,0..2),
 A#<B#<=>D#=0,
 A#=B#<=>D#=1,
A# > B# <= D# = 2,
no_valley_signature([var-B] | C), E).
B.150 not_all_equal

\[
\text{ctr_automaton}(\text{not_all_equal}, \text{not_all_equal}).
\]

\[
\text{ctr_date}(\text{not_all_equal}, ['20030820', '20040530', '20040726']).
\]

\[
\text{ctr_origin}(\text{not_all_equal}, 'CHIP', []).
\]

\[
\text{ctr_arguments}(\text{not_all_equal}, ['\text{VARIABLES}' = \text{collection}(\text{var-dvar})]).
\]

\[
\text{ctr_restrictions}(
\text{not_all_equal},
[\text{required}(\text{'VARIABLES'}, \text{var}), \text{size}(\text{'VARIABLES'}) \geq 1]).
\]

\[
\text{ctr_graph}(
\text{not_all_equal},
[\text{'VARIABLES'}],
2,
[\text{'CLIQUE'} \Rightarrow \text{\text{\text{collection}}(\text{variables1, variables2})}],
[\text{variables1} \hat{\text{var}} = \text{variables2} \hat{\text{var}}],
[\text{NSCC} > 1]).
\]

\[
\text{ctr_example}(
\text{not_all_equal},
\text{not_all_equal}([[\text{var-3}],[\text{var-1}],[\text{var-3}],[\text{var-3}],[\text{var-3}]])).
\]

\[
\text{not_all_equal}(A) :-
\]
\[
\text{length}(A, B),
B \geq 1,
\text{not_all_equal_signature}(A, C),
\text{automaton}(C, D, C, 0..1, [\text{source}(s), \text{sink}(t)], [\text{arc}(s, 1, s), \text{arc}(s, 0, t)], [], [], []).
\]

\[
\text{not_all_equal_signature}([], []).
\]

\[
\text{not_all_equal_signature}([A], []).
\]

\[
\text{not_all_equal_signature}([[\text{var-A}],[\text{var-B}]|C],[D|E]) :-
\]
A# = B# <= D,
not_all_equal_signature([[var-B]|C],E).
B.151 not_in

\text{ctr_automaton(not_in,not_in)}.
\text{ctr_date(not_in,\['20030820','20040530'\]).}
\text{ctr_origin(not_in,'Derived from \%c.',[in]).}
\text{ctr_arguments(not_in,\['VAR'-dvar,'VALUES'-collection(val-int)].}
\text{ctr_restrictions(}
\text{ not_in,}
\text{ [required('VALUES',val),distinct('VALUES',val)].}
\text{ctr_derived_collections(}
\text{ not_in,}
\text{ [col('VARIABLES'-collection(var-dvar),[item(var-'VAR')]])].}
\text{ctr_graph(}
\text{ not_in,}
\text{ ['VARIABLES','VALUES'],}
\text{ 2,}
\text{ ['PRODUCT']>>collection(variables,values)],}
\text{ [variables`var=values`val],}
\text{ ['NARC'=0]].}
\text{ctr_example(not_in,not_in(2,[[val-1],[val-3]])).}
\text{not_in(A,B) :-}
\text{ not_in_signature(B,C,A),}
\text{ automaton(}
\text{ C,}
\text{ D,}
\text{ C,}
\text{ 0..1,}
\text{ [source(s),sink(t)],}
\text{ [arc(s,0,s),arc(s,$,t)],}
\text{ []},
\text{ []},
\text{ []].}
\text{not_in_signature([],[],A).}
\text{not_in_signature([[val-A]|B],[C|D],E) :-}
\text{ E#=A#<=>C,}
\text{ not_in_signature(B,D,E).}
B.152 npair

ctr_date(npair,[’20030820’]).

ctr_origin(npair,’Derived from %c.’,[nvalue]).

ctr_arguments(
 npair,
 [’NVAL’-dvar,’PAIRS’-collection(x-dvar,y-dvar)]).

ctr_restrictions(
 npair,
 [’NVAL’>=min(1,size(’PAIRS’)),
 ’NVAL’=<size(’PAIRS’),
 required(’PAIRS’,[x,y])].

ctr_graph(
 npair,
 [’PAIRS’],
 2,
 [’CLIQUE’]>>collection(pairs1,pairs2)),
 [pairs1ˆx=pairs2ˆx,pairs1ˆy=pairs2ˆy],
 [’NSCC’=’NVAL’]).

ctr_example(
 npair,
 npair(
 2,
 [[[x-3,y-1],[x-1,y-5],[x-3,y-1],[x-3,y-1],[x-1,y-5]]])).
B.153 nset_of_consecutive_values

ctr_date(nset_of_consecutive_values, ['20030820', '20040530']).

ctr_origin(nset_of_consecutive_values, 'N. Beldiceanu', []).

ctr_arguments(
 nset_of_consecutive_values,
 ['N'-dvar,'VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
 nset_of_consecutive_values,
 ['N'>=1,'N'=<size('VARIABLES'),required('VARIABLES',var)]).

ctr_graph(
 nset_of_consecutive_values,
 ['VARIABLES'],
 2,
 ['CLIQUE'>>collection(variables1,variables2)],
 [abs(variables1`var-variables2`var)=<1],
 ['NSCC'='N']).

ctr_example(
 nset_of_consecutive_values,
 nset_of_consecutive_values(2,
 [[var-3],
 [var-1],
 [var-7],
 [var-1],
 [var-1],
 [var-2],
 [var-8]])).
B.154 nvalue

ctr_date(nvalue, ['20000128', '20030820', '20040530']).

ctr_origin(nvalue, '\cite{PachetRoy99}', []).

ctr_synonyms(nvalue, [cardinality_on_attributes_values]).

ctr_arguments(
 nvalue,
 ['NVAL'-dvar,'VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
 nvalue,
 ['NVAL'>=min(1, size('VARIABLES')),
 'NVAL'=<size('VARIABLES'),
 required('VARIABLES', var)]).

ctr_graph(
 nvalue,
 ['VARIABLES'],
 2,
 ['CLIQUE'>>collection(variables1,variables2)],
 [variables1^var=variables2^var],
 ['NSCC'='NVAL']).

ctr_example(
 nvalue,
 nvalue(4, [[var-3],[var-1],[var-7],[var-1],[var-6]]).
B.155 nvalue_on_intersection

ctr_date(nvalue_on_intersection, ['20040530']).

ctr_origin(nvalue_on_intersection,
 'Derived from %c and %c.',
 [common,nvalue]).

ctr_arguments(nvalue_on_intersection,
 ['NVAL'-dvar,
 'VARIABLES1'-collection(var-dvar),
 'VARIABLES2'-collection(var-dvar)]).

ctr_restrictions(nvalue_on_intersection,
 ['NVAL'>=0,
 'NVAL'=<size('VARIABLES1'),
 'NVAL'=<size('VARIABLES2'),
 required('VARIABLES1',var),
 required('VARIABLES2',var)]).

ctr_graph(nvalue_on_intersection,
 ['VARIABLES1','VARIABLES2'],
 2,
 ['PRODUCT'>>collection(variables1,variables2)],
 [variables1`var=variables2`var],
 ['NCC'='NVAL']).

ctr_example(nvalue_on_intersection,
 nvalue_on_intersection(2,
 [[var-1],[var-9],[var-1],[var-5]],
 [[var-2],[var-1],[var-9],[var-9],[var-6],[var-9]])).
B.156 nvalues

ctr_date(nvalues, ['20030820']).

ctr_origin(nvalues, 'Inspired by %c and %c.', [nvalue, count]).

ctr_arguments(
 nvalues,
 ['VARIABLES'-collection(var-dvar),
 'RELOP'-atom,
 'LIMIT'-dvar]).

ctr_restrictions(
 nvalues,
 [required('VARIABLES', var),
 in_list('RELOP', [=, =\, <, >, >=, =<])].)

ctr_graph(
 nvalues,
 ['VARIABLES'],
 2,
 ['CLIQUE'>>collection(variables1, variables2)],
 [variables1\var=variables2\var],
 ['RELOP'('NSCC', 'LIMIT')].)

ctr_example(
 nvalues,
 nvalues(
 [[var-4], [var-5], [var-5], [var-4], [var-1], [var-5]],
 =,
 3)).
B.157 nvalues_except_0

ctr_date(nvalues_except_0, ['20030820']).

ctr_origin(nvalues_except_0, 'Derived from %c.', [nvalues]).

ctr_arguments(
 nvalues_except_0,
 ['VARIABLES'-collection(var-dvar),
 'RELOP'-atom,
 'LIMIT'-dvar]).

ctr_restrictions(
 nvalues_except_0,
 [required('VARIABLES', var),
 in_list('RELOP', [=, =\=, <, >=, >, <=])].

ctr_graph(
 nvalues_except_0,
 ['VARIABLES'],
 2,
 ['CLIQUE'>>collection(variables1, variables2)],
 [variables1^var=\=0, variables1^var=variables2^var],
 ['RELOP'('NSCC', 'LIMIT')].

ctr_example(
 nvalues_except_0,
 nvalues_except_0(
 [[var-4], [var-5], [var-5], [var-4], [var-0], [var-1]],
 =,
 3)).
B.158 one_tree

ctr_date(one_tree,['20031001','20040530']).

ctr_origin(
 one_tree,
 'Inspired by \cite{GentProsserSmithWei03}', [],
).

ctr_arguments(
 one_tree,
 [-('NODES',
 collection(
 id-atom,
 index-int,
 type-int,
 father-dvar,
 depth1-dvar,
 depth2-dvar))]).

ctr_restrictions(
 one_tree,
 [required('NODES',[id,index,type,father,depth1,depth2]),
 'NODES'\^index=1,
 'NODES'\^index=<size('NODES'),
 distinct('NODES',index),
 in_list('NODES',type,[2,3,6]),
 'NODES'\^father=1,
 'NODES'\^father=<size('NODES'),
 'NODES'\^depth1=0,
 'NODES'\^depth1=<size('NODES'),
 'NODES'\^depth2=0,
 'NODES'\^depth2=<size('NODES'))].

ctr_graph(
 one_tree,
 ['NODES'],
 2,
 ['CLIQUE'>>collection(nodes1,nodes2)],
 [#\/(#/\(nodes1\^index=nodes2\^index,
 nodes1\^father=nodes1\^index),
 #\/(#/\(nodes1\^index=nodes2\^index,
 nodes1\^father=nodes2\^index),
 #\/(#/\(nodes1\^type mod 2=0,
 nodes1\^depth1>nodes2\^depth1),
 #/(nodes1\^type mod 2=0,
nodes1^depth1=nodes2^depth1)),
 #/(/(nodes1^type mod 3=0,
 nodes1^depth2>nodes2^depth2),
 #/(/(nodes1^type mod 3>0,
 nodes1^depth2=nodes2^depth2))))],
['MAX_NSCC'=<1,'NCC'=1,'NVERTEX'=size('NODES')]).

ctr_example(
 one_tree,
 one_tree(
 [[id-x,index-1,type-2,father-6,depth1-2,depth2-2],
 [id-x,index-2,type-2,father-2,depth1-1,depth2-0],
 [id-x,index-3,type-3,father-6,depth1-1,depth2-3],
 [id-x,index-4,type-3,father-5,depth1-2,depth2-4],
 [id-x,index-5,type-3,father-1,depth1-2,depth2-3],
 [id-x,index-6,type-3,father-7,depth1-1,depth2-2],
 [id-x,index-7,type-3,father-2,depth1-1,depth2-1],
 [id-g,index-8,type-2,father-1,depth1-1,depth2-2],
 [id-a,index-9,type-6,father-4,depth1-3,depth2-5],
 [id-f,index-10,type-6,father-7,depth1-2,depth2-2],
 [id-b,index-11,type-3,father-4,depth1-2,depth2-5],
 [id-c,index-12,type-3,father-5,depth1-2,depth2-4],
 [id-e,index-13,type-3,father-3,depth1-1,depth2-4],
 [id-d,index-14,type-3,father-3,depth1-1,depth2-4]]).
B.159 orchard

\texttt{ctr_date(orchard,\{'20000128',\,'20030820'\}).}

\texttt{ctr_origin(orchard,\'\cite{Jackson1821}',[]).}

\texttt{ctr_arguments(
 orchard,
 [\'NROW\'-dvar,\'TREES\'-collection(index-int,x-dvar,y-dvar)]).
}

\texttt{ctr_restrictions(
 orchard,
 [\'NROW\'>=0,
 \'TREES\'\^index>=1,
 \'TREES\'\^index=<size('TREES'),
 \texttt{required('TREES',[index,x,y])},
 \texttt{distinct('TREES',index)},
 \'TREES\'\^x>=0,
 \'TREES\'\^y>=0]).
}

\texttt{ctr_graph(
 orchard,
 ['TREES'],
 3,
 ['\texttt{CLIQUE'}(<)>>collection(trees1,trees2,trees3)],
 \texttt{[+(+(trees1\^x*trees2\^y-trees1\^x*trees3\^y,}
 \texttt{trees1\^y*trees3\^x-trees1\^y*trees2\^x),}
 \texttt{trees2\^x*trees3\^y-trees2\^y*trees3\^x),}
 \texttt{0])},
 ['\texttt{NARC}'='NROW']).
}

\texttt{ctr_example(
 orchard,
 orchard(10,
 [[index-1,x-0,y-0],
 [index-2,x-4,y-0],
 [index-3,x-8,y-0],
 [index-4,x-2,y-4],
 [index-5,x-4,y-4],
 [index-6,x-6,y-4],
 [index-7,x-0,y-8],
 [index-8,x-4,y-8],
 [index-9,x-8,y-8]]).}
B.160 orth_link_ori_siz_end

ctr_date(orth_link_ori_siz_end, [’20030820’]).

ctr_origin(
 orth_link_ori_siz_end,
 ‘Used by several constraints between orthotopes’,
 []).

ctr_arguments(
 orth_link_ori_siz_end,
 [’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_restrictions(
 orth_link_ori_siz_end,
 [size(’ORTHOTOPE’)>0,
 require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
 ’ORTHOTOPE’^siz>=0]).

ctr_graph(
 orth_link_ori_siz_end,
 [’ORTHOTOPE’],
 1,
 [’SELF’>>collection(orthotope)],
 [orthotope^ori+orthotope^siz=orthotope^end],
 [’NARC’=size(’ORTHOTOPE’)]).

ctr_example(
 orth_link_ori_siz_end,
 orth_link_ori_siz_end(
 [[ori-2,siz-2,end-4],[ori-1,siz-3,end-4]])).
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.161 orth_on_the_ground

ctr_date(orth_on_the_ground,[‘20030820’,’20040726’]).

ctr_origin(
 orth_on_the_ground,
 'Used for defining %c.’,
 [place_in_pyramid]).

ctr_arguments(
 orth_on_the_ground,
 ['ORTHOTOPE'-collection(ori-dvar,siz-dvar,end-dvar),
 'VERTICAL_DIM'-int]).

ctr_restrictions(
 orth_on_the_ground,
 [size('ORTHOTOPE')>0,
 require_at_least(2,'ORTHOTOPE',[ori,siz,end]),
 'ORTHOTOPE'~siz>=0,
 'VERTICAL_DIM'>=1,
 'VERTICAL_DIM'=<size('ORTHOTOPE'),
 orth_link_ori_siz_end('ORTHOTOPE')]).

ctr_graph(
 orth_on_the_ground,
 ['ORTHOTOPE'],
 1,
 ['SELF'>>collection(orthotope)],
 [orthotope~key='VERTICAL_DIM',orthotope~ori=1],
 ['NARC'=1]).

ctr_example(
 orth_on_the_ground,
 orth_on_the_ground(
 [[ori-1,siz-2,end-3],[ori-2,siz-3,end-5]],
 1)).
B.162 orth_on_top_of_orth

ctr_date(orth_on_top_of_orth, ['20030820', '20040726']).

ctr_origin(
 orth_on_top_of_orth,
 'Used for defining %c.',
 [place_in_pyramid]).

ctr_types(
 orth_on_top_of_orth,
 ['ORTHOTOPE'-collection(ori-dvar, siz-dvar, end-dvar)]).

ctr_arguments(
 orth_on_top_of_orth,
 ['ORTHOTOPE1'-'ORTHOTOPE',
 'ORTHOTOPE2'-'ORTHOTOPE',
 'VERTICAL_DIM'-int]).

ctr_restrictions(
 orth_on_top_of_orth,
 [size('ORTHOTOPE')>0,
 require_at_least(2,'ORTHOTOPE',[ori,siz,end]),
 'ORTHOTOPE'~siz>=0,
 size('ORTHOTOPE1')=size('ORTHOTOPE2'),
 'VERTICAL_DIM'~>=1,
 'VERTICAL_DIM'~=<size('ORTHOTOPE1'),
 orth_link_ori_siz_end('ORTHOTOPE1'),
 orth_link_ori_siz_end('ORTHOTOPE2')]).

ctr_graph(
 orth_on_top_of_orth,
 ['ORTHOTOPE1','ORTHOTOPE2'],
 2,
 ['PRODUCT'(=)>>collection(orthotope1,orthotope2)],
 [orthotope1~key='VERTICAL_DIM',
 orthotope2~ori=<orthotope1~ori,
 orthotope1~end=<orthotope2~end],
 ['NARC'=size('ORTHOTOPE1')-1]).

ctr_graph(
 orth_on_top_of_orth,
 ['ORTHOTOPE1','ORTHOTOPE2'],
 2,
 ['PRODUCT'(=)>>collection(orthotope1,orthotope2)],
 [orthotope1~key='VERTICAL_DIM',
 orthotope2~ori=<orthotope1~ori,
 orthotope1~end=<orthotope2~end],
 ['NARC'=size('ORTHOTOPE1')-1]).
orthotope1^ori=orthotope2^end],
[‘NARC’=1]).

ctrl_example(
 orth_on_top_of_orth,
 orth_on_top_of_orth(
 [[ori-5,siz-2,end-7],[ori-3,siz-3,end-6]],
 [[ori-3,siz-5,end-8],[ori-1,siz-2,end-3]],
 2)).
B.163 orths_are_connected

\[
\text{ctr_date(orths_are_connected, ['20000128', '20030820']).}
\]

\[
\text{ctr_origin(orths_are_connected, 'N.˘Beldiceanu', []).}
\]

\[
\text{ctr_types(orths_are_connected, ['ORTHOTOPE'_collection(ori_dvar, siz_dvar, end_dvar)]).}
\]

\[
\text{ctr_arguments(orths_are_connected, ['ORTHOTOPES'_collection(orth_ORTHOTOPE)]).}
\]

\[
\text{ctr_restrictions(orths_are_connected,}
\]
\[
\text{[size('ORTHOTOPE')>0,}
\]
\[
\text{require_at_least(2,'ORTHOTOPE',[ori,siz,end]),}
\]
\[
\text{'ORTHOTOPE'_siz>0,}
\]
\[
\text{required('ORTHOTOPES',orth),}
\]
\[
\text{same_size('ORTHOTOPES',orth))].}
\]

\[
\text{ctr_graph(orths_are_connected,}
\]
\[
\text{['ORTHOTOPES'],}
\]
\[
\text{1,}
\]
\[
\text{['SELF'_collection(orthotopes)],}
\]
\[
\text{[orth_link_ori_siz_end(orthotopes_orth)],}
\]
\[
\text{['NARC'=size('ORTHOTOPES')].}
\]

\[
\text{ctr_graph(orths_are_connected,}
\]
\[
\text{['ORTHOTOPES'],}
\]
\[
\text{2,}
\]
\[
\text{['CLIQUE'=__collection(orthotopes1,orthotopes2)],}
\]
\[
\text{[two_orth_are_in_contact(orthotopes1_orth,}
\]
\[
\text{orthotopes2_orth)],}
\]
\[
\text{['NVERTEX'=size('ORTHOTOPES'),'NCC'=1].}
\]

\[
\text{ctr_example(orths_are_connected, orths_are_connected([orth-[[ori-2,siz-4,end-6],[ori-2,siz-2,end-4]]],}
\]
\[
\text{[orth-[[ori-1,siz-2,end-3],[ori-4,siz-3,end-7]]],}
\]
\[
\text{[orth-[[ori-7,siz-4,end-11],[ori-1,siz-2,end-3]]].}
\]
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

[orth-[[ori-6,siz-2,end-8],[ori-3,siz-2,end-5]]]).
B.164 path_from_to

ctr_date(path_from_to,[’20030820’,’20040530’]).

ctr_origin(
 path_from_to,
 ’\cite{AlthausBockmayrElfKasperJungerMehlhorn02}’,
 []).

ctr_usual_name(path_from_to,path).

ctr_arguments(
 path_from_to,
 [’FROM’-int,
 ’TO’-int,
 ’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
 path_from_to,
 [’FROM’>=1,
 ’FROM’=<size(’NODES’),
 ’TO’>=1,
 ’TO’=<size(’NODES’),
 required(’NODES’,[index,succ]),
 ’NODES’^index>=1,
 ’NODES’^index=<size(’NODES’),
 distinct(’NODES’,index)]).

ctr_graph(
 path_from_to,
 [’NODES’],
 2,
 [’CLIQUE’>>collection(nodes1,nodes2)],
 [in_set(nodes2^index,nodes1^succ)],
 [’PATH_FROM_TO’(index,’FROM’,’TO’)=1]).

ctr_example(
 path_from_to,
 path_from_to(
 4,
 3,
 [[[index-1,succ-{}]],
 [index-2,succ-{}]],
 [index-3,succ-{5}],
 [index-4,succ-{5}],
 [index-5,succ-{2,3}]]).
B.165 pattern

ctr_predefined(pattern).

ctr_date(pattern,['20031008']).

ctr_origin(pattern,'\cite{BourdaisGalinierPesant03}',[]).

ctr_types(pattern,['PATTERN'-collection(var-int)]).

