

Synthesis and application of trimethylsilyl dinitramide Me3SiN(NO2)2 as dinitramide transfer reagent; preparation of covalent organotellurium(IV) dinitramides

Thomas M. Klapoetke, Krumm Burkhard, Matthias Scherr

▶ To cite this version:

Thomas M. Klapoetke, Krumm Burkhard, Matthias Scherr. Synthesis and application of trimethylsilyl dinitramide Me3SiN(NO2)2 as dinitramide transfer reagent; preparation of covalent organotellurium(IV) dinitramides. Journal of Inorganic and General Chemistry / Zeitschrift für anorganische und allgemeine Chemie, 2009, 635 (6-7), pp.885. 10.1002/zaac.200900038 . hal-00484132

HAL Id: hal-00484132 https://hal.science/hal-00484132

Submitted on 18 May 2010 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. ZAAC

Zeitschrift für Anorganische und Allgemeine Chemie

Synthesis and application of trimethylsilyl dinitramide Me3SiN(NO2)2 as dinitramide transfer reagent; preparation of covalent organotellurium(IV) dinitramides

Journal:	Zeitschrift für Anorganische und Allgemeine Chemie
Manuscript ID:	zaac.200900038
Wiley - Manuscript type:	Article
Date Submitted by the Author:	15-Jan-2009
Complete List of Authors:	Klapoetke, Thomas; Ludwig-Maximilians-Universitaet Muenchen, Institut fuer Anorg. Chemie Burkhard, Krumm; Ludwig-Maximilians-Universitaet Muenchen, Institut fuer Anorg. Chemie Scherr, Matthias; Ludwig-Maximilians-Universitaet Muenchen, Institut fuer Anorg. Chemie
Keywords:	Trimethylsilyl dinitramide, Tellurium, Dinitramides, Multinuclear NMR spectroscopy

Synthesis and application of trimethylsilyl dinitramide Me₃SiN(NO₂)₂ as dinitramide transfer reagent; preparation of covalent organotellurium(IV) dinitramides

Thomas M. Klapötke*, Burkhard Krumm, and Matthias Scherr

München, Department Chemie und Biochemie der Ludwig-Maximilians-Universität

Dedicated to Prof. Dr. Gerd Meyer, on the occasion of his 60th birthday

Received

* Prof. Dr. Thomas M. Klapötke

Department Chemie und Biochemie der Ludwig-Maximilians-Universität München

Butenandtstr. 5–13 (Haus D)

D-81377 München

Fax: ++49-89-2180-77492

email: tmk@cup.uni-muenchen.de

Abstract

The preparation and properties of trimethylsilyl dinitramide $Me_3SiN(NO_2)_2$ are reported. Its application as dinitramide transfer reagent furnished the first covalent organotellurium(IV) bis(dinitramides) $R_2Te[N(NO_2)_2]_2$, which were characterized by multinuclear NMR spectroscopy. Alternatively, $R_2Te[N(NO_2)_2]_2$ were synthesized from the corresponding organotellurium(IV) halides R_2TeX_2 with silver dinitramide.

Keywords: Trimethylsilyl dinitramide, Tellurium; Dinitramides; Multinuclear NMR spectroscopy

Introduction

As an alternative azide transfer reagent, trimethylsilyl azide Me₃SiN₃, has wide application possibilities and some advantages compared to silver azide.[1] Similarly, for example Me₃SiCN and Me₃SiCF₃, have been proven to be excellent reagents for transferring a cyanide- and trifluormethyl-group respectively.[2-9] In general the use of the respective silver salts usually necessitate chlorides, bromides or iodides as starting materials. The separation of the resulting precipitate AgX (X = Cl, Br, I) is especially in case of temperature-, moisture- or air-sensitive materials a considerable problem. In addition the light-sensitivity of silver salts, and, especially in the case of AgN₃, the extreme sensitivity towards shock and friction comprises some risks and avoids straightforward syntheses. The reactions with commercially available Me₃SiN₃, which is less hazardous compared to AgN₃, result only in the formation of Me₃SiF as by-product, which can easily be removed in vacuo. Therefore, the preparation of the analogous compound Me₃SiN(NO₂)₂ and application as dinitramide transfer reagent would be of considerable interest.

