A. Antoniadis, E. Paparoditis, and T. Sapatinas, A functional wavelet?kernel approach for time series prediction, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.42, issue.5, pp.837-857, 2006.
DOI : 10.1073/pnas.42.1.43

A. Antoniadis, X. Brossat, J. Cugliari, and J. M. Poggi, CLUSTERING FUNCTIONAL DATA USING WAVELETS, Proceedings of the Nineteenth International Conference on Computational Statistics (COMPSTAT), 2010.
DOI : 10.1142/S0219691313500033

URL : https://hal.archives-ouvertes.fr/hal-00853949

N. Auer, C. Cesa-bianchi, and . Gentile, Adaptive and Self-Confident On-Line Learning Algorithms, Journal of Computer and System Sciences, vol.64, issue.1, pp.48-75, 2002.
DOI : 10.1006/jcss.2001.1795

A. Blum, Empirical support for Winnow and Weighted-Majority based algorithms: results on a calendar scheduling domain, Machine Learning, pp.5-23, 1997.
DOI : 10.1016/B978-1-55860-377-6.50017-7

A. Blum and Y. Mansour, From External to Internal Regret, Journal of Machine Learning Research, vol.8, pp.1307-1324, 2007.
DOI : 10.1007/11503415_42

A. Borodin, R. El-yaniv, and V. Gogan, On the competitive theory and practice of portfolio selection, Proceedings of the Fourth Latin American Symposium on Theoretical Informatics (LATIN'00), pp.173-196, 2000.

A. Bruhns, G. Deurveilher, and J. Roy, A non-linear regression model for mid-term load forecasting and improvements in seasonnality, Proceedings of the Fifteenth Power Systems Computation Conference (PSCC), 2005.

D. W. Bunn and E. D. Farmer, Comparative Models for Electrical Load Forecasting, 1985.

N. Cesa-bianchi and G. Lugosi, Potential-based algorithms in on-line prediction and game theory, Machine Learning, pp.239-261, 2003.

N. Cesa-bianchi, Y. Mansour, and G. Stoltz, Improved second-order inequalities for prediction under expert advice, Machine Learning, pp.321-352, 2007.

T. M. Cover, Universal Portfolios, Mathematical Finance, vol.9, issue.1, pp.1-29, 1991.
DOI : 10.1016/0378-4266(79)90023-2

O. Dani, D. Madani, S. Pennock, B. Sanghai, and . Galebach, An empirical comparison of algorithms for aggregating expert predictions, Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence (UAI), 2006.

M. Dashevskiy and Z. Luo, Time series prediction with performance guarantee, IET Communications, vol.5, issue.8, pp.1044-1051, 2011.
DOI : 10.1049/iet-com.2010.0121

S. De-rooij and T. Van-erven, Learning the switching rate by discretising Bernoulli sources online, Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS), 2009.

M. Devaine, Y. Goude, and G. Stoltz, Aggregation of sleeping predictors to forecast electricity consumption, 2009.

V. Dordonnat, S. J. Koopman, M. Ooms, A. Dessertaine, and J. Collet, An hourly periodic state space model for modelling French national electricity load, International Journal of Forecasting, vol.24, issue.4, pp.566-587, 2008.
DOI : 10.1016/j.ijforecast.2008.08.010

Y. Freund, R. Schapire, Y. Singer, and M. Warmuth, Using and combining predictors that specialize, Proceedings of the twenty-ninth annual ACM symposium on Theory of computing , STOC '97, pp.334-343, 1997.
DOI : 10.1145/258533.258616

P. Gaillard, Y. Goude, and G. Stoltz, A further look at the forecasting of the electricity consumption by aggregation of specialized experts, 2011.

S. Gerchinovitz, V. Mallet, and G. Stoltz, A further look at sequential aggregation rules for ozone ensemble forecasting, 2008.

. Goude, Mélange de prédicteurs et applicationàapplication`applicationà la prévision de consommationélectriqueconsommationélectrique, 2008.

. Goude, Tracking the best predictor with a detection based algorithm, Proceedings of the Joint Statistical Meetings (JSP), 2008b. See the section on Statistical Computing

M. Herbster and M. Warmuth, Tracking the best expert, Machine Learning, pp.151-178, 1998.

A. Z. Jacobs, Adapting to non-stationarity with growing predictor ensembles, 2011.

R. D. Kleinberg, A. Niculescu-mizil, and Y. Sharma, Regret bounds for sleeping experts and bandits, Proceedings of the Twenty-First Annual Conference on Learning Theory (COLT), pp.425-436, 2008.
DOI : 10.1007/s10994-010-5178-7

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

V. Mallet, Ensemble forecast of analyses: Coupling data assimilation and sequential aggregation, Journal of Geophysical Research: Atmospheres, vol.113, issue.D22, 2010.
DOI : 10.1029/2008JD009991

URL : https://hal.archives-ouvertes.fr/inria-00547903

V. Mallet, G. Stoltz, and B. Mauricette, Ozone ensemble forecast with machine learning algorithms, Journal of Geophysical Research, vol.41, issue.1, 2009.
DOI : 10.1029/2008JD009978

URL : https://hal.archives-ouvertes.fr/inria-00565770

C. Monteleoni and T. Jaakkola, Online learning of non-stationary sequences, Advances in Neural Information Processing Systems (NIPS), pp.1093-1100, 2003.

G. Monteleoni, S. Schmidt, E. Saroha, and . Asplund, Tracking climate models, Statistical Analysis and Data Mining, vol.7, issue.4, pp.372-392, 2011.
DOI : 10.1002/sam.10126

A. Pierrot and Y. Goude, Short-term electricity load forecasting with generalized additive models, Proceedings of the Sixteenth International Conference on Intelligent System Application to Power Systems (ISAP), 2011.

A. Pierrot, N. Laluque, and Y. Goude, Short-term electricity load forecasting with generalized additive models, Proceedings of the Third International Conference on Computational and Financial Econometrics, 2009.

G. Stoltz and G. Lugosi, Internal regret in on-line portfolio selection, Machine Learning, pp.125-159, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00007535

V. Vovk and F. Zhdanov, Prediction with expert advice for the Brier game, Proceedings of the 25th international conference on Machine learning, ICML '08, 2008.
DOI : 10.1145/1390156.1390295

S. N. Wood, Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC, 2006.