ctr_arguments(
 pattern,
 ['VARIABLES'-collection(var-dvar),
 'PATTERNS'-collection(pat-'PATTERN')]).

ctr_restrictions(
 pattern,
 [required('PATTERN',var),
 change(0,'PATTERN',=),
 required('VARIABLES',var),
 required('PATTERNS',pat),
 same_size('PATTERNS',pat)]).

ctr_example(
 pattern,
 pattern(
 [[var-1],
 [var-1],
 [var-1],
 [var-2],
 [var-2],
 [var-2],
 [var-1],
 [var-1],
 [var-3],
 [var-3]],
 [[pat-[[var-1],[var-2],[var-1]]],
 [pat-[[var-1],[var-2],[var-3]]],
 [pat-[[var-2],[var-1],[var-3]]]]).
B.166 peak

ctr_automaton(peak,peak).

ctr_date(peak, [’20040530’]).

ctr_origin(peak, ’Derived from %c.’,[inflexion]).

ctr_arguments(peak, [’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
 peak,
 [’N’>=0,
 2*’N’=<max(size(’VARIABLES’)-1,0),
 required(’VARIABLES’,var)]).

ctr_example(
 peak,
 peak(2,
 [[var-1],
 [var-1],
 [var-4],
 [var-8],
 [var-6],
 [var-2],
 [var-7],
 [var-1]])).

peak(A,B) :-
 peak_signature(B,C),
 automaton(
 C,
 D,
 C,
 0..2,
 [source(s),node(u),sink(t)],
 [arc(s,0,s),
 arc(s,1,s),
 arc(s,2,u),
 arc(s,$,t),
 arc(u,0,s,[E+1]),
 arc(u,1,u),
 arc(u,2,u),
 arc(u,$,t)],
 [E],

APPENDIX B. ELECTRONIC CONSTRAINT CATALOG
peak_signature([],[]).

peak_signature([A],[]).

peak_signature([[var-A],[var-B]|C],[D|E]) :-
 in(D,0..2),
 A#>B#<=>D#=0,
 A#=B#<=>D#=1,
 A#<B#<=>D#=2,
 peak_signature([[var-B]|C],E).
B.167 period

ctr_predefined(period).

ctr_date(period, [’20000128’, ’20030820’, ’20040530’]).

ctr_origin(period, ’N.˘Beldiceanu’, []).

ctr_arguments(
 period,
 [’PERIOD’-dvar,
 ’VARIABLES’-collection(var-dvar),
 ’CTR’-atom]).

ctr_restrictions(
 period,
 [’PERIOD’>=1,
 ’PERIOD’<=size(’VARIABLES’),
 required(’VARIABLES’, var),
 in_list(’CTR’, [=, =\=, <, >=, >, =<]])).

ctr_example(
 period,
 period(3,
 [[var-1],
 [var-1],
 [var-4],
 [var-1],
 [var-1],
 [var-4],
 [var-1],
 [var-1],
 =)).
B.168 period_except_0

ctr_predefined(period_except_0).

ctr_date(period_except_0, ['20030820', '20040530']).

ctr_origin(period_except_0, 'Derived from %c.', [period]).

ctr_arguments(
 period_except_0,
 ['PERIOD'-dvar,
 'VARIABLES'-collection(var-dvar),
 'CTR'-atom]).

ctr_restrictions(
 period_except_0,
 ['PERIOD'>=1, 'PERIOD'=<size('VARIABLES'),
 required('VARIABLES', var),
 in_list('CTR', [=, =\=, <, >, >=, <=])).

ctr_example(
 period_except_0,
 period_except_0(3,
 [[var-1],
 [var-1],
 [var-4],
 [var-1],
 [var-1],
 [var-0],
 [var-1],
 [var-1]],
 =)).
B.169 place_in_pyramid

ctr_date(place_in_pyramid, ['20000128', '20030820', '20041230']).

ctr_origin(place_in_pyramid, 'N. Beldiceanu', []).

ctr_types(place_in_pyramid, ['ORTHOTOPE'-'collection(ori-dvar, siz-dvar, end-dvar)]).

ctr_arguments(place_in_pyramid, ['ORTHOTOPES'-'collection(orth-'ORTHOTOPE'), 'VERTICAL_DIM'-'int']].

ctr_restrictions(place_in_pyramid, [size('ORTHOTOPE') > 0,
 require_at_least(2, 'ORTHOTOPE', [ori, siz, end]),
 'ORTHOTOPE' ^ siz >= 0,
 same_size('ORTHOTOPES', orth),
 'VERTICAL_DIM' >= 1,
 diffn('ORTHOTOPES')]).

ctr_graph(place_in_pyramid, ['ORTHOTOPES'], 2,
 ['CLIQUE' >>= collection(orthotopes1, orthotopes2)],
 [#\#/\#...
[orth-[[ori-5, siz-2, end-7], [ori-3, siz-2, end-5]]],
[orth-[[ori-8, siz-3, end-11], [ori-3, siz-2, end-5]]],
[orth-[[ori-8, siz-2, end-10], [ori-5, siz-2, end-7]]],
2)).
B.170 polyomino

ctr_date(polyomino, ['20000128', '20030820']).

ctr_origin(polyomino, 'Inspired by \cite{Golomb65}.', []).

ctr_arguments(polyomino, [-('CELLS',
 collection(
 index-int,
 right-dvar,
 left-dvar,
 up-dvar,
 down-dvar)))].

ctr_restrictions(polyomino, ['CELLS' ^ index >= 1,
 'CELLS' ^ index < size('CELLS'),
 size('CELLS') >= 1,
 required('CELLS', [index, right, left, up, down]),
 distinct('CELLS', index),
 'CELLS' ^ right >= 0,
 'CELLS' ^ right < size('CELLS'),
 'CELLS' ^ left >= 0,
 'CELLS' ^ left < size('CELLS'),
 'CELLS' ^ up >= 0,
 'CELLS' ^ up < size('CELLS'),
 'CELLS' ^ down >= 0,
 'CELLS' ^ down < size('CELLS')]).

ctr_graph(polyomino, ['CELLS'], 2,
 ['CLIQUE' (=\=)>>collection(cells1,cells2)],
 ['#\/(#//#/#/((cells1^right=cells2^index,
 cells2^left=cells1^index),
 #/(cells1^left=cells2^index,
 cells2^right=cells1^index)),
 #/(cells1^up=cells2^index,
 cells2^down=cells1^index)),
 cells1^down=cells2^index#/\cells2^up=cells1^index]),
 ['NVERTEX'=size('CELLS'), 'NCC'=1]).
ctr_example(
 polyomino,
 polyomino(
 [[index-1, right-0, left-0, up-2, down-0],
 [index-2, right-3, left-0, up-0, down-1],
 [index-3, right-0, left-2, up-4, down-0],
 [index-4, right-5, left-0, up-0, down-3],
 [index-5, right-0, left-4, up-0, down-0]]))

B.171 product_ctr

ctr_date(product_ctr, ['20030820']).

ctr_origin(product_ctr, 'Arithmetic constraint.', []).

ctr_arguments(
 product_ctr,
 ['VARIABLES'-collection(var-dvar), 'CTR'-atom, 'VAR'-dvar]).

ctr_restrictions(
 product_ctr,
 [required('VARIABLES', var),
 in_list('CTR', [=, =\, <, >, >, =\leq, =\geq])].

ctr_graph(
 product_ctr,
 ['VARIABLES'],
 1,
 ['SELF'>>collection(variables)],
 ['TRUE'],
 ['CTR'('PRODUCT'('VARIABLES', var), 'VAR')]).

ctr_example(
 product_ctr,
 product_ctr([[var-2], [var-1], [var-4]], =, 8)).
B.172 range_ctr

ctr_date(range_ctr,['20030820']).

ctr_origin(range_ctr,'Arithmetic constraint.',[]).

ctr_arguments(
 range_ctr,
 ['VARIABLES'-collection(var-dvar),'CTR'-atom,'VAR'-dvar]).

ctr_restrictions(
 range_ctr,
 [required('VARIABLES',var),
 in_list('CTR',[=,\=,<,\>=,>,\=<])]).

ctr_graph(
 range_ctr,
 ['VARIABLES'],
 1,
 ['SELF'>>collection(variables)],
 ['TRUE'],
 ['CTR'('RANGE'('VARIABLES',var),'VAR')]).

ctr_example(range_ctr,range_ctr([[var-1],[var-9],[var-4]],=,8)).
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.173 relaxed_sliding_sum

ctr_date(relaxed_sliding_sum,['20000128','20030820']).

ctr_origin(relaxed_sliding_sum,'CHIP',[]).

ctr_arguments(
 relaxed_sliding_sum,
 ['ATLEAST'-int, 'ATMOST'-int, 'LOW'-int, 'UP'-int, 'SEQ'-int, 'VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
 relaxed_sliding_sum,
 ['ATLEAST'=>0, 'ATMOST'=> 'ATLEAST', 'ATMOST'=<size('VARIABLES')-'SEQ'+1, 'UP'=> 'LOW', 'SEQ'>0, 'SEQ'=<size('VARIABLES'), required('VARIABLES',var)]).

ctr_graph(
 relaxed_sliding_sum,
 ['VARIABLES'],
 'SEQ',
 ['PATH'>>collection],
 [sum_ctr(collection,>=,'LOW'),sum_ctr(collection,=<,'UP')],
 ['NARC'=> 'ATLEAST','NARC'=' ATMOST']).

ctr_example(
 relaxed_sliding_sum,
 relaxed_sliding_sum(3, 4, 3, 7, 4, [[var-2], [var-4], [var-2], [var-0], [var-0],...
[var-3],
[var-4]])).
B.174 same

ctr_date(same,['20000128','20030820','20040530']).

ctr_origin(same,'N. Beldiceanu',[]).

ctr_arguments(same,
 ['VARIABLES1'-collection(var-dvar),
 'VARIABLES2'-collection(var-dvar)]).

ctr_restrictions(same,
 [size('VARIABLES1')=size('VARIABLES2'),
 required('VARIABLES1',var),
 required('VARIABLES2',var)]).

ctr_graph(same,
 ['VARIABLES1','VARIABLES2'],
 2,
 ['PRODUCT'>>collection(variables1,variables2)],
 [variables1=variables2],
 [for_all('CC','NSOURCE'='NSINK'),
 'NSOURCE'=size('VARIABLES1'),
 'NSINK'=size('VARIABLES2'))].

ctr_example(same,
 same(
 [[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
 [[var-9],[var-1],[var-1],[var-9],[var-2],[var-5]]).
B.175 \textbf{same_and_global_cardinality}

\begin{verbatim}
ctr_date(same_and_global_cardinality, [’20040530’]).

ctr_origin(
 same_and_global_cardinality,
 ’Derived from %c and %c’,
 [same,global_cardinality]).

ctr_synonyms(
 same_and_global_cardinality,
 [sgcc,same_gcc,same_and_gcc,swc,same_with_cardinalities]).

ctr_arguments(
 same_and_global_cardinality,
 [’VARIABLES1’-collection(var-dvar),
 ’VARIABLES2’-collection(var-dvar),
 ’VALUES’-collection(val-int,noccurrence-dvar)]).

ctr_restrictions(
 same_and_global_cardinality,
 [size(’VARIABLES1’)=size(’VARIABLES2’),
 required(’VARIABLES1’,var),
 required(’VARIABLES2’,var),
 required(’VALUES’,[val,noccurrence]),
 distinct(’VALUES’,val),
 ’VALUES’^noccurrence>=0,
 ’VALUES’^noccurrence=<size(’VARIABLES1’)].

ctr_graph(
 same_and_global_cardinality,
 [’VARIABLES1’,’VARIABLES2’],
 2,
 [’PRODUCT’>>collection(variables1,variables2)],
 [variables1^var=variables2^var],
 [for_all(’CC’,’NSOURCE’=’NSINK’),
 ’NSOURCE’=size(’VARIABLES1’),
 ’NSINK’=size(’VARIABLES2’)].

ctr_graph(
 same_and_global_cardinality,
 [’VARIABLES1’],
 1,
 foreach(’VALUES’,[’SELF’>>collection(variables)]),
 [variables^var=’VALUES’^val],
 [’NVERTEX’=’VALUES’^noccurrence]).
\end{verbatim}
ctr_example(
 same_and_global_cardinality,
 same_and_global_cardinality(
 [[var-1], [var-9], [var-1], [var-5], [var-2], [var-1]],
 [[var-9], [var-1], [var-1], [var-1], [var-2], [var-5]],
 [[val-1, nocurrence-3],
 [val-2, nocurrence-1],
 [val-5, nocurrence-1],
 [val-7, nocurrence-0],
 [val-9, nocurrence-1]]).

B.176 same_intersection

ctr_date(same_intersection, ['20040530']).

ctr_origin(
 same_intersection,
 'Derived from %c and %c.',
 [same, common]).

ctr_arguments(
 same_intersection,
 ['VARIABLES1'='collection(var-dvar),
 'VARIABLES2'='collection(var-dvar)].

ctr_restrictions(
 same_intersection,
 [required('VARIABLES1', var), required('VARIABLES2', var)).

ctr_graph(
 same_intersection,
 ['VARIABLES1', 'VARIABLES2'],
 2,
 ['PRODUCT'='collection(variables1, variables2)],
 [variables1\^var=variables2\^var],
 [for_all('CC', 'NSOURCE'='NSINK')].

ctr_example(
 same_intersection,
 same_intersection(
 same_intersection(
 [[var-1], [var-9], [var-1], [var-5], [var-2], [var-1]],
 [[var-9],
 [var-1],
 [var-1],
 [var-1],
 [var-3],
 [var-5],
 [var-8]])))

B.177 same_interval

ctr_date(same_interval,[’20030820’]).

ctr_origin(same_interval,’Derived from %c.’,[same]).

ctr_arguments(
 same_interval,
 [’VARIABLES1’-collection(var-dvar),
 ’VARIABLES2’-collection(var-dvar),
 ’SIZE_INTERVAL’-int]).

ctr_restrictions(
 same_interval,
 [size(’VARIABLES1’)=size(’VARIABLES2’),
 required(’VARIABLES1’,var),
 required(’VARIABLES2’,var),
 ’SIZE_INTERVAL’>0]).

ctr_graph(
 same_interval,
 [’VARIABLES1’,’VARIABLES2’],
 2,
 [’PRODUCT’>>collection(variables1,variables2)],
 [=variables1^var/’SIZE_INTERVAL’,
 variables2^var/’SIZE_INTERVAL’]),
 [for_all(’CC’,’NSOURCE’=’NSINK’),
 ’NSOURCE’=size(’VARIABLES1’),
 ’NSINK’=size(’VARIABLES2’)].

ctr_example(
 same_interval,
 same_interval(
 [[var-1],[var-7],[var-6],[var-0],[var-1],[var-7]],
 [[var-8],[var-8],[var-8],[var-0],[var-1],[var-2]],
 3)).
B.178 same_modulo

ctr_date(same_modulo,['20030820']).

ctr_origin(same_modulo, 'Derived from %c.', [same]).

ctr_arguments(same_modulo, ['VARIABLES1'-collection(var-dvar), 'VARIABLES2'-collection(var-dvar), 'M'-int]).

ctr_restrictions(same_modulo, [size('VARIABLES1')=size('VARIABLES2'), required('VARIABLES1', var), required('VARIABLES2', var), 'M'>0]).

ctr_graph(same_modulo, ['VARIABLES1', 'VARIABLES2'], 2, ['PRODUCT'>>collection(variables1, variables2)], [variables1^var mod 'M'=variables2^var mod 'M'], [for_all('CC', 'NSOURCE'= 'NSINK'), 'NSOURCE'=size('VARIABLES1'), 'NSINK'=size('VARIABLES2')].

ctr_example(same_modulo, same_modulo([[var-1], [var-9], [var-1], [var-5], [var-2], [var-1]], [[var-6], [var-4], [var-1], [var-1], [var-5], [var-5]], 3)).
B.179 same_partition

ctr_date(same_partition, ['20030820']).

ctr_origin(same_partition, 'Derived from %c.', [same]).

ctr_types(same_partition, ['VALUES'-collection(val-int)]).

ctr_arguments(same_partition, ['VARIABLES1'-collection(var-dvar), 'VARIABLES2'-collection(var-dvar), 'PARTITIONS'-collection(p-'VALUES')]).

ctr_restrictions(same_partition, [required('VALUES', val), distinct('VALUES', val), size('VARIABLES1') = size('VARIABLES2'), required('VARIABLES1', var), required('VARIABLES2', var), required('PARTITIONS', p), size('PARTITIONS') >= 2]).

ctr_graph(same_partition, ['VARIABLES1', 'VARIABLES2'], 2, ['PRODUCT' >> collection(variables1, variables2)], [in_same_partition(variables1'var, variables2'var, 'PARTITIONS')], [for_all('CC', 'NSOURCE' = 'NSINK'), 'NSOURCE' = size('VARIABLES1'), 'NSINK' = size('VARIABLES2')]).

ctr_example(same_partition, same([[var-1], [var-2], [var-6], [var-3], [var-1], [var-2]], [[var-6], [var-6], [var-2], [var-3], [var-1], [var-3]], [[p-[[val-1], [val-3]]], [p-[[val-4]]], [p-[[val-2], [val-6]]])).
B.180 sequence_folding

ctr_automaton(sequence_folding, sequence_folding).

ctr_date(sequence_folding, ['20030820', '20040530']).

ctr_origin(sequence_folding, 'J.˜Pearson', []).

ctr_arguments(
 sequence_folding,
 ['LETTERS'-collection(index-int, next-dvar)]).

ctr_restrictions(
 sequence_folding,
 [size('LETTERS')>=1,
 required('LETTERS', [index, next]),
 'LETTERS'\index>=1,
 'LETTERS'\index=<size('LETTERS'),
 increasing_seq('LETTERS', index),
 'LETTERS'\next>=1,
 'LETTERS'\next=<size('LETTERS')).

ctr_graph(
 sequence_folding,
 ['LETTERS'],
 1,
 ['SELF'->collection(letters)],
 [letters\next>=letters\index],
 ['NARC'=size('LETTERS')]).

ctr_graph(
 sequence_folding,
 ['LETTERS'],
 2,
 ['CLIQUE'(<)->collection(letters1, letters2)],
 [#\/(letters2\index>=letters1\next,
 letters2\next=<letters1\next]),
 ['NARC'=size('LETTERS')*(size('LETTERS')-1)/2]).

ctr_example(
 sequence_folding,
 sequence_folding(
 [[index-1, next-1],
 [index-2, next-8],
 [index-3, next-3],
 [index-4, next-5],
 [index-5, next-9]],
 ['LETTERS'\index1, 'LETTERS'\index2])].

sequence_folding(
 [[index-1, next-1],
 [index-2, next-8],
 [index-3, next-3],
 [index-4, next-5],
 [index-5, next-9]],
 ['LETTERS'\index1, 'LETTERS'\index2])].
sequence_folding(A) :-
 sequence_folding_signature(A,B),
 automaton(
 B,
 C,
 B,
 0..2,
 [source(s),sink(t)],
 [arc(s,0,s),arc(s,1,s),arc(s,$,t)],
 [],
 [],
 []).
B.181 set_value_precede

ctr_predefined(set_value_precede).

ctr_date(set_value_precede, ['20041003']).

ctr_origin(set_value_precede, '\cite{YatChiuLawJimmyLee04}', []).

ctr_arguments(
 set_value_precede,
 ['S'-int,'T'-int,'VARIABLES'-collection(var-svar)]).

ctr_restrictions(
 set_value_precede,
 ['S'\='T',required('VARIABLES',var)]).

ctr_example(
 set_value_precede,
 set_value_precede(2,1,
 [[var-{0,2}],[var-{0,1}],[var-{}],[var-{1}]]))).
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.182 shift

ctr_date(shift, ['20030820']).

ctr_origin(shift, 'N. Beldiceanu', []).

ctr_arguments(
 shift,
 ['MIN_BREAK'-int,
 'MAX_RANGE'-int,
 'TASKS'-collection(id-int, origin-dvar, end-dvar)]).

ctr_restrictions(
 shift,
 ['MIN_BREAK'>0,
 'MAX_RANGE'>0,
 required('TASKS', [id, origin, end]),
 distinct('TASKS', id)).

ctr_graph(
 shift,
 ['TASKS'],
 1,
 ['SELF'>>collection(tasks)],
 tasks=end>=tasks-origin,
 tasks-end-tasks-origin=<'MAX_RANGE',
 ['NARC'=size('TASKS')]).

ctr_graph(
 shift,
 ['TASKS'],
 2,
 ['CLIQUE'>>collection(tasks1, tasks2)],
 [#\(#\(#\(#\(#\(tasks2\'origin>=tasks1\'end,
 tasks2\'origin-tasks1\'end=<'MIN_BREAK',
 tasks1\'origin=tasks2\'end,
 tasks1\'origin-tasks2\'end=<'MIN_BREAK'))},
 tasks2\'origin<tasks1\'end#/	asks1\'origin<tasks2\'end),
 []],
 ['CC',
 [>(variables,
 col('VARIABLES'-collection(var-dvar),
 [item(var-'TASKS'\'origin),
 item(var-'TASKS'\'end)]))],
 [range_ctr(variables, =<, 'MAX_RANGE')]).
ctr_example(
 shift,
 shift(
 6,
 8,
 [[id-1,origin-17,end-20],
 [id-2,origin-7,end-10],
 [id-3,origin-2,end-4],
 [id-4,origin-21,end-22],
 [id-5,origin-5,end-6]])).
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.183 size_maximal_sequence_alldifferent

ctr_date(size_maximal_sequence_alldifferent,[’20030820’]).

ctr_origin(
 size_maximal_sequence_alldifferent, ’N.˘Beldiceanu’, []).

ctr_synonyms(
 size_maximal_sequence_alldifferent, [size_maximal_sequence_alldiff,
 size_maximal_sequence_alldistinct]).