Not at least because of our research in the past years, the chemistry of tellurium halides as precursors for the corresponding tellurium(IV) azides is well investigated.[10-17] Recently, we reported the successful preparation and characterization of organochalcogenium dinitramides.[18] In this contribution, as a consequence, we also focus on the preparation of the first covalent organotellurium(IV) dinitramides.

Results and Discussion

The preparation of trimethylsilyl dinitramide $Me_3SiN(NO_2)_2$ (1) was achieved by reaction of Me_3SiCl with silver dinitramide in dichloromethane as solvent (Scheme 1). Immediately after the addition of silver dinitramide the formation of AgCl as precipitate was

ZAAC

obtained. After stirring for one hour at 0 °C, the NMR spectra of the solution indicate the formation of **1**.

$$Me_{3}SiCI + Ag[N(NO_{2})_{2}] \xrightarrow{CH_{2}CI_{2}, 0 \circ C} Me_{3}SiN(NO_{2})_{2} (1)$$

Scheme 1: Preparation of Me₃SiN(NO₂)₂ (1).

The pale yellow solution displays two resonances in the ¹⁴N NMR spectrum at $\delta = -24$ and -101 ppm (solvent CH₂Cl₂). In contrast to silver dinitramide,[19] the resonance of the amide nitrogen in **1** is significantly shifted to higher field. In the ²⁹Si NMR spectrum ($\delta = 6.8$ ppm) the resonance is in-between the resonances for Me₃SiCN ($\delta = -12.3$ ppm) and Me₃SiN₃ ($\delta = 15.9$ ppm),[20] and considerably different compared to the resonance of the starting material Me₃SiCl ($\delta = 30.2$ ppm).[20] The silyl dinitramide **1** is storable in solution for at least six hours. Evaporation of the solvent at 0 °C resulted in the formation of a brownish, viscous residue, which could not be dissolved again. Therefore an isolation of neat **1** was not possible. However, the application as dinitramide transfer reagent for the preparation of the first covalent organotellurium(IV) dinitramides was successful.

For the preparation of diorganotellurium(IV) bis(dinitramides) two different reaction pathways have been investigated (Scheme 2). Starting from the corresponding dichlorides R_2TeCl_2 , the reaction with silver dinitramide or its pyridine or acetonitrile solvates[19, 21] resulted in the formation of the corresponding organotellurium(IV) dinitramides $R_2Te[N(NO_2)_2]_2$ (R = Me (2), Ph (3), Mes (4)).

 ZAAC

Scheme 2: Preparation of covalent organotellurium(IV) bis(dinitramides) $R_2Te[N(NO_2)]_2$.

The second reaction pathway with the help of the new trimethylsilyl dinitramide (1)requires the corresponding organotellurium(IV) difluorides R₂TeF₂ as starting materials. The reaction was performed with a freshly prepared solution of 1 in CH₂Cl₂. According to the ¹²⁵Te NMR spectra both pathways resulted in the same products, which unambiguously proofs that 1 can be used as *in situ* generated dinitramide transfer reagent. In the ¹⁹F NMR spectra of the reaction mixtures, the resonance of Me₃SiF ($\delta = -158.4$ ppm) was observed as the major resonance. The ¹²⁵Te NMR resonances of the dinitramides **2**, **3** and **4** in CDCl₃ (see Table 1) are shifted to lower field compared to the resonances of the corresponding difluorides (Me₂TeF₂: δ = 1232 ppm, Ph₂TeF₂: δ = 1128 ppm, Mes₂TeF₂: δ = 1206 ppm).[22] In the ¹⁴N NMR spectra the resonance of the nitro group is observed in the range between $\delta = -16$ and -20 ppm, and comparable to ionic triorganochalcogenium dinitramide $[R_3Ch][N(NO_2)_2]$ (Ch = Te, Se, S; R = Ph, Me) salts ($\delta = -11$ to -14 ppm).[18] In accordance with the covalent silvl derivative 1, the resonances of the amide nitrogen atoms are significantly shifted to higher field (see Table 1) compared to the ionic compounds ($\delta = -55$ to -59 ppm).[18] In contrast to the resonances of the nitro groups, the amide resonances of 2– 4 are significantly broadened with line widths larger than 550 Hz.

