Forecasting electricity consumption by aggregating specialized experts

Abstract : We consider the setting of sequential prediction of arbitrary sequences based on specialized experts. We first provide a review of the relevant literature and present two theoretical contributions: a general analysis of the specialist aggregation rule of Freund et al. (1997) and an adaptation of fixed-share rules of Herbster and Warmuth (1998) in this setting. We then apply these rules to the sequential short-term (one-day-ahead) forecasting of electricity consumption; to do so, we consider two data sets, a Slovakian one and a French one, respectively concerned with hourly and half-hourly predictions. We follow a general methodology to perform the stated empirical studies and detail in particular tuning issues of the learning parameters. The introduced aggregation rules demonstrate an improved accuracy on the data sets at hand; the improvements lie in a reduced mean squared error but also in a more robust behavior with respect to large occasional errors.
Type de document :
Article dans une revue
Machine Learning, Springer Verlag, 2013, 90 (2), pp.231-260
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00484940
Contributeur : Gilles Stoltz <>
Soumis le : vendredi 6 juillet 2012 - 14:25:58
Dernière modification le : samedi 17 février 2018 - 01:18:03
Document(s) archivé(s) le : jeudi 15 décembre 2016 - 21:02:17

Fichiers

Devaine-Goude-Stoltz-Gaillard....
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00484940, version 3
  • ARXIV : 1207.1965

Collections

Citation

Marie Devaine, Pierre Gaillard, Yannig Goude, Gilles Stoltz. Forecasting electricity consumption by aggregating specialized experts. Machine Learning, Springer Verlag, 2013, 90 (2), pp.231-260. 〈hal-00484940v3〉

Partager

Métriques

Consultations de la notice

839

Téléchargements de fichiers

812