ctr_arguments(
 size_maximal_sequence_alldifferent, [’SIZE’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
 size_maximal_sequence_alldifferent, [’SIZE’>=0, ’SIZE’=<size(’VARIABLES’),
 required(’VARIABLES’,var)]).

ctr_graph(
 size_maximal_sequence_alldifferent, [’VARIABLES’], *
 [’PATH_N’>>collection],
 [alldifferent(collection)],
 [’NARC’=’SIZE’]).

ctr_example(
 size_maximal_sequence_alldifferent, size_maximal_sequence_alldifferent(4,
 [[var-2], [var-2], [var-4], [var-5], [var-2], [var-7], [var-4]]).
B.184 size_maximal_starting_sequence_alldifferent

ctr_date(
 size_maximal_starting_sequence_alldifferent,
 ['20030820']).

ctr_origin(
 size_maximal_starting_sequence_alldifferent, 'N. Beldiceanu', []).

ctr_synonyms(
 size_maximal_starting_sequence_alldifferent,
 [size_maximal_starting_sequence_alldiff,
 size_maximal_starting_sequence_alldistinct]).

ctr_arguments(
 size_maximal_starting_sequence_alldifferent,
 ['SIZE'-dvar, 'VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
 size_maximal_starting_sequence_alldifferent,
 ['SIZE'>=0,
 'SIZE'=<size('VARIABLES'),
 required('VARIABLES', var)]).

ctr_graph(
 size_maximal_starting_sequence_alldifferent,
 ['VARIABLES'],
 '*',
 ['PATH_1'>>collection],
 [alldifferent(collection)],
 ['NARC'='SIZE']).

ctr_example(
 size_maximal_starting_sequence_alldifferent,
 size_maximal_starting_sequence_alldifferent(4,
 [[var-9],
 [var-2],
 [var-4],
 [var-5],
 [var-2],
 [var-7],
 [var-4]]).
B.185 sliding_card_skip0

ctr_automaton(sliding_card_skip0,sliding_card_skip0).

ctr_date(sliding_card_skip0,['20000128','20030820','20040530']).

ctr_origin(sliding_card_skip0,'N.˘Beldiceanu',[]).

ctr_arguments(sliding_card_skip0,['ATLEAST'-int,
'ATMOST'-int,
'VARIABLES'-collection(var-dvar),
'VALUES'-collection(val-int)]).

ctr_restrictions(sliding_card_skip0,['ATLEAST'>=0,
'ATMOST'>='ATLEAST',
required('VARIABLES',var),
required('VALUES',val),
distinct('VALUES',val),
'VALUES'\val=\=0]).

ctr_graph(sliding_card_skip0,['VARIABLES'],
2,
['PATH'>>collection(variables1,variables2),
'LOOP'>>collection(variables1,variables2)],
[variables1'\var=\=0,variables2'\var=\=0],
[],
['CC'>>[variables]],
among_low_up('ATLEAST','ATMOST',variables,'VALUES')].

ctr_example(sliding_card_skip0,
sliding_card_skip0(2,
3,
[[var-0],
[var-7],
[var-2],
[var-9],
[var-0],
[var-0],

APPENDIX B. ELECTRONIC CONSTRAINT CATALOG
sliding_card_skip0(A,B,C,D) :-
 col_to_list(D,E),
 list_to_fdset(E,F),
 sliding_card_skip0_signature(C,G,F),
 automaton(
 G,
 H,
 G,
 0..2,
 [source(s),node(i),sink(t)],
 [arc(s,0,s),
 arc(s,1,i,[0]),
 arc(s,2,i,[1]),
 arc(s,\$,t),
 arc(i,0,s,(in(I,A..B)->[I])),
 arc(i,1,i),
 arc(i,2,i,[I+1]),
 arc(i,\$,t,(in(I,A..B)->[I]))],
 [I],
 [0],
 [J]).

sliding_card_skip0_signature([],[],A).

sliding_card_skip0_signature([[var-A]|B],[C|D],E) :-
 A\/=0#<=>F,
 in_set(A,E)#<=>G,
 in(C,0..2),
 C#=max(2*F+G-1,0),
 sliding_card_skip0_signature(B,D,E).
B.186 sliding_distribution

ctr_date(sliding_distribution,[‘20031008’]).

ctr_origin(sliding_distribution,’\cite{ReginPuget97’],[{}]).

ctr_arguments(
 sliding_distribution,
 [‘SEQ’-int,
 ‘VARIABLES’-collection(var-dvar),
 ‘VALUES’-collection(val-int,omin-int,omax-int)]).

ctr_restrictions(
 sliding_distribution,
 [‘SEQ’>0,
 ‘SEQ’=<size(‘VARIABLES’),
 required(‘VARIABLES’,var),
 size(‘VALUES’)>0,
 required(‘VALUES’,[val,omin,omax]),
 distinct(‘VALUES’,val),
 ‘VALUES’ˆomin=0,
 ‘VALUES’ˆomax=<‘SEQ’,
 ‘VALUES’ˆomin=<‘VALUES’ˆomax]).

ctr_graph(
 sliding_distribution,
 [‘VARIABLES’],
 ‘SEQ’,
 [‘PATH’>>collection],
 [global_cardinality_low_up(collection,’VALUES’)],
 [‘NARC’=size(‘VARIABLES’)-‘SEQ’+1]).

ctr_example(
 sliding_distribution,
 sliding_distribution(4,
 [[var-0],
 [var-5],
 [var-6],
 [var-6],
 [var-5],
 [var-0],
 [var-0]],
 [[val-0,omin-1,omax-2],
 [val-1,omin-0,omax-4],
 [val-4,omin-0,omax-4],
 [val-5,omin-0,omax-5]])).
[val-5, omin-1, omax-2],
[val-6, omin-0, omax-2]]).
B.187 sliding_sum

ctr_date(sliding_sum, ['20000128', '20030820']).

ctr_origin(sliding_sum, 'CHIP', []).

ctr_arguments(
 sliding_sum,
 ['LOW'-int,
 'UP'-int,
 'SEQ'-int,
 'VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
 sliding_sum,
 ['UP'>='LOW',
 'SEQ'>0,
 'SEQ'=<size('VARIABLES'),
 required('VARIABLES', var)]).

ctr_graph(
 sliding_sum,
 ['VARIABLES'],
 'SEQ',
 ['PATH']>>collection],
 [sum_ctr(collection,>=,'LOW'), sum_ctr(collection,=<,'UP')],
 ['NARC'=size('VARIABLES')-'SEQ'+1]).

ctr_example(
 sliding_sum,
 sliding_sum(3,
 7,
 4,
 [[var-1],
 [var-4],
 [var-2],
 [var-0],
 [var-0],
 [var-3],
 [var-4]])).
B.188 sliding_time_window

ctr_date(sliding_time_window, ['20030820']).

ctr_origin(sliding_time_window, 'N. Beldiceanu', []).

ctr_arguments(sliding_time_window, ['WINDOW_SIZE'-int, 'LIMIT'-int, 'TASKS'-collection(id-int, origin-dvar, duration-dvar)]).

ctr_restrictions(sliding_time_window, ['WINDOW_SIZE'>0, 'LIMIT'>=0, required('TASKS', [id, origin, duration]), distinct('TASKS', id), 'TASKS'`duration>=0]).

ctr_graph(sliding_time_window, ['TASKS'], 2, ['CLIQUE']>>collection(tasks1, tasks2), [tasks1`origin=<tasks2`origin, tasks2`origin-tasks1`origin<'WINDOW_SIZE'], [], ['SUCC']>>[source, tasks], [sliding_time_window_from_start('WINDOW_SIZE', 'LIMIT', tasks, source`origin)]).

ctr_example(sliding_time_window, sliding_time_window(9, 6, [[id=1, origin=10, duration=3], [id=2, origin=5, duration=1], [id=3, origin=6, duration=2], [id=4, origin=14, duration=2], [id=5, origin=2, duration=2]]).
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.189 sliding_time_window_from_start

ctr_date(sliding_time_window_from_start, [’20030820’]).

ctr_origin(
 sliding_time_window_from_start,
 ’Used for defining %c.’,
 [sliding_time_window]).

ctr_arguments(
 sliding_time_window_from_start,
 [’WINDOW_SIZE’-int,
 ’LIMIT’-int,
 ’TASKS’-collection(id-int,origin-dvar,duration-dvar),
 ’START’-dvar]).

ctr_restrictions(
 sliding_time_window_from_start,
 [’WINDOW_SIZE’>0,
 ’LIMIT’>=0,
 required(’TASKS’, [id,origin,duration]),
 distinct(’TASKS’, id),
 ’TASKS’^duration>=0]).

ctr_derived_collections(
 sliding_time_window_from_start,
 [col(’S’-collection(var-dvar), [item(var-’START’)])]).

ctr_graph(
 sliding_time_window_from_start,
 [’S’, ’TASKS’],
 2,
 [’PRODUCT’>>collection(s,tasks)],
 [’TRUE’],
 [=<(’SUM_WEIGHT_ARC’(
 max(0,
 -(min(s^var+’WINDOW_SIZE’,
 tasks^origin+tasks^duration),
 max(s^var,tasks^origin))),
 ’LIMIT’))].

ctr_example(
 sliding_time_window_from_start,
 sliding_time_window(9,
 6,
[[id-1,origin-10,duration-3],
[id-2,origin-5,duration-1],
[id-3,origin-6,duration-2]],
5)).
B.190 sliding_time_window_sum

ctr_date(sliding_time_window_sum,['20030820']).

ctr_origin(
 sliding_time_window_sum,
 'Derived from %c.',
 [sliding_time_window]).

ctr_arguments(
 sliding_time_window_sum,
 ['WINDOW_SIZE'-int,
 'LIMIT'-int,
 ('TASKS',
 collection(id-int,origin-dvar,end-dvar,npoint-dvar))]).

ctr_restrictions(
 sliding_time_window_sum,
 ['WINDOW_SIZE'>0,
 'LIMIT'>=0,
 required('TASKS',[id,origin,end,npoint]),
 distinct('TASKS',id),
 'TASKS'ˆnpoint>=0]).

ctr_graph(
 sliding_time_window_sum,
 ['TASKS'],
 1,
 ['SELF'>>collection(tasks)],
 [tasksˆorigin<tasksˆend],
 ['NARC'=size('TASKS')]).

ctr_graph(
 sliding_time_window_sum,
 ['TASKS'],
 2,
 ['CLIQUE'>>collection(tasks1,tasks2)],
 [tasks1ˆend<tasks2ˆend,
 tasks2ˆorigin-tasks1ˆend<'WINDOW_SIZE'-1],
 [],
 [>>('SUCC',
 [source,
 -(variables,
 col('VARIABLES'-collection(var-dvar),
 [item(var-'TASKS'ˆnpoint)]))]),
 [sum_ctr(variables,=<,'LIMIT')]).
ctr_example(
 sliding_time_window_sum,
 sliding_time_window_sum(
 9,
 16,
 [[id-1, origin-10, end-13, npoint-2],
 [id-2, origin-5, end-6, npoint-3],
 [id-3, origin-6, end-8, npoint-4],
 [id-4, origin-14, end-16, npoint-5],
 [id-5, origin-2, end-4, npoint-6]]).
)
B.191 smooth

ctr_automaton(smooth, smooth).

ctr_date(smooth, ['20000128', '20030820', '20040530']).

ctr_origin(smooth, 'Derived from %c.', [change]).

ctr_arguments(
 smooth,
 ['NCHANGE'-dvar,
 'TOLERANCE'-int,
 'VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
 smooth,
 ['NCHANGE'>=0,
 'NCHANGE'<size('VARIABLES'),
 'TOLERANCE'>=0,
 required('VARIABLES', var)]).

ctr_graph(
 smooth,
 ['VARIABLES'],
 2,
 ['PATH'>collection(variables1, variables2)],
 [abs(variables1^var - variables2^var)>'TOLERANCE'],
 ['NARC=' 'NCHANGE']).

ctr_example(
 smooth,
 smooth(1, 2, [[var-1], [var-3], [var-4], [var-5], [var-2]]).

smooth(A, B, C) :-
 smooth_signature(C, D, B),
 automaton(
 D,
 E,
 D,
 0..1,
 [source(s), sink(t)],
 [arc(s, 1, s, [F+1]), arc(s, 0, s), arc(s, $, t)],
 [F],
 [0],
 [A]).
smooth_signature([],[],A).

smooth_signature([A],[],B).

smooth_signature([[var-A],[var-B]|C],[D|E],F) :-
 abs(A-B) #> F #<=> D#=1,
 smooth_signature([[var-B]|C],E,F).
B.192 soft_alldifferent_ctr

\begin{verbatim}
ctr_date(soft_alldifferent_ctr,['20030820']).

ctr_origin(
 soft_alldifferent_ctr,
 '\cite{PetitReginBessiere01}', []).

ctr_synonyms(
 soft_alldifferent_ctr,
 [soft_alldiff_ctr,soft_alldistinct_ctr]).

ctr_arguments(
 soft_alldifferent_ctr,
 ['C'-dvar,'VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
 soft_alldifferent_ctr,
 ['C'=0,
 =<('C',
 /(-size('VARIABLES')*size('VARIABLES'),
 size('VARIABLES'),
 2)),
 required('VARIABLES',var)]).

ctr_graph(
 soft_alldifferent_ctr,
 ['VARIABLES'],
 2,
 ['CLIQUE'(<)\text{\textgreater\textless}>collection(variables1,variables2)],
 [variables1\text{\textasciitilde}var=variables2\text{\textasciitilde}var],
 ['NARC'='C']].

ctr_example(
 soft_alldifferent_ctr,
 soft_alldifferent_ctr(4,
 [[var-5],[var-1],[var-9],[var-1],[var-5],[var-5]])).
\end{verbatim}
B.193 **soft_alldifferent_var**

ctr_date(soft_alldifferent_var, ['20030820']).

ctr_origin(
 soft_alldifferent_var,
 '\cite{PetitReginBessiere01}',
 []).

ctr_synonyms(
 soft_alldifferent_var,
 [soft_alldiff_var, soft_alldistinct_var]).

ctr_arguments(
 soft_alldifferent_var,
 ['C'-dvar,'VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
 soft_alldifferent_var,
 ['C'>=0,'C'<size('VARIABLES'),required('VARIABLES',var)]).

ctr_graph(
 soft_alldifferent_var,
 ['VARIABLES'],
 2,
 ['CLIQUE'>>collection(variables1,variables2)],
 [variables1`var=variables2`var],
 ['NSCC'=size('VARIABLES')-'C']).

ctr_example(
 soft_alldifferent_var,
 soft_alldifferent_var(3,
 [[var-5],[var-1],[var-9],[var-1],[var-5],[var-5]]))).
B.194 soft_same_interval_var

ctr_date(soft_same_interval_var, [‘20050507’]).

ctr_origin(
 soft_same_interval_var,
 ‘Derived from %c’,
 [same_interval]).

ctr_synonyms(soft_same_interval_var, [soft_same_interval]).

ctr_arguments(
 soft_same_interval_var,
 [‘C’-dvar,
 ‘VARIABLES1’-collection(var-dvar),
 ‘VARIABLES2’-collection(var-dvar),
 ‘SIZE_INTERVAL’-int]).

ctr_restrictions(
 soft_same_interval_var,
 [‘C’>=0,
 ‘C’=<size(‘VARIABLES1’),
 size(‘VARIABLES1’)=size(‘VARIABLES2’),
 required(‘VARIABLES1’, var),
 required(‘VARIABLES2’, var),
 ‘SIZE_INTERVAL’>0]).

ctr_graph(
 soft_same_interval_var,
 [‘VARIABLES1’,’VARIABLES2’],
 2,
 [‘PRODUCT’>>collection(variables1,variables2)],
 [=variables1‘var’/’SIZE_INTERVAL’,
 variables2‘var’/’SIZE_INTERVAL’],
 [‘NSINK_NSOURCE’=size(‘VARIABLES1’)-‘C’]).

ctr_example(
 soft_same_interval_var,
 soft_same_interval_var(
 4,
 [[var-9],[var-9],[var-9],[var-9],[var-9],[var-1]],
 [[var-9],[var-1],[var-1],[var-1],[var-1],[var-8]],
 3)).
B.195 soft_same_modulo_var

ctr_date(soft_same_modulo_var,['20050507']).

ctr_origin(
 soft_same_modulo_var,
 'Derived from %c',
 [same_modulo]).

ctr_synonyms(soft_same_modulo_var,[soft_same_modulo]).

ctr_arguments(
 soft_same_modulo_var,
 ['C'-dvar,
 'VARIABLES1'-collection(var-dvar),
 'VARIABLES2'-collection(var-dvar),
 'M'-int]).

ctr_restrictions(
 soft_same_modulo_var,
 ['C'>=0,
 'C'=<size('VARIABLES1'),
 size('VARIABLES1')=size('VARIABLES2'),
 required('VARIABLES1',var),
 required('VARIABLES2',var),
 'M'>0]).

ctr_graph(
 soft_same_modulo_var,
 ['VARIABLES1','VARIABLES2'],
 2,
 ['PRODUCT'>>collection(variables1,variables2)],
 [variables1\var mod 'M'=variables2\var mod 'M'],
 ['NSINK_NSOURCE'=size('VARIABLES1')-'C']].

ctr_example(
 soft_same_modulo_var,
 soft_same_modulo_var(4,
 [[var-9],[var-9],[var-9],[var-9],[var-9],[var-1]],
 [[var-9],[var-1],[var-1],[var-1],[var-1],[var-1],[var-8]],
 3)).
B.196 soft_same_partition_var

ctr_date(soft_same_partition_var, ['20050507']).

ctr_origin(
 soft_same_partition_var,
 'Derived from %c',
 [same_partition]).

ctr_synonyms(soft_same_partition_var, [soft_same_partition]).

ctr_types(
 soft_same_partition_var,
 ['VALUES'-collection(val-int)]).

ctr_arguments(
 soft_same_partition_var,
 ['C'-dvar,
 'VARIABLES1'-collection(var-dvar),
 'VARIABLES2'-collection(var-dvar),
 'PARTITIONS'-collection(p-'VALUES')]).

ctr_restrictions(
 soft_same_partition_var,
 ['C'>=0,
 'C'=<size('VARIABLES1'),
 size('VARIABLES1')=size('VARIABLES2'),
 required('VARIABLES1',var),
 required('VARIABLES2',var),
 required('PARTITIONS',p),
 size('PARTITIONS')>=2,
 required('VALUES',val),
 distinct('VALUES',val)]).

ctr_graph(
 soft_same_partition_var,
 ['VARIABLES1','VARIABLES2'],
 2,
 ['PRODUCT']>>collection(variables1,variables2),
 [in_same_partition(
 variables1`var,
 variables2`var,
 'PARTITIONS'),
 ['NSINK_NSOURCE'=size('VARIABLES1')-'C']]).

ctr_example(}
soft_same_partition_var,
soft_same_partition_var(4,
 [[var-9],[var-9],[var-9],[var-9],[var-9],[var-1]],
 [[var-9],[var-1],[var-1],[var-1],[var-1],[var-8]],
 [[p-[[val-1],[val-2]]],
 [p-[[val-9]]],
 [p-[[val-7],[val-8]]])).
B.197 soft_same_var

ctr_date(soft_same_var, ['20050507']).

ctr_origin(soft_same_var, '\cite{vanHoeve05}', []).

ctr_synonyms(soft_same_var, [soft_same]).

ctr_arguments(
 soft_same_var,
 ['C'-dvar,
 'VARIABLES1'-collection(var-dvar),
 'VARIABLES2'-collection(var-dvar)].

ctr_restrictions(
 soft_same_var,
 ['C'>=0,
 'C'=<size('VARIABLES1'),
 size('VARIABLES1')=size('VARIABLES2'),
 required('VARIABLES1', var),
 required('VARIABLES2', var)].

ctr_graph(
 soft_same_var,
 ['VARIABLES1', 'VARIABLES2'],
 2,
 ['PRODUCT'>>collection(variables1, variables2)],
 [variables1`var=variables2`var],
 ['NSINK_NSOURCE'=size('VARIABLES1')-'C']].

ctr_example(
 soft_same_var,
 soft_same_var(4,
 [[var-9],[var-9],[var-9],[var-9],[var-9],[var-1]],
 [[var-9],[var-1],[var-1],[var-1],[var-1],[var-8]])).
B.198 **soft_used_by_interval_var**

```
ctr_date(soft_used_by_interval_var, ['20050507']).

ctr_origin(
  soft_used_by_interval_var,
  'Derived from %c.',
  [used_by_interval]).

ctr_synonyms(soft_used_by_interval_var, [soft_used_by_interval]).

ctr_arguments(
  soft_used_by_interval_var,
  ['C'-dvar,
   'VARIABLES1'-collection(var-dvar),
   'VARIABLES2'-collection(var-dvar),
   'SIZE_INTERVAL'-int]).

ctr_restrictions(
  soft_used_by_interval_var,
  ['C'>=0,
   'C'=<size('VARIABLES2'),
   size('VARIABLES1')>=size('VARIABLES2'),
   required('VARIABLES1',var),
   required('VARIABLES2',var),
   'SIZE_INTERVAL'>0]).

ctr_graph(
  soft_used_by_interval_var,
  ['VARIABLES1','VARIABLES2'],
  2,
  ['PRODUCT'>>collection(variables1,variables2)],
  [=variables1`var`'SIZE_INTERVAL',
   variables2`var`'SIZE_INTERVAL'],
  ['NSINK_NSOURCE'=size('VARIABLES2')-'C']).

ctr_example(
  soft_used_by_interval_var,
  soft_used_by_interval_var(2,
    [[var-9],[var-1],[var-1],[var-8],[var-8]],
    [[var-9],[var-9],[var-9],[var-9],[var-1]],
    3)).
```
B.199 soft_used_by_modulo_var

ctr_date(soft_used_by_modulo_var, ['20050507']).