ZAAC

If a solution of Mes₂TeF₂ in CH₂Cl₂ is reacted with a substoichiometrical amount of an *in situ* prepared solution of Me₃SiN(NO₂)₂ (**1**) in CH₂Cl₂, the resonance of the tellurium(IV) bisdinitramide **4** (δ = 1334 ppm) is found to be the major product (Figure 1). Furthermore, apart from the resonance of the starting material Mes₂TeF₂ (δ = 1205 (t) ppm), also resonances for Mes₂TeCl₂ (δ = 813 ppm), resulting from reaction with still present Me₃SiCl, and likely the two mixed species Mes₂Te(F)[N(NO₂)₂] (δ = 1269 (d) ppm) and Mes₂Te(Cl)[N(NO₂)₂] (δ = 1048 ppm) as minor products are observed.

The IR and Raman spectra of the compounds **3** and **4** display, as expected, similar bands compared to the ionic organochalcogenium dinitramides (for details see Experimental Section).

Whereas the methyl substituted derivative 2 decomposes within hours, the phenyl and mesityl substituted compounds are considerably more stable. According to 125 Te NMR spectroscopy, the storage of 3 and 4 at ambient temperature under an inert atmosphere of dry argon did not indicate any signs of decomposition after two weeks. However, after a period of two months both compounds also showed decomposition to unidentifiable products, likely

ZAAC

oxygen containing materials such as the corresponding diorganotellurium(IV) oxides R₂TeO. Besides nitric acid, N₂O could unambiguously be identified in ¹⁴N NMR spectra (δ = -148, -232 ppm in CDCl₃) as further decomposition products of the organotellurium(IV) bis(dinitramides).

During the preparation as well as during handling and characterization attention should be paid to the fact that the stability of covalent dinitramides differs from the stability of ionic dinitramides. Covalent dinitramides are less stable than the ionic dinitramides, which is in accordance with stability differences between the corresponding covalent and ionic nitrates and nitrites respectively.[23] The reason for instability of a covalent dinitramide moiety likely is the result of a sterical hindering of the two nitro-groups, which is significantly different to an ionic dinitramide, and the comparatively high electronegativity of the N,N-dinitro-group. Furthermore the absence of an additional electron, which accounts in the dinitramide-anion for resonance stabilization and thereby resulting in a higher N–N bond order, decreases the stability.[24] Therefore the few up to now reported alkyldinitramines decompose at temperatures below 70 °C and are extremely shock sensitive.[23]

In summary the first covalent organotellurium(IV) bis(dinitramides) were synthesized by reaction of the organotellurium(IV) dihalides with silver dinitramide or with trimethylsilyl dinitramide as a new dinitramide transfer reagent. The silyl derivative could also be characterized by multinuclear NMR spectroscopy and its limited stability was noted.

