Skip to Main content Skip to Navigation
Journal articles

Pipelike current-carrying vortices in two-component condensates

Abstract : We study straight vortices with global longitudinal currents in the Bogomol'ny limit of the Abelian Higgs model with two charged scalar fields. The model possesses global SU(2) and local electromagnetic U(1) symmetries spontaneously broken to global U(1) group, and corresponds to a semilocal limit of the standard electroweak model. We show that the contribution of the global SU(2) current to the vortex energy is proportional to the total current squared. Locally, these vortices carry also longitudinal electromagnetic currents, while the total electromagnetic current flowing through a transverse section of the vortex is always zero. The vortices with high winding numbers have, in general, a nested pipelike structure. The magnetic field of the vortex is concentrated at a certain distance from the geometric center of the vortex, thus resembling a ``pipe''. This magnetic pipe is layered between two electrically charged pipes that carry longitudinal electric currents in opposite directions.
Complete list of metadatas
Contributor : Maxim Chernodub <>
Submitted on : Wednesday, May 19, 2010 - 5:25:31 PM
Last modification on : Thursday, January 9, 2020 - 4:10:07 PM

Links full text




M. N. Chernodub, A. S. Nedelin. Pipelike current-carrying vortices in two-component condensates. Physical Review D, American Physical Society, 2010, 81 (12), pp.125022. ⟨10.1103/PhysRevD.81.125022⟩. ⟨hal-00484998⟩



Record views