ctr_origin(
 soft_used_by_modulo_var,
 'Derived from %c',
 [used_by_modulo]).

ctr_synonyms(soft_used_by_modulo_var, [soft_used_by_modulo]).

ctr_arguments(
 soft_used_by_modulo_var,
 ['C'-dvar,
 'VARIABLES1'-collection(var-dvar),
 'VARIABLES2'-collection(var-dvar),
 'M'-int]).

ctr_restrictions(
 soft_used_by_modulo_var,
 ['C'>=0,
 'C'=<size('VARIABLES2'),
 size('VARIABLES1')>=size('VARIABLES2'),
 required('VARIABLES1',var),
 required('VARIABLES2',var),
 'M'>0]).

ctr_graph(
 soft_used_by_modulo_var,
 ['VARIABLES1','VARIABLES2'],
 2,
 ['PRODUCT'>>collection(variables1,variables2)],
 [variables1^var mod 'M'=variables2^var mod 'M'],
 ['NSINK_NSOURCE'=size('VARIABLES2')-'C']).

ctr_example(
 soft_used_by_modulo_var,
 soft_used_by_modulo_var(2,
 [[var-9],[var-1],[var-1],[var-8],[var-8]],
 [[var-9],[var-9],[var-9],[var-8],[var-8]],
 3)).
B.200 soft_used_by_partition_var

ctr_date(soft_used_by_partition_var,[’20050507’]).

ctr_origin(
 soft_used_by_partition_var,
 ’Derived from %c.’,
 [used_by_partition]).

ctr_synonyms(
 soft_used_by_partition_var,
 [soft_used_by_partition]).

ctr_types(
 soft_used_by_partition_var,
 [’VALUES’-collection(val-int)]).

ctr_arguments(
 soft_used_by_partition_var,
 [’C’-dvar,
 ’VARIABLES1’-collection(var-dvar),
 ’VARIABLES2’-collection(var-dvar),
 ’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
 soft_used_by_partition_var,
 [’C’>=0,
 ’C’=<size(’VARIABLES2’),
 size(’VARIABLES1’)>=size(’VARIABLES2’),
 required(’VARIABLES1’,var),
 required(’VARIABLES2’,var),
 required(’PARTITIONS’,p),
 size(’PARTITIONS’)>=2,
 required(’VALUES’,val),
 distinct(’VALUES’,val)].

ctr_graph(
 soft_used_by_partition_var,
 [’VARIABLES1’,’VARIABLES2’],
 2,
 [’PRODUCT’>>collection(variables1,variables2)],
 [in_same_partition(
 variables1\var,
 variables2\var,
 ’PARTITIONS’)],
 [’NSINK_NSOURCE’=size(’VARIABLES2’)-’C’]).
ctr_example(
 soft_used_by_partition_var,
 soft_used_by_partition_var(2,
 [[var-9],[var-1],[var-1],[var-8],[var-8]],
 [[var-9],[var-9],[var-9],[var-1]],
 [[p-[[val-1],[val-2]]],
 [p-[[val-9]]],
 [p-[[val-7],[val-8]]])).
B.201 soft_used_by_var

ctr_date(soft_used_by_var,['20050507']).

ctr_origin(soft_used_by_var,'Derived from %c',[used_by]).

ctr_synonyms(soft_used_by_var,[soft_used_by]).

ctr_arguments(soft_used_by_var,[
 'C'-dvar,
 'VARIABLES1'-collection(var-dvar),
 'VARIABLES2'-collection(var-dvar)]).

ctr_restrictions(soft_used_by_var,[
 'C'>=0,
 'C'=<size('VARIABLES2'),
 size('VARIABLES1')>=size('VARIABLES2'),
 required('VARIABLES1',var),
 required('VARIABLES2',var)]).

ctr_graph(soft_used_by_var,[
 'VARIABLES1','VARIABLES2'],
 2,
 ['PRODUCT'=>collection(variables1,variables2)],
 [variables1`var=variables2`var],
 ['NSINK_NSOURCE'=size('VARIABLES2')-'C']).

ctr_example(soft_used_by_var,
 soft_used_by_var(2,
 [[var-9],[var-1],[var-1],[var-8],[var-8]],
 [[var-9],[var-9],[var-9],[var-1]])).
B.202 sort

ctr_date(sort,['20030820']).

ctr_origin(sort, '\cite{OlderSwinkelsEmden95}', []).

ctr_arguments(
 sort,
 ['VARIABLES1'-collection(var-dvar),
 'VARIABLES2'-collection(var-dvar)]).

ctr_restrictions(
 sort,
 [size('VARIABLES1')=size('VARIABLES2'),
 required('VARIABLES1',var),
 required('VARIABLES2',var)]).

ctr_graph(
 sort,
 ['VARIABLES1','VARIABLES2'],
 2,
 ['PRODUCT'>>collection(variables1,variables2)],
 [variables1^var=variables2^var],
 [for_all('CC','NSOURCE'='NSINK'),
 'NSOURCE'=size('VARIABLES1'),
 'NSINK'=size('VARIABLES2')]).

ctr_graph(
 sort,
 ['VARIABLES2'],
 2,
 ['PATH'>>collection(variables1,variables2)],
 [variables1^var=<variables2^var],
 ['NARC'=size('VARIABLES2')-1]).

ctr_example(
 sort,
 sort(
 sort,
 sort(
 [[var-1], [var-9], [var-1], [var-5], [var-2], [var-1]],
 [[var-1], [var-1], [var-1], [var-2], [var-5], [var-9]])).
B.203 sort_permutation

ctr_date(sort_permutation,[’20030820’]).
ctr_origin(sort_permutation, ’\cite{Zhou97}’,[]).
ctr_usual_name(sort_permutation, sort).
ctr_arguments(
 sort_permutation,
 [’FROM’-collection(var-dvar),
 ’PERMUTATION’-collection(var-dvar),
 ’TO’-collection(var-dvar)]).
ctr_restrictions(
 sort_permutation,
 [size(’PERMUTATION’)=size(’FROM’),
 size(’PERMUTATION’)=size(’TO’),
 ’PERMUTATION’^var>=1,
 ’PERMUTATION’^var=<size(’PERMUTATION’),
 alldifferent(’PERMUTATION’),
 required(’FROM’, var),
 required(’PERMUTATION’, var),
 required(’TO’, var)]).
ctr_derived_collections(
 sort_permutation,
 [col(’FROM_PERMUTATION’-collection(var-dvar,ind-dvar),
 [item(var-’FROM’^var,ind-’PERMUTATION’^var)])]).
ctr_graph(
 sort_permutation,
 [’FROM_PERMUTATION’,’TO’],
 2,
 [’PRODUCT’>>collection(from_permutation,to)],
 [from_permutation^var=to^var,from_permutation^ind=to^key],
 [’NARC’=size(’PERMUTATION’)]).
ctr_graph(
 sort_permutation,
 [’TO’],
 2,
 [’PATH’>>collection(to1,to2)],
 [to1^var=<to2^var],
 [’NARC’=size(’TO’)-1]).
ctr_example(
 sort_permutation,
 sort_permutation(
 [[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
 [[var-1],[var-6],[var-3],[var-5],[var-4],[var-2]],
 [[var-1],[var-1],[var-1],[var-2],[var-5],[var-9]]))
B.204 stage_element

ctr_automaton(stage_element, stage_element).

ctr_date(stage_element, ['20040828']).

ctr_origin(stage_element, 'CHOCO, derived from %c.', [element]).

ctr_usual_name(stage_element, stage_elt).

ctr_arguments(
 stage_element,
 ['ITEM'-collection(index-dvar, value-dvar),
 'TABLE'-collection(low-int, up-int, value-int)]).

ctr_restrictions(
 stage_element,
 [required('ITEM', [index, value]),
 size('ITEM')=1,
 required('TABLE', [low, up, value])].

ctr_graph(
 stage_element,
 ['TABLE'],
 2,
 ['PATH'>>collection(table1, table2)],
 [table1\^low<table1\^up,
 table1\^up+1=table2\^low,
 table2\^low<table2\^up],
 ['NARC'=size('TABLE')-1]).

ctr_graph(
 stage_element,
 ['ITEM', 'TABLE'],
 2,
 ['PRODUCT'>>collection(item, table)],
 [item\^index=table\^low,
 item\^index<table\^up,
 item\^value=table\^value],
 ['NARC'=1]).

ctr_example(
 stage_element,
 stage_element(
 [[index-5, value-6]],
 [[low-3, up-7, value-6],
 [item-1, value-2])].
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

\[
\begin{array}{l}
[\text{low-8, up-8, value-9}]
, \\
[\text{low-9, up-14, value-2}]
, \\
[\text{low-15, up-19, value-9}])
) .
\end{array}
\]

\text{stage_element(A,B)} :-
 A = [[\text{index-C, value-D}]],
 \text{stage_element_signature(B,E,C,D)},
 \text{automaton}(
 E,
 F,
 E,
 0..1,
 [source(s), sink(t)],
 [arc(s,0,s), arc(s,1,t)],
 [],
 [],
 []).

stage_element_signature([],[],A,B).

stage_element_signature([[\text{low-A, up-B, value-C}]|D],[E|F],G,H) :-
 A#=<G# \text{\&} \text{G#}<B# \text{\&} H#=C#<=>E,
 \text{stage_element_signature}(D,F,G,H).
B.205 stretch_circuit

ctr_date(stretch_circuit,['20030820']).

ctr_origin(stretch_circuit, '\cite{Pesant01}', []).

ctr_usual_name(stretch_circuit, stretch).

ctr_arguments(stretch_circuit, ['VARIABLES'-collection(var-dvar),
 'VALUES'-collection(val-int, lmin-int, lmax-int)]).

ctr_restrictions(stretch_circuit, [size('VARIABLES')>0,
 required('VARIABLES', var),
 size('VALUES')>0,
 required('VALUES', [val, lmin, lmax]),
 distinct('VALUES', val),
 'VALUES'ˆlmin=<'VALUES'ˆlmax]).

ctr_graph(stretch_circuit, ['VARIABLES'], 2,
 foreach('VALUES',
 ['CIRCUIT'>>collection(variables1, variables2),
 'LOOP'>>collection(variables1, variables2)],
 [variables1ˆvar='VALUES'ˆval, variables2ˆvar='VALUES'ˆval],
 [not_in('MIN_NCC', 1, 'VALUES'ˆlmin-1),
 'MAX_NCC'=<'VALUES'ˆlmax]).

ctr_example(stretch_circuit, stretch_circuit(
 [[var-6],
 [var-6],
 [var-3],
 [var-1],
 [var-1],
 [var-1],
 [var-6],
 [var-6]],
 [[val-1, lmin-2, lmax-4],
 [val-1, lmin-2, lmax-4],
 [val-1, lmin-2, lmax-4]])).
[val-2,lmin-2,lmax-3],
[val-3,lmin-1,lmax-6],
[val-6,lmin-2,lmax-4])}.
B.206 stretch_path

ctr_date(stretch_path,['20030820']).

ctr_origin(stretch_path,'\cite{Pesant01}',[]).

ctr_usual_name(stretch_path,stretch).

ctr_arguments(
 stretch_path,
 ['VARIABLES'-collection(var-dvar),
 'VALUES'-collection(val-int,lmin-int,lmax-int)]).

ctr_restrictions(
 stretch_path,
 [size('VARIABLES')>0,
 required('VARIABLES',var),
 size('VALUES')>0,
 required('VALUES',[val,lmin,lmax]),
 distinct('VALUES',val),
 'VALUES'ˆlmin=<'VALUES'ˆlmax]).

ctr_graph(
 stretch_path,
 ['VARIABLES'],
 2,
 foreach('VALUES',
 ['PATH'>>collection(variables1,variables2),
 'LOOP'>>collection(variables1,variables2)],
 [variables1ˆvar='VALUES'ˆval,variables2ˆvar='VALUES'ˆval],
 [not_in('MIN_NCC',1,'VALUES'ˆlmin-1),
 'MAX_NCC'=<'VALUES'ˆlmax]).

ctr_example(
 stretch_path,
 stretch_path(
 [[var-6],
 [var-6],
 [var-3],
 [var-1],
 [var-1],
 [var-1],
 [var-6],
 [var-6]],
 [[val-1,lmin-2,lmax-4],
 [val-1,lmin-2,lmax-4],
 [val-1,lmin-2,lmax-4],
 [val-1,lmin-2,lmax-4],
 [val-1,lmin-2,lmax-4],
 [val-1,lmin-2,lmax-4],
 [val-1,lmin-2,lmax-4],
 [val-1,lmin-2,lmax-4]].)
[val-2, lmin-2, lmax-3],
[val-3, lmin-1, lmax-6],
[val-6, lmin-2, lmax-2])

APPENDIX B. ELECTRONIC CONSTRAINT CATALOG
B.207 strict_lex2

\begin{verbatim}
ctr_predefined(strict_lex2).
ctr_date(strict_lex2, [\'20031016\']).
ctr_origin(
 strict_lex2,
 \cite{FlenerFrischHnichKiziltanMiguelPearsonWalsh02}, []).
ctr_types(strict_lex2, ['VECTOR'-collection(var-dvar)]).
ctr_arguments(strict_lex2, ['MATRIX'-collection(vec-'VECTOR')]).
ctr_restrictions(
 strict_lex2,
 [required('VECTOR', var),
 required('MATRIX', vec),
 same_size('MATRIX', vec)]).
ctr_example(
 strict_lex2,
 strict_lex2(
 [[vec-[[var-2],[var-2],[var-3]]],
 [vec-[[var-2],[var-3],[var-1]]]]).
\end{verbatim}
B.208 strictly_decreasing

ctr_automaton(strictly_decreasing, strictly_decreasing).

ctr_date(strictly_decreasing, ['20040814']).

ctr_origin(
 strictly_decreasing,
 'Derived from %c.',
 [strictly_increasing]).

ctr_arguments(
 strictly_decreasing,
 ['VARIABLES' - collection(var-dvar)]).

ctr_restrictions(
 strictly_decreasing,
 [size('VARIABLES') > 0, required('VARIABLES', var)]).

ctr_graph(
 strictly_decreasing,
 ['VARIABLES'],
 2,
 ['PATH' >> collection(variables1, variables2)],
 [variables1^var > variables2^var],
 ['NARC' = size('VARIABLES') - 1]).

ctr_example(
 strictly_decreasing,
 strictly_decreasing([[var-8], [var-4], [var-3], [var-1]])).

strictly_decreasing(A) :-
 strictly_decreasing_signature(A, B),
 automaton(
 B,
 C,
 B,
 0..1,
 [source(s), sink(t)],
 [arc(s, 0, s), arc(s, $, t)],
 [],
 [],
 []).

strictly_decreasing_signature([A], []).
strictly_decreasing_signature([[var-A],[var-B]|C],[D|E]) :-
in(D,0..1),
A#=<B#<=D,
strictly_decreasing_signature([[var-B]|C],E).
B.209 strictly_increasing

ctr_automaton(strictly_increasing, strictly_increasing).

ctr_date(strictly_increasing, [‘20040814’]).

ctr_origin(strictly_increasing, ‘KOALOG’, []).

ctr_arguments(
 strictly_increasing,
 [‘VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
 strictly_increasing,
 [size(‘VARIABLES’)>0, required(‘VARIABLES’, var)]).

ctr_graph(
 strictly_increasing,
 [‘VARIABLES’],
 2,
 [‘PATH’>>collection(variables1, variables2)],
 [variables1`var<variables2`var],
 [‘NARC’=size(‘VARIABLES’)-1]).

ctr_example(
 strictly_increasing,
 strictly_increasing([[var-1], [var-3], [var-4], [var-8]])).

strictly_increasing(A) :-
 strictly_increasing_signature(A, B),
 automaton(
 B,
 C,
 B,
 0..1,
 [source(s), sink(t)],
 [arc(s, 0, s), arc(s, $, t)],
 [],
 [],
 []).

strictly_increasing_signature([[A], []]).

strictly_increasing_signature([[var-A], [var-B]|C], [D|E]) :-
in(D, 0..1),
A#>=B#<=>D,
strictly_increasing_signature([[\text{var-B}]|C],E).
B.210 strongly_connected

ctr_date(strongly_connected,[‘20030820’,‘20040726’]).

ctr_origin(
 strongly_connected,
 ’\cite{AlthausBockmayrElfKasperJungerMehlhorn02}’,
 []).

ctr_arguments(
 strongly_connected,
 [‘NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
 strongly_connected,
 [required(‘NODES’,[index,succ]),
 ‘NODES’^index>=1,
 ‘NODES’^index=<size(‘NODES’),
 distinct(‘NODES’,index)]).

ctr_graph(
 strongly_connected,
 [‘NODES’],
 2,
 [‘CLIQUE’>>collection(nodes1,nodes2)],
 [in_set(nodes2^index,nodes1^succ)],
 [‘MIN_NSCC’=size(‘NODES’)]).

ctr_example(
 strongly_connected,
 strongly_connected(
 [[index-1,succ-{2}],[index-2,succ-{3}],[index-3,succ-{2,5}],[index-4,succ-{1}],[index-5,succ-{4}]])),
B.211 sum

ctr_date(sum,['20030820','20040726']).

ctr_origin(sum,\cite{Yunes02},[]).

ctr_arguments(
 sum,
 ['INDEX'-dvar,
 'SETS'-collection(ind-int,set-int),
 'CONSTANTS'-collection(cst-int),
 'S'-dvar]).

ctr_restrictions(
 sum,
 [size('SETS')>=1,
 required('SETS',[ind,set]),
 distinct('SETS',ind),
 size('CONSTANTS')>=1,
 required('CONSTANTS',cst)]).

ctr_graph(
 sum,
 ['SETS','CONSTANTS'],
 2,
 ['PRODUCT'>>collection(sets,constants)],
 ['INDEX'=sets\ indis,\ in_set(constants\ key,sets\ set)],
 ['SUM'('CONSTANTS',cst)='S']].

ctr_example(
 sum,
 sum(8,
 [[ind-8,set-{2,3}],
 [ind-1,set-{3}],
 [ind-3,set-{1,4,5}],
 [ind-6,set-{2,4}]],
 [[cst-4],[cst-9],[cst-1],[cst-3],[cst-1]],
 10)).
B.212 sum_ctr

ctr_date(sum_ctr,['20030820','20040807']).

ctr_origin(sum_ctr,'Arithmetic constraint.',[]).

ctr_synonyms(sum_ctr,[constant_sum]).

ctr_arguments(
 sum_ctr,
 ['VARIABLES'-collection(var-dvar),'CTR'-atom,'VAR'-dvar]).

ctr_restrictions(
 sum_ctr,
 [required('VARIABLES',var),
 in_list('CTR',[=,\=,<,\>,\>=,\=<])].

ctr_graph(
 sum_ctr,
 ['VARIABLES'],
 1,
 ['SELF'>>collection(variables)],
 ['TRUE'],
 ['CTR'('SUM'('VARIABLES',var),'VAR')].

ctr_example(sum_ctr,sum_ctr([[var-1],[var-1],[var-4]],=,6)).
B.213 sum_of_weights_of_distinct_values

ctr_date(
 sum_of_weights_of_distinct_values,
 ['20030820', '20040726']).

ctr_origin(
 sum_of_weights_of_distinct_values,
 '\\cite{BeldiceanuCarlssonThiel02}').

ctr_synonyms(sum_of_weights_of_distinct_values, [swdv]).

ctr_arguments(
 sum_of_weights_of_distinct_values,
 ['VARIABLES'-collection(var-dvar),
 'VALUES'-collection(val-int,weight-int),
 'COST'-dvar]).

ctr_restrictions(
 sum_of_weights_of_distinct_values,
 [required('VARIABLES', var),
 required('VALUES', [val, weight]),
 'VALUES' weight>=0,
 distinct('VALUES', val),
 'COST' >=0]).

ctr_graph(
 sum_of_weights_of_distinct_values,
 ['VARIABLES', 'VALUES'],
 2,
 ['PRODUCT'>>collection(variables,values)],
 [variables^var=values^val],
 ['NSOURCE'=size('VARIABLES'),
 'SUM' ('VALUES', weight)='COST']].

ctr_example(
 sum_of_weights_of_distinct_values,
 sum_of_weights_of_distinct_values(
 [[var-1], [var-6], [var-1]],
 [[val-1, weight-5], [val-2, weight-3], [val-6, weight-7]],
 12)).
B.214 sum_set

ctr_date(sum_set,[‘20031001’]).

ctr_origin(sum_set,’H.˜Cambazard’,[]).

ctr_arguments(
 sum_set,
 [‘SV’-svar,
 ‘VALUES’-collection(val-int,coef-int),
 ‘CTR’-atom,
 ‘VAR’-dvar]).

ctr_restrictions(
 sum_set,
 [required(‘VALUES’,[val,coef]),
 distinct(‘VALUES’,val),
 ‘VALUES’^coef>=0,
 in_list(‘CTR’,[=,=\=,<,>=,>,=<])).

ctr_graph(
 sum_set,
 [‘VALUES’],
 1,
 [‘SELF’>>collection(values)],
 [in_set(values^val,’SV’)],
 [‘CTR’(‘SUM’(‘VALUES’,coef),’VAR’)]).

ctr_example(
 sum_set,
 sum_set(
 {2,3,6},
 [[val-2,coef-7],
 [val-9,coef-1],
 [val-5,coef-7],
 [val-6,coef-2]],
 =, 9)).
B.215 symmetric_alldifferent

ctr_date(symmetric_alldifferent,['20000128','20030820']).

ctr_origin(symmetric_alldifferent,'\cite{Regin99}',[]).

ctr_synonyms(
 symmetric_alldifferent,
 [symmetric_alldiff,
 symmetric_alldistinct,
 symm_alldifferent,
 symm_alldiff,
 symm_alldistinct,
 one_factor]).