Experimental Section

General remarks

ZAAC

All manipulation of air- and moisture-sensitive materials were performed under an inert atmosphere of dry argon using flame-dried glass vessels or oven-dried plastic equipment and Schlenk techniques;[25] solvents were freshly distilled and stored under N₂. Silver dinitramide reagents[19, 21] and organotellurium(IV) dihalogenides R_2TeX_2 (R = Me, Ph, Mes; X = F, Cl)[26] were prepared according to literature procedures. Me₃SiCl was freshly distilled prior to use. Infrared spectra were recorded on Perkin-Elmer Spektrum One FT-IR or Nicolet 520 FT-IR spectrometers (as KBr pellets or between KBr plates), Raman spectra on Perkin-Elmer 2000 NIR FT spectrometer fitted with a Nd:YAG laser (1064 nm, 200 mW). NMR spectra were recorded on a JEOL Eclipse 400 instrument at 25 °C, and chemical shifts were determined with respect to external Me₄Si (¹H, 399.8 MHz; ¹³C, 100.5 MHz; ²⁹Si, 79.5 MHz), MeNO₂ (¹⁴N, 28.9 MHz), and Me₂Te (¹²⁵Te, 126.1 MHz). Due to the high sensitivity of the compounds, elemental analyses could not be performed satisfactory and are therefore not reported. The preparation of covalent organotellurium(IV) bisdinitramides afforded products with yields in the range between 60 and 85 %.

Experimental procedures and analytical data

$Me_3SiN(NO_2)_2(1)$

Into a solution of 2.1 mmol Me₃SiCl in 5 mL CH₂Cl₂ were added 2.1 mmol Ag[N(NO₂)₂] at 0 °C. After stirring the solution for 1 h at 0 °C, a sample for NMR experiments was prepared. Evaporation of all volatile materials resulted in the formation of nitrous gases and a remaining brownish solid, which could not be identified.

¹H NMR (CH₂Cl₂/CDCl₃): 0.26 (² J_{H-29Si} = 6.9 Hz) ppm; ¹³C{¹H} NMR (CH₂Cl₂/CDCl₃): -0.9 (¹ J_{C-29Si} = 58.5 Hz) ppm; ¹⁴N NMR (CH₂Cl₂/CDCl₃): -24 (N(<u>N</u>O₂)₂), -101 (br, <u>N</u>(NO₂)₂) ppm; ²⁹Si{¹H} NMR (CH₂Cl₂/CDCl₃): 6.8 ppm.

ZAAC

General procedure for the preparation of the diorganotellurium(IV) bis(dinitramides) $R_2Te[N(NO_2)_2]_2$

Method I: Into a solution of 0.78 mmol R_2TeCl_2 in 10 mL CH_2Cl_2 were added 1.56 mmol $Ag[N(NO_2)_2]$ at 0 °C. After stirring for 2 h at 0 °C, the colorless precipitate (AgCl) was separated and all volatile materials removed in vacuo. The bis(dinitramides) **2–4** were obtained as pale-yellow oils, which decompose according to ¹²⁵Te NMR spectra within a few hours (**2**) or a couple of weeks (**3** and **4**), respectively.

Method II: Into a solution of 0.65 mmol R_2TeF_2 in 5 mL CH_2Cl_2 were added 1.30 mmol of *in situ* prepared **1** in CH_2Cl_2 at 0 °C. NMR experiments of the solutions and of isolated products furnish the same NMR resonances according to *Method I*.

$Me_2Te[N(NO_2)_2]_2$ (2)

¹H NMR (CDCl₃): 1.73 ppm; ¹³C{¹H} NMR (CDCl₃): 18.6 ppm; ¹⁴N NMR (CDCl₃): -20 (N($\underline{N}O_2$)₂), -104 (br, $\underline{N}(NO_2)_2$) ppm; ¹²⁵Te{¹H} NMR (CDCl₃): 1295 ppm.

$Ph_2Te[N(NO_2)_2]_2(3)$

IR (KBr): 3416 br, 3053 m, 2946 m, 1631 m, 1604 m, 1585 m, 1528 vs, 1501 w, 1474 s, 1462 m, 1381 s, 1332 m, 1291 w, 1258 m, 1144 vs, 1006 s, 853 m, 820 w, 742 s, 688 m, 678 m, 614 s, 535 m cm⁻¹. Raman: 3002 (45), 1598 (56), 1582 (42), 1510 (48), 1420 (32), 1395 (40), 1300 (81), 1284 (70), 1253 (65), 1199 (55), 1004 (100), 825 (45), 678 (49), 615 (65), 558 (70), 471 (55), 456 (25), 411 (48), 341 (56), 297 (50), 228 (51), 170 (59) cm⁻¹.

