Skip to Main content Skip to Navigation
Journal articles

Forecasting electricity consumption by aggregating specialized experts

Abstract : We consider the setting of sequential prediction of arbitrary sequences based on specialized experts. We first provide a review of the relevant literature and present two theoretical contributions: a general analysis of the specialist aggregation rule of Freund et al. (1997) and an adaptation of fixed-share rules of Herbster and Warmuth (1998) in this setting. We then apply these rules to the sequential short-term (one-day-ahead) forecasting of electricity consumption; to do so, we consider two data sets, a Slovakian one and a French one, respectively concerned with hourly and half-hourly predictions. We follow a general methodology to perform the stated empirical studies and detail in particular tuning issues of the learning parameters. The introduced aggregation rules demonstrate an improved accuracy on the data sets at hand; the improvements lie in a reduced mean squared error but also in a more robust behavior with respect to large occasional errors.
Complete list of metadatas

Cited literature [33 references]  Display  Hide  Download
Contributor : Gilles Stoltz <>
Submitted on : Friday, July 6, 2012 - 2:25:58 PM
Last modification on : Tuesday, September 22, 2020 - 3:59:37 AM
Long-term archiving on: : Thursday, December 15, 2016 - 9:02:17 PM


Files produced by the author(s)




Marie Devaine, Pierre Gaillard, Yannig Goude, Gilles Stoltz. Forecasting electricity consumption by aggregating specialized experts. Machine Learning, Springer Verlag, 2013, 90 (2), pp.231-260. ⟨10.1007/s10994-012-5314-7⟩. ⟨hal-00484940v3⟩



Record views


Files downloads