ctr_arguments(
 symmetric_alldifferent,
 ['NODES'\-collection(index-int,succ-dvar)]).

ctr_restrictions(
 symmetric_alldifferent,
 [required('NODES',[index,succ]),
 'NODES'\-index\>=1,
 'NODES'\-index=<size('NODES'),
 distinct('NODES',index),
 'NODES'\-succ\>=1,
 'NODES'\-succ=<size('NODES'))].

ctr_graph(
 symmetric_alldifferent,
 ['NODES'],
 2,
 ['CLIQUE'(\=-)>collection(nodes1,nodes2)],
 [nodes1\-succ=nodes2\-index,nodes2\-succ=nodes1\-index],
 ['NARC'=size('NODES')]).

ctr_example(
 symmetric_alldifferent,
 symmetric_alldifferent(
 [[index-1,succ-3],
 [index-2,succ-4],
 [index-3,succ-1],
 [index-4,succ-2]]).
B.216 symmetric_cardinality

ctr_date(symmetric_cardinality, ['20040530']).

ctr_origin(
 symmetric_cardinality,
 'Derived from %c by W. Kocjan.',
 [global_cardinality]).

ctr_arguments(
 symmetric_cardinality,
 ['VARS'-collection(idvar-int, var-svar, l-int, u-int),
 'VALS'-collection(idval-int, val-svar, l-int, u-int)]).

ctr_restrictions(
 symmetric_cardinality,
 [required('VARS', [idvar, var, l, u]),
 size('VARS') >= 1,
 'VARS'ˆidvar >= 1,
 'VARS'ˆidvar =< size('VARS'),
 distinct('VARS', idvar),
 'VARS'ˆl = 0,
 'VARS'ˆl =< 'VARS'ˆu,
 'VARS'ˆu =< size('VARS'),
 required('VALS', [idval, val, l, u]),
 size('VALS') >= 1,
 'VALS'ˆidval >= 1,
 'VALS'ˆidval =< size('VALS'),
 distinct('VALS', idval),
 'VALS'ˆl = 0,
 'VALS'ˆl =< 'VALS'ˆu,
 'VALS'ˆu =< size('VALS')].

ctr_graph(
 symmetric_cardinality,
 ['VARS', 'VALS'],
 2,
 ['PRODUCT'>>collection(vars, vals)],
 ['#<= (in_set(varsˆidvar, valsˆval),
 in_set(valsˆidval, varsˆvar)),
 varsˆl =< card_set(varsˆvar),
 varsˆu >= card_set(varsˆvar),
 valsˆl =< card_set(valsˆval),
 valsˆu >= card_set(valsˆval)],
 ['NARC' = size('VARS')*size('VALS')]).
ctr_example(
 symmetric_cardinality,
 symmetric_cardinality(
 [[idvar-1, var-{3}, l-0, u-1],
 [idvar-2, var-{1}, l-1, u-2],
 [idvar-3, var-{1,2}, l-1, u-2],
 [idvar-4, var-{1,3}, l-2, u-3]],
 [[idval-1, val-{2,3,4}, l-3, u-4],
 [idval-2, val-{3}, l-1, u-1],
 [idval-3, val-{1,4}, l-1, u-2],
 [idval-4, val-{}, l-0, u-1]]).
)
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.217 symmetric_gcc

ctr_date(symmetric_gcc, ['20030820', '20040530']).

ctr_origin(symmetric_gcc, 'Derived from %c by W. Kocjan.', [global_cardinality]).

ctr_synonyms(symmetric_gcc, [sgcc]).

ctr_arguments(symmetric_gcc, ['VARS'-collection(idvar-int, var-svar, nocc-dvar), 'VALS'-collection(idval-int, val-svar, nocc-dvar)]).

ctr_restrictions(symmetric_gcc, [required('VARS', [idvar, var, nocc]), size('VARS')>=1, 'VARS'ˆidvar>=1, 'VARS'ˆidvar=<size('VARS'), distinct('VARS', idvar), 'VARS'ˆnocc>=0, 'VARS'ˆnocc=<size('VARS'), required('VALS', [idval, val, nocc]), size('VALS')>=1, 'VALS'ˆidval>=1, 'VALS'ˆidval=<size('VALS'), distinct('VALS', idval), 'VALS'ˆnocc>=0, 'VALS'ˆnocc=<size('VALS')]).

ctr_graph(symmetric_gcc, ['VARS', 'VALS'], 2, ['PRODUCT' >> collection(vars, vals)], [#<=>(in_set(varsˆidvar, valsˆval), in_set(valsˆidval, varsˆvar)), varsˆnocc=card_set(varsˆvar), valsˆnocc=card_set(valsˆval)], ['NARC'=size('VARS')*size('VALS')].

ctr_example(}
symmetric_gcc,
symmetric_gcc(
 [[idvar-1, var-{3}, nocc-1],
 [idvar-2, var-{1}, nocc-1],
 [idvar-3, var-{1,2}, nocc-2],
 [idvar-4, var-{1,3}, nocc-2]],
 [[idval-1, val-{2,3,4}, nocc-3],
 [idval-2, val-{3}, nocc-1],
 [idval-3, val-{1,4}, nocc-2],
 [idval-4, val-{}, nocc-0]]).
B.218 temporal_path

ctr_date(temporal_path,[’20000128’,’20030820’]).

ctr_origin(temporal_path,’ILOG’,[]).

ctr_arguments(
 temporal_path,
 [’NPATH’-dvar,
 -(’NODES’,
 collection(index-int,succ-dvar,start-dvar,end-dvar))]).

ctr_restrictions(
 temporal_path,
 [’NPATH’>=1,
 ’NPATH’=<size(’NODES’),
 required(’NODES’,[index,succ,start,end]),
 size(’NODES’) > 0,
 ’NODES’^index>=1,
 ’NODES’^index=<size(’NODES’),
 distinct(’NODES’,index),
 ’NODES’^succ>=1,
 ’NODES’^succ=<size(’NODES’)])).

ctr_graph(
 temporal_path,
 [’NODES’],
 2,
 [’CLIQUE’>>collection(nodes1,nodes2)],
 [nodes1^succ=nodes2^index,
 nodes1^succ=nodes1^index\nodes1^end=<nodes2^start,
 nodes1^start=<nodes1^end,
 nodes2^start=<nodes2^end],
 [’MAX_ID’=1,’NCC’=’NPATH’,’NVERTEX’=size(’NODES’)]).

ctr_example(
 temporal_path,
 temporal_path(2,
 [[index-1,succ-2,start-0,end-1],
 [index-2,succ-6,start-3,end-5],
 [index-3,succ-4,start-0,end-3],
 [index-4,succ-5,start-4,end-6],
 [index-5,succ-7,start-7,end-8],
 [index-6,succ-6,start-7,end-9],
 [index-7,succ-7,start-9,end-10]])).
B.219 tour

ctr_date(tour, ['20030820']).

ctr_origin(tour, '\cite{AlthausBockmayrElfKasperJungerMehlhorn02}', []).

ctr_synonyms(tour, ['atour', 'cycle']).

ctr_arguments(tour, ['NODES'-collection(index-int, succ-svar)]).

ctr_restrictions(tour,
 [size('NODES')>=3,
 required('NODES', [index, succ]),
 'NODES'\^index>=1,
 'NODES'\^index=<size('NODES'),
 distinct('NODES', index)]).

ctr_graph(tour, ['NODES'], 2,
 ['CLIQUE'(=\=)>>collection(nodes1,nodes2)],
 [#<=>(
 in_set(nodes2\^index,nodes1\^succ),
 in_set(nodes1\^index,nodes2\^succ))],
 ['NARC'=size('NODES')*size('NODES')-size('NODES')]).

ctr_graph(tour, ['NODES'], 2,
 ['CLIQUE'(=\=)>>collection(nodes1,nodes2)],
 [in_set(nodes2\^index,nodes1\^succ)],
 ['MIN_NSCC'=size('NODES'),
 'MIN_ID'=2,
 'MAX_ID'=2,
 'MIN_OD'=2,
 'MAX_OD'=2]).

ctr_example(tour, tour(}
[[index-1, succ-{2,4}],
[index-2, succ-{1,3}],
[index-3, succ-{2,4}],
[index-4, succ-{1,3}]].
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.220 track

ctr_date(track,[‘20030820’]).
ctr_origin(track,’\cite{Marte01}’,[]).
ctr_arguments(
 track,
 [‘NTRAIL’-int,
 ‘TASKS’-collection(trail-int,origin-dvar,end-dvar)]).
ctr_restrictions(
 track,
 [‘NTRAIL’>0,
 required(‘TASKS’,[trail,origin,end]),
 ‘TASKS’ˆtrail>0,
 ‘TASKS’ˆtrail=<‘NTRAIL’]).
ctr_derived_collections(
 track,
 [col(–(‘TIME_POINTS’,
 collection(origin-dvar,end-dvar,point-dvar)),
 [item(
 origin=’TASKS’ˆorigin,
 end=’TASKS’ˆend,
 point=’TASKS’ˆorigin),
 item(
 origin=’TASKS’ˆorigin,
 end=’TASKS’ˆend,
 point=’TASKS’ˆend-1))]).
ctr_graph(
 track,
 [‘TASKS’],
 1,
 [‘SELF’>>collection(tasks)],
 [tasksˆorigin=<tasksˆend],
 [‘NARC’=size(‘TASKS’)]).
ctr_graph(
 track,
 [‘TIME_POINTS’,‘TASKS’],
 2,
 [‘PRODUCT’>>collection(time_points,tasks)],
 [time_pointsˆend>time_pointsˆorigin,
 tasksˆorigin=<time_pointsˆpoint,
time_points\ point<tasks\ end],
[[],
[>>('SUCC',
 [source,
 -(variables,
 col('VARIABLES'-collection(var-dvar),
 [item(var-'TASKS'\ trail)])))],
 [nvalue('NTRAIL',variables)]).

ctr_example(
 track,
 track(
 2,
 [[trail-1,origin-1,end-2],
 [trail-2,origin-1,end-2],
 [trail-1,origin-2,end-4],
 [trail-2,origin-2,end-3],
 [trail-2,origin-3,end-4]]).
B.221 tree

\[\text{ctr_date}(\text{tree}, ['20000128', '20030820']).\]

\[\text{ctr_origin}(\text{tree}, 'N. Beldiceanu', []).\]

\[\text{ctr_arguments}(\text{tree}, ['NTREES'-dvar, 'NODES'-collection(index-int, succ-dvar)]).\]

\[\text{ctr_restrictions}(\text{tree}, ['NTREES']\geq 0, \text{required}('NODES', [\text{index, succ}]), 'NODES'\text{\^{}}\text{index}\geq 1, 'NODES'\text{\^{}}\text{index}\leq \text{size('NODES')}, \text{distinct}('NODES', \text{index}), 'NODES'\text{\^{}}\text{succ}\geq 1, 'NODES'\text{\^{}}\text{succ}\leq \text{size('NODES')}).\]

\[\text{ctr_graph}(\text{tree}, ['NODES'], 2, ['CLIQUE']\text{\textgreater\textgreater}\text{collection}(\text{nodes1, nodes2}]], [\text{nodes1}\text{\^{}}\text{succ}=\text{nodes2}\text{\^{}}\text{index}], ['MAX_NSCC'\leq 1, 'NCC'='NTREES']).\]

\[\text{ctr_example}(\text{tree}, \text{tree}(2, [[\text{index-1, succ-1}], [\text{index-2, succ-5}], [\text{index-3, succ-5}], [\text{index-4, succ-7}], [\text{index-5, succ-1}], [\text{index-6, succ-1}], [\text{index-7, succ-7}], [\text{index-8, succ-5}]]))).\]
B.222 tree_range

ctr_date(tree_range,[’20030820’,’20040727’]).

ctr_origin(tree_range,’Derived from %c.’,[tree]).

ctr_arguments(
 tree_range,
 [’NTREES’-dvar,
 ’R’-dvar,
 ’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
 tree_range,
 [’NTREES’>=0,
 ’R’>=0,
 ’R’<size(’NODES’),
 required(’NODES’,[index,succ]),
 ’NODES’^index>=1,
 ’NODES’^index<size(’NODES’),
 distinct(’NODES’,index),
 ’NODES’^succ>=1,
 ’NODES’^succ<size(’NODES’)]).

ctr_graph(
 tree_range,
 [’NODES’],
 2,
 [’CLIQUE’>>collection(nodes1,nodes2)],
 [nodes1^succ=nodes2^index],
 [’MAX_NSCC’=<1,’NCC’=’NTREES’,’RANGE_DRG’=’R’]).

ctr_example(
 tree_range,
 tree_range(2,
 1,
 [[index-1,succ-1],
 [index-2,succ-5],
 [index-3,succ-5],
 [index-4,succ-7],
 [index-5,succ-1],
 [index-6,succ-1],
 [index-7,succ-7],
 [index-8,succ-5]]))).
B.223 tree_resource

ctr_date(tree_resource, ['20030820']).

ctr_origin(tree_resource, 'Derived from %c.', [tree]).

ctr_arguments(
 tree_resource,
 ['RESOURCE'-collection(id-int, nb_task-dvar),
 'TASK'-collection(id-int, father-dvar, resource-dvar)]).

ctr_restrictions(
 tree_resource,
 [required('RESOURCE', [id, nb_task]),
 'RESOURCE'\id\geq1,
 'RESOURCE'\id\leq\size('RESOURCE'),
 distinct('RESOURCE', id),
 'RESOURCE'\nb_task\geq0,
 'RESOURCE'\nb_task\leq\size('TASK'),
 required('TASK', [id, father, resource]),
 'TASK'\id\geq\size('RESOURCE'),
 'TASK'\id\leq\size('RESOURCE')\+\size('TASK'),
 distinct('TASK', id),
 'TASK'\father\geq1,
 'TASK'\father\leq\size('RESOURCE')\+\size('TASK'),
 'TASK'\resource\geq1,
 'TASK'\resource\leq\size('RESOURCE')]).

ctr_derived_collections(
 tree_resource,
 [col(-('RESOURCE_TASK',
 collection(index-int, succ-dvar, name-dvar)),
 [item(
 index-'RESOURCE'\id,
 succ-'RESOURCE'\id,
 name-'RESOURCE'\id),
 item(
 index-'TASK'\id,
 succ-'TASK'\father,
 name-'TASK'\resource))]).

ctr_graph(
 tree_resource,
 ['RESOURCE_TASK'],
 2,
 ['CLIQUE'\>>collection(resource_task1, resource_task2)],
 ...
[resource_task1\^succ=resource_task2\^index,
 resource_task1\^name=resource_task2\^name],
 ['MAX_NSCC'=<1,
 'NCC'=size('RESOURCE'),
 'NVERTEX'=size('RESOURCE')+size('TASK')]).

ctr_graph(
 tree_resource,
 ['RESOURCE_TASK'],
 2,
 foreach(
 'RESOURCE',
 ['CLIQUE'\>>(collection(resource_task1,resource_task2))],
 [resource_task1\^succ=resource_task2\^index,
 resource_task1\^name=resource_task2\^name,
 resource_task1\^name='RESOURCE'\^id],
 ['NVERTEX'='RESOURCE'\^nb_task+1]).

ctr_example(
 tree_resource,
 tree_resource(
 [[id-1,nb_task-4],[id-2,nb_task-0],[id-3,nb_task-1]],
 [[id-4,father-8,resource-1],
 [id-5,father-3,resource-3],
 [id-6,father-8,resource-1],
 [id-7,father-1,resource-1],
 [id-8,father-1,resource-1]]).
B.224 two_layer_edge_crossing

ctr_date(two_layer_edge_crossing, ['20030820']).

ctr_origin(
 two_layer_edge_crossing,
 'Inspired by \cite{HararySchwenk72}.

ctr_arguments(
 two_layer_edge_crossing,
 ['NCROSS'-dvar,
 'VERTICES_LAYER1'-collection(id-int,pos-dvar),
 'VERTICES_LAYER2'-collection(id-int,pos-dvar),
 'EDGES'-collection(id-int,vertex1-int,vertex2-int)]).

ctr_restrictions(
 two_layer_edge_crossing,
 ['NCROSS'>=0,
 required('VERTICES_LAYER1', [id,pos]),
 'VERTICES_LAYER1'\id>=1,
 'VERTICES_LAYER1'\id=<size('VERTICES_LAYER1'),
 distinct('VERTICES_LAYER1',id),
 required('VERTICES_LAYER2', [id,pos]),
 'VERTICES_LAYER2'\id>=1,
 'VERTICES_LAYER2'\id=<size('VERTICES_LAYER2'),
 distinct('VERTICES_LAYER2',id),
 required('EDGES', [id,vertex1,vertex2]),
 'EDGES'\id>=1,
 'EDGES'\id=<size('EDGES'),
 distinct('EDGES',id),
 'EDGES'\vertex1>=1,
 'EDGES'\vertex1=<size('VERTICES_LAYER1'),
 'EDGES'\vertex2>=1,
 'EDGES'\vertex2=<size('VERTICES_LAYER2'))].

ctr_derived_collections(
 two_layer_edge_crossing,
 [col(-('EDGES_EXTREMITIES',
 collection(layer1-dvar,layer2-dvar)),
 [item(
 -(layer1,
 'EDGES'\vertex1('VERTICES_LAYER1',pos,id)),
 -(layer2,
 'EDGES'\vertex2('VERTICES_LAYER2',pos,id))))]).
ctr_graph(
 two_layer_edge_crossing,
 ['EDGES_EXTREMITIES'],
 2,
 [>('CLIQUE'(<),
 collection(edges_extremities1,edges_extremities2)),
 [#\(#\/({edges_extremities1\^layer1,
 edges_extremities2\^layer1),
 >(edges_extremities1\^layer2,
 edges_extremities2\^layer2)),
 #\/>({edges_extremities1\^layer1,
 edges_extremities2\^layer1),
 <(edges_extremities1\^layer2,
 edges_extremities2\^layer2))],
 ['NARC'='NCROSS']).

ctr_example(
 two_layer_edge_crossing,
 two_layer_edge_crossing(
 2,
 [[id-1,pos-1],[id-2,pos-2]],
 [[id-1,pos-3],[id-2,pos-1],[id-3,pos-2]],
 [[id-1,vertex1-2,vertex2-2],
 [id-2,vertex1-2,vertex2-3],
 [id-3,vertex1-1,vertex2-1]]).
B.225 two_orth_are_in_contact

ctr_automaton(two_orth_are_in_contact,two_orth_are_in_contact).

ctr_date(two_orth_are_in_contact,['20030820','20040530']).

ctr_origin(
 two_orth_are_in_contact,
 'Used for defining %c.',
 [orths_are_connected]).

ctr_types(
 two_orth_are_in_contact,
 ['ORTHOTOPE'-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
 two_orth_are_in_contact,
 ['ORTHOTOPE1'-'ORTHOTOPE','ORTHOTOPE2'-'ORTHOTOPE']).

ctr_restrictions(
 two_orth_are_in_contact,
 [size('ORTHOTOPE')>0,
 require_at_least(2,'ORTHOTOPE',[ori,siz,end]),
 'ORTHOTOPE'~siz>0,
 size('ORTHOTOPE1')=size('ORTHOTOPE2'),
 orth_link_ori_siz_end('ORTHOTOPE1'),
 orth_link_ori_siz_end('ORTHOTOPE2')]).

ctr_graph(
 two_orth_are_in_contact,
 ['ORTHOTOPE1','ORTHOTOPE2'],
 2,
 ['PRODUCT' (=)>>collection(orthotope1,orthotope2)],
 [orthotope1~end>orthotope2~ori,
 orthotope2~end>orthotope1~ori],
 ['NARC'=size('ORTHOTOPE1')-1]).

ctr_graph(
 two_orth_are_in_contact,
 ['ORTHOTOPE1','ORTHOTOPE2'],
 2,
 ['PRODUCT' (=)>>collection(orthotope1,orthotope2)],
 [=(max(0,
 -(max(orthotope1~ori,orthotope2~ori),
 min(orthotope1~end,orthotope2~end))),
 0)],

[‘NARC’=size(‘ORTHOTOPE1’)].

ctr_example(
 two_orth_are_in_contact,
 two_orth_are_in_contact(
 [[ori-1,siz-3,end-4],[ori-5,siz-2,end-7]],
 [[ori-3,siz-2,end-5],[ori-2,siz-3,end-5]]).

two_orth_are_in_contact(A,B) :-
 two_orth_are_in_contact_signature(A,B,C),
 automaton(
 C,
 D,
 C,
 0..2,
 [source(s),node(z),sink(t)],
 [arc(s,0,s),arc(s,1,z),arc(z,0,z),arc(z,$,t)],
 [],
 [],
 []).

two_orth_are_in_contact_signature([],[],[]).

two_orth_are_in_contact_signature(
 [[ori-A,siz-B,end-C]|D],
 [[ori-E,siz-F,end-G]|H],
 [I|J]) :-
 in(I,0..2),
 B#>0#/F#>0#/C#>E#/\G#>A#<=>I#=0,
 B#>0#/F#>0#/\(C#=#/G#=#A#)<=>I#=1,
 two_orth_are_in_contact_signature(D,H,J).
B.226 two_orth_column

ctr_date(two_orth_column,['20030820']).

ctr_origin(two_orth_column,
 'Used for defining %c.',
 [diffn_column]).

ctr_types(two_orth_column,
 ['ORTHOTOPE'-collection(ori-dvar,siz-dvar,end-dvar)].

ctr_arguments(two_orth_column,
 ['ORTHOTOPE1'-'ORTHOTOPE',
 'ORTHOTOPE2'-'ORTHOTOPE',
 'N'-int]).

ctr_restrictions(two_orth_column,
 [size('ORTHOTOPE')>0,
 require_at_least(2,'ORTHOTOPE', [ori,siz,end]),
 'ORTHOTOPE'~siz>=0,
 size('ORTHOTOPE1')=size('ORTHOTOPE2'),
 orth_link_ori_siz_end('ORTHOTOPE1'),
 orth_link_ori_siz_end('ORTHOTOPE2'),
 'N'>0,
 'N'=<size('ORTHOTOPE1')]).