¹H NMR (CDCl₃): 7.90/7.58 (m, Ar-H) ppm; ¹³C{¹H} NMR (CDCl₃): 132.5 (*o*-C), 131.1 (*p*-C), 130.6 (*m*-C), 126.4 (C–Te, ${}^{1}J_{C-125Te} = 265.1 \text{ Hz}$) ppm; ¹⁴N NMR (CDCl₃): -18 (N(<u>N</u>O₂)₂), -105 (br, <u>N</u>(NO₂)₂) ppm; ¹²⁵Te{¹H} NMR (CDCl₃): 1286 ppm.

Mes₂Te[N(NO₂)₂]₂ (4)

IR (KBr): 3426 br, 3073 m, 2956 m, 1636 m, 1595 m, 1530 vs, 1484 s, 1451 s, 1384 s, 1342 w, 1292 w, 1184 vs, 1008 s, 853 w, 821 w, 751 s, 698 m, 680 s, 608 m, 539 m cm⁻¹. Raman: 3111 (86), 3022 (58), 2924 (86), 1635 (47), 1596 (62), 1553 (48), 1458 (50), 1383 (53), 1318 (72), 1295 (70), 1198 (56), 1012 (100), 825 (55), 688 (45), 609 (49), 554 (69), 474 (56), 412 (52), 347 (50), 296 (52), 228 (57), 176 (54) cm⁻¹.

¹H NMR (CDCl₃): 7.12/6.89 (m, *m*-CH, 4H), 2.91/2.53 (s, *o*-CCH₃, 12H), 2.30 (s, *p*-CCH₃, 6H) ppm; ¹³C{¹H} NMR (CDCl₃): 145.8/142.8 (*o*-C), 139.8 (*p*-C), 131.7/130.4 (*m*-C), 125.2 (C–Te), 24.6/24.1 (*o*-CH₃), 20.8 (*p*-CH₃) ppm; ¹⁴N NMR (CDCl₃): -16 (N(<u>N</u>O₂)₂), -101 (br, <u>N</u>(NO₂)₂) ppm; ¹²⁵Te{¹H} NMR (CDCl₃): 1334 ppm.

Table 1. ¹²⁵Te and ¹⁴N NMR resonances of the diorganotellurium(IV) bis(dinitramides) **2–4** (δ in ppm, solvent CDCl₃).

	δ^{125} Te	δ^{14} N [N(<u>N</u> O ₂) ₂ / <u>N</u> (NO ₂) ₂]
$\begin{array}{l} Me_2Te[N(NO_2)_2]_2 \ (\textbf{2}) \\ Ph_2Te[N(NO_2)_2]_2 \ (\textbf{3}) \\ Mes_2Te[N(NO_2)_2]_2 \ (\textbf{4}) \end{array}$	1295 1286 1334	-20/-104(br) -18/-105(br) -16/-101(br)

Acknowledgements

The University of Munich, the Deutsche Forschungsgemeinschaft (KL 636/10–1), and the Fonds der Chemischen Industrie are gratefully acknowledged for financial support.