ctr_graph(two_orth_column,
 ['ORTHOTOPE1','ORTHOTOPE2'],
 2,
 ['PRODUCT'(=)>>collection(orthotope1,orthotope2)],
 [#=>(#\(#\(#\(#\(#\(orthotope1ˆkey='N',
 orthotope1ˆori<orthotope2ˆend),
 orthotope2ˆori<orthotope1ˆend),
 orthotope1ˆsiz>0,
 orthotope2ˆsiz>0),
 orthotope1ˆkey='N',
 orthotope1ˆori<orthotope2ˆend),
 orthotope2ˆori<orthotope1ˆend),
 orthotope1ˆsiz>0,
 orthotope2ˆsiz>0),
 #\(#\(#\(#\(#\=(-(min(orthotope1ˆend,orthotope2ˆend),
 max(orthotope1ˆori,orthotope2ˆori)),
 orthotope1ˆsiz),
 orthotope2ˆsiz=orthotope2ˆsiz))],
 ['NARC'=1])].
ctr_example(
 two_orth_column,
 two_orth_column(
 [[ori-1,siz-3,end-4],[ori-1,siz-1,end-2]],
 [[ori-4,siz-2,end-6],[ori-1,siz-3,end-4]],
 1)).
B.227 \texttt{two_orth_do_not_overlap}

ctr_automaton\texttt{(two_orth_do_not_overlap,two_orth_do_not_overlap)}.

ctr_date\texttt{(two_orth_do_not_overlap,\texttt{[20030820,20040530]})}.

ctr_origin(
 \texttt{two_orth_do_not_overlap},
 \texttt{\textquote{Used for defining \%c.}},
 \texttt{[diffn]})

ctr_types(
 \texttt{two_orth_do_not_overlap},
 \texttt{\textquote{ORTHOTOPE}-collection(ori-dvar,siz-dvar,end-dvar)}}

ctr_arguments(
 \texttt{two_orth_do_not_overlap},
 \texttt{\textquote{ORTHOTOPE1}-'ORTHOTOPE','ORTHOTOPE2-'ORTHOTOPE'}}

ctr_restrictions(
 \texttt{two_orth_do_not_overlap},
 \texttt{\textquote{size}('ORTHOTOPE')>0},
 \texttt{require_at_least(2,\textquote{ORTHOTOPE},[ori,siz,end])},
 \texttt{\textquote{ORTHOTOPE}^siz>=0},
 \texttt{size('ORTHOTOPE1')=size('ORTHOTOPE2')},
 \texttt{orth_link_ori_siz_end('ORTHOTOPE1')},
 \texttt{orth_link_ori_siz_end('ORTHOTOPE2')})

ctr_graph(
 \texttt{two_orth_do_not_overlap},
 \texttt{\textquote{ORTHOTOPE1},'ORTHOTOPE2'}],
 \texttt{2},
 \texttt{[\textquote{SYMMETRIC_PRODUCT}(=),
 \texttt{collection(orthotope1,orthotope2))},
 \texttt{[orthotope1_end<orthotope2_ori\#/orthotope1_siz=0]},
 \texttt{[\textquote{NARC}>=1]}])

ctr_example(
 \texttt{two_orth_do_not_overlap},
 \texttt{two_orth_do_not_overlap(}
 \texttt{[[ori-2,siz-2,end-4],[ori-1,siz-3,end-4]],}
 \texttt{[[ori-4,siz-4,end-8],[ori-3,siz-3,end-6]]))}

two_orth_do_not_overlap\texttt{(A,B) :-}
 \texttt{two_orth_do_not_overlap_signature(A,B,C),}
 \texttt{automaton}
C, D, C, 0..1, [source(s), sink(t)], [arc(s, l, s), arc(s, 0, t)], [], [], []).

two_orth_do_not_overlap_signature([], [], []).

two_orth_do_not_overlap_signature([ori-A, siz-B, end-C]|D], [ori-E, siz-F, end-G]|H], [I|J]) :-
 B#>0#/F#>0#/C#>E#/G#>A#<=>I,
 two_orth_do_not_overlap_signature(D, H, J).
APPENDIX B. ELECTRONIC CONSTRAINT CATALOG

B.228 two_orth_include

ctr_date(two_orth_include, ['20030820']).

ctr_origin(
 two_orth_include,
 'Used for defining %c.',
 [diffn_include]).

ctr_types(
 two_orth_include,
 ['ORTHOTOPE'-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
 two_orth_include,
 ['ORTHOTOPE1'-'ORTHOTOPE',
 'ORTHOTOPE2'-'ORTHOTOPE',
 'N'-int]).

ctr_restrictions(
 two_orth_include,
 [size('ORTHOTOPE')>0,
 require_at_least(2,'ORTHOTOPE', [ori,siz,end]),
 'ORTHOTOPE'~siz>=0,
 size('ORTHOTOPE1')=size('ORTHOTOPE2'),
 orth_link_ori_siz_end('ORTHOTOPE1'),
 orth_link_ori_siz_end('ORTHOTOPE2'),
 'N'>0,
 'N'=<size('ORTHOTOPE1'))].

ctr_graph(
 two_orth_include,
 ['ORTHOTOPE1', 'ORTHOTOPE2'],
 2,
 ['PRODUCT'=>>collection(orthotope1,orthotope2)],
 ['#'=>('#/\#/\#/\#/(orthotope1\key='N',
 orthotope1\ori<orthotope2\end),
 orthotope2\ori<orthotope1\end),
 orthotope1\siz>0),
 orthotope2\siz>0),
 #\/=(-(min(orthotope1\end,orthotope2\end),
 max(orthotope1\ori,orthotope2\ori)),
 orthotope1\siz),
 =(-(min(orthotope1\end,orthotope2\end),
 max(orthotope1\ori,orthotope2\ori)),
 orthotope2\siz)))].
['NARC'=1]).

ctr_example(
 two_orth_include,
 two_orth_include(
 [[ori-1,siz-3,end-4],[ori-1,siz-1,end-2]],
 [[ori-1,siz-2,end-3],[ori-2,siz-3,end-5]],
 1)).
B.229 used_by

ctr_date(used_by, ['20000128', '20030820', '20040530']).

ctr_origin(used_by, 'N. Beldiceanu', []).

ctr_arguments(
 used_by,
 ['VARIABLES1'-collection(var-dvar),
 'VARIABLES2'-collection(var-dvar)]).

ctr_restrictions(
 used_by,
 [size('VARIABLES1')>=size('VARIABLES2'),
 required('VARIABLES1', var),
 required('VARIABLES2', var)]).

ctr_graph(
 used_by,
 ['VARIABLES1', 'VARIABLES2'],
 2,
 ['PRODUCT'>>collection(variables1, variables2)],
 [variables1^var=variables2^var],
 [for_all('CC', 'NSOURCE'='NSINK'),
 'NSINK'=size('VARIABLES2')]).

ctr_example(
 used_by,
 used_by(
 [[var-1], [var-9], [var-1], [var-5], [var-2], [var-1]],
 [[var-1], [var-1], [var-2], [var-5]])).
B.230 used_by_interval

ctr_date(used_by_interval,['20030820']).

ctr_origin(used_by_interval,'Derived from %c.',[used_by]).

ctr_arguments(
 used_by_interval,
 ['VARIABLES1'-collection(var-dvar),
 'VARIABLES2'-collection(var-dvar),
 'SIZE_INTERVAL'-int]).

ctr_restrictions(
 used_by_interval,
 [size('VARIABLES1')>=size('VARIABLES2'),
 required('VARIABLES1',var),
 required('VARIABLES2',var),
 'SIZE_INTERVAL'>0]).

ctr_graph(
 used_by_interval,
 ['VARIABLES1','VARIABLES2'],
 2,
 ['PRODUCT'>>collection(variables1,variables2)],
 [=variables1^'var'/SIZE_INTERVAL,
 variables2^'var'/SIZE_INTERVAL'),
 [for_all('CC','NSOURCE'>='NSINK'),
 'NSINK'=size('VARIABLES2')]).

ctr_example(
 used_by_interval,
 used_by_interval(
 [[var-1],[var-9],[var-1],[var-8],[var-6],[var-2]],
 [[var-1],[var-0],[var-7],[var-7]],
 3)).
B.231 used_by_modulo

\texttt{ctr_date(used_by_modulo, ['20030820'])}.

\texttt{ctr_origin(used_by_modulo, 'Derived from %c.', [used_by])}.

\texttt{ctr_arguments(}
\texttt{ used_by_modulo,}
\texttt{ ['VARIABLES1'\texttt{-}\texttt{-}collection(var\texttt{-}dvar),}
\texttt{ 'VARIABLES2'\texttt{-}\texttt{-}collection(var\texttt{-}dvar),}
\texttt{ 'M'\texttt{-}int]}.}

\texttt{ctr_restrictions(}
\texttt{ used_by_modulo,}
\texttt{ [size('VARIABLES1')\texttt{=}size('VARIABLES2'),}
\texttt{ required('VARIABLES1', var),}
\texttt{ required('VARIABLES2', var),}
\texttt{ 'M'>0]}.}

\texttt{ctr_graph(}
\texttt{ used_by_modulo,}
\texttt{ ['VARIABLES1', 'VARIABLES2'],}
\texttt{ 2,}
\texttt{ ['PRODUCT'\texttt{>>}\texttt{collection(variables1,variables2)],}
\texttt{ [variables1} var mod 'M'=variables2 var mod 'M',}
\texttt{ [for_all('CC', 'NSOURCE'\texttt{=}\texttt{'}NSINK'),}
\texttt{ 'NSINK'=size('VARIABLES2'))].}

\texttt{ctr_example(}
\texttt{ used_by_modulo,}
\texttt{ used_by_modulo(}
\texttt{ [[var-1], [var-9], [var-4], [var-5], [var-2], [var-1]],}
\texttt{ [[var-7], [var-1], [var-2], [var-5]],}
\texttt{ 3)}.}
B.232 used_by_partition

ctr_date(used_by_partition,['20030820']).

ctr_origin(used_by_partition,'Derived from %c.',[used_by]).

ctr_types(used_by_partition,['VALUES'-collection(val-int)]).

ctr_arguments(
 used_by_partition,
 ['VARIABLES1'-collection(var-dvar),
 'VARIABLES2'-collection(var-dvar),
 'PARTITIONS'-collection(p-'VALUES')]).

ctr_restrictions(
 used_by_partition,
 [required('VALUES',val),
 distinct('VALUES',val),
 size('VARIABLES1')>=size('VARIABLES2'),
 required('VARIABLES1',var),
 required('VARIABLES2',var),
 required('PARTITIONS',p),
 size('PARTITIONS')>=2]).

ctr_graph(
 used_by_partition,
 ['VARIABLES1','VARIABLES2'],
 2,
 ['PRODUCT'>>collection(variables1,variables2)],
 [in_same_partition(
 variables1`var,
 variables2`var,
 'PARTITIONS')],
 [for_all('CC','NSOURCE'>='NSINK'),
 'NSINK'=size('VARIABLES2')]).

ctr_example(
 used_by_partition,
 used_by_partition(
 [[var-1],[var-9],[var-1],[var-6],[var-2],[var-3]],
 [[var-1],[var-3],[var-6],[var-6]],
 [[p-[[val-1],[val-3]]],
 [p-[[val-4]]],
 [p-[[val-2],[val-6]]]]).
B.233 valley

ctr_automaton(valley,valley).

ctr_date(valley,,['20040530']).

ctr_origin(valley,'Derived from %c.',[inflexion]).

ctr_arguments(
 valley,
 ['N'-dvar,'VARIABLES'-collection(var-dvar)]).

ctr_restrictions(
 valley,
 ['N'>=0,
 '2*N'=<max(size('VARIABLES')-1,0),
 required('VARIABLES',var)]).

ctr_example(
 valley,
 valley(
 1,
 [[var-1],
 [var-1],
 [var-4],
 [var-8],
 [var-8],
 [var-2],
 [var-7],
 [var-1]])).

valley(A,B) :-
 valley_signature(B,C),
 automaton(
 C,
 D,
 C,
 0..2,
 [source(s),node(u),sink(t)],
 [arc(s,0,s),
 arc(s,1,s),
 arc(s,2,u),
 arc(s,$,t),
 arc(u,0,s,[E+1]),
 arc(u,1,u),
 arc(u,2,u),...
arc(u,$,t],
[E],
[0],
[A]).

valley_signature([],[]).

valley_signature([A],[]).

valley_signature([[[var-A],[var-B]|C],[D|E]] :-
in(D,0..2),
A#<B#<=>D#=0,
A#=B#<=>D#=1,
A#>B#<=>D#=2,
valley_signature([[var-B]|C],E).
B.234 vec_eq_tuple

ctr_date(vec_eq_tuple, [’20030820’]).

ctr_origin(vec_eq_tuple, ’Used for defining %c.’, [in Relation]).

ctr_arguments(
 vec_eq_tuple,
 [’VARIABLES’-collection(var-dvar),
 ’TUPLE’-collection(val-int)]).

ctr_restrictions(
 vec_eq_tuple,
 [required(’VARIABLES’, var),
 required(’TUPLE’, val),
 size(’VARIABLES’)=size(’TUPLE’)].

ctr_graph(
 vec_eq_tuple,
 [’VARIABLES’,’TUPLE’],
 2,
 [’PRODUCT’(=)>>collection(variables,tuple)],
 [variables`var=tuple`val],
 [’NARC’=size(’VARIABLES’)].

ctr_example(
 vec_eq_tuple,
 vec_eq_tuple(
 [[[var-5],[var-3],[var-3]],
 [[val-5],[val-3],[val-3]]])).
B.235 \textbf{weighted_partial_alldiff}

ctr_date(weighted_partial_alldiff,"[20040814]").

ctr_origin(

 weighted_partial_alldiff,
 "\cite[page 71]{Thiel04}",
 []).

ctr_synonyms(

 weighted_partial_alldiff,
 [weighted_partial_alldifferent, weighted_partial_alldistinct, wpa]).

ctr_arguments(

 weighted_partial_alldiff,
 ['VARIABLES'-collection(var\text{-dvar}),
 'UNDEFINED'-int,
 'VALUES'-collection(val\text{-int},weight\text{-int}),
 'COST'-dvar]).

ctr_restrictions(

 weighted_partial_alldiff,
 [required('VARIABLES',var),
 required('VALUES',[val,weight]),
 in_attr('VARIABLES',var,'VALUES',val),
 distinct('VALUES',val)]).

ctr_graph(

 weighted_partial_alldiff,
 ['VARIABLES','VALUES'],
 2,
 ['PRODUCT'>>collection(variables,values)],
 [variables\text{\textbackslash}var="UNDEFINED",variables\text{\textbackslash}var=values\text{\textbackslash}val],
 ['MAX_ID'=<1,'SUM'('VALUES',weight)='COST']].

ctr_example(

 weighted_partial_alldiff,
 weighted_partial_alldiff(

 [[var-4],[var-0],[var-1],[var-2],[var-0],[var-0]],
 0,
 [[val-0,weight-0],
 [val-1,weight-2],
 [val-2,weight-1],
 [val-4,weight-7],

)].
[val-5, weight- -8],
[val-6, weight-2]],
8)).
Bibliography

Index

Aggoun A., 264, 362
alignment, 63
all different, 62, 179, 180, 184, 188, 192, 195, 198, 211, 813, 815, 948
all differ from at least k pos., 13, 76, 80, 83, 93, 109, 172, 422, 424
all min dist., 80, 83, 108, 174
all null intersect., 180
ALL_VERTICES, 147, 310
alldiff, 176
alldiff_between_sets, 180
alldiff_except_0, 182
alldiff_interval, 186
alldiff_modulo, 190
alldiff_on_intersection, 194
alldiff_partition, 198
alldiff_same_value, 200
alldifferent_between_sets, 62, 71, 76, 81, 95, 113, 180, 490
alldifferent_except_0, 62, 65, 67, 78, 95, 99, 108, 173, 179, 182, 248
alldifferent_modulo, 62, 65, 67, 92, 108, 180
alldifferent_partition, 62, 75, 76, 108, 198, 543
alldifferent_same_value, 50, 56, 58, 78, 200
alldistinct, 176
alldistinct_between_sets, 180
alldistinct_except_0, 182
alldistinct_interval. 186
alldistinct_modulo. 190
alldistinct_on_intersection. 194
alldistinct_partition. 198
alldistinct_same_value. 200
allperm. 89, 91, 92, 108, 104, 150, 160, 162
alpha-acyclic constraint network(3). 63, 525, 535, 577
alpha-acyclic constraint network(4). 64, 624, 642
Althaus E.. 456, 574, 726, 868, 896
among. 11, 12, 20, 51, 55, 58, 79, 108, 206, 210, 212, 213, 215, 218, 220, 222, 225, 226, 236, 244, 249, 278, 352, 355, 394, 398, 457, 638, 646, 789
among_diff. 0. 63, 65, 68, 78, 108, 207, 208, 700
among_low_up. 62, 65, 67, 70, 72, 108, 214, 224, 225, 591, 592, 562, 709
among_seq. 50, 87, 100, 103, 221, 222, 789, 791
apartition. 64, 220
arith_or. 62, 65, 67, 70, 72, 108, 228
arith_sliding. 54, 63, 65, 68, 70, 72, 103, 123, 242, 244
arithmetic constraint. 64, 748, 750, 754, 880
array constraint. 64, 459, 462, 465, 469, 475, 477
Asef-Vaziri A.. 310
assign_and_counts. 64, 65, 67, 75, 81, 112, 224, 238, 356
assign_and_nvalues. 65, 124, 112, 238, 703, 705
assignment. 64, 224, 240, 250, 254, 258, 261, 266, 274, 278, 398, 501, 504, 533, 562, 565, 630, 648, 650, 668, 672, 877, 888, 891, 948
assignment. 568
at least. 65, 244, 276
INDEX

at most, 68, 248, 278, 281

atmost, 63, 65, 68, 108, 248, 254, 391, 492, 494

automaton, 65, 179, 184, 188, 192, 195, 201, 207, 210, 213, 220, 225, 230, 252, 248, 244

automaton with array of counters, 67, 179, 184, 188, 192, 195, 201, 236, 250, 254, 258, 266

automaton with counters, 68, 207, 210, 213, 215, 220, 225, 244, 258, 285, 290, 300, 316, 352

automaton without counters, 68, 256, 259, 262, 263, 264, 266, 268, 270, 272, 324, 326, 374

balanced assignment, 69, 250, 252, 258, 261

balanced tree, 69, 207

Baptiste P., 444

Beldiceanu N., 206, 214, 222, 234, 258, 259, 264, 254, 302, 332, 334, 369, 374, 386, 413, 426

Berliner H.J., 306

Berrisier C., 598, 810, 814

bin_packing, 64, 65, 67, 69, 71, 112, 264, 365, 373, 553, 575

binary constraint, 70, 165, 169, 177, 190, 851, 880
binary_tree, 75, 85, 95, 107, 268, 203
bioinformatics, 70, 173, 174
bipartite matching, 71, 195, 180, 138, 582
Bleuzen-Guernalec N., 176, 842
Bockmayr A., 306, 326, 368, 396
boolean channel, 71, 153
border, 71, 256
bound-consistency, 72, 179, 498, 758, 931
Bourdais S., 396, 538, 730
Bourreau E., 386, 390, 398
Cambazard H., 380
card_matrix, 322
card_set, 24
card_var_gcc, 496, 497
cardinality_atleast, 62, 65, 67, 70, 93, 108, 272
cardinality_atmost, 62, 65, 67, 70, 93, 108, 276
cardinality_atmost_partition, 62, 65, 70, 93, 108, 280, 537
cardinality_matrix, 223, 224
cardinality_on_attributes_values, 698
Carillon J.-P., 460
Carlier J., 444
Carlsson M., 222, 284, 302, 378, 426, 436, 584, 588, 592, 598, 606, 610, 670, 674, 680, 682, 698, 792, 792, 806, 876
Carravilla M.A., 426
case, 58, 462
Caseau Y., 362
CC, 47, 278, 780
centered cyclic(1) constraint network(1), 72, 458, 537, 636, 654, 657, 691
centered cyclic(2) constraint network(1), 72, 459, 462, 465, 469, 477, 543, 661, 851
INDEX

1353

centered cyclic(3) constraint network(1), 73 375 677

CHAIN, 27 524

change, 27 52 60 68 74 79 92 101 102 106 113 284 298 300 302 304 314 316 402 404 407 448 449 618 620 806 808

change_continuity, 27 52 60 68 74 79 92 101 102 106 113 284 298 300 302 304 314 316 402 404 407 448 449 618 620 806 808

change_pair, 27 52 60 68 74 79 92 101 102 106 113 284 298

change_partition, 27 52 92 96 106 285 302 343

channel routing, 27 543

channeling constraint, 74 453 509 573 615 758

choquet, 58 112

CIRCUIT, 27 314 554

circuit, 27 597 684 874 897

circuit, 27 35 52 56 58 74 79 92 97 306 587 608 697

circuit_cluster, 27 56 92 198 310 704

circular sliding cyclic(1) constraint network(2), 74 516

circular_change, 27 56 58 14 74 92 106 285 314

CLIQUE, 27 176 180 182 189 190 198 250 252 256 260 268 305 310 352 386 390 394 399 413 508 553 563 592 624 626 628 638 648 649 646 650 658 656 664 666 670 674 678 689 694 696 699 704 706 710 716 726 740 772 810 812 882 896 897 892 902 906 910 911

CLIQUE(<), 27 174 553 459 332 344 372 710 714

CLIQUE(=), 27 174 318 125 346 722 744 852 896

clique, 27 386 92 112 318 546 515

CLIQUE(Comparison), 258

cluster, 27 312

Colmerauer A., 176 842

colored_matrix, 39 99 106 322 598 758

coloured, 27 324 326 330 392 502

coloured_cumulative, 27 324 330 332 502 524 704

coloured_cumulatives, 27 99 100 106 112 324 330 332 524 704

common, 62 70 76 93 194 195 207 332 336 341 358 702 764
common_interval, 62, 70, 76, 88, 93, 536
common_modulo, 62, 70, 76, 92, 93, 338
common_partition, 62, 70, 76, 93, 540, 543
conditional constraint, 75, 752, 784
Condon A.E., 172, 422
connect_points, 28, 74, 80, 88, 104, 103, 342
consecutive loops are connected, 76, 523
consecutive values, 76, 632, 634, 696
constant_sum, 874, 874
constraint between three collections of variables, 76, 540, 848
constraint involving set variables, 76, 150, 179, 190, 246, 273, 515, 727, 76, 868, 880, 888, 891, 897
constraint on the intersection, 77, 195, 702, 768
contact, 77, 174, 920
Contejean E., 206, 214, 222, 386, 418, 426, 882, 892
convex, 77, 506
convex hull relaxation, 78, 874
Cormen T.H., 508
Corn R.M., 172, 422
correspondence, 62, 70, 76, 81, 93, 97, 178, 178, 346, 358, 584
cost filtering constraint, 78, 504, 608, 877, 948
cost_matrix, 78, 504, 608

INDEX
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Di Battista G.</td>
<td>914</td>
</tr>
<tr>
<td>differ_from_at_least_k_pos</td>
<td>36 53 66 85 108 109 173 422</td>
</tr>
<tr>
<td>difference</td>
<td>81 83</td>
</tr>
<tr>
<td>differ</td>
<td>3 726 80 85 94 96 98 104 108 111 141 144 173 426 430 442 444 444 446 471 471 474 474 424 924 925 926</td>
</tr>
<tr>
<td>differn_column</td>
<td>80 85 96 98 428 430 432 928</td>
</tr>
<tr>
<td>differn_included</td>
<td>80 85 96 98 428 430 432 928</td>
</tr>
<tr>
<td>direct acyclic graph</td>
<td>81 83</td>
</tr>
<tr>
<td>discrepancy</td>
<td>79 87 89 106 834 846</td>
</tr>
<tr>
<td>disequity</td>
<td>81 173 199 180 238 454 510 596 658 691 811 815 883</td>
</tr>
<tr>
<td>disjoint</td>
<td>55 66 67 71 81 85 108 436 440 442</td>
</tr>
<tr>
<td>disjoint_tasks</td>
<td>94 100 106 113 438 440</td>
</tr>
<tr>
<td>disjunctive</td>
<td>80 89 100 444</td>
</tr>
<tr>
<td>DISTANCE</td>
<td>42 456 458</td>
</tr>
<tr>
<td>distance_between</td>
<td>48 446 449</td>
</tr>
<tr>
<td>distance_change</td>
<td>66 68 68 102 447 448</td>
</tr>
<tr>
<td>distinct</td>
<td>71</td>
</tr>
<tr>
<td>distribute</td>
<td>496</td>
</tr>
<tr>
<td>distribution</td>
<td>496 497</td>
</tr>
<tr>
<td>domain channel</td>
<td>82 455</td>
</tr>
<tr>
<td>domain definition</td>
<td>82 455 537 691</td>
</tr>
<tr>
<td>domain_constraint</td>
<td>20 65 68 71 73 74 86 82 89 452 614 815 887 891</td>
</tr>
<tr>
<td>domination</td>
<td>52 700 877</td>
</tr>
<tr>
<td>double_lex</td>
<td>580</td>
</tr>
<tr>
<td>dual model</td>
<td>83 569 573</td>
</tr>
<tr>
<td>duplicated variables</td>
<td>83 498 599 603 607 611</td>
</tr>
</tbody>
</table>
dynamic graph constraint

assign_and_counts, 234
assign_and_nvalues, 238
bin_packing, 254
circuit_cluster, 310
coloured_cumulative, 324
coloured_cumulatives, 398
cumulative, 362
cumulative_product, 366
cumulative_two, 391
cumulative_with_level_of_priority, 374
cumulatives, 378
cycle_card_on_path, 390
cycle_or_accessibility, 394
indexed_sum, 552
interval_and_count, 360
interval_and_sum, 364
minimum_greater_than, 660
next_element, 676
next_greater_element, 680
shift, 778
sliding_card_skip0, 786
sliding_time_window, 794
sliding_time_window_sum, 802
track, 900

Eades P., 914

egcc, 496, 497

elem, 64, 66, 68, 73, 89, 98, 106, 109, 456, 462, 851

element_greatereq, 64, 66, 68, 70, 73, 79, 89, 106, 109, 459, 462, 464, 468

element_lessseq, 64, 66, 68, 70, 73, 79, 81, 104, 106, 109, 459, 462, 468

element_matrix, 8, 54, 64, 66, 68, 73, 79, 81, 106, 109, 457, 462, 472

element_sparse, 64, 66, 68, 70, 73, 79, 81, 104, 106, 109, 459, 462, 476, 486, 487
INDEX

elements. 79 85 101 106 459 462 480 482
elements_alldiff. 482
elements_alldifferent. 79 81 85 97 106 459 462 482
elements_alldistinct. 482
elements_sparse. 79 81 101 104 106 486
Elf M., 306 726 868 896
empty intersection. 83 488
eq set. 70 16 83 98 490
equality. 83 490
equality between multisets. 83 758 762
equivalence. 83 250 254 258 261 630 638 671 674 682 688 694 700 703 815
Erschler J., 362
Euler knight. 84 459
exactly. 63 66 68 69 108 207 244 248 492
excluded. 84 691
extension. 84 539
extension. 538
facilities location problem. 54 96 877
Fages F., 482
Fahle T., 418
Falkenhainer B., 784
Flajolet O., 622
Flamm C., 422
Flener P., 434 666
flow. 84 198 501 758 811 888 891 981
Focacci F., 434 666
frequency allocation problem. 55 122
Frisch A., 204 580 598 606 610 802
Frutos A.G., 172 422
INDEX

functional dependency. 85 359 462 480 854 851

Galinier P. 496 534 730

Gambini I. 926

Garey M.R. 914

gcc. 496

ggcc. 502

Gent I. 708

geometrical constraint. 85 143 360 372 376 428 430 432 514 713 721 819 921 924 926

Ginsberg L. 434

global cardinality. 46 59 66 71 76 85 87 103 118 145 246 248 272 274 276 280 281 322 323 496 501 504 506 620 621 625 628 763 764 781 886 888 890 891

global_cardinality_low_up. 64 65 84 108 500 701

global_cardinality_with_costs. 25 38 74 78 90 100 110 148 502 668 877 948

global_contiguity. 25 46 51 53 68 79 77 78 906

golomb. 82 83 93 508

Golomb ruler. 85 510

Golomb S.W. 508 744

Golynski A. 496

Gomes C. 522

graph constraint. 86 470 497 498 519 838 387 392 396 400 419 560 578 628 711 921 924 926 930 894 897 927 928 931

Graph invariants:

 MAX_NCC. 121
 MAX_NSCC. 121
 MIN_NCC. 121
 MIN_NSCC. 121
 NARC. 121
 NCC. 122
 NSCC. 122
 NSINK. 122
 NSOURCE. 122
NVERTEX, [122]
MAX_NCC, MAX_NS CC, [123]
MAX_NCC, MIN_NCC, [123]
MAX_NCC, NARC, [123]
MAX_NCC1, NCC2, [150]
MAX_NCC2, NCC1, [150]
MAX_NCC, NSINK, [124]
MAX_NCC, NSOURCE, [124]
MAX_NCC, NVERTEX, [124]
MAX_NS CC, MIN_NS CC, [125]
MAX_NS CC, NARC, [125]
MAX_NS CC, NVERTEX, [125]
MIN_NCC, MIN_NS CC, [125]
MIN_NCC, NARC, [126]
MIN_NCC, NCC, [126]
MIN_NCC1, NCC2, [150]
MIN_NCC2, NCC1, [151]
MIN_NCC, NVERTEX, [126]
MIN_NS CC, NARC, [127]
MIN_NS CC, NVERTEX, [127]
NARC1, NARC2, [151]
NARC, NCC, [127]
NARC, NSCC, [127]
NARC, NVERTEX, [128]
NCC1, NCC2, [151]
NCC, NSCC, [129]
NCC, NVERTEX, [129]
NSCC, NVERTEX, [130]
NSINK, NVERTEX, [130]
NSOURCE, NVERTEX, [130]
NVERTEX1, NVERTEX2, [151]
MAX_NCC1, MIN_NCC1, MIN_NCC2, [152]
MAX_NCC2, MIN_NCC2, MIN_NCC, [152]
MAX_NCC, MIN_NCC, NARC, [131]
MAX_NCC, MIN_NCC, NCC, [131]
MAX_NCC, MIN_NCC, NVERTEX, [131]
MAX_NCC, NARC, NCC, [132]
INDEX

MAX_NCC, NARC, NVERTEX. 135
MAX_NCC, NCC, NVERTEX. 134
MAX_NSCC, MIN_NSCC, NARC. 134
MAX_NSCC, MIN_NSCC. NSCC. 135
MAX_NSCC, MIN_NSCC, NVERTEX. 135
MAX_NSCC, NSCC, NVERTEX. 136
MIN_NCC1, NARC2, NCC1. 153
MIN_NCC, NARC, NVERTEX. 136
MIN_NCC, NCC, NVERTEX. 137
MIN_NSCC, NARC, NVERTEX. 138
MIN_NSCC, NSCC, NVERTEX. 138
NARC. NCC, NVERTEX. 138
NARC, NSCC, NVERTEX. 140
NARC, NSINK, NVERTEX. 142
NARC, NSOURCE, NVERTEX. 143
NSINK, NSOURCE, NVERTEX. 143
MAX_NCC1, MIN_NCC1, MIN_NCC2, NCC1. 153
MAX_NCC2, MIN_NCC2, MIN_NCC1, NCC2. 154
MAX_NCC, MIN_NCC, NARC, NCC. 144
MAX_NCC, MIN_NCC, NCC, NVERTEX. 145
MAX_NSCC, MIN_NSCC, NARC, NSCC. 145
MAX_NSCC, MIN_NSCC, NSCC, NVERTEX. 145
MIN_NCC, NARC, NCC, NVERTEX. 146
NARC, NCC, NSCC, NVERTEX. 147
NARC, NSINK, NSOURCE, NVERTEX. 149
MAX_NCC1, MAX_NCC2, MIN_NCC1, MIN_NCC2, NCC1. 154
MAX_NCC1, MAX_NCC2, MIN_NCC1, MIN_NCC2, NCC2. 157
MAX_NCC, MIN_NCC, NARC, NCC, NVERTEX. 149
MIN_NCC, NARC, NCC, NSCC, NVERTEX. 149
MAX_NCC1, MAX_NCC2, MIN_NCC1, MIN_NCC2, NCC1, NCC2. 159

graph partitioning constraint. 86 270 307 387 300 624 883 894 908 907 911

graph crossing. 85 89 350 512 623 902 916

GRID. 28

GRID([SIZE1, SIZE2, SIZE3]). 142

Grinberg E. Ya., 306
INDEX

group, 35, 63, 68, 75, 76, 106, 110, 114, 118, 290, 506, 516, 524, 525, 537, 691, 730, 856, 860

group_skip_isolated_item, 63, 68, 104, 106, 290, 524, 537

guillotine cut, 86, 330, 922

Guo Q., 446

Hall interval, 87, 179, 498

Hamiltonian, 87, 307, 897

Harary F., 914

Harvey W.D., 434

Hebrard E., 698

highest_peak, 69, 68, 108, 109, 210, 532

Hellsten L., 854, 858

Henz M., 882

heuristics, 87, 435

Hnich B., 580, 598, 606, 610, 698, 862

Hofacker I.L., 772

Hooker J.N., 362, 464, 468

hypergraph, 87, 223, 252, 718, 738, 782, 834, 916, 923

in, 29, 66, 68, 72, 81, 82, 87, 107, 108, 162, 281, 536, 543, 690, 691

in_attr, 6

in_list, 6

in_relation, 106, 109, 110, 81, 82, 89, 107, 109, 109, 109, 162, 281, 536, 543, 690, 691

in_same_partition, 66, 68, 73, 81, 96, 108, 198, 304, 344, 537, 542, 671, 771, 939

in_set, 76, 87, 98, 108, 546

included, 57, 537, 546

inclusion, 88, 93, 935, 937, 939

increasing, 66, 68, 80, 95, 103, 110, 111, 548, 864, 866

increasing_seq, 7

indexed_sum, 64, 109, 552, 875
INDEX

indistinguishable values, 88, 556, 558, 176
inequality_sum, 58
inflexion, 51, 53, 65, 88, 100, 101, 506, 554, 732, 734, 940, 942
int_value_precede, 56, 58, 59, 88, 95, 103, 109, 556, 558, 976
int_value_precede_chain, 56, 68, 69, 88, 95, 103, 109, 556, 558
interval, 58, 188, 213, 254, 339, 529, 566, 582, 879, 899, 935
interval_and_count, 64, 67, 75, 82, 99, 106, 112, 213, 560
interval_and_sum, 64, 67, 88, 92, 106, 112, 564, 879
inverse, 59, 66, 67, 74, 83, 86, 93, 97, 387, 568, 572, 573
inverse_set, 12, 74, 76, 83, 100, 526, 560, 572
ith_pos_different_from_0, 63, 66, 68, 79, 83, 106, 576, 654
Jünger M., 406, 726, 868, 896
Jackson, 212
Jefferson C., 204
Johnson D.S., 914
joker value, 88, 184, 310, 333, 407, 577, 657, 706, 738, 948
Jussien N., 854
k – diff, 700
k_cut, 75, 76, 86, 589, 546, 578
Kasper T., 406, 726, 868, 896
Katriel I., 496, 754, 760, 930
Kocjan W., 886, 890
Kreuger P., 886, 890
Kuchcinski K., 426
Kziltan Z., 580, 598, 606, 610, 698, 754, 852
López-Ortiz A., 176, 396
Labbé M., 904, 892
Laburthe F., 362
Lahrachi A., 362, 370
INDEX

Lal A., 382
Laporte G., 310, 394, 892
Laurière J.-L., 176, 306, 386
Laurence Y.C., 556, 558, 776
Le Pape C., 444
Leconte M., 176
Lee J.H.M., 556, 558, 776
Leiserson C.E., 358
Levy H., 382
lex2, 89, 91, 93, 95, 105, 203, 580, 582
lex alldiff, 582
lex alldifferent, 81, 89, 109, 582, 596
lex alldistinct, 582
lex between, 66, 68, 69, 81, 85, 105, 109, 584, 589, 593, 599, 603, 607, 611
lex chain, 588, 592
lex chain less, 80, 89, 91, 93, 105, 109, 584, 586, 588, 593, 599, 603, 607, 611
lex chain lesseq, 80, 89, 91, 93, 105, 109, 584, 586, 588, 593, 599, 603, 607, 611
lex different, 66, 68, 69, 81, 109, 582, 596
lex greater, 66, 68, 69, 81, 83, 89, 91, 93, 95, 105, 109, 584, 589, 593, 599, 603, 607, 611
lex greatereq, 66, 68, 69, 81, 83, 89, 91, 93, 95, 105, 109, 584, 589, 593, 599, 603, 607, 611
lex less, 66, 68, 69, 81, 83, 89, 91, 93, 95, 105, 109, 584, 586, 589, 593, 599, 603, 607, 611
lex lesseq, 19, 20, 89, 91, 93, 95, 105, 109, 204, 580, 586, 589, 593, 599, 603, 607, 611
lexicographic order, 89, 204, 580, 586, 589, 593, 599, 603, 607, 611
limited discrepancy search, 589, 435
line-segments intersection, 89, 355, 357, 916
linear programming, 89, 207, 355, 453, 463, 469, 573, 615, 727, 868, 871, 897
link set to booleans, 74, 76, 80, 81, 89, 100, 108, 180, 199, 433, 546, 578, 614, 727, 568, 887, 888, 891, 897
Liu Q., 172, 222
max_size.10

max_size_set_of_consecutive_var.66, 91, 108, 632

maximum.91, 92, 94, 624, 626, 632, 638

maximum.66, 68, 72, 91, 95, 926, 634, 638, 654

maximum clique.92, 819

maximum number of occurrences.92, 630

maximum modulo.91, 92, 95, 638, 661

maxint.92, 416, 644, 654, 657, 664

Mehlhorn K.176, 306, 726, 842, 868, 896

Miguel I.204, 580, 598, 606, 610, 862

Milano M.666

MIN_DRG.35

MIN_ID.35, 896

min_index.64, 66, 68, 72, 75, 624, 640

min_n.66, 67, 92, 95, 99, 576, 626, 644

MIN_NCC.35, 289, 290, 517, 554, 688

MIN_NSCC.36, 306, 524, 646, 650, 668, 696

min_nvalue.64, 66, 67, 83, 92, 108, 207, 352, 498, 630, 646, 657

MIN_OD.36, 896

min_size.10

min_size_set_consecutive_var.65

min_size_set_of_consecutive_var.66, 92, 108, 650, 696

min_weight_alldiff.666

min_weight_alldifferent.666

min_weight_alldistinct.666

minimum.92, 652, 654, 658, 659, 654, 557, 661, 664, 677, 681

minimum.20, 39, 51, 56, 63, 72, 92, 93, 639, 646, 654, 652, 656, 657, 664

minimum number of occurrences.92, 648

minimum_distance.174
INDEX

minimum_except, 68
minimum_greater_than, 68
minimum_modulo, 22, 68
minimum_weight_alldiff, 664
minimum_weight_alldifferent, 666
minimum_weight_alldistinct, 666
Mittal S., 784
modulo, 22, 68
multiset, 23, 68
multiset ordering, 22, 68
n-queen, 23
NARC, 36
nbchanges, 284
NCC, 37
nclass, 29, 68
nequivalence, 29, 68
next_element, 69
next_greater_element, 69
ninterval, 12, 79
no_cycle, 59
no_loop, 22
no_peak, 69
no_valley, 69
non-overlapping, 22
not all equal, 66, 68, 81, 83, 101, 108, 688, 700
not in, 65, 68, 72, 81, 88, 107, 108, 537, 590
NSCC, 37, 810, 824, 828, 829, 840, 842, 820, 822, 828, 832, 836, 838
nset of consecutive values, 26, 104, 108, 632, 650, 696
NSINK, 37, 322, 336, 338, 340, 542, 654, 760, 764, 668, 770, 842, 934, 936, 938
NSINK_NSOURCE, 37, 318, 320, 322, 324, 328, 330, 332, 842, 876, 930
NTREE, 38, 310, 386, 390, 394, 399, 413, 822, 666
number of changes, 94, 285, 300, 304, 316, 493, 507, 808
number of distinct equivalence classes, 94, 671, 674, 682, 694, 700, 704
number of distinct values, 94, 340, 326, 330, 700, 702, 704, 706
nvalue, 18, 17, 137, 65, 67, 69, 70, 72, 82, 84, 104, 108, 207, 208, 210, 240, 352, 626, 630, 648, 700, 702, 704, 706
nvalue on intersection, 75, 77, 79, 94, 195, 333, 700, 702, 704
nvalues, 79, 82, 84, 104, 108, 238, 240, 312, 32, 326, 328, 330, 700, 704, 706
nvalues except 0, 79, 83, 94, 104, 108, 396, 700, 704, 706
NVERTEX, 38, 313, 382, 395, 399, 432, 496, 200, 502, 517, 525, 705, 722, 745, 760, 812
obscure, 94, 711
Older W.J., 754, 842
one succ, 95
one factor, 882, 883
one machine, 444
one succ, 179, 180, 184, 188, 192, 198, 200, 204, 387, 392, 668, 703
one tree, 6, 70, 86, 94, 97, 107, 708
orchard, 48, 63, 65, 77, 712
ORDER, 39, 621, 626, 634, 638, 640, 644, 652, 656, 664
order constraint, 95, 204, 411, 499, 556, 558, 580, 586, 599, 593, 599, 603, 607, 611, 621, 625, 636, 638, 642, 644, 654, 657, 661, 664, 681, 746, 863, 864, 866
Pesant G., 496, 538, 730, 854, 858, 882
Petit T., 818, 819
phylogeny, 97, 714
pick-up delivery, 97, 887
place_in_pyramid, 59, 85, 94, 96, 428, 716, 718, 721, 740
Poder E., 746, 748
polygon, 98, 430
polyomino, 85, 96, 104, 744
positioning constraint, 98, 430, 432, 922, 949
PRED, 48, 595
predefined constraint, 98, 204, 323, 490, 545, 580, 731, 736, 738, 802
producer-consumer, 98, 162, 381
PRODUCT(=), 238, 322, 595, 720, 918, 922, 928, 944
PRODUCT(CLIQUE, LOOP, =), 203
PRODUCT(PATH, VOID), 598, 602, 606, 610
PRODUCT, 40, 448
product, 98, 568, 748
PRODUCT(Comparison), 29
product_tr, 24, 164, 98, 748, 750, 873
Prosser P., 708
proximity constraint, 98, 201, 447, 449
Puget J.-F., 176, 750
Quimper C.-G., 176, 396
Régis J.-C., 174, 176, 272, 276, 318, 322, 496, 500, 502, 608, 790, 810, 814, 882
RANGE, 40, 750
INDEX

range, 99, 780
range, 58
range_ctr, 41, 64, 99, 748, 750, 875
RANGE_DRG, 38, 906
RANGE_NCC, 39
RANGE_NSCC, 39, 250, 252, 256, 260
rank, 99, 626, 644
Refalo P., 452
regular, 58
relation, 99, 539, 888, 891
relaxation, 99, 124, 125, 811, 813, 815, 824, 843, 845, 849, 853, 857, 897, 938
relaxed_sliding_sum, 124, 87, 99, 100, 103, 752, 755
require_at_least, 8
required, 8
resource_constraint, 99, 266, 326, 330, 355, 368, 371, 381, 403, 444, 502, 566, 801, 911
rgcc, 497
Ribeiro C., 426
Rivest R.L., 358
Rivreau D., 444
Rochart G., 854
Rodríguez-Martín I., 394, 892
roots, 58
Rousseau J.M., 394, 892
row_and_column_lex, 580
Roy P., 434, 698
run_of_a_permutation, 100, 290
Sadjad S.B., 496
same, 29, 37, 58, 64, 66, 77, 79, 74, 76, 83, 84, 93, 391, 394, 419, 443, 502, 566, 801, 911
same_and_gcc, 760
same_and_global_cardinality. 63, 73, 80, 83, 93, 77, 108, 498, 756, 758, 760
same_gcc 760
same_intersection, 76, 77, 195, 333, 702, 558, 764
same_interval, 76, 80, 97, 758, 760, 813, 819
same_module, 76, 92, 97, 758, 768, 820, 821
same_partition, 76, 96, 97, 533, 788, 770, 822, 823
same_size 76
same_with_cardinalities 760
Samet H.330
Sanner A.M.W. 172, 522
scalar product. 100, 504
scheduling constraint. 100, 126, 129, 165, 168, 371, 381, 444, 446, 476, 738, 780
Schwenk A.J. 914
Sedgewick R. 622
Sellman M. 566
sequence 100, 125, 129, 324, 328, 350, 362, 366, 370, 374, 378, 426, 434, 440, 442, 456, 500, 502, 716, 718, 722, 748, 750, 760, 772, 878, 802, 874, 880, 900
sequence_folding. 66, 68, 70, 80, 85, 100, 772
set channel. 100, 573, 615
set_value_precede. 100, 88, 98, 103, 109, 526, 776
sgcc. 760, 890
shared table. 101, 380, 487
Shaw P. 564
Shearer J.B. 508
shift 100, 106, 250, 728, 796
Shufet J.A. 206
sign 24
signature