 ZAAC

References

- [1] S. Bräse, C. Gil, K. Knepper, V. Zimmermann, *Angew. Chem.* **2005**, *117*, 5320.
- [2] H. Beckers, D. J. Brauer, H. Bürger, C. J. Wilke, J. Organomet. Chem. 1988, 356, 31.
- [3] H. Beckers, H. Bürger, R. Eujen, B. Rempfer, H. Oberhammer, J. Mol. Struct. 1986, 140, 281.
- [4] M. J. Barrow, Acta Crystallogr. **1982**, *B38*, 150.
- [5] I. Ojima, S. Inabe, K. Nakatsugawa, Y. Nagai, *Chem. Lett.* 1975, 331.
- [6] U. Hertenstein, S. Hünig, Angew. Chem. 1975, 87, 195.
- [7] D. A. Evans, L. K. Truesdale, G. L. Carroll, J. Chem. Soc., Chem. Commun. 1973, 55.
- [8] K. G. Sharp, T. D. Coyle, J. Fluorine Chem. 1971, 1, 249.
- [9] T. A. Bither, W. H. Knoth, R. V. Lindsey, W. H. Sharkey, J. Am. Chem. Soc. 1958, 80, 4151.
- [10] T. M. Klapötke, B. Krumm, M. Scherr, Z. Anorg. Allg. Chem. 2007, 633, 1618.
- [11] T. M. Klapötke, B. Krumm, P. Mayer, M. Scherr, Z. Naturforsch. 2006, B61, 528.
- [12] T. M. Klapötke, B. Krumm, P. Mayer, D. Naumann, I. Schwab, *J. Fluorine Chem.* 2004, *125*, 997.
- [13] T. M. Klapötke, B. Krumm, P. Mayer, I. Schwab, Angew. Chem. 2003, 115, 6024.
- [14] R. Haiges, J. A. Boatz, A. Vij, M. Gerken, S. Schneider, T. Schroer, K. O. Christe, *Angew. Chem.* 2003, 115, 6027.
- [15] T. M. Klapötke, B. Krumm, P. Mayer, H. Piotrowski, O. P. Ruscitti, A. Schiller, *Inorg. Chem.* 2002, 41, 1184.
- [16] T. M. Klapötke, B. Krumm, P. Mayer, K. Polborn, O. P. Ruscitti, *Inorg. Chem.* 2001, 40, 5169.

Wiley-VCH

- [17] T. M. Klapötke, B. Krumm, P. Mayer, O. P. Ruscitti, *Inorg. Chem.* **2000**, *39*, 5426.
- [18] T. M. Klapötke, B. Krumm, M. Scherr, Eur. J. Inorg. Chem. 2008, 4413.
- [19] T. M. Klapötke, B. Krumm, M. Scherr, *Dalton Trans.* 2008, DOI:10.1039/b814447h.
- [20] L. Olsson, C.-H. Ottosson, D. Cremer, J. Am. Chem. Soc. 1995, 117, 7460.
- H.-G. Ang, W. Fraenk, K. Karaghiosoff, T. M. Klapötke, P. Mayer, H. Nöth, J. Sprott,
 M. Warchhold, Z. Anorg. Allg. Chem. 2002, 628, 2894.
- [22] T. M. Klapötke, B. Krumm, P. Mayer, K. Polborn, I. Schwab, Z. Anorg. Allg. Chem.
 2005, 631, 2677.
- [23] J. C. Bottaro, P. E. Penwell, R. J. Schmitt, J. Am. Chem. Soc. 1997, 119, 9405.
- [24] S. Venkatachalam, G. Santhosh, K. N. Ninan, *Propellants, Explos., Pyrotech.* 2004, 29, 178.
- [25] D. F. Shriver, M. A. Drezdzon, *The manipulation of air sensitive compounds*, Wiley, New York, .
- [26] T. M. Klapötke, B. Krumm, P. Mayer, H. Piotrowski, O. P. Ruscitti, Z. Anorg. Allg. Chem. 2002, 628, 229.

Mes₂TeCl₂

800 ppm

900

1			
2			
3			
4			
5			
6			
7			
, 8			
0		$CH_2CI_{2,0} = C_1$	
9 10	$Me_3SICI + Ag[N(NO_2)_2]$		$Me_3SIN(NO_2)_2$ (1)
10		– AgCl	
11			
12			
13	129x1	3mm (300 x 300 DPI)	
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
21			
20			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
40 50			
51			
52			
52			
55			
04 FF			
55			
50			
57			
58			
59			
60			