AUTOMATON
 deepest_valley, 114
 heighest_peak, 532
 inflexion, 354
 int_value_precede, 556
 int_value_precede_chain, 338
 ith_pos_different_from, 576
 lex_between, 354
 no_peak, 684
 no_valley, 686
 peak, 722
 valley, 710

CC(⟨NSINK, NSOURCE⟩), PRODUCT
 same_intersection, 764

CLIQUE, SUCC
 sliding_time_window, 794

DISTANCE, CLIQUE(≠)
 distance_between, 440

DISTANCE, PATH
 distance_change, 448

MAX_ID, MAX_NSINK, NCC, CLIQUE
 binary_tree, 258

MAX_ID, MIN_NSINK, CLIQUE
 circuit, 306

MAX_ID, NCC, NVERTEX, CLIQUE
 temporal_path, 892

MAX_ID, PRODUCT
 cardinality_atleast, 972
 cardinality_atmost, 976
 cardinality_atmost_partition, 280

MAX_ID, SUM, PRODUCT
 weighted_partial_alldiff, 946

MAX_NCC, CIRCUIT, LOOP
 stretch_circuit, 854

MAX_NCC, MIN_NCC, NARC, NCC, PATH
 change_continuity, 288
max NCC, min NCC, NCC, NVERTEX, PATH, LOOP, max NCC, min NCC, PATH, LOOP

group. 516

max NCC, PATH

longest change. 618

max NCC, PATH, LOOP, V

stretch path. 858

max NCC, PRODUCT

alldifferent on intersection. 194

max NSCC, CLIQUE

alldifferent. 1176

alldifferent between sets. 180

alldifferent except 0. 182

alldifferent interval. 186

alldifferent modulo. 190

alldifferent partition. 198
golomb. 508

max NSCC, CLIQUE

max nvalue. 628

max size set of consecutive var. 632

max NSCC, min NSCC, NSCC, NVERTEX, CHAIN

group skip isolated item. 524

max NSCC, NARC NO LOOP, PRODUCT(CLIQUE, LOOP, =)

alldifferent same value. 200

max NSCC, NCC, CLIQUE

tree. 902

max NSCC, NCC, NVERTEX, CLIQUE

tree. 708

max NSCC, NCC, NVERTEX, CLIQUE; NVERTEX, CLIQUE, V

tree resource. 910

max NSCC, NCC, RANGE, DRG, CLIQUE

tree range. 906

max NSCC, NVERTEX, CLIQUE
cutset. 352

min NSCC, CLIQUE

min nvalue. 646

min size set of consecutive var. 650

strongly connected. 868
INDEX

NARC, CIRCUIT
 circular_change. 314

NARC, CLIQUE(<)
 all_min_dist. 174
 diffn_column. 430
 diffn_include. 432
 disjunctive. 444
 lex_alldifferent. 832

NARC, CLIQUE(≠)
 all_differ_from_at_least_k_pos. 172

NARC, CLIQUE
 inverse. 568
 place_in_pyramid. 740

NARC, CLIQUE(<)
 crossing. 438
 graph_crossing. 512
 orchard. 712
 soft_alldifferent_ctr. 810
 two_layer_edge_crossing. 914

NARC, CLIQUE(≠)
 symmetric_alldifferent. 882

NARC, CLIQUE(≠); MAX_ID, MAX_OD, MIN_ID, MIN_NSCC, MIN_OD

NARC, CLIQUE(≠)
 tour. 896

NARC, NVERTEX
 CLIQUE(≠)
 clique. 318

NARC, PATH
 among_seq. 222
 decreasing. 410
 increasing. 548
 lex_chain_less. 338
 lex_chain_leq. 592
 sliding_distribution. 790
 sliding_sum. 792
 strictly_decreasing. 864
 strictly_increasing. 866

NARC, PATH
change, 284
change_pair, 298
change_partition, 402
cyclic_change, 402
cyclic_change_joker, 406
relaxed_sliding_sum, 752
smooth, 806
\textit{NARC, PATH},
arith-sliding, 242
size_maximal_starting_sequence_alldifferent, 784
\textit{NARC, PATH}, N
size_maximal_sequence_alldifferent, 782
\textit{NARC, PATH}, \textit{NARC, PRODUCT}
stage_element, 880
\textit{NARC, PATH}, \textit{NARC, PRODUCT}, \textit{SUCC}
next_greater_element, 680
\textit{NARC, PRODUCT}
element_sparse, 476
in_relation, 538
\textit{NARC, PRODUCT}(=)
differ_from_at_least_k_pos, 422
lex_diffrent, 596
\textit{NARC, PRODUCT}
disjoint, 436
not_in, 690
\textit{NARC, PRODUCT}
among_low_up, 214
correspondence, 346
counts, 354
domain_constraint, 452
elem, 456
element, 460
element_greatereq, 464
element_lesseq, 468
element_matrix, 472
elements, 480
in, 536
inverse_set, 572
link_set_to_booleans, 614
symmetric_cardinality, 886
symmetric_gcc, 890
NARC, PRODUCT(=)
arith_or, 228
orth_on_top_of_orth, 724
two_orth_are_in_contact, 918
two_orth_column, 922
two_orth_include, 928
vec_eq_tuple, 944
NARC, PRODUCT; NARC, PATH
sort_permutation, 940
NARC, PRODUCT, SUCC
minimum_greater_than, 660
next_element, 676
NARC, SELF
arith, 224
atleast, 242
orth_link_original_end, 716
NARC, SELF
atmost, 246
NARC, SELF
among, 206
among_diff_0, 208
among_interval, 214
among_modulo, 218
count, 350
discrepancy, 434
exactly, 492
orth_on_the_ground, 718
NARC, SELF; CLIQUE, CC
shift, 726
NARC, SELF; CLIQUE, SUCC
sliding_time_window_sum, 802
NARC, SELF; NARC, CLIQUE(<)
sequence_folding, 772
NARC, SELF; NARC, CLIQUE(≠)
 diffn, 426
NARC, SELF; NARC, PRODUCT
 disjoint_tasks, 440
NARC, SELF; NCC, NVERTEX, CLIQUE(≠)
 orths_are_connected, 722
NARC, SELF; PRODUCT, ∨, SUCC
 coloured_cumulatives, 328
 cumulative_with_level_of_priority, 374
 cumulatives, 378
NARC, SELF; PRODUCT, SUCC
 coloured_cumulative, 324
 cumulative, 362
 cumulative_product, 366
 cumulative_two_d, 370
 track, 900
NARC, SYMMETRIC_PRODUCT(=)
 two_orth_do_not_overlap, 924
NCC, CLIQUE
 k_cut, 578
NCC, NTREE, CLIQUE
 cycle, 386
NCC, NTREE, CLIQUE
 map, 622
NCC, NTREE, CLIQUE; NVERTEX, CLIQUE, PRED
 cycle_or_accessibility, 394
NCC, NTREE, CLIQUE, PATH_LENGTH
 cycle_card_on_path, 390
NCC, NTREE, NVERTEX, CLIQUE; NVERTEX, CLIQUE, ∨
 cycle_resource, 398
NCC, NVERTEX, CLIQUE(≠)
 polyomino, 744
NCC, PATH, LOOP
 global_contiguity, 506
NCC, PRODUCT
 nvalue_on_intersection, 702
NSCC, CLIQUE
not_all_equal, 688

NSCC, CLIQUE
nclass, 670
nequivalence, 674
ninterval, 682
npair, 694
nset_of_consecutive_values, 696
nvalue, 698
nvalues, 704
nvalues_except_0, 706
soft_alldifferent_var, 814

NSCC, GRID([SIZE1, SIZE2, SIZE3])
connect_points, 742

NSCC, NTREE, CLIQUE, ALL_VERTICES

circuit_cluster, 810

NSINK, NSOURCE, PRODUCT
soft_same_interval_var, 818
soft_same_modulo_var, 820
soft_same_partition_var, 822
soft_same_var, 824
soft_used_by_interval_var, 828
soft_used_by_modulo_var, 832
soft_used_by_partition_var, 836
soft_used_by_var, 838

NSINK, CC(NSINK, NSOURCE), PRODUCT
used_by, 930
used_by_interval, 934
used_by_modulo, 936
used_by_partition, 938

NSINK, NSOURCE, CC(NSINK, NSOURCE), PRODUCT
same, 754
same_interval, 766
same_modulo, 768
same_partition, 770

NSINK, NSOURCE, CC(NSINK, NSOURCE), PRODUCT; NARC, PATH

sort, 842

NSINK, NSOURCE, CC(NSINK NSOURCE), PRODUCT; NVERTEX, SELF, ∀
same_and_global_cardinality, 160

NSINK, NSOURCE, PRODUCT
- common, 132
- common_interval, 136
- common_modulo, 138
- common_partition, 140
- in_same_partition, 142

NSOURCE, PRODUCT
- elements_sparse, 186

NSOURCE, SUM, PRODUCT
- sum_of_weights_of_distinct_values, 876

NTREE, CLIQUE
- derangement, 418

NTREE, SUM, WEIGHT_ARC, CLIQUE
- minimum_weight_alldifferent, 666

NVERTEX, PRODUCT
- elements_alldifferent, 182

NVERTEX, SELF,▼
- global_cardinality, 196
- global_cardinality_low_up, 500

NVERTEX, SELF,▼, SUM, WEIGHT_ARC, PRODUCT
- global_cardinality_with_costs, 504

ORDER, CLIQUE
- max_index, 624
- max_n, 626
- maximum, 644
- maximum_modulo, 638
- min_index, 640
- min_n, 644
- minimum, 652
- minimum_except_0, 656
- minimum_modulo, 664

PATH_FROM_TO, CLIQUE
- path_from_to, 726

PATH_FROM_TO, PRODUCT(PATH, VOID)
- lex_greater, 598
- lex_greatereq, 602
INDEX

lex_less, 606
lex_leq, 610
PATH, LOOP, CC
 sliding_card, skip0, 786
PREDEFINED
 allperm, 204
 colored_matrix, 322
 eq, set, 490
 in_set, 546
 lex2, 580
 pattern, 730
 period, 736
 period_except_0, 738
 set_value, precede, 776
 strict_lex2, 862
PRODUCT, &, SUCC
 indexed_sum, 322
PRODUCT, SELF
 product, ctr, 148
PRODUCT, SUCC
 assign_and_counts, 234
 assign_and_nvalues, 238
 bin_packing, 264
 interval_and_count, 560
 interval_and_sum, 564
RANGE, NSCC, CLIQUE
 balance, 250
 balance_interval, 532
 balance_modulo, 256
 balance_partition, 260
RANGE, SELF
 range_ctr, 250
SUM, WEIGHT_ARC, PRODUCT
 sliding_time_window, from, start, 798
SUM, PRODUCT
 sum, 870
SUM, SELF
 sum_ctr, 874
 sum_set, 880
similarity 284
Simonis H. 342 374
size_maximal_sequence_alldiff 782
size_maximal_sequence_alldifferent 28 51 75 87 100 103 112 178 782 784
size_maximal_sequence_alldistinct 782
size_maximal_starting_sequence_alldiff 784
size_maximal_starting_sequence_alldifferent 28 75 87 100 103 112 178 782 784
size_maximal_starting_sequence_alldistinct 784
sliding cyclic(1) constraint network(1) 101 111 549 684 686 688 864 866
sliding cyclic(1) constraint network(2) 101 285 290 404 407 416 534 555 734 808 942
sliding cyclic(1) constraint network(3) 102 285 290 620
sliding cyclic(2) constraint network(2) 102 300 449
sliding sequence constraint 103 223 229 392 731 753 782 784 789 791 793 796 799 804 856 860
sliding_card_skip0 66 68 81 100 103 106 214 786
sliding_distribution 81 87 100 103 500 501 730 790 856 860
sliding_sum 28 30 82 100 103 105 723 782 874
sliding_time_window 103 105 780 792 799 802 803
sliding_time_window_start 81 103 106 796 798
sliding_time_window_sum 103 105 107 796 802 848
Smith B. 708
Smith B.M. 508
Smith L.M. 172 322
smooth 56 58 241 101 105 283 806
Soffa M.L. 382
soft constraint 103 153 81 83 81 82 84 88 89 829 833 837 839 948
soft_alldiff_ctr 910
soft_alldiff_var 914
soft_alldifferent_ctr 52 80 82 84 89 103 108 178 79 810 815
soft_alldifferent_var 52 81 82 83 89 103 104 108 109 178 179 811 814 948
INDEX

soft_alldistinct_ctr, 810
soft_alldistinct_var, 814
soft_gcc, 88
soft_regular, 88
soft_same, 824
soft_same_interval, 818
soft_same_interval_var, 76, 88, 99, 103, 109, 818
soft_same_modulo, 820
soft_same_modulo_var, 76, 92, 99, 103, 109, 820
soft_same_partition, 822
soft_same_partition_var, 76, 96, 99, 103, 109, 843, 822
soft_same_var, 37, 76, 99, 103, 109, 819, 821, 823, 824
soft_used_by, 838
soft_used_by_interval, 828
soft_used_by_interval_var, 76, 88, 99, 103, 109, 828
soft_used_by_modulo, 832
soft_used_by_modulo_var, 76, 92, 99, 103, 109, 832
soft_used_by_partition, 836
soft_used_by_partition_var, 76, 96, 99, 103, 109, 843, 836
soft_used_by_var, 76, 99, 103, 109, 838
Soriano P., 882
sort, 103, 844, 848
sort, 42, 76, 97, 104, 112, 856, 842, 846, 848
sort_permutation, 18, 76, 81, 97, 104, 108, 846, 848, 844, 846
sparse functional dependency, 104, 177, 487
sparse table, 104, 377, 487
sport timetabling, 104, 883
squared squares, 104, 365, 428
Sriskandarajah C., 310
Stadler P.F., 772
stage_element, 60, 80, 78, 82, 55, 103, 459, 462, 850
stage_elt, 850
Stergiou K., 508
Stille W., 264
stretch, 113, 854, 858
stretch_circuit, 90, 103, 106, 854, 860
stretch_path, 103, 106, 590, 525, 720, 856, 858
strict_lex2, 89, 91, 93, 103, 580, 862
strictly_decreasing, 66, 88, 50, 101, 111, 529, 864, 866
strictly_increasing, 66, 88, 50, 101, 111, 529, 864, 866
strongly_connected_component, 113, 433, 357, 396, 300, 324, 671, 674, 682, 694, 696, 706, 713
709, 716, 813, 868
strongly_connected, 77, 86, 59, 104, 546, 613, 868
SUCC, 48, 234, 238, 264, 324, 329, 402, 566, 811, 875, 890, 552, 560, 564, 566, 616, 680, 724
802, 800
SUM, 41, 870, 874, 876, 880, 846
sum, 105, 793, 804, 811, 875, 880
sum, 78, 79, 89, 103, 546, 870, 875, 880
sum_ctr, 24, 42, 49, 50, 64, 103, 264, 553, 566, 448, 650, 658, 792, 871, 574, 880
sum_of_weights_of_distinct_values, 65, 88, 89, 99, 110, 876, 948
sum_set, 54, 70, 77, 103, 525, 871, 875, 880
SUM_WEIGHT_ARC, 42, 503, 666, 798
swc, 760
swdv, 876
sweep, 105, 228
Swinkels G.M., 754, 842
symm_alldiff, 882
symm_alldifferent, 882
symm_alldistinct, 882
INDEX

symmetric, 105, 344
symmetric_alldiff, 882
symmetric_alldifferent, 62, 74, 79, 81, 85, 21, 97, 104, 106, 161, 179, 387, 882
symmetric_alldistinct, 882
symmetric_cardinality, 65, 77, 80, 84, 99, 106, 198, 546, 886, 891
symmetricgcc, 54, 65, 71, 80, 84, 99, 105, 113, 198, 546, 615, 886, 890
SYMMETRIC_PRODUCT, 29
SYMMETRIC_PRODUCT(=), 924
SYMMETRIC_PRODUCT(Comparison), 29
symmetry, 105, 204, 556, 558, 580, 586, 589, 593, 599, 603, 607, 611, 776, 862
Szymank R., 426

table, 106, 459, 462, 465, 469, 477, 480, 484, 487, 577, 677, 681, 851
Tallys H. Yunes, 820
Tamassia R., 914

temporal constraint, 106, 226, 320, 326, 365, 368, 377, 381, 442, 562, 566, 780, 896, 899, 904, 901
temporal_path, 75, 86, 96, 227, 892
ternary constraint, 106, 475
Thiel A.J., 172, 422
Thiel S., 176, 426, 439, 490, 670, 674, 682, 684, 724, 100, 842, 876, 882, 920, 946
Thorsteinsson E., 364, 408

time window, 107, 804
timetabling constraint, 106, 285, 290, 300, 304, 316, 323, 404, 407, 523, 530, 562, 580, 592, 566, 620, 731, 736, 738, 780, 808, 856, 860, 883, 888, 891, 901
Tollis I.G., 914
Toth P., 264
touch, 107, 924, 920
tour, 35, 36, 77, 86, 89, 99, 107, 307, 546, 615, 896
track, 81, 92, 106, 700, 900
tree, 107, 270, 911, 203, 907, 911
tree., 35, 37, 75, 86, 107, 268, 270, 387, 514, 628, 711, 902, 906, 907, 910, 911
tree_range, 38, 67, 75, 86, 107, 250, 906

tree_resource, 75, 81, 86, 99, 107, 113, 903, 910

Trick M.A., 882

TRUE, 24

tuple, 107, 539, 945

two_layer_edge_crossing, 51, 58, 89, 460, 814, 914

two_orth_are_in_contact, 65, 88, 89, 77, 85, 94, 107, 717, 724, 918

two_orth_column, 85, 86, 96, 98, 430, 717, 922

two_orth_do_not_overlap, 26, 30, 66, 68, 69, 88, 94, 96, 428, 717, 924

two_orth_include, 95, 96, 98, 332, 717, 928

unary constraint, 107, 539, 991

undirected graph, 107, 897

used_by, 66, 67, 72, 76, 84, 88, 756, 888, 899, 920, 934, 939

used_by_interval, 76, 88, 828, 829, 934

used_by_modulo, 76, 88, 922, 832, 833, 936

used_by_partition, 76, 88, 96, 843, 886, 837, 938

430, 438, 450, 458, 461, 465, 470, 478, 481, 486, 552, 556, 560, 574, 493, 495, 497, 498, 801, 827, 828, 846

415, 850, 852, 854, 858, 868, 911, 996, 705, 784, 813, 819, 943

value partitioning constraint, 108, 671, 674, 682, 694, 700, 704, 706

value precedence, 109, 556, 558, 776

van Beck P., 176, 896, 884, 858

Van Emden M.H., 754, 832

Van Hentenryck P., 450, 496

van Hoeve W.J., 454, 495, 854, 810, 824

variable indexing, 109, 550, 463, 565, 469, 477, 553

variable subscript, 109, 459, 463, 465, 469, 553

variable-based violation measure, 109, 815, 819, 821, 823, 825, 829, 833, 837, 839

vec_eq_tuple, 107, 108, 944
INDEX

vector, 109, 113, 124, 582, 586, 589, 593, 596, 599, 603, 607, 611

Vilím P., 444

VOID, 29

vpartition, 110, 523

Walsh T., 508, 580, 598, 606, 610, 698, 754, 852

Wang C.C., 382

Wei W., 708

weighted assignment, 110, 504, 668, 877, 948

weighted_partial_alldiff, 62, 65, 68, 83, 92, 103, 110, 148, 159, 184, 204, 658, 815, 877, 946

weighted_partial_alldifferent, 946

weighted_partial_alldistinct, 946

Weihe K., 264

workload covering, 110, 381

wpa, 946

Yan H., 302

Zhou J., 842, 846

Zhou N.-F., 442